View metadata, citation and similar papers at core.ac.uk brought to you by .t CORE

provided by Unitn-eprints Research

g==:] UNIVERSITY

Department of OF TRENTO - Italy

Information Engineering
and Computer Science
DISI - Via Sommarive, 5 - 38123 POVO, Trento - ltaly
http://disi.unitn.it

JOINT LEARNING AND
OPTIMIZATION OF UNKNOWN
COMBINATORIAL UTILITY
FUNCTIONS

Paolo Campigotto, Andrea Passerini, Roberto
Battiti

March 2013

Technical Report # DISI-13-021

https://core.ac.uk/display/11830524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Joint learning and optimization of unknown combinatorial utility functions

Paolo Campigotfy Andrea PasserifjiRoberto Battitt

aDISI - Dipartimento di Ingegneria e Scienza dell'Informaze,
Universita degli Studi di Trento,
Via Sommarive 14, 1-38123 Povo, TN, Italy.

Abstract

This work considers the problem of automatically discavgithe solution preferred by a decision maker (DM). Her
preferences are formalized as a combinatorial utility fiomg but they are not fully defined at the beginning and need
to be learnt during the search for the satisficing solutidme ihitial information is limited to a set of catalog featsire
from which the decisional variables of the DM are to be seléct

An interactive optimization procedure is introduced, Whiteratively learns an approximation of the utility func-
tion modeling the quality of candidate solutions and usesgenerate novel candidates for the following refinement.
The source of learning signals is the decision maker, whaéstfining her preferences based on the learning process
triggered by the presentation of tentative solutions.

The proposed approach focuses on combinatorial utilitgtions consisting of a weighted sum of conjunctions
of predicates in a certain theory of interest. The learnitagjes exploits the sparsity-inducing property of 1-norm
regularization to learn a combinatorial function from thawer set of all possible conjunctions of the predicates
up to a certain degree. The optimization stage consists afmigng the learnt combinatorial utility function to
generate novel candidate solutions. The maximizationdsingo an Optimization Modulo Theory problem, a recent
formalism allowing to éiciently handle both discrete and continuous-valued deddifeatures. Experiments on
realistic problems demonstrate th&eetiveness of the method in focusing towards the optimait&osl and its ability
to recover from suboptimal initial choices.

Keywords:
Preference elicitation, machine learning, combinatafsimization, Satisfiability, Satisfiability Modulo Thegr
Optimization Modulo Theory.

1. Introduction

In real world optimization tasks, a significant portion of foroblem-solving #ort is usually devoted to specifying
in a computable manner the function to be optimized. Thisetiod work consists of modifying and refining the
problem definition on the basis of information elicited frahe decision maker (DM). Typically, asking a user to
quantify her real objectivespriori, without seeing any optimization results, is extremefficlilt. Interactivedecision
making approaches handle this initial lack of complete Kedge by keeping the user in the loop of the optimization
process. They use the information from the DM during therpjatation task to guide the search towards the solution
preferred by the user.

A paradigmatic case of incomplete problem definition is pted by multi-objective optimization problems,
which consider the simultaneous optimal attainment of aoéebnflicting objectives. While the DM usually can
define the set of desirable objectives, she cannot definertiative importance, the tradd¥fs and the proper com-
bination of them into an overalitility function Several interactive multi-objective algorithms haverbpeoposed to

Email addressescampigotto@disi.unitn.it (Paolo Campigottopasserini@disi.unitn.it (Andrea Passerini),
battiti@disi.unitn.it (Roberto Battiti)

learn the utility function modeling the preferences of thd,Bee e.g. [1] for a recent review and [2] for a recent ex-

ample. They iteratively alternate preference elicitalidecision stage) and solution generation (optimizatioasgi.

At each iteration, the DM evaluates the proposed candiddteiens. The preference information obtained is used

to refine a model of the DM preferences; new solutions arergége based on the learnt model. By adopting this

approach, the DM preferences drive the search process &nd snbset of the Pareto optimal solutions needs to be
generated and evaluated.

In general, formalizing the user preferences into a mattieatanodel is not trivial: a model should capture the
gualitative notion of preference and represent it as a éasimé function. Let us assume that the candidate solation
of the problem are described by a sehdéaturesxs, . .., x,. The simplest and most used utility model is dugitive
function, where the preference of the DM for the candidatetsm x is given by the sum of sub-utility functions:

U0 = D, u(x)
k=1

with each sub-utility functiony is defined on a single featusg. Additive utility models are appropriate under the
assumption of preferential independence among the sedtfrfs [3]. Preferential independence exists when the DM
preference for the values of a featu¢edoes not depend on the fixed values of other featyjgis+ i. Consider, for
example, a costumer of a real estate company articulatingrbéerences by using only two attributes: the number of
bedroomsX;) and the distance from the city centeg). Her preference over the valuesxafis the same regardless
of the values of,, and vice versa: sha@waysprefers houses with two bedrooms over houses with one bedanal
shealwaysfavors the location nearest to the city center.

Additive models fail to capture complex DM preferencesuwithg non-linear relationships among the features of
the candidate solutions. For example, a customer willinigatee a gym in the neighborhood in the case of candidate
houses near the city center. When considering houses in thetsy the presence of free parking makes houses
without a garage attractive (to keep price low) and, siryilahe proximity of green areas providing the opportunity
for outdoor sport activities decreases her interest forra ythe neighborhoodGeneralized additive independence
(GAI) [3] models overcome the limitation of simple additineodels by encoding utilities as a sum of sub-utility
“overlapping” functions:

p
U0) = D u(X)
k=1

whereXy, k= 1...p, are subsets of thefeatures that may beon-disjoint.

The papers [4, 5, 6] present a framework for the elicitatib@ Al utilities based on the minimax regret decision
criterion. The minimax regret criterion guarantees waeste bounds on the quality of the decision made under
uncertain knowledge of the DM preferences. In particula, minimax regret optimal decision minimizes the worst
case loss with respect to the possible realizations of tkeawn DM utility function.

Recent work in the field of constraint programming [7] forines the user preferences in termsoft constraints
In soft constraints, a generalization of hard constragdsh assignment to the variables of one constraint is agsedci
with a preference value. A candidate solution to a set of coffistraints assigns a value to the variables of each
constraint. The desirability of a candidate solution is pated by combining the preference values of its assignments
to the variables of the fierent constraints. The work in [7] introduces an elicitatgirategy for soft constraint
problems with missing preferences, to find the solutiongarefl by the decision maker by asking the final user to
reveal as few preferences as possible.

In this paper, soft constraints are cast ifitst-order logic formulaswith each formula being the conjunction of
predicates in a certain theory of interest. The theory fikesrterpretation of the symbols used in the predicates (e.g
the theory of arithmetic for dealing with integer or real rhers). The DM preferences are represented by combina-
torial utility functions which are weighted combinationftbe first-order logic formulas. For example, consider the
case of flight selection. The predicate+ x, < 5 hoursdefines the preference for a travel duration, calculated as
flight duration &) plus transfer time to the departure airpog)(smaller than five hours. The predicate< 2 states
the desirability for a flight with number of stopoverg) smaller than two. The weighted combination of the couple
of predicates articulates the DM preferences about thet fiighook. Similarly to the GAI models, this representation
of the DM preferences can express the combirfeetes of multiple non-linearly related decisional featui@sr pref-
erence elicitation algorithm formulates the combinatantdity functions asOptimization Modulo Theorinstances

2

where the objective function is unknown and has to be inteey learnt. Optimization Modulo Theori8, 9] is an
extension ofSatisfiability Modulo Theorj10] (SMT), a powerful formalism to check the satisfiabildf/formulas in

a decidable first-order theory. SMT has received increaadtegtion in recent years, thanks to a number of successful
applications in areas like verification systems, plannind model checkingOptimization Modulo Theorgxtends
SMT by considering optimization (MAX-SMT) problems. Rathtan checking for the existence of a satisfying
assignment as in SMT, the target is a satisfying assignnhanthinimizes a given cost function. The adoption of
the Optimization Modulo Theory formalism enables a genapproach which f&ciently handles both discrete and
continuous-valued decisional features.

Our algorithm for the joint learning and optimization of tB& preferences consists of an iterative procedure
alternating a search phase with a model refinement phaseacht sep, the current approximation of the utility
function is used to guide the search for optimal configureji@reference information is required for a subset of the
recovered candidates, and the utility model is refined aliicgito the feedback received. A set of randomly generated
configurations is employed to initialize the utility modeltlae first iteration.

Unlike previous work on preference elicitation for consttgroblems [7], our method does not assume to know
in advance the decisional features of the user and theille®tzombination. In the paper [7] soft constraint topology
and structure is assumed to be known and the incompleteniattyn consists of missing local preference values
only. The initial amount of knowledge required by our apioés limited to a set of “catalog” features from which
the decisional variables of the DM are selected. The limitédal knowledge translates in sparseunknown utility
function: only a fraction of the catalog features repregkatdecisional items of the DM and only a subset of the
possible terms constructed from them defines the DM utilitycfion. Furthermore, our method can handle uncertain,
inconsistent and contradictory preference informati@mfthe final user, which characterizes many human decision
processes. The robustness to noisy feedback from the DNhhglisshes our approach also from the regret-based
preference elicitation methods [4, 5, 6], where the boundshe quality of the recommended solutions and the
guarantee about the convergence to provably-optimal amatfipns are valid under the unrealistic assumption of
noise-free and certain answers from the DM.

This paper introduces the first approach combining learnimgractive optimization and SMT. A preliminary
version of our technique was presented in [11]. This marpisconsiderably extends the preliminary version by a
deeper comparison with the preference elicitation litergta more detailed description of the Satisfiability Madul
Theory formalism and a wider experimental evaluation idig also an additional benchmark designed in the spirit
of real-world applications. Furthermore, the quanti@firdgments asked to the DM in the preliminary version are
replaced by less cognitive demanding queries, consisfingalitative comparisons of candidate solutions.

The organization of the paper is as follows. Section 2 inioas$ our preference elicitation algorithm, while Sec-
tion 3 analyzes its properties and its parameters settiactidh 4 introduces SMT and Optimization Modulo Theory
and explains how this formalism is used by our algorithm. all work is discussed in Section 5. Experimental
results in Section 6 on both synthetic and realistic prolsldemonstrate thdfectiveness of our approach in focusing
towards the optimal solutions, its robustness and itstghidi recover from suboptimal initial choices. A discussion
including potential research directions concludes theepap

2. Overview of our approach

For ease of explanation, we first introduce the simplest @bation of our preference elicitation method, which
considers Boolean decisional features only. The genatalizto discrete and continuous-valued features is pteden
in Section 4. In the simplest formulation of our algorithnandidate configurations aredimensional vectors
consisting of Boolearcatalogfeatures.A priori knowledge of the problem is limited to the set of catalog dezs.
The unknown combinatorial utility function expressing il preferences is the weighted combination of Boolean
terms generated from the catalog features (weighted MAX-B&tance), and it has to be jointly and interactively
learned during the optimization process. Furthermore,otitemal utility function is complex enough to prevent
exhaustive enumeration of possible solutions. The onlyraption we make on the utility function is its sparsity,
both in the number of features (from the whole set of catatwgspand in the number of terms constructed from them.
The assumption is grounded on the bounded rationality ofraamuDM, which can simultaneously handle only a
limited number of features to make decisions, and drivesesgpecific design choices of our optimization algorithm.

