Szakmai beszámoló az "Új réz és mangán radioizotópok Pozitron Emissziós Tomográf (PET) vizsgálatokhoz"

című OTKA kutatás keretében végzett munkáról és az elért eredményekről (2002-2005)

1. Bevezetés

Az utóbbi évek egyik jelentős nemzetközi kutatási iránya az un. "alternatív" (elsősorban fém) pozitron bomló (β^+ > ~15%) radioizotópokkal jelzett diagnosztikumok kifejlesztése. Az "új" PET (Pozitron Emissziós Tomográf) radioizotópok (radiofarmakonok) segítségével lehetővé válik számos olyan folyamat nyomon követése, melyekre az eddigi un. "metabolikus tracerekkel (pl.: ¹¹C, ¹⁵O, ¹³N stb)" nem volt lehetőség. Az irodalomban számos "hosszabb felezési idejű" pozitron bomló radioizotópot (illetve a velük nyomjelzett vegyületeket) javasoltak a PET vizsgálatok számára. Ezek az új radioizotópok lehetővé teszik az emberi szervezetben lejátszódó lassabb dinamikus folyamatok nyomon követését, valamint felhasználhatóak a terápiás célú radioizotópok szervezeten belüli eloszlásának quantitativ és qualitativ meghatározására.

Ezen új radioizotópok (radiofarmakonok) vizsgálata azonban még nem jutott el arra a szintre, hogy azok rutinszerű alkalmazásra kerülhessenek a PET centrumokban. Termelési körülményeik ugyanis a legtöbb esetben nincsenek megfelelően kidolgozva. Az eddig ismert módszerek vagy drága céltárgy anyagokat, és/vagy alacsony hatásfokú kémiai elválasztásai, illetve jelzési eljárásokat használtak(nak).

A jelen pályázat célja az volt, hogy a leginkább perspektivikusnak tűnő néhány réz és mangán radioizotóp (⁶⁰Cu (T_{1/2}=23.2 min, $\beta^+=92\%$), ⁶¹Cu (T_{1/2}=3.33 h, $\beta^+=61\%$), ⁶²Cu (T_{1/2}=9.74 min, $\beta^+=97\%$), ⁶⁴Cu (T_{1/2}=12.7 h, $\beta^+=18\%$), ⁵¹Mn (T_{1/2}=46.2 min, $\beta^+=97\%$)) előállítását optimalizáljuk (kis- és középenergiás ciklotronnal történő termelés esetére).

A fenti réz radioizotópokkal jelzett vegyületek sikeresen alkalmazhatóak a hypoxiás szöveti területek kimutatására az agyban és a szívben, valamint bizonyos rákos laesiók identifikálására a szervezetben. Jól használhatónak bizonyulnak továbbá peptidek és proteinek jelzésére is.

Az ugyancsak az érdeklődés homlokterében álló ⁵¹Mn radioizotóp segítségével, pedig vizsgálni lehet az MRI (mágneses rezonancia) technikában használatos mangántartalmú un. "magnetofarmakonok" tényleges szervezeten belüli eloszlását és beépülési kinetikáját. A PET segítségével így lehetőség nyílik az új paramágneses vegyületek (kontraszt anyagok) tényleges felvételének dinamikai vizsgálatára.

2. Az elért eredmények

2.1. A ⁶⁰Cu radioizotóp termelése

A ⁶⁰Cu radioizotóp termelésére a naturális kobalt céltárgyon (⁵⁹Co: 100%) lejátszódó ⁵⁹Co(³He,2n)⁶⁰Cu magreakciót választottuk. Habár néhány szerző már vizsgálta a ⁶⁰Cu előállíthatóságát kis- és középenergiás ciklotronokkal, az általuk javasolt reakciók és módszerek a dúsított izotóp összetételű céltárgy anyagok rendkívül magas ára (elsősorban a ^{60,61}Ni céltárgyak, pl. ⁶¹Ni kb. 4000 USD/g) és a kapcsolódó céltárgy készítési/kinyerési eljárások bonyolultsága (és költségei) miatt - nem bizonyultak széles körben használhatónak. Kobalt

alkalmazása esetén megtakarítható a preparálás (és célanyag visszanyerés) költsége, mivel a kellő vastagságú (méretű) céltárgy viszonylag olcsón beszerezhető kereskedelmi forrásból is. Vizsgálataink során, mind a hatáskeresztmetszet mérésekhez, mind a termelési kísérletekhez mi is vásároltuk a céltárgyakat (Goodfellow Metals, UK.)

A kobalt céltárgy optimális besugárzási körülményeinek meghatározása érdekében megmértük az 59 Co(3 He,2n) 60 Cu magreakció gerjesztési függvényét a reakció küszöbenergiájától a 70-ig terjedő energia tartományban. Ugyancsak vizsgáltuk a 60 Cu termelése esetén fő szennyező radioizotópnak számító 61 Cu-t előállító 59 Co(3 He,n) 61 Cu magreakció hatáskeresztmetszet adatait is. A hatáskeresztmetszet méréseket az un. "szendvicsfólia" aktiválási technikával végeztük. Céltárgyként vékony (~20 µm) nat Co fémfóliákat használtunk. A fólia sorozatokba szokásos módon monitor és energiacsökkentő fóliákat is helyeztünk. A besugárzásokat és méréseket a debreceni ATOMKI és a Japán NIRS (National Institute of Radiological Sciences) intézetek ciklotron laboratóriumaiban végeztük.

