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Abstract

This work considers the problem of automatically discovering the solution preferred by a decision maker (DM). Her
preferences are formalized as a combinatorial utility function, but they are not fully defined at the beginning and need
to be learnt during the search for the satisficing solution. The initial information is limited to a set of catalog features
from which the decisional variables of the DM are to be selected.

An interactive optimization procedure is introduced, which iteratively learns an approximation of the utility func-
tion modeling the quality of candidate solutions and uses itto generate novel candidates for the following refinement.
The source of learning signals is the decision maker, who is fine-tuning her preferences based on the learning process
triggered by the presentation of tentative solutions.

The proposed approach focuses on combinatorial utility functions consisting of a weighted sum of conjunctions
of predicates in a certain theory of interest. The learning stage exploits the sparsity-inducing property of 1-norm
regularization to learn a combinatorial function from the power set of all possible conjunctions of the predicates
up to a certain degree. The optimization stage consists of maximizing the learnt combinatorial utility function to
generate novel candidate solutions. The maximization is cast into an Optimization Modulo Theory problem, a recent
formalism allowing to efficiently handle both discrete and continuous-valued decisional features. Experiments on
realistic problems demonstrate the effectiveness of the method in focusing towards the optimal solution and its ability
to recover from suboptimal initial choices.

Keywords:
Preference elicitation, machine learning, combinatorialoptimization, Satisfiability, Satisfiability Modulo Theory,
Optimization Modulo Theory.

1. Introduction

In real world optimization tasks, a significant portion of the problem-solving effort is usually devoted to specifying
in a computable manner the function to be optimized. This modeling work consists of modifying and refining the
problem definition on the basis of information elicited fromthe decision maker (DM). Typically, asking a user to
quantify her real objectivesa priori, without seeing any optimization results, is extremely difficult. Interactivedecision
making approaches handle this initial lack of complete knowledge by keeping the user in the loop of the optimization
process. They use the information from the DM during the optimization task to guide the search towards the solution
preferred by the user.

A paradigmatic case of incomplete problem definition is provided by multi-objective optimization problems,
which consider the simultaneous optimal attainment of a setof conflicting objectives. While the DM usually can
define the set of desirable objectives, she cannot define their relative importance, the trade-offs and the proper com-
bination of them into an overallutility function. Several interactive multi-objective algorithms have been proposed to
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learn the utility function modeling the preferences of the DM, see e.g. [1] for a recent review and [2] for a recent ex-
ample. They iteratively alternate preference elicitation(decision stage) and solution generation (optimization phase).
At each iteration, the DM evaluates the proposed candidate solutions. The preference information obtained is used
to refine a model of the DM preferences; new solutions are generated based on the learnt model. By adopting this
approach, the DM preferences drive the search process and only a subset of the Pareto optimal solutions needs to be
generated and evaluated.

In general, formalizing the user preferences into a mathematical model is not trivial: a model should capture the
qualitative notion of preference and represent it as a quantitative function. Let us assume that the candidate solutions
of the problem are described by a set ofn featuresx1, . . . , xn. The simplest and most used utility model is theadditive
function, where the preference of the DM for the candidate solution x is given by the sum of sub-utility functions:

U(x) =
n∑

k=1

uk(xk)

with each sub-utility functionuk is defined on a single featurexk. Additive utility models are appropriate under the
assumption of preferential independence among the set of features [3]. Preferential independence exists when the DM
preference for the values of a featurexi does not depend on the fixed values of other featuresx j , j , i. Consider, for
example, a costumer of a real estate company articulating her preferences by using only two attributes: the number of
bedrooms (x1) and the distance from the city center (x2). Her preference over the values ofx1 is the same regardless
of the values ofx2, and vice versa: shealwaysprefers houses with two bedrooms over houses with one bedroom and
shealwaysfavors the location nearest to the city center.