3

procedure interactivesparseoptimization

[~ input: set of the catalog variables

output: learnt utility function and configuration optimizing it
/* Initialization phase ¥

Selects configurations uniformly at random;

Ask the DM for the ranking of the configurations;

initialize training setD by the ranking of thes configurations;
/* Refinement phase *

while (terminationcriterion)

© ® N O R N R

10. /* Utility function learning phase *

11. Based orD, select terms and relative weights for current

12. weighted MAX-SAT formulation (Eg. 2);

13. /* Optimization phase

14. Gets/2 new configurations by optimizing current weighted MAX-SAT
15. formulation;

16. Ask the DM for the ranking of the new/2 configurations and add it ©;
17. return configuration optimizing the learnt weighted MAX-SAT formtiéan

Figure 1: Pseudocode for the interactive optimization atlgor. The parametes defines the number of examples to be compared by the DM at the
different iterations. The training sBtcontains the partial rankings of candidate solutions gerdrat the initialization phase and at th&eatient
iterations of the algorithm.

See Sections 3.5 and 7 for a discussion on how to generakzapbroach to arbitrarily complex and dense utility
functions, as could be found in optimizing machine rathanthuman decision processes.

Our method consists of an iterative procedure alternatitgity function learning phase with a search phase. At
each step, the current approximation of the utility funcficepresented as a weighted MAX-SAT instance, is used to
guide the search for optimal configurations. A subset of whatd configurations is obtained by solving the weighted
MAX-SAT instance §earch phase Preference information is required for these candidatrd the utility model
is refined according to the feedback receivisdi(ning phasg In particular, the DM expresses her preferences by
ranking the candidate solutions generated at each itarafiour method. Thus the preference information collected
at the nth iteration consists of the partial rankings generated atitdration 12,...,n — 1. A set of randomly
generated configurations to be ranked is employed to iizigiahe utility model. The pseudocode of our algorithm is
in Fig. 1. The initialization, learning and search phaseswfapproach are detailed below, while its properties and
the parameters setting are discussed in Sec. 3.

2.1. Initializing the algorithm

A set of random configurations is generated to approximateDill utility function at the first iteration. Each
Boolean feature is assigned a truth value independentlyaifidrmly at random. The evaluation of diverse examples
stimulates the preference expression, especially whendgeeis still uncertain about her final preference [12]. In
particular, the diversity of the examples helps the useeteal the hidden preferences: in many cases the decision
maker is not aware of all preferences until she sees therateil For example, a user does not usually think about
the preference for an intermediate airport until one sofusuggests an airplane change in a place she dislikes [12].

2.2. Learning an approximation of the utility function

The refinement of the utility model consists of learning thaghts of the terms, discarding the terms with zero
weight. It includes both the selection of the relevant fezgurom the catalog set and the learning of their detailed
combination from the space of all possible conjunction upddain degreel. To identify sparse solutions, chara-
terized by few terms with non-zero weights, we adopt 1-noeguftarization, which provides an embedded feature
selection capability [13]. Features selection is cru@atiaximize the learning accuracy with data sets charaetériz
by redundant and irrelevant features [14]. Thedst absolute shrinkage and selection operatbasso) [13] is a pop-
ular method for regression tasks which uses 1-norm regaldoh to achieve a sparse solution. 2t (X;, Vi)i=1..m
be the set ofntraining examples, wherg contains the feature values of ththiexample ang; represents its score

value. The losspenalty formulation of Lasso regression is defined by thiefahg optimization problem:

min D =W 06)? + Al 1)
i=1

we

wherew is the weight vector and the mapping functidrprojects the input vector to a higher dimensional space.
The square loss function", (yi — wT - @(x;))?> measures the empirical risk as the sum of the squared tggémiors.
The penalty function consists of 1-norm regularizatiovofaing automated feature selection. The regularization
parameten trade-dts the penalty and loss terms.

In our context, the mapping functioh projects sample vectors to the space of all possible cotignscup tod
Boolean variables. The score valyerepresents the quantitative evaluation of the decisionemfdc the solution
Xi. The preference scores are taken from a predefined orderegmessing the desirability levels for the candidate
solutions. This was the approach adopted in our originahédation [11]. However, comparing solutions is a much
more dfordable task for the DM than assigning preference scoreghMgecast the task of learning the utility function
into a ranking problem.

Given a set ofm candidate solutionsxg,...,Xm) and an order relatios such thatx; > x; if x; should be
preferred tox;, aranking (yi,...,ym) of the m solutions can be specified as a permutation of the firstatural
numbers such that < y; if xi > x;. Learning to rank consists of learning a ranking functiofiom a dataset

D = (60, xE), 6, yM)IE,, made ofs sets with their desired rankings. The ranking functicassociates
each candidate instance with a real number, with the aimrfRgt> r(xj) < x > x;. In this way, it provides
an ordering that agrees with the observed training exam@eagn the ranking datas#?, the 1-norm regularization
formulation can be adapted to learn the ranking functidy imposing constraints on the correct pairwise ordering
of solutions within a setr(x) > rx") « y® <y In the case of support vector machings) = w' - (x)
andr(xj) > r(xj) < w' - (®(x;) — ©(x;)) > 0. The resulting losspenalty formulation for 1-norm support vector
machine can be written as:

i T 0} 0}
min D5 > [L-w - @0) -). + Al 2
i=1 h,k,yﬂ)<yﬂ)

where subscript+” indicates the positive part. The first term is the so-cakadpirical Hinge Loss, adapted for
ranking tasks. It assigns a linear penalty to inconsiseanici the ranking, i.e., cases where a less preferred solutio
is ranked higher than a more preferred one, or correct rgskirthere the scoreftierence is smaller than the support
vector machine margin, i.e., @ w™ - (@(x") - o(x")) < 1. The formulation in Eq. (2) handles ties and partial
rankings, as constraints are only included whenever twmeles should be rankedftérently.

The learnt functionf(x) = w™ - ®(x), wherew is the solution of the ranking problem, will be used as theshov
approximation of the utility functiorf of the DM.

2.3. Optimizing the learnt utility function

The learnt utility functionf expressing the approximation of the DM preferences is sgmted as a weighted
MAX-SAT instance. The set of novel candidate solutions todyked by the DM is obtained by applying a complete
solver over the weighted MAX-SAT instance. The size of theglveed MAX-SAT instance is indeed bounded by
the limited cognitive capabilities of the human DM. The afilmp of local search techniques for large scale problems
will be discussed in Sec. 7. The MAX-SAT solver returns arirojter for the input problem, i.e., the configuration
X* maximizing the weighted sum of the terms representlfngHowever, the currently learnt utilitf is only an
approximation of the true unknown DM utility. In order to m&dithis approximation, diversified sebf informative
training examples is needed. In our algorithm, the creaifonformative training exampleg(tive learning is driven
by the following principles:

1. the generation of top-quality configurations, consistgth the learnt DM preferences;

2. the generation of diversified configurations, i.e., aiive possibly suboptimal configurations with respect to
the learnt utilityf;

3. the search for the DM features which were not recoverechbyctirrent approximatiorﬁ, i.e., features not
appearing in any of the terms in

The rationale for the first principle is the modeling of théevant areas of the fitness surface (i.e., the shape of the
utility function locally guiding the search to the corredtetttion) and the search for solutions satisficing the DM. As
a matter of fact, a preference elicitation system that askartk low quality configurations will be likely considered
useless or annoying by the user [15]. The second principieufa the exploration of the relationships among the
features recovered by the current preference méd@linally, as the learnt formulation df may miss some of the
DM decisional features, their search is promoted by theltpiinciple. Let us note that the need for a set of good,
given the current known preferences, and diverse configmsto be evaluated by the user is pointed out, e.g., in [12].

Based on the above principles, our active learning strategys as follows. In order to obtain multiple solutions
in addition tox*, the MAX-SAT formulation of f is modified by including théhard constraint generated by the
disjunction of all the terms of unsatisfied by*. Unlike the weighted terms, which may or may not be satisfiad]
constraints do not have a weight value and have to be sati§faedxample, let; andts be the terms of unsatisfied
by x*, then the hard constraint becomes:

(ty Vits) 3)

If the termt; is associated with a weight; < 0, it is satisfied when its value is false. Therefore, if, etlge weight
w; is negative, the hard constraint in Eq. (3) becomds { ts). If X* satisfies all the terms df, i.e., f(x) =0, the
additionalhard constraint generated is:

(—|X§_ \Y —|X; ...V —|X;|)

which excludesc* from the set of feasible solutions. The inclusion of the haodstraints is motivated by the second
principle, as the satisfaction of at least one of the ternsatisfied by«* is usually obtained by configurationdl@iring

in more than a single Boolean value frorm The modified formulation of is then optimized (first principle) to obtain
the the second candidate solutiori. The catalog features not included in the formulatiorf afre set uniformly at
random inx** (third principle). Let us note that if these features aré/tinelevant for the DM, setting them at random
should not &ect the evaluation of the candidate solutions. If on therotiaad some of them are needed to explain
the DM preferences, driving their elicitation can allow dentify the deficiencies of the current approximati‘band
recover previously discarded relevant features.

The process is repeated, progressively adding hard contstfar each of the previously generated solutions, until
the desired number of configurations have been generatbe batd constraints made the MAX-SAT instance unsat-
isfiable. Finally, the DM will rank the new candidate solutsobased on her preferences and the ranking information
will be included in the training examples datfor the following refinements of.

3. Analysis of our approach

The number of refinement iterations does not need to be fixibe dteginning. The DM may ask for an additional
iteration by comparing the recovered candidates with har preferences. The termination criterion is thus repre-
sented by the satisfaction of the DM with the presented citeisolutions. Furthermore, the number of candidates
to be evaluated at each iteration is arbitrary. In the gggtiused here, we useconfigurations at the first iteration
ands/2 examples at each following iteration. A larger number affigurations is suggested at the first iteration to
stimulate the preference expression of the DM, as discuss8dc. 2.1, and to generate a good initial model. The
following iterations generate solutions distributed ie ffromising regions of the search space. The goal of our ap-
proach is indeed the identification of the solution prefétvg the userlearning to optimizgrather than an accurate
global approximation of the DM utility functionigarning per s¢ This requires a shift of paradigm with respect to
standard machine learning strategies, in order to modelefleegant areas of the optimization fitness surface rather
than reconstruct it entirely.

3.1. Convergence of the algorithm

The limited size of the MAX-SAT instances (or MAX-SMT, as itlitoe explained in Sec. 4) enables the systematic
investigation of the search space by means of a completers(ihe adoption of local search for larger instances
is discussed in Sec. 7), which ensures the identificatior@fsblutionx* maximizing the learnt utility modef

6

(completeness property). However, our algorithm cannataptee the quality of the modélapproximating the true
DM utilities, and therefore the optimality of (or bounds on its quality) w.r.t. the true DM utilities cane proved.