Vizsgálataink alapján az ⁵⁹Co(³He,2n)⁶⁰Cu magreakció gerjesztési függvénye az E_{3He} =16.3 MeV bombázó energiánál érte el a maximumát (σ_{max} = 109 mbarn), míg az ⁵⁹Co(³He,n)⁶¹Cu magreakció legnagyobb hatáskeresztmetszet adata 7.5 mbarn (E_{3He} =14.6 MeV) volt. Eredményeinket összehasonlítva az irodalomban rendelkezésre álló adatokkal, sikerült mindkét reakcióra megbízható adatbázist létrehoznunk.

Az illesztett gerjesztési függvények alapján vastag-céltárgy hozamszámolásokat végeztünk 40 MeV-ig. Ezek alapján a ⁶⁰Cu termelésének optimális energia tartományára az $E_{3He}=26\rightarrow10$ MeV adódott. Az elérhető hozam, pedig 3.1 mCi/µA volt 23 min besugárzási idő mellett. A ⁶¹Cu szennyezés a besugárzási idő végén (EOB) 1.4%-ra adódott. Mivel a kb. 5%-os ⁶¹Cu szennyezés még elfogadható egy szokásos PET vizsgálat végén, így a kémiai szeparációra, a nyomjelzésre és a PET vizsgálatra az EOB-t követő kb. 1 h időtartam áll rendelkezésre.

A réz radioizotópok besugárzott kobalt céltárgyból való kinyerésére és a PET vizsgálatokhoz használható ATSM (Cu-diacetyl-bis(N⁴-methylthiosemicarbazone)) jelzésére automatizálható eljárást fejlesztettünk ki. Korábbi vizsgálatainkban már meghatároztuk a ⁶¹Cu optimális besugárzási körülményeit a Co+ α magreakcióval. (Szelecsényi *et al.*: Production possibility of ^{60,61,62}Cu radioisotopes by alpha induced reactions on cobalt for PET studies in *Nuclear Instruments and Methods in Physics Research* **B187**(2002) 153-163). Mivel mindkét esetben a besugárzást követően ugyanolyan kémiai szeparációs eljárás használható, ezért együtt fejlesztettük a ⁶⁰Cu és ⁶¹Cu gyakorlati elválasztási eljárásait.

Termelési célokra végül egy kelát gyantás elválasztási módszert javasoltunk használni. Első lépésben az aktivált céltárgyat (~200 mg) 3 mL koncentrált HNO₃-ban oldottuk fel. Ezt követően hozzáadtunk 32 mL 2N nátrium acetátot, mellyel az oldat pH értékét 3-5 közé állítottuk be. Az oldatot Chelex 100 típusú gyantával töltött oszlopra töltöttük rá. (Belső átmérő: 4 mm, hossz: 80 mm). A gyantát előzőleg acetát pufferrel (20 mL, 0.1 mol/L, pH=4.4) kondícionáltuk. A gyantán megkötött kobalt eltávolítását 50 mM foszfát pufferrel (30-35 mL, pH=2) végeztük, 1mL/min áramlási sebesség mellett (perisztaltikus pumpával). Ezt követően eluáltuk a Cu²⁺ ionokat 1 N HCL oldatban (5 mL). A szeparációs hatásfok >95% körül alakult. Mind a ⁶⁰Cu, mind a ⁶¹Cu esetén ezt az oldatot használjuk a Cu-ATSM szintézisére.

Előkísérleteinkben a fenti Cu²⁺ oldatot, a beszárítást követően 0.1 M-os acetát pufferben oldottuk fel (pH=5.6, 1 mL). Ehhez adtunk hozzá 200 mL H₂ATSM-et DMSO oldatban, majd 60 s-ig kevertük az oldatot. A Cu-ATSM hozama >85%-nak adódott. Eredményeink megteremtik a ⁶⁰Cu, ⁶¹Cu jelzett ATSM (illetve PTSM) szélesebb körű használatát olyan centrumokban, amelyek középenergiás többrészecskés gyorsítóval rendelkeznek. Itt említjük meg, hogy a NIRS

intézetben (Japán) már a gyakorlat számára is használják a kobalton lejátszódó magreakciókat réz radioizotópok termelésére (jelenleg főleg a ⁶¹Cu előállítására).

2.2. A ⁶¹Cu radioizotóp termelése

Mint azt már korábban megmutattuk, az 59 Co(α ,2n) 61 Cu magreakció eredményesen helyettesítheti a dúsított nikkel céltárgyakon lejátszódó reakciókat a 61 Cu (és 62 Cu) gyakorlati termelésére (Szelecsényi *et al.*: Production possibility of 60,61,62 Cu radioisotopes by alpha induced reactions on cobalt for PET studies in *Nuclear Instruments and Methods in Physics Research* **B187**(2002) 153-163). Sajnálatos módon, a többrészecskés gyorsítók száma erősen korlátozott, ezért számos PET centrum nem tudja használni a fenti módszert. A jelentős költségek miatt ugyanakkor a Ni+p és Ni+d reakciók sem perspektivikusak számukra.

