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Abstract

A theoretical model based on the molecular interactions between a growing tumor and a dynamically

evolving blood vessel network describes the transformation of the regular vasculature in normal tissues into

a highly inhomogeneous tumor specific capillary network. The emerging morphology, characterized by the

compartmentalization of the tumor into several regions differing in vessel density, diameter and necrosis,

is in accordance with experimental data for human melanoma. Vessel collapse due to a combination of

severely reduced blood flow and solid stress exerted by the tumor, leads to a correlated percolation process

that is driven towards criticality by the mechanism of hydrodynamic vessel stabilization.

PACS numbers: 87.18.-h, 87.10+e, 87.17.Aa, 61.43Hv
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Tumor vasculature, the network of blood vessels in and around a growing tumor, is in many

respects different from the regular vasculature in normal tissues. Hypoxia, the lack of oxygen, that

prevents a small tumor nucleus from further growth, induces the expression of various diffusible

growth factors (GF) by the tumor cells that trigger a coordinated response of angiogenesis - the

formation of irregular blood vessels (for a review see [1, 2]). The expected increase in microvasular

density (MVD) is usually observed in the periphery of the tumor, whereas the morphology of the

vasculature in the central part of the tumor is characterized by a decreased MVD, dilated vessels

and regions of necrotic tumor tissue [3, 4]. The resulting tumor specific capillary network is very

heterogeneous, composed of dense and void regions, and has a fractal dimension different from

normal arteriovenous or normal capillary networks [5].

Although on the molecular level the main actors in the angiogenic game are rapidly identified,

the physical principles that determine the global morphology of the vascular network in tumor

tissues are not known. Since for instance MVD is used as a diagnostic tool in cancer therapy

[6] a quantitative understanding of the mechanism that leads to the compartmentalization of the

tumor vasculature into various regions differing substantially in vessel density appears manda-

tory. Moreover, scale-invariant aspects like fractal dimension are used as hints towards the nature

of the growth process underlying the formation of the tumor vasculature [7]. In this Letter we

propose a theoretical model for the evolution of tumor vasculature that illuminates the physical

principles leading to its global morphology. The experimentally observed increase in MVD at the

tumor perimeter and periphery and decrease in MVD and vessel dilation in the tumor center in

human melanoma [4] appear also as the general scenario in the theoretical model that we discuss.

Furthermore, we will argue that vessel collapses in the interior of the tumor lead to a percolation

process which is driven towards criticality, the percolation threshold, via a mechanism of vessel

stabilization by increased blood flow in the remaining vessels.

Guided by a 2d automaton model that two of us developed recently [8] we consider the tumor-

vessel system as a dynamically evolving network or graph interacting with a tumor growth process.

Although there is a large amount of work on the mathematical modeling of tumor-induced angio-

genesis (for reviews see e.g. [9, 10]), the integration of the two aspects, a growing tumor and a

vascular structure dynamically evolving from a given one, has not been tried before: Previous

attempts either assume a static tumor [11] or a static network topology [12], look at dynamic

vascular remodeling in the absence of tumor growth [13], or use cell densities within continuum

models [14] or in discretized versions [15], thereby disregarding all structural and hydrodynamic
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aspects.

In our model the interaction between tumor and vasculature takes place via two concentration

fields: the oxygen (O2) originating in the vessel network, and the growth factor originating in the

tumor cells (TC). A hydrodynamic flow is imprinted on the vessel network that emits O2. TCs

proliferate/die when the local O2 concentration is high/low. Vessels (edges) emerge when the

local GF concentration is high enough, and they vanish (collapse) stochastically inside the tumor,

when the hydrodynamic shear force acting on the vessel walls is too low. The biological and

pathophysiological motivation for the details of the model definition to follow is discussed in [8].

To be specific, we describe the topology of the vessel network by a graph G = (V,E), each edge

e ∈ E representing a vessel and each node v ∈ V a vessel junction. Here we restrict to capillary

networks and do not discriminate between arteries and veins. The network G is embedded in

the 3d Euclidean space R3 and restricted to the cube Z of volume L3, which is discretized into

L3 = (L/a)3 unit cells. The microscopic length scale is chosen to be a = 10µm, the typical size of

the endothelial cell (EC) and TC. For computational convenience we restrict the edges to run only

parallel to the three coordinate axes and identify an edge with the string of unit cells of Z that it

covers. We assume the original tissue to be regularly vascularized with a homogeneous capillary

network of given MVD that is fixed by intercapillary distance δ.