Additive models fail to capture complex DM preferences including non-linear relationships among the features of
the candidate solutions. For example, a customer willing tohave a gym in the neighborhood in the case of candidate
houses near the city center. When considering houses in the suburbs, the presence of free parking makes houses
without a garage attractive (to keep price low) and, similarly, the proximity of green areas providing the opportunity
for outdoor sport activities decreases her interest for a gym in the neighborhood.Generalized additive independence
(GAI) [3] models overcome the limitation of simple additivemodels by encoding utilities as a sum of sub-utility
“overlapping” functions:

U(x) =
p∑

k=1

uk(Xk)

whereXk, k = 1 . . . p, are subsets of then features that may benon-disjoint.
The papers [4, 5, 6] present a framework for the elicitation of GAI utilities based on the minimax regret decision

criterion. The minimax regret criterion guarantees worst-case bounds on the quality of the decision made under
uncertain knowledge of the DM preferences. In particular, the minimax regret optimal decision minimizes the worst
case loss with respect to the possible realizations of the unknown DM utility function.

Recent work in the field of constraint programming [7] formalizes the user preferences in terms ofsoft constraints.
In soft constraints, a generalization of hard constraints,each assignment to the variables of one constraint is associated
with a preference value. A candidate solution to a set of softconstraints assigns a value to the variables of each
constraint. The desirability of a candidate solution is computed by combining the preference values of its assignments
to the variables of the different constraints. The work in [7] introduces an elicitation strategy for soft constraint
problems with missing preferences, to find the solution preferred by the decision maker by asking the final user to
reveal as few preferences as possible.

In this paper, soft constraints are cast intofirst-order logic formulas, with each formula being the conjunction of
predicates in a certain theory of interest. The theory fixes the interpretation of the symbols used in the predicates (e.g.,
the theory of arithmetic for dealing with integer or real numbers). The DM preferences are represented by combina-
torial utility functions which are weighted combinations of the first-order logic formulas. For example, consider the
case of flight selection. The predicatex1 + x2 ≤ 5 hoursdefines the preference for a travel duration, calculated as
flight duration (x1) plus transfer time to the departure airport (x2), smaller than five hours. The predicatex3 < 2 states
the desirability for a flight with number of stopovers (x3) smaller than two. The weighted combination of the couple
of predicates articulates the DM preferences about the flight to book. Similarly to the GAI models, this representation
of the DM preferences can express the combined effects of multiple non-linearly related decisional features. Our pref-
erence elicitation algorithm formulates the combinatorial utility functions asOptimization Modulo Theoryinstances
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where the objective function is unknown and has to be interactively learnt. Optimization Modulo Theory[8, 9] is an
extension ofSatisfiability Modulo Theory[10] (SMT), a powerful formalism to check the satisfiabilityof formulas in
a decidable first-order theory. SMT has received increasingattention in recent years, thanks to a number of successful
applications in areas like verification systems, planning and model checking.Optimization Modulo Theoryextends
SMT by considering optimization (MAX-SMT) problems. Rather than checking for the existence of a satisfying
assignment as in SMT, the target is a satisfying assignment that minimizes a given cost function. The adoption of
the Optimization Modulo Theory formalism enables a genericapproach which efficiently handles both discrete and
continuous-valued decisional features.

Our algorithm for the joint learning and optimization of theDM preferences consists of an iterative procedure
alternating a search phase with a model refinement phase. At each step, the current approximation of the utility
function is used to guide the search for optimal configurations; preference information is required for a subset of the
recovered candidates, and the utility model is refined according to the feedback received. A set of randomly generated
configurations is employed to initialize the utility model at the first iteration.

Unlike previous work on preference elicitation for constraint problems [7], our method does not assume to know
in advance the decisional features of the user and their detailed combination. In the paper [7] soft constraint topology
and structure is assumed to be known and the incomplete information consists of missing local preference values
only. The initial amount of knowledge required by our approach is limited to a set of “catalog” features from which
the decisional variables of the DM are selected. The limitedinitial knowledge translates in asparseunknown utility
function: only a fraction of the catalog features representthe decisional items of the DM and only a subset of the
possible terms constructed from them defines the DM utility function. Furthermore, our method can handle uncertain,
inconsistent and contradictory preference information from the final user, which characterizes many human decision
processes. The robustness to noisy feedback from the DM distinguishes our approach also from the regret-based
preference elicitation methods [4, 5, 6], where the bounds on the quality of the recommended solutions and the
guarantee about the convergence to provably-optimal configurations are valid under the unrealistic assumption of
noise-free and certain answers from the DM.