A⁶¹Cu radioizotóp termelésére ezért a dúsított izotóp összetételű cink (⁶⁴Zn: ~100%) céltárgyon lejátszódó ⁶⁴Zn(p,x)⁶¹Cu "folyamatot" (: több magreakció együttesen eredményezi a végmagot) választottuk. A különböző dúsítási fokú Zn célanyagok ára csak *töredéke* a dúsított Ni céltárgyakénak. (A természetes izotóp összetételű Zn anyagban a ⁶⁴Zn aránya eleve 48.6%.) A Zn+p magreakciókat eddig is széles körben használták a ⁶⁷Ga és ⁶⁶Ga (SPECT, és PET) radioizotópok termelésére, így a cink céltárgy készítési és a célanyag visszanyerési eljárások is részletesen ki vannak dolgozva, és széles körben hozzáférhetők.

Az ⁶⁴Zn céltárgy optimális besugárzási körülményeinek meghatározása érdekében megmértük a ⁶⁴Zn(p,x)⁶¹Cu folyamat (⁶⁴Zn(p,\alpha))⁶¹Cu (Q=+0.8 MeV) és ⁶⁴Zn(p,2p2n)⁶¹Cu (Q=-27.5 MeV)) gerjesztési függvényét a reakciók küszöbenergiájától a 100-ig terjedő energia tartományban. Ugyancsak vizsgáltuk a ⁶¹Cu termelése esetén fő szennyező radioizotópnak számító ⁶⁰Cu-t előállító ⁶⁴Zn(p,x)⁶⁰Cu folyamatok (⁶⁴Zn(p,\alphan)⁶⁰Cu (Q=-10.9 MeV) és ⁶⁴Zn(p,2p3n)⁶⁰Cu (Q=-39.2 MeV)) hatáskeresztmetszet adatait is. A méréseket az un. "szendvicsfólia" aktiválási technikával végeztük. Céltárgyként naturális ^{nat}Zn és dúsított izotóp összetételű ⁶⁶Zn(99%) és ⁶⁸Zn(98.9%) fémfóliákat (10-20 µm) használtunk. A dúsított céltárgyakat hengerléses eljárással készítettük, míg a naturálisakat kereskedelmi forrásból (Goodfellow Metals) szereztük be. A fólia sorozatokba szokásos módon monitor és energiacsökkentő fóliákat is helyeztünk. A besugárzásokat és méréseket a debreceni ATOMKI, a Japán NIRS és a Dél-afrikai iThemba LABS (Laboratory for Accelerator Based Sciences) intézetek ciklotron laboratóriumaiban végeztük.

Vizsgálataink alapján a ⁶⁴Zn(p,x)⁶¹Cu folyamat gerjesztési függvénye két maximummal rendelkezik. Az első $E_p=14.5$ MeV-nél ($\sigma_{max}=84$ mbarn, ⁶⁴Zn(p, α)⁶¹Cu), míg a második az $E_p=54.5$ MeV-nél ($\sigma_{max}=139$ mbarn, ⁶⁴Zn(p,2p2n)⁶¹Cu) található. A ⁶⁴Zn(p,x)⁶⁰Cu magreakciók hatáskeresztmetszet adatait $E_p<70$ MeV-ig mértük. Ez a folyamat $E_p=28.5$ MeV-nél mutatott maximumot ($\sigma_{max}=55$ mbarn).

Eredményeinket összehasonlítva az irodalomban rendelkezésre álló adatokkal sikerült mindkét folyamatra megbízható adatbázist létrehoznunk. A 30 MeV feletti energiákra a mi méréseink voltak az elsők az irodalomban.

Az illesztett gerjesztési függvények alapján vastag-céltárgy hozamszámolásokat végeztünk 70 MeV-ig. Ezek alapján a ⁶¹Cu termelésére két energiatartomány is alkalmas. Alacsonyenergiás gyorsító esetén az E_p = 19 \rightarrow 10 MeV "energia ablakban" (szokásos PET ciklotron) mintegy 9.9 mCi/µAh fizikai hozam érhető el, miközben a ⁶⁰Cu gyakorlatilag nem keletkezik a termékben. Középenergiás gyorsítóval jóval több ⁶¹Cu radioizotópot lehet előállítani. A 67 \rightarrow 60 MeV-es energia tartományban az elérhető fizikai hozam 38 mCi/µAh. Sajnos a ⁶⁰Cu szennyezés ekkor

már nem elhanyagolható. Egy órás besugárzás estén mintegy 86 mCi/µA ⁶⁰Cu keletkezik. Ez kb. ~226%-os radiokémiai szennyezést jelent. Figyelembe véve azonban a ⁶⁰Cu és ⁶¹Cu felezési ideje közötti jelentős különbséget (1:8.6), a feldolgozás végére (kémiai szeparáció, jelzés és az esetleges szállítás: min. 4 óra) a szennyezési szint <1% alá csökken.