The tumor is represented by the set T of tumor cells. Initially it is a nucleus with NTC tumor

cells centered at rc = (L/2,L/2,L/2) grown using the Eden rule [16]. The time that a TC spent

under hypoxia is tuo(r), which is initially set to 0.

The vessel network G is the source of an O2 concentration field O2(r) and the tumor T is the

source of a growth factor concentration field GF(r). For computational tractability (c.f. [17]) we

assume a constant transmural O2 pressure difference at all vessel walls, which implies a secretion

of O2 at a fixed rate. This assumption overestimates the O2 concentration in regions with increased

MVD, but this does not alter the model outcome significantly, as discussed below.

O2(r) = ∑
e∈E

∑
r′∈e

hRoxy(|r− r′|) , GF(r) = ∑
r′∈T

hRgf(|r− r′|). (1)

Rgf and Roxy are the growth factor and O2 diffusion radii, respectively, and for simplicity we

choose a piecewise linear and normalized form for the contribution hR(r) of each tumor cell

/ vessel segment, hR(r) = (1 − r/R)/(πR3/3) for r < R and hR(r) = 0 for r ≥ R, satisfying
R ∞

0 dr hR(r)4πR2 = 1.

Each edge e represents a tubular vessel of diameter d(e) (initially set to d(e) = 10µm), carrying
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a hydrodynamic blood flow q(e) that exerts a shear force f (e) upon the vessel walls. The flow is

assumed to be incompressible, laminar and stationary, then q(e) and f (e) are given by Poiseuille’s

law:

q(e) = d4(e)∇P(e) and f (e) = d(e)∇P(e), (2)

where the blood pressure P(r) in the nodes (vessel junctions) is computed using Kirchhoff’s law

and the pressure gradient ∇P(e) in vessel e is the difference of P at its both ends. The boundary

condition for P(r) on ∂Z is static and chosen such that q(e), f (e) and the resulting O2 concentration

are initially homogeneous (with values q0, f0 and O2, respectively), imprinting a global net flow

in the diagonal direction [8].

Starting with the initial configuration described above the following updates are performed

sequentially in each time step of duration ∆t = 1h, c.f. Fig. 1 for illustration.

(a) TC proliferation: (T → T ∪{r}) at tumor surface sites r [16] with prob. pnew
TC if O2(r) is larger

than a threshold coxy.

(b) TC death: TC survive a time tmax in an underoxygenated state, then they die: If tuo(r) > tmax,

T → T −{r} with prob. pdeath
TC = 1/2. Otherwise tuo(r) → tuo(r)+1 if O2(r) ≤ coxy.

(c) Vessel growth: In regions of large GF concentration new vessels of maximum length `max form:

Insert a vessel e with probability pnew
EC if GF(r) > cgf along the whole path of of the new vessel.

New vessels must neither be longer than `max nor touch other vessels except at the start and end

point.

(d) Vessel dilatation: In regions of large GF concentration vessel diameter grows (up to a max-

imum dmax): d(e) → d(e)+ ∑r∈e θ(GF(r)− cgf)/(∑r∈e 2π) (where θ(x) = 1 for x ≥ 0 and zero

otherwise) with prob. pdil
EC as long as d(e) < dmax.

(e+f) Vessel collapse and regression: Weakly perfused vessels can collapse due to the solid stress

exerted by the tumor: After computation of P(r), f (e) and q(e) vessels that are cut from the blood

circulation (q(e) = 0) are removed. Each remaining vessel e is removed with prob. pcollapse
EC if the

shear force falls below a threshold ηc: f (e)/ f0 < ηc (c.f. [13]) and more than 80% of the vessel

surface sites are occupied by TCs.

We have simulated the model using various parameter values, but here we restrict ourselves to

the discussion of one typical parameter set, which is partly guided by data for human melanoma

[4]. The intercapillary distance is δ = 100µm, i.e. MVD0, the original MVD, is 100/mm2. Roxy

is 100µm, i.e. O2 ≈ 0.03, coxy is 0.01, and the proliferation times are for TCs tTC = 10h (i.e.

pnew
TC = 0.1) and for new vessels and vessel dilatations tEC = 40h (i.e. pnew

EC = pdil
EC = 0.025), and

4



TC survival time tmax = 20 h. We set Rgf = 200µm and cgf = 0.001. dmax is 35µm, `max = 100µm,

ηc = 0.5, and the time that weakly perfused vessels can survive inside the tumor tcollapse = 50h,

i.e pcollapse
EC = 0.02). The initial tumor size is NTC = 27000 (i.e. an initial tumor diameter of ca.