This paper introduces the first approach combining learning, interactive optimization and SMT. A preliminary
version of our technique was presented in [11]. This manuscript considerably extends the preliminary version by a
deeper comparison with the preference elicitation literature, a more detailed description of the Satisfiability Modulo
Theory formalism and a wider experimental evaluation including also an additional benchmark designed in the spirit
of real-world applications. Furthermore, the quantitative judgments asked to the DM in the preliminary version are
replaced by less cognitive demanding queries, consisting of qualitative comparisons of candidate solutions.

The organization of the paper is as follows. Section 2 introduces our preference elicitation algorithm, while Sec-
tion 3 analyzes its properties and its parameters setting. Section 4 introduces SMT and Optimization Modulo Theory
and explains how this formalism is used by our algorithm. Related work is discussed in Section 5. Experimental
results in Section 6 on both synthetic and realistic problems demonstrate the effectiveness of our approach in focusing
towards the optimal solutions, its robustness and its ability to recover from suboptimal initial choices. A discussion
including potential research directions concludes the paper.

2. Overview of our approach

For ease of explanation, we first introduce the simplest formulation of our preference elicitation method, which
considers Boolean decisional features only. The generalization to discrete and continuous-valued features is presented
in Section 4. In the simplest formulation of our algorithm, candidate configurations aren dimensional vectorsx
consisting of Booleancatalog features.A priori knowledge of the problem is limited to the set of catalog features.
The unknown combinatorial utility function expressing theDM preferences is the weighted combination of Boolean
terms generated from the catalog features (weighted MAX-SAT instance), and it has to be jointly and interactively
learned during the optimization process. Furthermore, theoptimal utility function is complex enough to prevent
exhaustive enumeration of possible solutions. The only assumption we make on the utility function is its sparsity,
both in the number of features (from the whole set of catalog ones) and in the number of terms constructed from them.
The assumption is grounded on the bounded rationality of a human DM, which can simultaneously handle only a
limited number of features to make decisions, and drives some specific design choices of our optimization algorithm.
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1. procedure interactivesparseoptimization
2. input: set of the catalog variables
3. output: learnt utility function and configuration optimizing it
4. /* Initialization phase */
5. Selects configurations uniformly at random;
6. Ask the DM for the ranking of thes configurations;
7. initialize training setD by the ranking of thes configurations;
8. /* Refinement phase */
9. while (terminationcriterion)
10. /* Utility function learning phase */
11. Based onD, select terms and relative weights for current
12. weighted MAX-SAT formulation (Eq. 2);
13. /* Optimization phase */
14. Gets/2 new configurations by optimizing current weighted MAX-SAT
15. formulation;
16. Ask the DM for the ranking of the news/2 configurations and add it toD;
17. return configuration optimizing the learnt weighted MAX-SAT formulation

Figure 1: Pseudocode for the interactive optimization algorithm. The parametersdefines the number of examples to be compared by the DM at the
different iterations. The training setD contains the partial rankings of candidate solutions generated at the initialization phase and at the different
iterations of the algorithm.

See Sections 3.5 and 7 for a discussion on how to generalize the approach to arbitrarily complex and dense utility
functions, as could be found in optimizing machine rather than human decision processes.

Our method consists of an iterative procedure alternating autility function learning phase with a search phase. At
each step, the current approximation of the utility function, represented as a weighted MAX-SAT instance, is used to
guide the search for optimal configurations. A subset of candidate configurations is obtained by solving the weighted
MAX-SAT instance (search phase). Preference information is required for these candidates, and the utility model
is refined according to the feedback received (learning phase). In particular, the DM expresses her preferences by
ranking the candidate solutions generated at each iteration of our method. Thus the preference information collected
at the n-th iteration consists of the partial rankings generated at theiteration 1,2, . . . ,n − 1. A set of randomly
generated configurations to be ranked is employed to initialize the utility model. The pseudocode of our algorithm is
in Fig. 1. The initialization, learning and search phases ofour approach are detailed below, while its properties and
the parameters setting are discussed in Sec. 3.