A réz radioizotópok különböző dúsítási fokú Zn céltárgyból való nagy hatásfokú kinyerésére számos eljárás ismert az irodalomban. Az általunk kifejlesztett kétlépéses ioncserélő kromatográfiás elválasztási eljárás egyik előnye, hogy a későbbiekben egyszerűen automatizálhatóvá tehető. A besugárzott céltárgyat 10 M-os sósavban oldottuk fel. (1-10 ml, a céltárgy tömegétől függően). Az oldatot Amberchrome CG-71cd gyantával töltött oszlopra vittük fel. Ezt követően 5 M-os HCl-val eluáltuk az oszlopról a Zn, Cu és Ni ionokat. Az eluátumot deionizált vízzel és acetonnal addig hígítottuk, amíg 0.2 M-os HCl/40% aceton oldathoz jutottunk. Ezt az oldatot folyattuk keresztül a második oszlopon (AG MP-50 típusú kation cserélő). A végtermékben a Zn, ⁶⁶Ga és ⁶⁷Ga még nyomokban sem fordult elő. A réz kinyerési hatásfoka ugyanakkor >99% volt. Az elválasztás teljes időtartama kb. 2 óra, így mind a ⁶¹Cu, mind a ⁶⁴Cu (lásd később) elválasztására jól használható. Az eljárás részleteit 2006 folyamán fogjuk publikálni.

2.3. A 62 Cu radioizotóp termelése (62 Zn/ 62 Cu generátor)

Jelenleg a ⁶²Cu radioizotóp, illetve generátorának (⁶²Zn \rightarrow ⁶²Cu; ⁶²Zn: T_{1/2}=9.26 h) gyakorlati termelése a ^{nat}Cu(p,x)⁶²Zn \rightarrow ⁶²Cu folyamat segítségével történik. A generátor készítése (céltárgy feldolgozás, ⁶²Zn/⁶²Cu generátortöltés, sterilizálás stb.) is rutinszerű folyamat a különböző centrumokban. Nagyobb proton energiák esetén azonban más magreakciók is használhatóak a ⁶²Zn előállítására.

A lehetséges előállítási módok közül mi a $^{nat}Zn(p,x)^{62}Zn (^{64}Zn(p,p2n)^{62}Zn Q=-21 MeV;$ $^{64}Zn(p,3n)^{62}Ga \rightarrow ^{62}Zn Q=-35.4 MeV; ^{66}Zn(p,p4n)^{62}Zn Q=-40.1 MeV; ^{66}Zn(p,5n)^{62}Ga \rightarrow ^{62}Zn Q=-54.5 MeV; ^{67}Zn(p,p5n)^{62}Zn Q=-47.1 MeV; ^{67}Zn(p,6n)^{62}Ga \rightarrow ^{62}Zn Q=-61.5 MeV) folyamatot javasoltuk az E_p>50 MeV energiájú gyorsítókkal rendelkező centrumok számára. A céltárgy készítése szempontjából a cink hasonlóan viselkedik, mint a réz. (Mindkettő könnyen megmunkálható, és viszonylag olcsón és nagytisztaságú formában lehet azokat beszerezni kereskedelmi forrásból.) Az előző pontban említettek miatt, a különböző radioaktív elemek cinktől való elválasztását is széles körben tanulmányozták.$

Az ^{nat}Zn céltárgy optimális besugárzási körülményeinek meghatározása érdekében megmértük a fenti magreakciók együttes gerjesztési függvényét a reakciók küszöbenergiájától a 70-ig terjedő energia tartományban. A hatáskeresztmetszet méréseket itt is az un. "szendvicsfólia" aktiválási technikával végeztük. Céltárgyként ugyanazon naturális ^{nat}Zn (10-20 μm) és dúsított izotóp összetételű ⁶⁶Zn(99%) fémfóliákat használtuk, amiket a ⁶¹Cu mérésénél. A fólia sorozatokba szokásos módon monitor és energiacsökkentő fóliákat is helyeztünk. A besugárzásokat és méréseket a debreceni ATOMKI, a Japán NIRS és a Dél-afrikai iThemba LABS intézetek ciklotron laboratóriumaiban végeztük.

Vizsgálataink alapján az ^{nat}Zn(p,x)⁶²Zn folyamat gerjesztési függvénye az $E_p=39$ MeV bombázó energiánál éri el maximumát ($\sigma_{max}=48$ mbarn). Eredményeink összhangban állnak az irodalomban rendelkezésre álló adatokkal. A 35 MeV feletti energia tartományban mi közöltünk először hatáskeresztmetszet adatokat. Az illesztett gerjesztési függvény alapján vastag-céltárgy hozamszámolásokat végeztünk 70 MeV-ig. Számolásainkat összehasonlítva a ^{nat}Cu(p,x)⁶²Zn folyamat hozamadataival megállapítható, hogy $E_p>50$ MeV bombázó energia esetén a Zn+p

folyamat fizikai hozama meghaladja a Cu+p reakciókét. További előnye a Zn+p folyamatnak, hogy vékonyabb céltárgy alkalmazását teszi lehetővé. A 70 \rightarrow 30 MeV-ig terjedő energia tartományban 10.9 mCi/µAh fizikai hozam érhető el. Ez mintegy 250%-a a Cu+p folyamat hozamának.