0.6mm).

An example for the time evolution of the tumor/vessel system in this model is shown in Fig. 2.

Starting from a regular vessel network the MVD in the peritumoral region is increased due to the

supply of GFs from the tumor, as can best be seen in the snapshots of an equatorial cross section

through the tumor center in Fig. 2(g-i). Once the tumor grows over this highly vascularized region,

vessels start to collapse, by which the MVD in the interior of the tumor is continuously decreased

until only a few thick vessels, surrounded by cuffs of TCs remain. Due to the reduced MVD,

the tumor center regions become hypoxic and TCs will die leaving large necrotic regions. This

compartmentalization of the tumor into different shells that can be discriminated by MVD, vessel

diameter and necrosis is also observed in real tumors [4].

Figure 3 presents a quantitative analysis of this dynamical evolution. Shown in Fig. 3(a) is the

radial tumor density ρTC(R). One sees that the tumor radius grows linearly with time t: RTC(t)−

RTC(0) ' 2t/tTC, where the factor 2 is typical for the Eden growth. The radial vessel density

MV D(R), shown in Fig. 3(b), has the peak in accordance with the tumor boundary at RTC(t). The

O2 concentration at the tumor boundary is proportional to MVD, i.e. up to 2.5 ·O2 ≈ 0.07, which

is much larger than coxy = 0.01, above which TCs proliferate. Hence the fact that we overestimate

O(r) by 50-80% in this region (compared with computations along the lines of [17]) has no effect

on the model behavior.

Both, ρTC(R) and MVD(R) are substantially reduced inside the tumor due to the emergence of

necrotic regions. The radial vessel diameter d(R), shown in Fig. 3(c), increases linearly from 1 at

R'RTC +Rgf to dmax at the tumor center since vessels that have long been exposed to GF produced

by TCs have large diameters. Such a characteristic vessel morphology is also in a quantitative

agreement with experimental data presented in [4], where the morphometry of human malignant

melanoma was analyzed and data for MVD and vessel perimeter were obtained in three different

regions of the tumors: (I) the tumor center, (II) the tumor periphery - a 100µm wide band of tumor

immediately adjacent to the invasive edge; and (III) the peritumoral host tissue - a 200µm wide

band of host connective tissue immediately adjacent to the tumor periphery. It was found that for

melanoma larger than 1.5mm the MVD in (I) was less than 50% of the normal tissue MVD0, in

(II) it was ca. 50% more than MVD0, and in (III) it was ca. two times MVD0. Within the statistical
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error of the experimental data (up to 30%), this agrees reasonably well with our results.

Figure 3(d-f) concern hydrodynamic quantities: (d) shows the radial blood pressure gradient

∇P(R) which is 50% lower in the tumor center than in normal vessels. This is, from hydrodynamic

considerations, an immediate consequence of the increased MVD in the peritumoral region. (e)

shows the azimuthal dependence of the pressure gradient ∇P(θ), where for each vessel θ is the

azimuthal angle of the vessel center in a spherical coordinate system with rc as center and z-axis

parallel to the diagonal. ∇P(θ) is lowest in the direction orthogonal to the global flow (θ = π/2).

(f) shows the radial shear force f (R), which depends on the vessel diameter and the pressure

gradient. It develops a pronounced dip at the tumor boundary since the pressure gradient is reduced

at the periphery but the vessel radius is increased towards the tumor center.

The qualitative bahvior of our model is robust, a detailed discussion of the quantitative param-

eter dependencies was performed in [8] for the 2d case, which carries over to the present 3d case

without substantial modifications: E.g. the necrotic volume increases with the ratio tEC/tcollapse

due to reduced O2 supply. The parameter values discussed above were chosen to give a reasonable

agreement with the experimental data [4]. Since the latter have large error margins, these values

can be varied considerably without harming the agreement.

The geometrical features of the emerging tumor vasculature in our model are obviously very

different from the original, regular capillary network: It consists of a combination of dense and

void regions that might possess fractal properties. We used the box-counting method to determine

the fractal dimension D f as Nε ∼ ε−D f , where Nε is the number of boxes of volume ε3 necessary

to cover the tumor vessel network lying within the outer limit of the peritumoral region R . 145.