As a matter of fact, the learning task in Eq. (2) is convex, s guaranteed to converge to its global optimum, but
the consistency of the learning algorithm with the true ulyiteg user utility is only guaranteed asymptotically (j.e
provided that enough training data is available). On themwotiand, our algorithm does not need to learn the exact
form of the DM utility function. The goal of our approach iglieed to elicit as few preference information from the
DM as possible in order to identify her favourite solutid@afning to optimize For example, consider the toy DM
utility function represented by the negation of a singl@agy term:—(X; A X2 A X3). The approximation of the DM
utility function consisting, e.g., of the formulax; is suficient to find the favourite DM solution. More in general,
only the shape of the utility function locally guiding theaseh to the correct direction is actually needed. Indeed
the experimental results reported in Sec. 6 show the alifipur method in identifying the optimal solution and the
improvements in the quality of the candidate solutions winereasing the number of refinement iterations (anytime

property).

3.2. User cognitive load

In preference elicitation systems the acquisition of femttfrom a human DM, characterized by limited patience
and bounded rationality, is a crucial issue. Although pilong explicit weights and mathematical formulas is in
general prohibitive for the DM, she can definitely evaludie teturned solutions. In the preliminary version of our
algorithm [11] quantitative judgments are asked to the DMwigver, asking the final user for precise scores is in
many cases inappropriate or even impossible. Most of thes @se typically more confident in comparing solutions,
providing qualitative judgments like “I prefer solutiot to solutionx” ”, rather than in specifying how much they
preferx’ overx”. In order to reduce the embarrassment of the decision makenspecifying precise preference
scores, in this paper the evaluation by the user consistssbEpmparing and ranking candidate solutions.

3.3. Robustness to inaccurate preference information

Assuming that the user provides accurate and consistefgrenee information at any time is not realistic, due
to the bounded rationality and the limited capabilitiestef humans when making decisions fiBient factors may
generate uncertain and inconsistent feedback from the Bdlyding occasional inattentions, embarrassment when
comparing very similar solutions or solutions which arepditferent from her favourite one, DM fatigue increasing
with the number of queries answered. The adoption of reig@ldmachine learning strategies in our algorithm enables
a robust approach that can handle ties and inaccurate gakiom the DM.

3.4. Computational complexity

The cognitive capabilities of the humans when making denisiimit the numben of catalog features and the
sized of the Boolean terms. Therefore, the learning phase (pnolf®) is accomplished in a negligible amount of
time (w.r.t. the user response time). Analogous obsemvdiadds for the computationatfert required by the search
phase. Proposing a query consists of generaticandidates to be ranked. Each candidate is obtained by & the o
complete MAX-SAT solver. Even if the search space siz€'jste bounded value af and the €icient performance
of modern SAT solvers, that can manage problems with thalssahvariables and millions of clauses, enable the
completion of the search phase in a negligible amount of.tifwe efficient implementation of the search phase is
also achieved in the more general case represented by MAX-i8Mances, that will be discussed in Sec. 4, as the
state-of-the-art SMT solvers are built on top of modern Sélvers. Finally, the estimation of the cognitive load of
the DM isO(c log ¢), with ¢ being the number of candidates to be ranked. In the expetémeported in Sec. 6, the
value ofc used in the refinement phase varies from 5 to 50. Keeplog limits the computationalféort of the DM.

As a matter of fact, the DM typically prefers to rank smalldregs of good quality solutions rather than a single large
batch of candidates, including also lower quality onesthi&rmore, the chance of obtaining inaccurate feedback from
the DM increases when she evaluates solutions which aredveyent from her favourite one. Therefore, a rule of
thumb for the algorithm configuration consists of keepirg\thalue ofc low and increasing the number of refinement
iterations.

3.5. Scalability of the algorithm

The adoption of 1-norm regularization for the formulatidritee learning problem requires that the input catalog
features are explicitly projected in the space of all pdeditmolean terms which can be generated by their combina-
tion. Dealing with the explicit projectio® in Eq. (2) is tractable only for a rather limited number ofatay features
and size of conjunctiond. However, this will typically be the case when interactingiva human DM. The bounded
rationality of humans indeed allows them to handle nonaineteractions just among a small number of features.

A possible alternative formulation consists of directlgrieing a non-linear function of the features, without expli
itly projecting them to the resulting higher dimensionaep. This can be achieved by replacing 1-norm regularizatio
with 2-norm in Eq. (2), thus recovering the original suppattor ranking formulation [16, 17], and considering the
kernelized version of the resulting dual problem. A simdalution for the regression (rather than ranking) formula-
tion and plain MAX-SAT problems (rather than MAX-SMT, seéelg was considered in our previous work [11]. As
expected, the experimental results showed the superiforpg&nce of 1-norm over 2-norm regularization in a setting
with many irrelevant noisy features, due to its sparsiguiting property. See Section 7 for a discussion on how to
adapt the full MAX-SMT preference learning formulation tead with implicit feature spaces.

4. Satisfiability Modulo Theory

In the previous section, we assumed our optimization taslddze cast into aropositionalSatisfiability problem.
However, the formalism of plain propositional logic is nattable or expressive enough to represent many real-world
applications, arising, for example, in the fields of realdicontrol system design and formal software verification.
For example, software verification applications need neiagpabout equalities, arithmetic operations and datastru
tures. These problems require or are more naturally destiibmore expressive theories as first-order logic (FOL),
involving quantifiers, functions and predicates. Consttlertoy example represented by the following formula from
the theory of arithmetic over integers:

X+y+z<4, xy,ze{1,2,3}

We are interested in deciding whether there is an assignofi@mteger values to the variablesy andz satisfying the
formula. A possible encoding into an equisatisfiable SATppsition is given by:

(X AYIAZ) V(XA AYIAZ)YV (A AY2AZ) V...

wherex, vi, z, withi = 1, 2, 3, is a Boolean variable which is true when the integer-viékagiablex, y, zis assigned
the value i, respectively. Let us note the blow-up in the station dfecting the SAT instance size. In general,
propositional logic is not expressive enough for tifeceent encoding of many real world tasks: important struadtur
information may be lost or exponential blow-up in the foresize may be caused (e.g., up to*afactor to represent
all the candidate values that a 32-bit integer variable nsayme).

Satisfiability Modulo TheorySMT) [10, 18] problems generalize SAT problems by considgthe satisfiability
of a FOL formula with respect to a certaiackground theory Tixing the interpretation of (some of the) predicate
and function symbols. Any procedure designed to solve a SMblpm is called SMT solver. Popular examples of
useful theories include various theories of arithmeticraeals or integers such as linear oftdience ones. Linear
arithmetic considers and - functions alone, applied to either numerical constantsapiables, plus multiplication
by a numerical constant. Berence arithmetic is a fragment of linear arithmetic lingtiegal predicates to the form
X —Y < ¢, wherex, y are variables and is a numerical constant. A number of theories have beenestuapart from
standard arithmetic ones. Machine arithmetic, for instame more naturally modeled by the theory of bit-vector
arithmetic, which includes bit-wise operations. Otheloifies exist for data structures such as lists and strings [10

Different approaches have been developed to solve SMT probMfen deciding the satisfiability of a first-
order formulay in a given theoryl, a general purpose FOL reasoning system such as Prolog, daske resolution
calculus, needs to add to the formula a conjunction of albtiems inT. This is, e.g., the standard setting in inductive
logic programming when verifying whether a certain hypsteeovers an example given the available background
knowledge. Let us note that, whenever the cost of includinghsadditional background theory if@dable, our
optimization algorithm can be applied rather straightfarly. Unfortunately, adding all axioms ®fis not viable for
many theories of interest: consider for instance the thebarithmetic which defines the interpretation of symbols
such ast, >, 0, 5.

An alternative approach is representeddagerSMT solvers. They translate the original formgdaken from
the input theoryT into anequisatisfiablepropositional formulan one single step In this way, any &-the-shelf
SAT solver can be used to check the satisfiability of the g@edrpropositional formula. The SAT solver is called
once. However, a specific translator has to be developedafdr theory of interest. Furthermore, the translation of
all the theory-specific information is required at theginningof the search process (hence the name “eager”), likely
resulting in large SAT formulas. Although optimizationdlire translation are possible, there is a traffdsetween the
degree of optimization and the time required by the SAT emgpd_et us note the analogy with compilers, optimizing
the low-level object code (the SAT formula in our contexthgeted from a high-level program (the SMT problem
formulation) [10].

A more dficient approach is based on incremental translations atedtoahe SAT solver. This is the caselaty
SMT solvers, where the theory-specific information is incegtally encoded in the SAT formulation of the problem.
In particular, the lazy approach explogpecializedeasoning methods for the background theory of interest.riWhe
integrated as submodules in a SMT solver, these theonyifgp@asoning methods are often referredaslvers T-
solvers are &icient decision procedures typically developed to checlséiisfiability ofconjunctionsof literals (i.e.,
atomic formulas and their negations) over the given thdoryhe generalization to arbitrary propositional strucsure
is handled in conjunction with the SAT solver integratedia SMT solver.

In this work we focus on lazy SMT solvers and their optimiaatiariant, which we integrated in our optimization
algorithm. The rest of this section provides details abazy SMT solvers search process and introduces Optimization
Modulo Theory (OMT) solvers handling weighted Maximum Saaibility Modulo Theory (MAX-SMT) problems.
Finally, the integration of MAX-SMT solvers in our optimitzan approach is discussed.

4.1. Lazy Satisfiability Modulo Theory solvers

The search process of a lazy SMT solver alternates callset&tisfiability and the theory solver respectively,
until a solution satisfying both solvers is retrieved or flieblem is found to be unsatisfiable. Lebe a formula in
a certain theoryl’, made of a set ofi predicateA = {ay, ..., a,}. A mappinga mapsy into a propositional formula
a(yp) by replacing its predicates with propositional varialipes: a(a;). The inverse mapping replaces propositional
variables with their corresponding predicates, {3p) = a. For example, consider the following formula in the
arithmetic theory over integers:

X+Y+Z<3ANXSYVZ=2)A(X=2V X+#2) (4)

wherex, y, zare integer-valued variables. Then,= a(Xx+y+z<3),p2 = a(X<VY), p3s = a(z=2), ps = a(x = 2)
andps = a(X # 2). The resulting propositional formutgy) is:

P A (P2 V P3) A (Pa V Ps)
Let us note that the truth assignment
PL=T,P2=L,Pp3=T,04=T,P5=1
whereT, L symbols encode true and false truth values, respectiwguivalent to the statement
X+Y+Z<3AX>YAZ=2AX22AX=12

in the theory T.

The SAT solver integrated in the SMT solver searches a solati the propositional formula(y). If the proposi-
tional formula in unsatisfiable, the original formufas also unsatisfiable and the whole SMT solver stops. Otlserwi
the SAT solver provides a truth assignment satisfyi(ig). Considering the above example, it may be:

PL=T,P2=T,P3=T,P4=T,Ps=T)

The T-sover is used to validate the assignment (i.e., thpinotion of truth values) produced by the SAT solver. The
predicates are evaluated using the rules of the th€otf/the validation is successful, the SMT solver stops &ty
the assignment of values to the variable§ isatisfyingy. Otherwise, when th&-solver detects unsatisfiability, an

9

procedure SMT solver(y)

¥ = a(p)
while (true)
(r,M) « SAT()
if r = unsat then returninsat
(r,J) « T-Solver(B3(M))
if r = sat then returrsat
C e« Vieg—a(l)
v e—ynC

© ® N e O R N R

Figure 2: Pseudocode for a basic lazy SMT solver.

additional constraint explaining (i.e, justifying) theaatisfiability is included inx(¢) and the SAT solver is asked for
a new assignment. For example, the assignment in Eq. 5 isafidtin the arithmetic theory over integers. Applying
the inverse mapping, we obtain:

X+Y+Z<3AXSYAZ=2AX22AX#Z

which is unsatisfiable asis set to the value two whilg andy must be larger than value two. A possible justification
explaining the unsatisfiability is given by the followingregiraint:

=(p1 A P2 A P3 A Pg)

which will be included in the propositional formutgy) for the following calls to the SAT solver. Continuing with
the toy example, assume that the second call to the SAT s@tans the following truth assignment:

P1=T,p2=L1,p3=T,p4=1L,ps=T (6)
satisfying the above justification. Restoring the intetaien of the propositional variablgs, we obtain:
X+Y+Z<3AX>YAZ=2AX<2AX#Z

which is satisfied by posing, e.x= 1,y =0,z= 2.