A naturális cink nagyobb energiás besugárzása (pl. 70 MeV esetén) jelentős mennyiségű ⁶⁶Ga, ⁶⁷Ga, ⁶⁸Ga, ⁶¹Cu, ⁶⁴Cu, ⁶⁷Cu, illetve ⁶⁵Zn radioizotópot is termel. A ⁶²Zn/⁶²Cu generátor készítés elválasztási lépéseinek szempontjából azonban ezek megléte nem okoz jelentős nehézséget. A ⁶²Zn elválasztására alkalmaztuk az előző fejezetben leírt eljárás egyszerű módosítását. Az első lépés során elválasztjuk a keletkezett gallium radioizotópokat, míg a második lépés lemossa az oszlopon lévő cinkből a benne lévő összes réz radioizotópot (természetesen az addig keletkezett ⁶²Cu-t is). Ezt követően az oszlop képezi a generátor magját, melyről a szokásos módon lehet lefejteni a ⁶²Cu-t.

2.4. A ⁶⁴Cu radioizotóp termelése

A ⁶⁴Cu radioizotóp termelésére a dúsított ⁶⁶Zn és ⁶⁸Zn céltárgyakon lejátszódó ⁶⁶Zn(p,2pn)⁶⁴Cu magreakciót, illetve ⁶⁸Zn(p,x)⁶⁴Cu (⁶⁸Zn(p,\alpha n)⁶⁴Cu Q=-7.8 MeV és ⁶⁸Zn(p,2p3n)⁶⁴Cu Q=-36.1 MeV) folyamatot választottuk. (A dúsított Zn céltárgyak alkalmazásának indokaként lásd a 2.2 pontot.)

Az ⁶⁴Zn céltárgy optimális besugárzási körülményeinek meghatározása érdekében megmértük a fenti magreakciók együttes gerjesztési függvényét a reakciók küszöbenergiájától a 100-ig terjedő energia tartományban. Ugyancsak vizsgáltuk a ⁶⁴Cu termelése esetén fő szennyező radioizotópnak számító ⁶¹Cu radioizotópot előállító ⁶⁶Zn(p, α 2n)⁶¹Cu (Q=-18.8 MeV) magreakció és a ⁶⁸Zn(p,x)⁶¹Cu folyamat hatáskeresztmetszet adatait is. A méréseket itt is az un. "szendvicsfólia" aktiválási technikával végeztük. Céltárgyként ugyanazon naturális ^{nat}Zn (10-20 µm) és dúsított izotóp összetételű ⁶⁶Zn(99%) és ⁶⁸Zn(98.9%) fémfóliákat használtuk, amiket a ⁶¹Cu mérésénél. A fólia sorozatokba szokásos módon monitor és energiacsökkentő fóliákat is helyeztünk. A besugárzásokat és méréseket a debreceni ATOMKI, a Japán NIRS és a Dél-afrikai iThemba LABS intézetek ciklotron laboratóriumaiban végeztük.

Vizsgálataink alapján mindkét magfolyamat egy fő maximumot mutat a vizsgált energia tartományban (⁶⁶Zn(p,2pn)⁶⁴Cu: σ_{max} =80 mbarn, E_p =45 MeV; ⁶⁸Zn(p,x)⁶⁴Cu: σ_{max} =64 mbarn, E_p =26 MeV). Az irodalomban mi közöltünk először hatáskeresztmetszet adatokat a ⁶⁶Zn(p,2pn)⁶⁴Cu magreakcióra, annak küszöbenergiájától 100 MeV-ig, valamint 45 MeV felett a ⁶⁸Zn(p,2p3n)⁶⁴Cu folyamatra. A szennyező reakciókra sem álltak rendelkezésre mérési adatok a mi vizsgálatainkat megelőzően. A ⁶⁶Zn(p, α 2n)⁶¹Cu magreakció hatáskeresztmetszet adatainak maximuma az E_p =42 MeV energiánál található (σ_{max} = 46 mbarn), míg a ⁶⁸Zn(p,x)⁶¹Cu folyamat magasabb energia értéknél érte el a legnagyobb értékét (E_p =70 MeV, σ_{max} =13 mbarn).

Eredményeinket kompiláltuk az irodalomban rendelkezésre álló adatokkal az alacsony energiák tartományában. Kiegészítve azokat a nagyobb energiás saját adatainkkal is, sikerült mindegyik magreakcióra megbízható adatbázist létrehoznunk.