The plot of Nε versus ε in Fig. 4 yields D f = 2.52± 0.05, which agrees with the value for the

percolation cluster in conventional percolation in three dimension [19]. We get the same value

for a wide range of parameter values and at different times t ≥ 250 and also with other methods

to estimate D f (for a discussion, including the caveats, see [18]. When we restrict the fractal

analysis to concentric shells (R1 ≤ R ≤ R2) the estimates for D f decrease systematically towards

the tumor center (see inset Fig. 4), reflecting the characteristic compartmentalization of the tumor

vasculature also in the fractal properties.

We conclude that the basic mechanism responsible for the fractal properties of the tumor vas-

culature in our model is the stochastic removal of vessels via vessel collapse and regression. In

conventional percolation a critical cluster only emerges for an exactly tuned bond concentration.

In our model the network is dynamically driven into this critical state without such a fine tuning
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since the removal of vessels is correlated with the blood flow: the collapse of weakly perfused

vessels stabilizes the remaining ones due to an increase in blood flow. We propose that this mech-

anism is also at work in real tumors. Indeed the fractal analysis of two-dimensional photographs

of vessel networks in human carcinoma yields a value of D f = 1.89±0.04 [5], which agrees with

D f for the percolation cluster in 2d random percolation [19] and also with the value we obtain for

the 2d version of our model [8]. It has been suggested [5] that the origin of the fractal architecture

of tumor vasculature might be based on an underlying invasion percolation process [20] due to in-

homogeneities in the growth supporting matrix. Since our theoretical model does not involve any

such matrix-inhomogeneities we propose that it is rather the flow correlated percolation process

that determines the fractal properties of the tumor vasculature. Neo-vascularization mainly occurs

at the tumor perimeter and a drastic reduction of vessel density is commonly observed in the in-

terior of the tumor, therefore it appears unlikely that the fractal properties attained during growth

in the periphery, independent of having characteristics of invasion percolation or not, survive the

random dilution process in the tumor center.

To summarize we have introduced a theoretical model for a dynamically evolving, three-

dimensional vessel network interacting with a growing tumor, which is guided by experimental

data for human melanoma. The emerging network morphology agrees well with those data and

we find that the network is remodeled from a regular into a fractal structure with characteristics

of random percolation. This suggests also for a large class of real solid tumor with decreased

central MVD that the basic mechanism leading to the fractal features of the tumor vasculature is

the random vessel collapse inside the tumor and not a stochastic vessel growth process.
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FIG. 1: Schematic illustration of the model: (a) TC proliferation, (b) TC death, (c) Vessel growth, (d) Vessel

dilatation, (e) Vessel collapse due to low shear force, and (f) Collapse of uncirculated vessels.
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FIG. 2: (Color online) The time evolution of the tumor / vessel system demonstrated by 3 snapshots at time

t=0, 200, and 400. (a-c) only the tumor is presented (note the necrotic regions inside), (d-f) only the vessel

network (note the increased MVD at the tumor periphery, and the reduced MVD and dilated vessels in the

tumor center), and (g-i) shows an equatorial cross section of the whole system in the xy plane at z = L/2.

The parameter values are given in the text. The color code of the TCs represents the age scaled to [0,1] and

the color code of the vessel indicates the scaled blood flow, q(e)/q0 .
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FIG. 3: (a) tumor density ρTC, (b) MVD, (c) vessel diameter d, (d) blood pressure gradient ∇P, and (f) shear

force f as a function of the distance to the center R = |r− rc| for different times t (see a). (e) shows ∇P as

a function of the azimuthal angle θ. The data are averaged over all sites with the same R (or θ). Except ρTC

all quantities are normalized to their (constant) values in the original network.

11



101

102

103

104

105

106

107

100 101 102

N
ε

ε

tcollapse=20  tmax=20
tcollapse=50  tmax=20
tcollapse=100  tmax=50

101

103

105

107

100 101 102

65≤ R≤ 85
85≤ R≤ 105
105≤ R≤ 125
125≤ R≤ 145

FIG. 4: Log-Log plot of the box count Nε (see text) vs ε (in units of a) for vessel networks at t = 400 for

different values of tcollapse and tmax. The straight line is the best fit Nε ∼ ε−D f , with D f = 2.52(5) being its

slope. The local slope of the data increases monotonically from 1, the fractal dimension of an individual

vessel, to its asymptotic value (c.f. [18]). The inset shows Nε of different concentric shells of thickness

20 for tcollapse = 20 and tmax = 20. The slopes of the upper dashed line and lower solid line are −2.24 and

−1.68, respectively.

12