The termlazydenoting this approach is due to the incremental strateggrgéing constraints on demand. On the
contrary, eager methods produce all the constraints in iogéesstep before the execution of the SAT solver.

Figure 2 reports the basic form [18] of a SMT algorith®AT(y) calls the SAT solver on th¢ instance, returning
a pair ¢, M), wherer is sat if the instance is satisfiablensat otherwise. In the former cash] is a truth assignment
satisfyingy. T-Solver(S) calls the theory solver on the formuaand returns a pair(J), wherer indicates if the
formula is satisfiable. If = unsat, J is ajustificationfor S, i.e., any unsatisfiable subskic S. The next iteration
calls the SAT solver on an extended instance accountindniejustification.

Off-the-shelf solvers introduce a number of refinements tolh&c strategy, by pursuing a tighter integration
between the SAT and the theory solvers. A common approadisterf pruning the search space for the SAT solver
by calling the theory solver on partial assignments andggafing its results. Finally, combination methods exist to
jointly employ diferent theories, see [19] for a basic procedure.

4.2. Weighted MAX-SMT and Optimization Modulo Theory sslve

Weighted MAX-SMT generalizes SMT problem much like weightd AX-SAT does with SAT ones. Given a
cost functionc, an assignmergin the input theoryr is sought with minimunt(s). The simplest formulation for the
MAX-SMT problem consists of assigning a weight to each piagt,(constraint) of the Boolean formula to be jointly
satisfied. Weights represent penalties or costs for viglatie constraints and are expressed by positive natural or
real numbers. The cost functiafs) is defined by the sum of the weights of the constraints usfeadi under the
assignmens.

While a body of works exist addressing weighted MAX-SAT peohk, MAX-SMT task has been tackled only
recently [8, 9, 20] and very few solvers have been developeparticular, optimization in SMT was first introduced

10

by the work in [8]. Let{(Cy,W,),...,(Cm, Wm)} the set of the weighted constraints, wh&eandw; identify the ith
constraint and its associated weight, respectively. Gletire cost functiorc takes values from the interval,[/],
with W = wy + ... + wp. A simple dfective method [8] to obtain solutions with cagk) at mostW, with W < W,
consists of generating additional constraintsg v p;) ,i = 1... m, with p; a fresh propositional variable. The initial
background theor¥ is augmented with the integers and with the following agsest

pl_)(ki =Wi),i=1...m
ﬂpi—>(ki=0),i=1...m
k1+...+kmgVT/

In this way, any assignmestwith cost larger than the upper bould on the cost function is inconsistent with the
augmented input theory. The search for the optimal assighsiés based on a branch and bound technique. Each
time a lower upper bound/ < W on the cost function is computed, the theory is updated bhkacem W with W’

(this operation is called “theory strengthening”). A segge of theories with an increasingly tight upper bound on
the cost function is therefore generated. This strateggfesmed to as “SMT with progressively stronger theories”. A
different approach to handle MAX-SMT is used in the paper [9],r@l@etheory of cost€ is introduced to handle
cost functions in SMT and a specialized theory-solveidas developed within the standard lazy SMT schema.

4.3. Preference elicitation with the MAX-SMT formalism

The adoption of the MAX-SMT formalism in our approach enakde dficient representation of non-Boolean
decisional features. The framework introduced in Sec. & dmt need to be changed in the case of non-Boolean
decisional features, because thpe required to handle non-Boolean encodings is complatelyormed by the
MAX-SMT solver. As a matter of fact, when representing usexfgrences in the SMT setting, the DM utility
function f is expressed as a weighted sum of terms, where a term is tenction of up tod predicatedefined
over the variables in the theoily. The set ofall possible predicates represents the search spaafethe MAX-

SAT solver integrated in the MAX-SMT solver. Our approachrtes an approximatiorﬁ of f and gets one of its
optimizers from the MAX-SMT solver, as an assignment to teeislon variables in the input theollyinvolved in

the predicates of. The decision variables ifi that are not used in the current formulatibrare assigned values
selected independently and uniformly at random from thé& th@mains. In this way, a complete assignment to the
variables in the input theory (i.e., a candidate solutiom)ims obtained. The candidate solution in turn determines an
assignmenp® = (pj, ..., py) of Boolean valuesy = {true, falsg}) to the predicates i.

The diversification strategy to obtain multiple candidatetutions is the same as described in Sec. 2.3. The
sequential optimization of is performed, with the addition&lard constraint generated by the disjunction of all the
terms off unsatisfied by*. If p* satisfies all the terms df, the additionahard constraint consists of:

(=P1V =pP;...V =pp)

which exclude* from the feasible solutions set 6f

5. Related work

The problem of automatically learning utility functionsdaeliciting preferences from users is widely studied
within the Artificial Intelligence community [21]. A populapproach to model the uncertain knowledge about the
DM preferences consists of assuming a set of hypothesdsnwibelief on the strength of the hypotheses. The set of
hypotheses contains the feasible utility functions anccislthe partial knowledge about the DM preferences. The
uncertainty about the DM preferences is decreased byatstrithe feasible hypothesis set, when relevant preferenc
information is received during the elicitation process.isTépproach is often referred to as reasoning under strict
uncertainty [22]. An alternative uncertainty model cotssi defining a probability distribution over the hypothgse
This is the case of Bayesian approaches to preferenceagticif23, 15, 24, 25].

Our work casts the preference elicitation task into the lembof learning combinatorial optimization instances
to be optimized for the generation of additional candidatatons. The learning phase is accomplished by applying
techniques from Machine Learning, while the optimizationgearch) stage is based on Combinatorial Optimization

11

methods. Our approach satisfies the main principles [15]etbéor practical applicability of preference elicitation
techniques: the need for multi-attribute models, i.e. didate configurations represented by means of multiple de-
cisional features or attributes; the quest for real-tinteraction with the DM, where both the query generation and
the solutions recommendation must be accomplished in ne than few seconds; the robustness to inconsistent and
contradictory feedback from the DM; the need for cognithvatordable queries to the user, i.e., comparison queries;
the demand for scalable methods, that evaluate at eachigmeéeelicitation stage a number of candidate queries that
grows linearly in the cardinality of the solutions space.

From the perspective of Machine Learnjagificial Intelligence, the closest approaches to ourstaeemethods
based on the minimax regret criterion [4, 5, 6], while a rétechnique [7] developed within the Constraint Program-
ming community shares with our algorithm the combinatdidainulation of the DM preferences. In the following,
we review these alternative approaches and compare thénmowitechnique.

5.1. Minimax regret-based approaches

The methods developed in the papers [4, 5, 6] perform precerelicitation under strict uncertainty. They assume
a parametric formulation of the candidate utility functi@hypothesis) in the feasible utility set U. The parametriza
tion, based on the generalized additive independence smddalussed in Sec. 1, enables a compact way to specify
the feasible set, which is represented by bounds and corstra the parameters. Uncertainty is thus reduced by
tightening the constraints or increasing (decreasing)aiver (upper) bounds.

To make decisions with the partial utility information umdrict uncertainty and, in particular, to select the final
configuration to be returned to the DM, thenimax regretdecision criterion is used. It prescribes the configuration
that minimizes the maximum regret with respect to all thespias realizations of the DM utility function in the set U.
Thus, the minimax regret criterion minimizes twerst-case lossvith respect to the possible realizations of the DM
utility function. In detail, the minimax regret criterios tefined in two stages, building on the maximum pairwise
regret and the maximum regret. The maximum pairwise redi@mfigurationx with respect to configuratioxt over
the feasible utility set U is defined as:

R(x,x’,U) = max u(x’) — u(x) @)
ueU
This formulation can be interpreted by assuming an advweitbat can impose any DM utility function in U and
chooses the one that maximizes the regret of selecting@ohit The functionu” = argmax R, X', U) is thus termed
the “adversary’s utility” or “witness utility”. The maxinm regret of choosing solutioxwith respect to the feasible
utility set U is defined as:
MR(x,U) = max R(x,x’,U) (8)

Within the “adversary metaphor”, let us note that #iechosen by the adversary for the specifitis the optimal
decision undet"” (i.e., X’ maximizesu") and any alternative choice would give the adversary leitisyudnd thus
reduce the user regret. Finally, the minimax regret of tlasifde utility set U is as follows:

MMR(U) = min MR(x, U) 9)

and the solutiox” = argmin MR, U) minimizing the maximum regret is the configuration recoemaied to the DM

by the minimax regret decision criterion. The quality of Swutionx" is guaranteed to be no more than MMR(U)
away from the quality of the DM favourite solution, and nceattative solution has a better guarantee, i.e., for all
x # X', MR(x, U) > MMR(U).

The initial bounds about the utility parameters defined lgyliv are not usually tight enough to identify config-
urations with provably low regret, and a configuration $iisg the DM cannot be recommended without eliciting
additional preference information. This is achieved tigtoan interactive elicitation algorithm that asks quers t
the DM and, based on the information elicited, refines thendewand the constraints on the utility parameters. The
generic framework of the approach is as follows:

input: initial constraints (e.g., bounds) on the utility paramewefining
the initial feasible set U

compute minimax regret MMR(U);

12

repeat until termination criterion
ask queryq;
refine U by updating the constraints over utility parametergflect the
response taj;
recompute MMR(U) with respect to the refined set U;
return to the DM the solutionx” minimizing MR(x, U)

Computationally tractable techniques have been proposes, [6] to compute the minimax regret MMR (U). The
iterative algorithm may be stopped by the DM when she isfeadi®y the returned solutioxt or when the minimax
regret MMR(U) reaches a certain level When the minimax regret is reduced to the value zero, thetisnly'
returned by the algorithm is guaranteed to be the DM favewitlution. The minimax regret-based approach also
enables a principled method to define informative queriasitiil be asked the DM (query optimization), andfdrent
query strategies have been proposed [4, 5, 6].