2.1. Initializing the algorithm

A set of random configurations is generated to approximate the DM utility function at the first iteration. Each
Boolean feature is assigned a truth value independently anduniformly at random. The evaluation of diverse examples
stimulates the preference expression, especially when theuser is still uncertain about her final preference [12]. In
particular, the diversity of the examples helps the user to reveal the hidden preferences: in many cases the decision
maker is not aware of all preferences until she sees them violated. For example, a user does not usually think about
the preference for an intermediate airport until one solution suggests an airplane change in a place she dislikes [12].

2.2. Learning an approximation of the utility function

The refinement of the utility model consists of learning the weights of the terms, discarding the terms with zero
weight. It includes both the selection of the relevant features from the catalog set and the learning of their detailed
combination from the space of all possible conjunction up tocertain degreed. To identify sparse solutions, chara-
terized by few terms with non-zero weights, we adopt 1-norm regularization, which provides an embedded feature
selection capability [13]. Features selection is crucial to maximize the learning accuracy with data sets characterized
by redundant and irrelevant features [14]. The “Least absolute shrinkage and selection operator” (Lasso) [13] is a pop-
ular method for regression tasks which uses 1-norm regularization to achieve a sparse solution. LetD = (xi , yi)i=1...m

be the set ofm training examples, wherexi contains the feature values of the i-th example andyi represents its score
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value. The loss+penalty formulation of Lasso regression is defined by the following optimization problem:

min
w∈IR

m∑

i=1

(yi − wT · Φ(xi))
2 + λ||w||1 (1)

wherew is the weight vector and the mapping functionΦ projects the input vector to a higher dimensional space.
The square loss function

∑m
i=1(yi − wT · Φ(xi))2 measures the empirical risk as the sum of the squared training errors.

The penalty function consists of 1-norm regularization, favouring automated feature selection. The regularization
parameterλ trade-offs the penalty and loss terms.

In our context, the mapping functionΦ projects sample vectors to the space of all possible conjunctions up tod
Boolean variables. The score valueyi represents the quantitative evaluation of the decision maker for the solution
xi . The preference scores are taken from a predefined ordered set expressing the desirability levels for the candidate
solutions. This was the approach adopted in our original formulation [11]. However, comparing solutions is a much
more affordable task for the DM than assigning preference scores. Wethus cast the task of learning the utility function
into a ranking problem.

Given a set ofm candidate solutions (x1, . . . , xm) and an order relation≻ such thatxi ≻ x j if xi should be
preferred tox j , a ranking (y1, . . . , ym) of the m solutions can be specified as a permutation of the firstm natural
numbers such thatyi < y j if xi ≻ x j . Learning to rank consists of learning a ranking functionr from a dataset
D = {(x(i)

1 , . . . , x
(i)
mi

), (y(i)
1 , . . . , y

(i)
mi

)}si=1, made ofs sets with their desired rankings. The ranking functionr associates
each candidate instance with a real number, with the aim thatr(xi) > r(x j) ⇐⇒ xi ≻ x j . In this way, it provides
an ordering that agrees with the observed training examples. Given the ranking datasetD, the 1-norm regularization
formulation can be adapted to learn the ranking functionr by imposing constraints on the correct pairwise ordering
of solutions within a set:r(x(i)

h ) > r(x(i)
k ) ⇐⇒ y(i)

h < y(i)
k . In the case of support vector machines,r(x) = wT · Φ(x)

andr(xi) > r(x j) ⇐⇒ wT · (Φ(xi) − Φ(x j)) > 0. The resulting loss+penalty formulation for 1-norm support vector
machine can be written as:

min
w∈IR

s∑

i=1

∑

h,k,y(i)
h <y(i)

k

[1 − wT · (Φ(x(i)
h ) − Φ(x(i)

k ))]+ + λ||w||1 (2)

where subscript “+” indicates the positive part. The first term is the so-calledempirical Hinge Loss, adapted for
ranking tasks. It assigns a linear penalty to inconsistencies in the ranking, i.e., cases where a less preferred solution
is ranked higher than a more preferred one, or correct rankings where the score difference is smaller than the support
vector machine margin, i.e., 0< wT · (Φ(x(i)

h ) − Φ(x(i)
k )) < 1. The formulation in Eq. (2) handles ties and partial

rankings, as constraints are only included whenever two examples should be ranked differently.
The learnt functionf̂ (x) = wT · Φ(x), wherew is the solution of the ranking problem, will be used as the novel

approximation of the utility functionf of the DM.