Az illesztett gerjesztési függvények alapján vastag-céltárgy hozamszámolásokat végeztünk 70 MeV-ig. Ezek alapján a ⁶⁴Cu termelésére mindkét reakció alkalmasnak tűnik. ⁶⁶Zn céltárgy esetén a 70 \rightarrow 35 MeV-es energia tartományban 21 mCi/µAh fizikai hozam érhető el. Ezzel párhuzamosan jelentős mennyiségű ⁶¹Cu is termelődik a céltárgyban (32.8 mCi/µAh), ami miatt a végtermék humán alkalmazása előtt relative hosszú időt kell majd várni. 1 órás aktiválás mellett mintegy 34 óra múlva éri el a termék a >1%-os radiokémiai tisztaságot. A felhasználó számára a

tényleges hozam így 3.3 mCi/µAh értékre módosul. Ezt a módszert ezért olyan középenergiás gyorsítók számára javasoltuk, ahol nem közvetlen felhasználásra kívánják termelni a ⁶⁴Cu-t (távolabbi centrumokba való szállítás, a termelés és feldolgozás időpontjainak eltérése stb.)

A nagyobb tömegszámú ⁶⁸Zn besugárzása esetén már alacsonyabb energiatartományban és vékonyabb céltárgyon is relatíve jó hozammal termelhető a ⁶⁴Cu. A 25 \rightarrow 10 MeV energiatartományban 1.8 mCi/µAh fizikai hozam érhető el. Nagyobb energiáknál jelentősen növekszik ugyan az elérhető hozam, de a hosszú felezési idejű ⁶⁷Cu (T_{1/2}=67 h) termelődése is beindul. A 37 \rightarrow 20 energia ablakban való aktiválás esetén már 5.0 mCi/µAh a fizikai hozam, de az EOB ⁶⁷Cu/⁶⁴Cu arány már 0.9% lesz. Számolásaink alapján, ekkor még kb. 5 óra marad (feldolgozásra, PET vizsgálatra) amíg a ⁶⁷Cu szennyezési szint ~1%-ra növekedne.

A ⁶⁴Cu radioizotóp ^{66,68}Zn céltárgyakból való nagy hatásfokú kinyerésére vonatkozó módszerekről már beszámoltunk a 2.2. fejezetben.

2.5. A ⁵¹Mn radioizotóp termelése

Az ⁵¹Mn termelhetőségének és gyakorlati alkalmazhatóságának irodalmi vizsgálata jelenleg meglehetősen korai stádiumban van. Eddig csak a dúsított Cr+p,d reakciókat vizsgálták részletesen, de ezek meglehetősen költségesek (céltárgy anyag) és komplikáltak. A rendelkezésre álló viszonylag hiányos hatáskeresztmetszet adatok elemzése alapján két további lehetőség is szóba jöhet az ⁵¹Mn termelésére: az ⁵¹V(³He,3n)⁵¹Mn reakció és a ^{nat}Cr(³He,x)⁵¹Mn folyamat. Az előbbi előnye, hogy naturális céltárgyat használ, így nincs szükség céltárgy készítési és célanyag visszanyerési eljárások kifejlesztésére. Az esetleges rutin céltárgyak is olcsón beszerezhetők kereskedelmi forrásokból. A második reakció mindenképpen dúsított ⁵⁰Cr vagy ⁵²Cr alkalmazását teszi szükségessé.

Kutatásunk során részletesen vizsgáltuk mindkét reakció gerjesztési függvényét az E_{3He}<60 MeV energia tartományban, hogy kiválaszthassuk a termelés számára kedvezőbb magreakciót.

A ^{nat}V (⁵¹V: 99.75%) céltárgy optimális besugárzási körülményeinek meghatározása érdekében részletesen mértük az ⁵¹V(³He,3n)⁵¹Mn magreakció és a ^{nat}V(³He,x)^{52m,g}Mn (⁵⁰V(³He,n)^{52m,g}Mn és ⁵¹V(³He,2n)^{52m,g}Mn) folyamatot is. Az ⁵¹Mn termelése esetén az ^{52m}Mn és ^{52g}Mn számítanak fő szennyező radioizotópnak (^{52m}Mn: T_{1/2}= 21 min; ^{52g}Mn: T_{1/2}=5.6 d).

szennyező radioizotópnak (52m Mn: $T_{1/2}$ = 21 min; 52g Mn: $T_{1/2}$ =5.6 d). A dúsított Cr céltárgyak optimális besugárzási körülményeinek meghatározása érdekében részletesen mértük az 50 Cr(3 He,x) 51 Mn, 52 Cr(3 He,x) 51 Mn, 50 Cr(3 He,x) 52m,g Mn és az 52 Cr(3 He,x) 52m,g Mn folyamatok gerjesztési függvényeit. Az 51 Mn termelése esetén itt is az 52m,g Mn számít fő szennyező radioizotópnak.

A méréseket az un. "szendvicsfólia" aktiválási technikával végeztük. Céltárgyként naturális V és Cr (10-20 µm) (vásárolt) fémfóliákat használtuk. A fólia sorozatokba szokásos módon monitor és energiacsökkentő fóliákat is helyeztünk. A besugárzásokat és méréseket a debreceni ATOMKI, és a Japán NIRS intézetek ciklotron laboratóriumaiban végeztük.