5.1.1. Comparison with our method

While the target of our work is a preference elicitation meltlapproximately correct with high probability, the
minimax regret-based approaches assume an adversaitgltkeat acts to maximize the DM regret and they aim at
beating the adversary by recommending the best solutidnrespect to the worst case loss. However, this adversarial
model is not always strongly motivated by real-world apgicns, where users are typically interested in the actual
obtained results rather than in regret. The main advantathe cegret-based approaches with respect to our algorithm
is the ability to provide a lower bound about the quality af tecommended solution and guarantee the convergence
to provably-optimal results. However, these theoreticargntees are valid under the assumption that the feasible
set U contains the true DM utility function anyiteration of the elicitation process. That is, the regrasdd meth-
ods do not consider the uncertain and inconsistent prefergmiormation characterizing the typical human decision
processes. As a matter of fact, uncertain feedback from tMdrBnslates into constraints on the utility parameters
that can potentially rule out the true utility from the fdasiset U. Furthermore, the best performance observed in the
experiments presented in the paper [4] is achieved by queategies that include standard gamble queries, which
require the users to state their preference over a probadisitribution of configurations. These queries demand a
higher DM cognitive load than the comparison queries adbjt@ur work, and thus in real-world applications they
are more prone to errors and inconsistent answers from #rs.usVithout suitable modifications (e.g., constraints
relaxation) to recover from the inevitable uncertain ancbirsistent preference information elicited from the DM,
regret-based approaches cannot be applied in the reglistibem settings and the noisy test cases that we consider
in this work.

5.2. Preference elicitation methods based on constraitisfsation

Recent work in the field of constraint programming [7] shaxéth our technique the combinatorial approach to
model user preferences. It defines the user preferencesniis t& soft constraints and introduces constraint opti-
mization problems where the DM preferences are not coniplkt@wn before the solving process starts. Let us first
briefly describe the c-semiring formalism [26] adopted ipgrd 7] to model soft constraints.

In soft constraints, a generalization of hard constraieggh assignment to the variables of one constraint is
associated with a preference value taken from a preferatcélse preference value represents the level of desirabili
of the assignment to the variables of the constraint. As teéepence score is associated to a partial assignment to
the problem variables, it representaal preference value. The desirability of a complete assigniisetefined by
aglobal preference score, computed by applying a combination tgret@the local preference values. A set of soft
constraints generates an order (partial or total) over ¢hneptete assignments of the variables of the problem. Given
two solutions of the problem, the preferred one is selecgambmputing their global preference levels. Soft constgin
are represented by an algebraic structure, caledmiring(where letter “c” stays for “constraint”), providing two
operations for combining<) and comparing«) preference values. In detail, the c-semiring is a tuple+(x, 0, 1)
where:

e Aisasetand,1c A;

e + is commutative, associative and idempotéris its unit element and is its absorbing element;

13

e X is commutative, associative, distributes owel is its unit element an@ is its absorbing element.

Let us note that a c-semiring is a semiring with additionalpgrties for the two operations: the operatiomust

be idempotent and withh as absorbing element, the operatiwmmust be commutative. The relatiaty over A,

a <a q iffay + a; = a, is a partial order, wittD and 1 its minimum and maximum elements, respectively. The
relation<, allows to compare (some of) the desirability levels, vath<a a; meaning thag; is “better” thanay; 0
andl represent the worst and the best preference levels, raésgdgcand the operations andx are monotone OHa.
Consider, e.g., the following instance of c-semiring:

({5,10,15,...,50}, max min, 5,50)

with preference values from the s 10, 15,...,50} and element® and 1 represented by the values 5 and 50,
respectively. The desirability of a complete assignmepbigined by taking its minimum local preference value. A
complete assignmeni with preference scora, is preferred to a complete assignmenwith lower preference score
ap. Thatis,ay <a a; iff max@g, a1) = a.

The generality of the semiring-based soft constraint fdisrmapermits to express several kinds of preferences,
including partially ordered ones. For examplefelient instances of c-semirings encode weighted or prabtbioft
constraint satisfaction problems [27]. However, the cisieignformalism can model jusiegativepreferences. First,
the best element in the ordering inducedsyy denoted by, behaves as infference, sinc&a € A,1x a = a. This
result is consistent with intuition: when using only negatpreferences, infference is the best level of desirability
that can be expressed. Furthermore, the combination ofatbdgty levels returns a lower overall preference, since
ax b <p a, b, again consistently with the fact of dealing with negativefprences.

Preference elicitation strategies have been introduckdiffiin this formalism in order to deal with scenarios
where preference value information is partially unknowom@ of the local preference values attached to soft con-
straints are assumed to be missing, and the DM is asked foxmiciefeedback on specific assignments for these
constraints, in terms of score values quantifying her pegfee for a certain assignment. The elicitation strategy is
aimed at minimizing the number of queries to the DM.

5.2.1. Comparison with our method

Concerning expressivity of the representation formaligims work in [28] shows how to encode semiring-based
soft constraint satisfaction problem (SCSP) instancesaquivalent weighted MAX-SAT formulations. Each solution
of the latter instance corresponds to a solution of the foone. Details on the encoding algorithm can be found in the
Appendix. The rationale for the MAX-SAT encoding is the eiftion of the dicient and widely studied techniques
implemented in modern SAT solvers, which cdhiagently handle large size structured problems [29]. Theodimy
can in principle be applied also to SCSPs with continuoussatvariables or discrete variables defined over large
size finite domains, possibly however at the cost of a sigafiblow-up in the translation. In this case, one may cast
the SCSP instance into a weighted MAX-SMT rather than a weijMAX-SAT formulation.

Concerning the preference elicitation setting, our fomtioh assumes a much more limited amount of initial
knowledge about the problem to be optimized. In the work @&fgrence elicitation for SCSPs [7], decision variables,
soft constraint topology and structure are assumed to berkmo advance and the incomplete initial information
consists only of missing local preference values. We assuommplete ignorance about the structure of the constraints
over the decisional variables of the user. The initial peabknowledge is limited to a set of catalog features. Our
algorithm extracts the decisional items of the DM from the cfecatalog features and learns the weighted terms
constructed from them modeling the DM preferences. If theX¥BAT encoding is applied to the SCSP with missing
preferences, it produces a Boolean formula where some ef¢ights of the terms are not known. On the other hand,
our preference elicitation algorithm handles MAX-SAT mstes where both the terms and their associated weights
are initially unknown and are learnt by interacting with igl.

Furthermore, the technique in [7] is based lonal elicitation queries, with the final user asked to reveal her
preferences about assignments for specific soft consdratdlobal preferences or bounds for global preferences
associated to complete solutions of the problem are defivetdthe local preference information. Our technique goes
in the opposite direction: it asks the user to compare comgielutions and learns local utilities (i.e., the weigHts o
the terms of the logic formula) from global preference valua many cases, recognizing appealing or unsatisfactory
global solutions may be much easier than defining locatyfilinctions, associated to partial solutions. For example

14

while scheduling a set of activities, the evaluation of cteteschedules may be moradable than assessing how
specific ordering choices between couples of activitiedrdmrie to the global preference value. Furthermore the
preference elicitation technique in [7] asks the DM for ditative evaluations of partial solutions: she does nat jus
rank couples of activities, she provides score values ifyarg her preference for the partial activity rankings, a
much more demanding task.

In order to reduce the embarrassment of the decision maken wpecifying precise preference scores, interval-
valued constraints [30] allow users to state an intervaltiityuvalues for each instantiation of the variables of a
constraint. As a matter of fact, the informal definitions efjcees of preference such as “quite high”, “more or less”,
“low” or “undesirable” cannot be naturally mapped to precmweference scores. However, the technique described
in [30] requires the user to provide all the information slas About the problem (in terms of preference intervals)
beforethe solving phase, without seeing any optimization result.

Even if interval-valued constraints [30] have been intimetlito handle uncertainty in the evaluations of the DM,
inconsistent preference information is not addressed THjs is a requirement to retain the optimality guarantees
provided by the preference elicitation strategy. Convgrsrir algorithm trades optimality for robustness and can
effectively deal with imprecise information from the DM, moel@lin terms of inaccurate ranking of the candidate
solutions.

Finally, while the work in [7] considersnipolar preference problems, modeling just negative preferermas,
approach naturally accounts for bipolar preference problewvith the final user specifying what she likes and what
she dislikes. Bipolar preference problems provide a begfesentation of the typical human decision process,avher
the degree of preference for a solution reflects the comgiensalue obtained by comparing its advantages with the
disadvantages. Let us note that the work in [27] extendsafiesnstraint formalism to account for bipolar preference
problems.

6. Experimental results

The following empirical evaluation demonstrates the villisaand the dficiency of our preference elicitation
approach. First, the simplest formulation of our methodicWitonsiders Boolean decisional features only, is eval-
uated over a set of synthetic MAX-SAT benchmarks. Then, ppr@ach is tested over a benchmark of MAX-SMT
problems, formulating realistic preference elicitatiasks. Because the Satisfiability Modulo Theory formalism en
compasses the propositional logic, our algorithm simplydies MAX-SAT preference models as instantiations of
the MAX-SMT task without any auxiliary information. The MASMT tool used for the experiments is the “Yices”
solver [20], which is publicly available atttp://yices.csl.sri.com/ (as of September 2012). Each point of the
curves depicting our results is the median value over 408 with different random seeds, unless otherwise stated.

6.1. Weighted MAX-SAT

Our algorithm was tested over a benchmark of randomly gésebr4ility functions according to the triplea@m-
ber of features, number of terms, max term jsingheremax term sizés the maximum allowed number of Boolean
variables per term. We generate functions for the followialges:{(5, 3, 3), (6, 4, 3), (7,6, 3), (8, 7, 3), (9, 8, 3), (10,9, 3)}.
Each utility function has two terms with maximum size. Temveghts are integers selected uniformly at random in
the interval F10Q 0) U (0, 100]. We consider agold standard solution the configuration obtained by optimizhrey
DM unknown utility function (henceforth thiarget utility function).

The number of catalog features is 40. The maximum size of¢ésnassumed to be known. Furthermore, the
probability of inaccurate feedback swapping a pairwiséguemce is fixed to the valuel

We run a set of experiments where the training set is irzealiby the ranking of 1@0, ... 100 configurations
generated by sampling uniformly at random the Boolean featalues. Fig. 3 reports the utility loss (or regret)
of the bestconfiguration, i.e., the solution optimizing the currenpagximation of the target utility function, at the
different iterations for an increasing numizeof initial configurations to be ranked. At the following iggions,
s/2 configurations are generated and their ranking is addedetdraining set (see Sec. 2). The utility loss is the
amount of utility lost by recommending the best rather thengold configuration and it is measured as thiedeénce
between their respective costs (approximation error). s@@aning the simplest problems with three and four terms,
our algorithm can identify the solution preferred by the DMtlze first iteration, provided that at least 90 initial

15

100 100 106
90 3terms 90 4 terms 9R~ 6 terms

utility loss
utility loss
utility loss

initial config. #

100§ % 100 100
90\% ~ 7 terms 90 90
80 * A 80 80
700 \@ 70 70
3 60 g 60 g 60
2 50 \ A 2 50 2 50
S 40 o, A, S 40 S 40
30 ‘A 30 30
20 e, A, 20 20
10 o, T 10 10

% 20 30 100 % 20 30 40 % 20 30 40 50 60

initial config. # initial config. # initial config. #

Figure 3: Learning curves for fiérent iterations of our algorithm observed when increagieghumber of initial configurations to be ranked. The
y-axis reports the utility loss, while theaxis contains the number of initial configurations. The ebtine with triangular markers, the dashed line
with circular markers and the solid line with square markemsthe performance of the algorithm at the first, the secondlathird iteration,
respectively. The number of configurations for each iterafiidlowing the first one is half the number of initial configticans. See text for details.

configurations are available. With three iterations, theber of configurations needed to recover the optimal saiutio
for both problems is reduced to 200+10=40 configurations divided in three batches. Ultility funosancluding
more than five terms are quite unrealistic in the case of a huheaision maker, however they are reported here to
show the scalability of our approach to more complex eliicitatasks. With more than four terms in the target utility
function, the optimal solution cannot be recovered at tis¢ifieration. However, our algorithm succeeds in explgitin
its active learning strategy and converges to the optiniatiso when enough iterations are provided. For instante, i
the case of eight terms in the target utility function, thémpgl solution is discovered at the second and third iterei
with 90 and 50 and initial configurations, respectively.

Fig. 4 and Fig. 5 show the learning curves for our approacheafitst and third iterations in the case of target
utility functions with three and nine terms, respectivebrror bars indicate the range between the 25th and 75th
percentiles of the underlying data distributions. As expegcin both cases the sample percentiles demonstrate a more
stable behavior of our technique at the third iteration. drtipular, at the third iteration the stability of our alghm
increases with additional training examples, while thealality of performance observed at the first iteration does
not decrease to the same extent. Considering the more ngialiecase represented by target utility functions with
nine terms, at the third iteration our algorithm considtefinds the gold solution with at least 70 initial configurats
(the interquartile range value is within the 20 units). Arstable behavior is still observed at the first iteration even
in the case of 100 configurations.

6.2. Weighted MAX-SMT

MAX-SMT is a recent research area. Even if existing res@isridicate that MAX-SMT solvers canficiently
address real-world problems, to the best of our knowledgeeibestablished publicly available MAX-SMT bench-
marks exist and preference elicitation tasks have not beeoded into MAX-SMT instances yet.

In this work, we modeled schedulingproblem as a MAX-SMT instance, where the DM expresses hégigneces
about the candidate schedules of a set of jobs. In order taakiarealistic recommendation task, we also designed
ahousingproblem aimed at selecting a location for building a hougee fbrmulation consists of both unknown soft
constraints representing the user preferences and knawrcbastraints defining the feasible search space.

16

00— 100 S
90t 3 terms . 90+ 3 terms
80l — 80"
70} — 70r
g 60 T % 60|
> 50p) > 501
S 400 |~ 1 B 40
30} A 1 30
100 - T o l I 1 10}
9 20 30 40 50 60 70 80 90 100 0 20 30 40 B0 60 70 80 90 100
initial config. # initial config. #

Figure 4: Learning curves at the first (left figure) and thedtlfiight figure) iterations in the case of target utility &tions with three terms. Error
bars denote the range among the 25th and the 75th percerftifesraeasurements.

200 —————— 200 —
180 9 terms | 180! 9 terms
o~ | T . 1 160}
140 % {14
gieol |] | g1eo
100 1 | ™~ 'y E‘ 100}
S8 | | 4. | 3 80
60/ ol I I R O — 60!
R T 2 A 40¢
20 2; 111

%% 20 20 40 50 60 70 80 90 100 0 20 30 40 50 60 70 80 90 100

initial config. # initial config. #

Figure 5: Learning curves at the first (left figure) and thedtltfight figure) iterations in the case of target utility &fions with nine terms. Error
bars denote the range among the 25th and the 75th percerfifesrneasurements.

17

100 100 10—
90 3terms 9% 4 terms 9f 6 terms

utility loss
utility loss
utility loss

initial config. # initial config. # initial config. #

90} = 7 terms 9 A 8 terms 9 ”, 9 terms

utility loss
utility loss
utility loss

90 20

initial config. # initial config. # initial config. #

Figure 6: Learning curves observed dfelient iterations of our algorithm while solving the schéuybroblem. They-axis reports the utility loss,
while thex-axis contains the number of initial configurations. The edtine with triangular markers, the dashed line with circaterkers and
the solid line with square markers show the performance ofltferithm at the first, the second and the third iterationpeesively. The number
of configurations for each iteration following the first oséhalf the number of initial configurations. See text for detai

6.2.1. Scheduling problem

A set of five jobs must be scheduled over a given period of tifBach job has a fixed known duration, the
constraints define the overlap of two jobs or their non-comeu execution. The target utility function is generatgd b
selecting uniformly at random weighted terms over the aqairgis. The solution of the problem is a schedule assigning
a starting date to each job and minimizing the cost, wheredtis¢ of the schedule is the sum of the weights of the
violated terms of the target utility function. The temparahstraints are expressed by using tHéedénce arithmetic
theory. In detall, les andd;, withi = 1...5, be the starting date and the duration of tliejob, respectively. If5 is
scheduled befors;, the constraint expressing the overlap of the two jols is 5 < di, while their non-concurrent
execution is encoded 3/—s > d;. Let us note that there are 40 possible constraints for & §gbbs. The maximum
size of the terms of the target utility function is three ahisiassumed to be known. Their weights are distributed
uniformly at random in the range [100]. Similarly to the MAX-SAT case, the probability of inagate ranking
examples swapping the correct positions of the solutiofigasl to the value (1.

Fig. 6 depicts the performance of our algorithm for the cadéks 4, 6, 7, 8, 9 terms in the target utility function.
They-axis reports the utility loss measured in terms of deviafrom the cost of the gold solution, while tixeaxis
contains the numbesof initial configurations to be ranked.

As expected, the learning problem becomes more challerfgingpcreasing number of terms. However, the
results for the scheduling problem are promising: our aaghndadentifies the gold standard solution in all of the cases.
In detail, less than 60 initial configurations are requireddentify the gold solution at the second iteration. With
three iterations, in the simplest cases of three up to simggethe gold solution is recovered by usingr20+10=40
configurations divided in three batches. When consideriegribre complex utility functions with seven, eight and
nine terms, our algorithm needs at most 40 initial configarest for convergence to the gold solution at the third
iteration. Let us note that the bounded human rationalitgnvimaking decision limits the number of non-linear
interactions among the user features. Human utility fumctvith more than thre¢fve terms are therefore quite
unrealistic. Analogously to the MAX-SAT experiments, ityilfunctions with six up to nine terms are used to test the
scalability of our approach.

The plots in Fig. 7 and Fig. 8 show that at the third iteratiom approach finds the gold solution consistently in

18

100 100
90f 3 terms 1 90r 3 terms
80 . 1 80¢
704] 70}

g 60 | T 4 60f

> 50[- z 50|

S 400 4 1 B a0
p |~ — 30|
20¢ L3 1 2
10 L I I — 10{

Q% 20 20 40 50 60 70 80 90 100 9 20 20 40 =0 80 70 80 90 100

initial config. # initial config. #

Figure 7: Learning curves at the first (left figure) and thedtlfright figure) iterations observed while solving the sileng problem with three
terms in the target utility function. Error bars denote thegamong the 25th and the 75th percentiles of the measurements.

the case of three terms target utility functions. When carsig nine terms target utility functions, the value of the
75th percentile is within 20 units from the median value vjted that at least 60 initial configurations are used. As
expected, a more unstable behavior is observed at the éiratidn for both three and nine terms cases.

6.2.2. Housing problem

For a second realistic application of our preference eliicih technique, we consider a customer planning to build
her own house and judging potential housing locations pexviby a real estate company (henceforthitbasing
problem). There are fierent locations available, characterized byetent housing values, prices, constraints about
the design of the building (e.g., usually in the city centeuyannot have a family house with a huge garden and
pool), etc. The customer may formulate her judgments byiderisag a description of the housing locations based
on a predefined set of parameters, including, e.g., crime distance from downtown, location-based taxes and
fees, public transit service quality, cultural resourcesessibility, walking and cycling facilities, etc. In atidin,
she is free to express her own requirements, consisting anfidial issues, working opportunities, personal interests
(e.g., the proximity to commercial facilities or green ageatc. As a result, this problem is characterized by a
plethora of decisional features whose contribution to tendtion of the user preferences cannot be quantified in
advance. Many of them may be uninformative, as they do natsemt any decisional criterion for the customer.
Furthermore, while specifying in advance hard constrdortghe locations may be straightforward (consider, e@st ¢
bounds stated by the user or building design requiremeststasl by the company), assessing the user preferences
in terms of the combination of this redundant set of decalidaatures may demand a prohibitivecet. In the
real world, the elicitation process is usually driven by siades personnel of the company in collaboration with the
customer. Their joint #ort identifies the customer decisional features from thalogtset and defines the (non-
linear) relationships among the selected features. Fanpba consider the following preference information from
the decision maker: “I like family houses with a big gardenl &m not interested in living near the place where |
work. On the other hand, | would like a location near the stbbamy children. However, in the case of good price,
| could accept a flat downtown, provided that commerciallitzes are reachable on foot and there is free parking in
the neighborhood”. Finally, in order to provide satisfaigtsolutions to the customer, the sales personnel has tesasse
a rank for the (possibly conflicting) stated preferencesnsiitering the previous preference information statement,
the sales personnel should quantify, e.g., how much a familise with big garden is preferred to a location near the
children’s school (or vice versa).

However, this process may often produce poor results, wihichot fulfill the expectations of the user. In most
cases, a complete and precise formulation of the user prefes cannot be elicited before the customer becomes
aware of some possible solutions. As a result, soft comssragmain in the mind of the decision maker, and revisions
of the stated preferences after seeing the actual optiimizatsults are an inescapable fact. To complicate things,

19

00411 100

9f [~ | 9terms | 90} 9 terms
got | | T | 80|
7 0 | ,,’(",I// -) | 70‘
g 60 14 T 8 60|
z S0 ", > 50}
S 40 I 5 40|
30r h P, 4. | 30¢
20 L] 1ot 20t
10f | — 10f

%% 20 20 40 50 60 70 80 90 100 9 20 30 40 %0 80 70 80 90 100

initial config. # initial config. #

Figure 8: Learning curves at the first (left figure) and thedtifiight figure) iterations for scheduling problems withgtetr utility functions of nine
terms. Error bars denote the range among the 25th and the #6tnfies of the measurements.

misunderstanding between the persons may arise and possijirecise and inconsistent answers of the user to the
elicitation queries have to be considered. In this contaxtpreference elicitation technique provides a robusshmayu
location recommendation system that can evaluate thebdititaf the solutions and optimize them for the customer.
On the other side, the application of the preference elioitatechnique introduced in [7] is flicult, as it assumes
to know in advance both the decisional features of the usértlagir detailed combination (represented in terms
of soft constraints), while the elicitation process focus&clusively on assessing the preferences for therdnt
instantiations of the variables of the constraints.

In our experiments, the formulation of the housing problenas follows. The set of catalog features is listed
in Table 1. A set of 10 hard constraints (Table 2) defining ifdashousing locations and known in advance is

Table 1: Decisional features for the housing problem.

num feature type

1 house type ordinal

2 garden Boolean

3 garage Boolean

4 commercial facilities in the neighborhood Boolean

5 public green areas in the neighborhood Boolean

6 cycling and walking facilities in the neighborhood Boalea

7 distance from downtown numerical

8 crime rate numerical

9 location-based taxes and fees numerical
10 public transit service quality index numerical
11 distance from high schools numerical
12 distance from nearest free parking numerical
13 distance from working place numerical
14 distance from parents house numerical
15 price numerical

considered. The hard constraints are stated by the cusi@nger cost bounds) or by the company (e.g, constraints
about the distance of the available locations from usenddfpoints of interest). Let us note that constraints 5, 6, 7

20

define a linear bi-objective problem among distances froen-dsfined points of interest. Prices of potential housing
locations are defined as a function of the other featureseXample, price increases if a semi-detached house rather
than a flat is selected or in the case of green areas in thebwiygbod. On the other side, e.g., when crime index of
potential locations increases, price decreases. Softraimts are represented by weighted terms including pagekc

in the linear arithmetic theory or Boolean variables, in¢bse of features number2...,6 in Table 1. For example,
one predicate may model the preference for a location witadce from nearest free parking smaller than a given
threshold, while a Boolean variable encodes, e.g., theatspi for houses with garage.