Vizsgálataink alapján mindkét eljárás kellő hozammal állítja elő az ⁵¹Mn izotópot, de párhuzamosan az ^{52m,g}Mn is jelentősen termelődik. A Cr céltárgyak esetén, nincs mód olyan energiaablak választásra, mely esetén az ^{52m,g}Mn a felhasználás szempontjából megkívánt szint alá (min. <1%) csökkenthető. Az EOB szennyezési szintek >5%-nak adódnak és ez az ^{52g}Mn estén még tovább is növekszik az EOB-t követően.

Az ⁵¹V(³He,3n)⁵¹Mn magreakció gerjesztési függvénye az E_{3He} =30 MeV bombázó energiánál éri el a maximumát (σ_{max} = 44 mbarn), míg az ⁵¹V(³He,2n)^{52m}Mn magreakció legnagyobb hatáskeresztmetszet adata 65 mbarn (E_{3He} =14 MeV) volt. (Az ⁵¹V(³He,2n)^{52g}Mn gerjesztési

függvénye esetén ez σ_{max} =85 mbarn volt 15 MeV-nél.) Az irodalomban mi közöltünk először hatáskeresztmetszet adatokat az ${}^{51}V({}^{3}\text{He},3n){}^{51}\text{Mn}$ magreakcióra a teljes vizsgált energia tartományban. A szennyezőkre vonatkozó eredményeinket kompiláltuk az irodalomban rendelkezésre álló adatokkal. Kiegészítve azokat a nagyobb energiás saját adatainkkal is, sikerült a szennyező magreakciókra megbízható adatbázist létrehoznunk.

Elővizsgálataink alapján a 45 \rightarrow 22 MeV energia ablakban az EOB szennyezési szint mindkét ⁵²Mn esetén <1% alatt van, így lehetőség nyílik a jelzett vegyületek beépülésének PET-vel történő vizsgálatára. Az elérhető hozam 1 órás besugárzás esetén mintegy 2.3 mCi/µA.

Az OTKA kutatás utolsó két évében, amikor a fenti reakciókat vizsgáltuk, jelentős pénzelvonás történt, ami a kísérleti munkákat lelassította. Az eredmények részletes publikálása így csak 2006-2007 folyamán fog sor kerülni.

3. Egyéb eredmények

3.1 A ⁶⁶Ga és ⁶⁷Ga radioizotópok Zn+p reakciókkal történő termelésére vonatkozó vizsgálatok

A réz radioizotópok Zn+p reakciókkal történő előállítása esetén jelentős mennyiségű ⁶⁶Ga és ⁶⁷Ga radioizotóp is termelődik. A radio-galliumok nemcsak a Cu radioizotópok szeparációja során jelentenek problémát, de sok esetben jelentős sugárterhelést is okozhatnak a feldolgozást végző személyzet számára. A ⁶⁶Ga és ⁶⁷Ga hozamadatainak számolásához szükség van a reakciók gerjesztési függvényeinek pontos ismeretére. A ⁶⁶Ga és ⁶⁷Ga termelésével kapcsolatos ilyen adatok elég jól ismertek az irodalomban a szokásos (E_p <30 MeV) termelési energiákig. (Szelecsényi *et al.*: Compilation of cross sections/thick targets yields for ⁶⁶Ga, ⁶⁷Ga and ⁶⁸Ga production using Zn target up to 30 MeV proton energy in: *Applied Radiation and Isotopes* **45**(1994)473-500; Evaluated cross section and thick target yield data bases of Zn+p processes for practical applications in: *Applied Radiation and Isotopes* **49** (1998)1005-1032.)

A mi programunkban ennél nagyobb energiákon is vizsgáltuk a réz izotópokat előállító Zn+p reakciókat, ezért ilyen esetekben -a termelések optimalizálásához – szükséges volt a főbb gallium radioizotópokat eredményező reakciók gerjesztési függvényeinek ismerete a 30 MeV fölötti tartományokban is.

Programunk részekén ezért mértük a 66 Zn(p,n) 66 Ga, 68 Zn(p,3n) 66 Ga, nat Zn(p,x) 66 Ga, 68 Zn(p,2n) 67 Ga és a nat Zn(p,x) 67 Ga magreakciókat az E_p<100 MeV energia tartományban.

A hatáskeresztmetszet méréseket az un. "szendvicsfólia" aktiválási technikával végeztük. Céltárgyként ugyanazon naturális ^{nat}Zn (10-20 µm) és dúsított izotóp összetételű ⁶⁶Zn(99%) és ⁶⁸Zn(98.9%) fémfóliákat használtuk, amiket a rézizotópok mérésénél alkalmaztunk. A fólia sorozatokba szokásos módon monitor és energiacsökkentő fóliákat is helyeztünk. A besugárzásokat és méréseket a Japán NIRS és a Dél-afrikai iThemba LABS intézetek ciklotron laboratóriumaiban végeztük.

A 30 MeV feletti új adataink nemcsak kiegészítették a fenti reakciók hatáskeresztmetszet adatbázisait, de rámutattunk néhány napjainkban megjelent mérés ellentmondásaira is. Az így pontosított adatbázis segítségével számolhatóvá válik az adott réz radioizotóp termelése során keletkező EOB gallium "szennyezés" is.