Table 2: hard feasibility constraints for the housing peobl Parameters, i = 1...13, are threshold values specified by the user or by the sales
personnel, depending on who states the hard constrainhwiney refer to.

num hard constraint
1 price<p;
2 location-based taxes and feep, => not public green ares in the
neighborhoodnd notpublic transit service quality index p3
3 commercial facilities in the neighborhoed- not (gardenand
garage)
crime rate< p4 => distance from downtowg ps
distance from working place distance from parents housepg
distance from working place distance from high schools p7
distance from parents housealistance from high schoots pg
distance from nearest free parkigo => not public green areas
in the neighborhood
9 distance from parents housep;o => distance from downtown
p11 andcrime rate> p;o
10 garden=> house type> p13

0O ~NO O b~

We generated a set of 40 predicates. The target utility fomé$ composed of terms with two or three predicates,
with at least one term with three predicates. Term weigtgsraeger values selected uniformly at random in the range
[1, 100]. Inaccurate preference information can be due ¢tasional inattention of the DM which with probabilityl0
swaps the correct positions of the solutions in the rankizgreles.

Fig. 9 reports the results over a benchmark of 400 randormmgmgeed utility functions for each of the following
instantiation of the tripletrumber of features, number of terms, max term)sig®, 3, 3), (6, 4, 3), (7, 6, 3), (8,7, 3),
(9,8,3),(10,9,3)}. The promising results observed for the scheduling proldesnconfirmed. A stable behavior is
observed for our approach at the third iteration: the gyalitthe solution rapidly improves with a larger number of
examples and the algorithm succeeds in exploiting its @adéi@rning strategy. As a consequence, the gold solution is
quickly identified.

Fig. 10 and 11 show the substantial stability improvemehteaed by three iterations over a single one for the
three and nine term problems respectively, confirming ffecéveness of our incremental approach.

7. Discussion

We presented an interactive optimization strategy for daatbrial problems over an unknown utility function.
The algorithm alternates a search phase using the currprdxamation of the utility function to generate candidate
solutions, and a refinement phase exploiting feedbackved&d improve the approximation. We introduced a generic
framework, enabling the adoption of well-assessed legmmiethods and MAX-SMT solvers. 1-norm regularization is
employed to enforce sparsity of the learned function. TheiB&kked to rank the solutions optimizing the generated
weighted MAX-SMT instance. Thanks to the MAX-SMT formalisaur approach can handle a large class of relevant
optimization tasks. Experimental results on both weigh&X-SAT and MAX-SMT problems demonstrate the
effectiveness of our approach in focusing towards the optioiatisns, its robustness, as well as its ability to recover

21

utility loss
utility loss
utility loss

initial config. # initial config. # initial config. #

9 terms

901, 7 terms 9 8 terms

utility loss
utility loss
utility loss
a1
o

initial config. # initial config. # initial config. #

Figure 9: Learning curves observed dtelient iterations of our algorithm while solving the Housprgblem. The data are presented analogously
to that in Fig. 6.

100 100
90t 3 terms 1 90r 3 terms 1
80} 1 80} 1
70| . : 70} :
g 60|) | g o :
z S0 1 > 50]
S 40/~ 13 a0 —
30 — 30| —
200 |) 1 2 1
o | [~ I [] 10} —
Q0 20 30 20 30 60 70 80 90 100 90 20 30 40 50 60 70 80 90 100
initial config. # initial config. #

Figure 10: Learning curves at the first (left figure) and thedtright figure) iterations obtained while solving the Hing problem with target
utility function of three terms. Error bars represents thegemamong the 25th and the 75th percentiles of the measurements.

22

1004 o 100 ————
90} . . 9terms] 90} 9 terms
so| T | 80y |
70(T 1 | 70|
3 60t 2 60f
o o
2> 50; 3 > 501
S 401 {3 40
30/ kS | 30|
- ""L,'//
20’ //// “w, 1 20
10+ 1 R O i 10¢

9.0 2‘0 3‘0 4‘0 50 60 70 80 90 100 9.0 20 30 40 50 60 70 80 90 100

initial config. # initial config. #

Figure 11: Learning curves at the first (left figure) and thedtfright figure) iterations obtained while solving the Hsing problem with target
utility function of nine terms. Error bars represents thegmamong the 25th and the 75th percentiles of the measurements.

from suboptimal initial choices. Our tests include a prefiee elicitation task with both known hard constraints
limiting the set of feasible solutions and unknown user gm@fices. In the housing problem the hard constraints
define the available house locations and the preferenchs @fitl drive the search within the set of feasible solutions.

The algorithm introduced in this work can be generalized mumber of directions. The learning stage employs
a ranking loss function based on pairwise preference etiaiuaMore complex ranking losses have been proposed
in the literature (see for instance [31]), especially ta@ase the importance of correctly ranking the highest sgori
solutions, and could be combined with 1-norm regularizatio

Active learnings a hot research area and a broad rangeftérdint approaches has been proposed (see [32] for a
review). The simplest and most common framework is thatioéertainty samplingthe learner queries the instances
on which it is least certain. However, the ultimate goal oeaommendation or optimization system is selecting
the best instance(s) rather than correctly modeling thetlyidg utility function. The query strategy should thus
tend to suggest good candidate solutions and still learnwhras possible from the feedback received. Typical
areas where research on this issue is quite popular areesiagdl multi-objective interactive optimization [1] and
information retrieval [33]. The need to trad&onultiple requirements in this active learning setting isledsed
in [34] where the authors consider relevance, diversity @enkity in selecting candidates. Our future research will
consider the application of these active learning techesqrhe performance of our method indeed depends on the
trade-df between the identification of candidates solutions satigfyfhe DM (i.e., solutions optimizing the current
learnt preference model) and the generatiomfarmativetraining examples for the following refinement of the learnt
model.

Bayesian preference elicitation models [23, 15, 24, 25fespthe knowledge about the DM preferences in terms
of probabilistic beliefs. The uncertainty about the usesf@rences is expressed by a probability distribution, or
beliefs, over the spad# of candidate utility functions. In this probabilistic untanty setting, the expected utility of
a configuration is defined as the average utility with resfeitte probability distribution over the utility functiorsd
the configuration maximizing the expected utility is comsetl as the best configuration to be recommended to the
user. This choice enables a robust approach that minimdemrexpectation. The beliefs about the candidate utility
functions are refined by Bayesian inference. Given a trgidataseD, Bayesian inference requires the specification
of both a prior pg) over the utility functionsv and a likelihood model [ig|w) of the data given the utility function.
However, depending on the selected prior and likelihoothfdations, Bayesian inference may not be analytically
tractable and approximation techniques have to be adopfdfurthermore, the quality of the approximation has to
be traded & against the strict time constraints characterizing irtira preference elicitation [24, 15]. In the context
of preference elicitation, Bayesian approaches are &tteaas they quantify the uncertainty in the learnt DM wuyilit
models and provide a principled approach to estimate theevafithe information obtained by asking a certain query

23

to the DM. In particular, the value of the information esttesthe extent to which a certain query helps in improving
the quality of the learnt preference model. The value ofrimiation is exploited to designfiecient query strategies
consisting of informative queries (see, e.g, the approadi5] for an example). Adapting these concepts to our
setting, where the utility function is a complex formula owee or more theories and is optimized by specific solvers,
is an interesting and challenging direction for future work

Another research direction is the extension of our apprdadhandle feedback from multiple DMs [35]. In
particular, an interesting case study is the exploitatibpreferences of previous DMs to minimize the elicitation
effort for a new user [23, 25]. We also plan the extension of ogorithm to tackle preference drift [36], i.e., the
tendency of the decision maker to change her preferencegmdbe interactive utility elicitation stage. As a mattér o
fact, the DM has typically a limited initial knowledge of theoblem at hand and only when seeing the actual tentative
solutions she becomes aware of “what is possible”. Condemtith this new knowledge, her preferences may thus
evolve. Furthermore, the DM may not be aware of her preferem@nges and may not explicitly alert the utility
elicitation system. In our combinatorial utility settinghe DM preference drift can be modeled by weights of soft
constraints evolving over time and by logic formulas grdlyuehanging (e.g., the Boolean term A x, becoming
X1 A X2 A X4 When the DM realizes to have a more complex requirement).

Finally, in this paper the experimental evaluation is femien small-scale problems, typical of an interaction with
a human DM. In principle, when combined with appropriate S&blvers, our approach could be applied to larger
real-world optimization problems, whose formulation isyopartially available. In this case,lacal searchalgorithm
rather than a complete solver will be used during the optaition stage. However, the cost of requiring an explicit
representation of all possible conjunction of predicageef if limited to the unknown part) would rapidly produce an
explosion of computational and memory requirements. Aipoptonsists of resorting to an implicit representation
of the function to be optimized, like the kernelized one wedus [11] when learning quantitative scores. As our
previous results seem to confirm [11], this can produce aadiegion in the quality of returned solutions when the
utility function is very sparse. Kernelized versions of@@iorm regularization [37] could be tried in order to enforc
sparsity in the projected space if needed. Let us note havieaethe lack of an explicit formula would prevent the
use of all the &icient refinements of SMT solvers, based on a tight integndiietween SAT and theory solvers. A
possible alternative is that of pursuing an incrementaiufeaselection strategy and iteratively solving increglsin
complex approximations of the underlying problem.

Acknowledgments

This research was partially supported by grant PRIN 200319dR(Statistical Relational Learning: Algorithms
and Applications) from Italian Ministry of University andeRearch.

Appendix A. Econding SCSP into weighted MAX-SAT instances

The work in [28] introduces a method to encode a semiringtéhanft constraint satisfaction problem (SCSP)
instance into a weighted MAX-SAT instance, with each soluif the generated MAX-SAT instance corresponding
to a solution of the original SCSP. With no loss of generaltysume a soft constraint problem withvariables
Vi,...Vn having domainD,, ... D,, andm constraintscy, ... cy. Each instantiation of the variables of a constraint
cj, j =1...m, is associated with a value from the c-semiridg+, x, 0, 1). For each variablg;, i = 1...n, and each
valued € Dj, a Boolean variablé, 4 is introduced. Whetb, 4 is set to true thew; is assigned the valug e D;. The
variablesh 4, i = 1...n, d € Dj, represent the Boolean variables of the weighted MAX-SAJbfem.

The set of Boolean constraints of the MAX-SAT problem cotssig clauses ensuring that each varialld =
1...n,is assigned exactly one valde= Dj, and of terms representing the soft constraints of ther@CSP. In the
former case, for each variablgi = 1...n, theat-least-one-valudard clause:

(bi,d1 \ de2 V...V bi,d\oi\)
and the set of|Di|(Di| —1))/2 binaryat-max-one-valubdard clauses:

(~big, v —big,) for every pair @, di) with dj, dg € Dj and 1< j < k < |Dj]
24

vi V, preference value num term weight
1 1 10 1 (bl,l A bqu) 10
1 2 40 2 (bl,l A bzgz) 40
1 3 50 3 (bj_,l A b2,3) 50
2 1 5 4 (b1,2 A bz,]_) 5
2 2 10 5 (boAbyy) 10
2 3 30 6 (b1,2 A bz’g) 30
3 1 5 7 (b1y3 A b2!1) 5
3 2 5 8 (bj_,3 A bz,z) 5
3 3 10 9 (b1,3 A b2,3) 10

Table A.3: (left) example of soft constraint. The DM prefessignments withy; < v,. (Right) weighted Boolean terms encoding the soft condtrain
defined in the left table. When the Boolean varidlg : d € Dj, is set to true them; is assigned the valu

are generated. They ensure that for eaehl. .. n} exactly one variabl®; j, j € {1,2,...,|Di]} is set to true.

Each soft constraint of the original SCSP is represented bgtaf weighted Boolean terms encoding all the
possible assignments of values (i.e., configurations)steatiables. The weight of a term is set to the c-semiring
value associated to the encoded configuration. For exarogfesider a binary soft constraint over variablgsand
V, both with discrete domai = {1, 2, 3} and with preference scores defined by the semir{ggl(Q, 15,..., 50},
max min, 5,50). The possible configurations are specified in Table Ae8)(I Each row shows an assignment of
values tov; andv, and the c-semiring value associated to the assignmentn@®eesix Boolean variablds, 4 and
b, 4 with d = 1, 2, 3 defined as above, the soft constraint in Table A.3 (lefthisoeled into the set of Boolean terms in
Table A.3 (right).

A structured MAX-SAT formulation can be obtained by considg generalized Boolean clauses which are the
disjunction of the terms encoding for a given soft constritie assignments with the same preference value. For
example, the terms defined at rows numhé&;, @ in Table A.3 (right) can be merged into a single generalzeighted
clause:

(b1 Ab21) V(b2 Abzo) v (by3 A by3)

with weight equal to 10. Furthermore, eaahleast-one-valuandat-max-one-valudard clausé can be cast into

a soft clause represented by its negatidnand with associated the semiring vald¢28]. The value0 is indeed
both the minimum value in the partial order defined by theti@fa<, and the absorbing element for the operator
combining the semiring values. Therefore, a candidateisolb of the generated MAX-SAT instance that does not
satisfy one of these soft clauses receives the minimum sgmialue0. However, this implementation of the hard
clauses does not allow to discern infeasible solutions fieasible ones with lowest possible preference, i.e., liasi
solutions getting the lowest semiring value.

Given the generated MAX-SAT formulation, the optimizati@sk consists of finding the assignmdritto the
Boolean variable®; 4, i = 1...n, d € D;, maximizing f(b), with f(b) the semiring value obtained by combining
by the operatoix the weights of the solution components satisfiedbbyEach candidate solutiom(f(b)) of the
generated MAX-SAT instance identifies an assignment ofesto the variableg, i = 1...n, of the original SCSP
with associated semiring valuéb).

References

[1] J. Branke, K. Deb, K. Miettinen, R. Stowski (Eds.), Multiobjective Optimization: Interactive aftvolutionary Approaches, Springer
Verlag, 2008.

[2] R. Battiti, A. Passerini, Brain-Computer Evolutionaryullobjective Optimization: A Genetic Algorithm Adapting the Decision Maker,
IEEE Transactions on Evolutionary Computation 14 (2010)-6BL.

[3] F. Bacchus, A. Grove, Graphical Models for Preferencg @tility, in: Proceedings of the Eleventh Conference on &htinty in Artificial
Intelligence (UAI-95), Morgan Kaufmann, 1995, pp. 3-10.

[4] D.Braziunas, C. Boutilier, Minimax regret based elitiba of generalized additive utilities, in: Proceedingshed Twenty-third Conference
on Uncertainty in Artificial Intelligence (UAI-07), Vanceer, pp. 25-32.

25

(5]
(6]
(7]
(8]
El

(20]
(11]
(12]
(13]
(14]
(15]

[16]
(17]

(18]
(29]
(20]

[21]
(22]

(23]

(24]
[25]
[26]
(27]

(28]

[29]
[30]
[31]
[32]
[33]
[34]
[35]

(36]

(37]

C. Boutilier, K. Regan, P. Viappiani, Simultaneous Bttion of Preference Features and Ultility, in: Proceedofdee Twenty-fourth AAAI
Conference on Artificial Intelligence (AAAI-10), AAAI pres Atlanta, GA, USA, 2010, pp. 1160-1167.

C. Bouitilier, R. Patrascu, P. Poupart, D. Schuurmans, s@aimt-based Optimization and Utility Elicitation usingetMinimax Decision
Criterion, Artificial Intelligence 170 (2006) 686—713.

M. Gelain, M. S. Pini, F. Rossi, K. B. Venable, T. Walsh, idihtion Strategies for Soft Constraint Problems with MigsPreferences:
Properties, Algorithms and Experimental Studies, Artifitielligence Journal 174 (2010) 270-294.

R. Nieuwenhuis, A. Oliveras, On SAT Modulo Theories angti®ization Problems, in: Theory and Applications of Satlsfity Testing,
LNCS, Springer, 2006, pp. 156-169.

A. Cimatti, A. Franzn, A. Griggio, R. Sebastiani, C. Stemi Satisfiability Modulo the Theory of Costs: Foundationd &pplications, in:
J. Esparza, R. Majumdar (Eds.), Tools and Algorithms for thesBaction and Analysis of Systems, volume 6018N{CS Springer, 2010,
pp. 99-113.

C. Barrett, R. Sebastiani, S. A. Seshia, C. Tinelli, iSetbility Modulo Theories, in: Handbook of SatisfiabilitfOS Press, 2009, pp.
825-885.

P. Campigotto, A. Passerini, R. Battiti, Active Leamgiaf Combinatorial Features for Interactive Optimization;, Rroceedings of the 5th
Learning and Intelligent OptimizatioN Conference (LION YRome, Italy, Jan 17-21, 2011, LNCS, Springer Verlag, 2011.

P. Pu, L. Chen, User-Involved Preference ElicitationfProduct Search and Recommender Systems, Al magazine 29 @aK)3.

R. Tibshirani, Regression Shrinkage and SelectiontMilLasso, Journal of the Royal Statistical Society, S&i68 (1996) 267—288.

J. Friedman, T. Hastie, S. Rosset, R. Tibshirani, Disitusof boosting papers, Annals of Statistics 32 (2004) 10Z-

S. Guo, S. Sanner, Real-time Multiattribute Bayesiagférence Elicitation with Pairwise Comparison Queriesydalwof Machine Learning
Research - Proceedings Track 9 (2010) 289-296.

W. W. Cohen, R. E. Schapire, Y. Singer, Learning to ottiergs, Journal of Artificial Intelligence Research 10 (29243-270.

M. Collins, N. Duty, Convolution kernels for natural language, in: Advanaed®leural Information Processing Systems 14, MIT Press,
2001, pp. 625-632.

L. De Moura, N. Bjorner, Satisfiability Modulo Theorie®\n Appetizer, in: Formal Methods: Foundations and Applmag, LNCS,
Springer, 2009, pp. 23-36.

G. Nelson, D. C. Oppen, Simplification by Cooperating Ben Procedures, ACM Transactions on Programming LanguageSystems
1 (1979) 245-257.

B. Dutertre, L. de Moura, A Fast Linear-Arithmetic Satfer DPLL(T), in: Proceedings of the 18th Computer-Aidediffeation conference,
LNCS, Springer, 2006, pp. 81-94.

C. Domshlak, E. ldllermeier, S. Kaci, H. Prade, Preferences in Al: An overyvidéutificial Intelligence 175 (2011) 1037-1052.

D. Braziunas, Computational Approaches to Preferenggtd&ion, Technical Report, Department of Computer Sogendniversity of
Toronto, 2006.

E. Bonilla, S. Guo, S. Sanner, Gaussian Process Prefegicitation, in: J. Lierty, C. K. |. Williams, J. Shawe-Taylor, R. Zemel, A. Culotta
(Eds.), Advances in Neural Information Processing System22® Annual Conference on Neural Information Processirgedys, 2010,
pp. 262-270.

P. Viappiani, Monte Carlo Methods for Preference Léagn in: Proceedings of the 6th Learning and Intelligenti@j#atioN Conference
(LION VI), LNCS, Springer Verlag, Paris, France, 2012.

A. Birlutiu, P. Groot, T. Heskes, fciently learning the preferences of people, Machine Leay2012) 1-28.

S. Bistarelli, U. Montanari, F. Rossi, Semiring-basesh€traint Solving and Optimization, Journal of ACM 44 (19901-236.

S. Bistarelli, M. S. Pini, F. Rossi, K. B. Venable, Fromftsconstraints to bipolar preferences: modelling framewenl solving issues,
Journal of Experimental and Theoretical Artificial Inteéligce 22 (2010) 135-158.

L. Leenen, Anbulagan, T. Meyer, A. K. Ghose, Modelingléolving Semiring Constraint Satisfaction Problems by Ti@nsation to
Weighted Semiring Max-SAT, in: 20th Australian Joint Cowfiece on Artificial Intelligence, volume 4830 bNCS Springer, 2007, pp.
202-212.

C.P.Gomes, H. Kautz, A. Sabharwal, B. Selman, SatisfiglSiblvers, in: Handbook of Knowledge Representationyra 3 ofFoundations
of Artificial Intelligence Elsevier, 2008, pp. 89-134.

M. Gelain, M. Pini, F. Rossi, K. Venable, N. Wilson, Intal-valued soft constraint problems, Annals of Mathemadiod Atrtificial
Intelligence 58 (2010) 261-298.

S. Chakrabarti, R. Khanna, U. Sawant, C. Bhattachary$&uctured learning for non-smooth ranking losses, inhIEM SIGKDD
international conference on Knowledge discovery and daténgj KDD '08, ACM, 2008, pp. 88—96.

B. Settles, Active Learning Literature Survey, TeataliReport Computer Sciences Technical Report 1648, Uriy@fd/Visconsin-Madison,
2009.

F. Radlinski, T. Joachims, Active exploration for lemgnrankings from clickthrough data, in: 13th ACM SIGKDD émhational conference
on Knowledge discovery and data mining (KDD '07), ACM Pre€¥)2, pp. 570-579.

Z. Xu, R. Akella, Y. Zhang, Incorporating Diversity afi2ensity in Active Learning for Relevance Feedback, in: G. Aima. Carpineto,
G. Romano (Eds.), Advances in Information Retrieval, volum254df LNCS Springer, 2007, pp. 246-257.

Y. Yan, R. Rosales, G. Fung, J. Dy, Active Learning fromo@ds, in: L. Getoor, T. Scher (Eds.), Proceedings of the 28th International
Conference on Machine Learning (ICML-11), ACM, New York, NYSA, 2011, pp. 1161-1168.

P. Campigotto, A. Passerini, R. Battiti, Handling copicerift in preference learning for interactive decision rimak in: Online proceedings
of the 1st International Workshop on Handling Concept DnifAdaptive Information Systems (HaCDAIS 2010), Barceloraai8, Sept 24,
2010.

J. Weston, A. Elisség B. Sctolkopf, M. Tipping, Use of the zero norm with linear models &ednel methods, Journal of Machine Learning
Research 3 (2003) 1439-1461.

26