3.2. Ti+*p* és Cu+³*He* monitor reakció adatbázis bővítés

A különböző réz és mangán radioizotópok előállíthatóságának vizsgálata során olyan bombázó energiákat is használtunk ($E_p>50$ MeV, $E_{3He}>40$ MeV), ahol a monitor reakciókra vonatkozó hatáskeresztmetszet adatbázisok meglehetősen hiányosak. A fenti méréseink pontossága érdekében, viszont szükség volt arra, hogy a különböző céltárgysorozatokba monitorfóliákat is elhelyezzünk.

Külön besugárzásokat végeztünk tehát azért, hogy a ^{nat}Ti(p,x)⁴⁸V (⁴⁸V (T_{1/2}= 15.9 d) és a ^{nat}Cu(³He,x)⁶⁶Ga (⁶⁶Ga (T_{1/2}= 9.4 h) monitorreakciók adatbázisait kiterjesszük (pontosítsuk) az 50<E_p<100 MeV, illetve az 30<E_{3He}<70 MeV energiatartományokra.

A méréseket itt is az un. "szendvicsfólia" aktiválási technikával végeztük. Céltárgyként naturális Ti és Cu (~10 µm) fémfóliákat használtuk, melyeket a Goodfellow Metals-tól rendeltünk. A besugárzásokat és méréseket a Japán NIRS és a Dél-afrikai iThemba LABS intézet ciklotron laboratóriumban végeztük.

Adataink egy része átfedésben volt a korábbi irodalmi adatokkal, és azokkal jó egyezést mutatott. Ennek alapján megbízhatóan használhattuk a nagyobb energiás besugárzások esetén új adatainkat a nyalábok energia és intenzitás monitorizálására. Az újonnan mért hatáskeresztmetszet adatok (40 illetve 34 új adatpont) részletes publikálása 2006-2007 folyamán fog sor kerülni.

3.3. A ¹³⁹Pr új PET radioizotóp előállításának vizsgálata

Az OTKA program kutatási tervének végrehajtása során további új PET radioizotópok termelési körülményeinek vizsgálata is felmerült. Ezek közül végül a ¹³⁹Pr (T_{1/2}= 4.4 h) proton reakcióval történő termelési körülményeit határoztuk meg az $E_p < 100$ MeV energia tartományban. A ¹³⁹Pr a HSA (Human Serum Albumin) jelzésre szolgáló radioizotóp, mely jól kiválthatja a ¹⁸F-at a hosszabb idejű folyamatok vizsgálata során.

hosszabb idejű folyamatok vizsgálata során. A ¹³⁹Pr előállítására a ¹⁴¹Pr(p,3n)^{139m+g}Nd \rightarrow ¹³⁹Pr magreakciót használtuk. A ^{139m+g}Nd 5.5 h felezési idővel bomlik tovább a ¹³⁹Pr-ba. A ^{nat}Pr (¹⁴¹Pr: 100%) céltárgy optimális besugárzási körülményeinek meghatározása érdekében megmértük a fenti magreakció gerjesztési függvényét a reakció küszöbenergiájától kezdve. Ugyancsak vizsgáltuk a ^{139m+g}Nd termelése esetén fő szennyező radioizotópnak számító ¹³⁷Nd-et előállító ¹⁴¹Pr(p,5n)¹³⁷Nd hatáskeresztmetszet adatait is. A méréseket itt is az un. "szendvicsfólia" aktiválási technikával végeztük. Céltárgyként naturális Pr (68 mg/cm²) fémfóliákat használtuk, melyeket a Goodfellow Metals szállított. A fólia sorozatokba szokásos módon monitor és energiacsökkentő fóliákat is helyeztünk. A besugárzásokat és méréseket a Dél-afrikai iThemba LABS-i intézet ciklotron laboratóriumban végeztük.

Vizsgálataink alapján a magreakció egy maximumot mutat a vizsgált energia tartományban (σ_{max} =1020 mbarn, E_p=33 MeV) Az irodalomban mi közöltünk először hatáskeresztmetszet adatokat erre a reakcióra is.

Az illesztett gerjesztési függvény és a bomlási idők figyelembe vétele alapján, vastag-céltárgy hozamszámolásokat végeztünk 100 MeV-ig. Ezek alapján a ¹³⁹Pr termelésére a 49 \rightarrow 22 MeV-es energia tartományban tűnik megfelelőnek, és így 120 mCi/µAh fizikai hozam érhető el 5 órás besugárzási idő mellett. További feltétel a fenti hozamhoz, hogy a két kémiai szeparáció között (¹³⁹Nd/^{nat}Pr illetve ¹³⁹Nd/¹³⁹Pr) 7 óra "hűtési" időnek kell eltelnie. A második szeparáció után 0.5 órával pedig a radiokémiai tisztaság már nagyobb mint 99.9%. Eredményeink alapján, középenergiás proton ciklotronok esetében a ¹⁴¹Pr(p,3n)^{139m+g}Nd \rightarrow ¹³⁹Pr magreakció a ¹³⁹Pr (PET) radioizotóp kereskedelmi szintű termelését is lehetővé teszi.