2.3. Optimizing the learnt utility function

The learnt utility functionf̂ expressing the approximation of the DM preferences is represented as a weighted
MAX-SAT instance. The set of novel candidate solutions to beranked by the DM is obtained by applying a complete
solver over the weighted MAX-SAT instance. The size of the weighted MAX-SAT instance is indeed bounded by
the limited cognitive capabilities of the human DM. The adoption of local search techniques for large scale problems
will be discussed in Sec. 7. The MAX-SAT solver returns an optimizer for the input problem, i.e., the configuration
x∗ maximizing the weighted sum of the terms representingf̂ . However, the currently learnt utilitŷf is only an
approximation of the true unknown DM utility. In order to refine this approximation, adiversified setof informative
training examples is needed. In our algorithm, the creationof informative training examples (active learning) is driven
by the following principles:

1. the generation of top-quality configurations, consistent with the learnt DM preferences;
2. the generation of diversified configurations, i.e., alternative possibly suboptimal configurations with respect to

the learnt utility f̂ ;
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3. the search for the DM features which were not recovered by the current approximation̂f , i.e., features not
appearing in any of the terms in̂f .

The rationale for the first principle is the modeling of the relevant areas of the fitness surface (i.e., the shape of the
utility function locally guiding the search to the correct direction) and the search for solutions satisficing the DM. As
a matter of fact, a preference elicitation system that asks to rank low quality configurations will be likely considered
useless or annoying by the user [15]. The second principle favours the exploration of the relationships among the
features recovered by the current preference modelf̂ . Finally, as the learnt formulation of̂f may miss some of the
DM decisional features, their search is promoted by the third principle. Let us note that the need for a set of good,
given the current known preferences, and diverse configurations to be evaluated by the user is pointed out, e.g., in [12].

Based on the above principles, our active learning strategyworks as follows. In order to obtain multiple solutions
in addition tox∗, the MAX-SAT formulation of f̂ is modified by including thehard constraint generated by the
disjunction of all the terms of̂f unsatisfied byx∗. Unlike the weighted terms, which may or may not be satisfied,hard
constraints do not have a weight value and have to be satisfied. For example, lett1 andt5 be the terms of̂f unsatisfied
by x∗, then the hard constraint becomes:

(t1 ∨ t5) (3)

If the termti is associated with a weightwi < 0, it is satisfied when its value is false. Therefore, if, e.g., the weight
w1 is negative, the hard constraint in Eq. (3) becomes (¬t1 ∨ t5). If x∗ satisfies all the terms of̂f , i.e., f̂ (x∗) = 0, the
additionalhard constraint generated is:

(¬x∗1 ∨ ¬x∗2 . . . ∨ ¬x∗n)

which excludesx∗ from the set of feasible solutions. The inclusion of the hardconstraints is motivated by the second
principle, as the satisfaction of at least one of the terms unsatisfied byx∗ is usually obtained by configurations differing
in more than a single Boolean value fromx∗. The modified formulation of̂f is then optimized (first principle) to obtain
the the second candidate solutionx∗∗. The catalog features not included in the formulation off̂ are set uniformly at
random inx∗∗ (third principle). Let us note that if these features are truly irrelevant for the DM, setting them at random
should not affect the evaluation of the candidate solutions. If on the other hand some of them are needed to explain
the DM preferences, driving their elicitation can allow to identify the deficiencies of the current approximationf̂ and
recover previously discarded relevant features.

The process is repeated, progressively adding hard constraints for each of the previously generated solutions, until
the desired number of configurations have been generated or the hard constraints made the MAX-SAT instance unsat-
isfiable. Finally, the DM will rank the new candidate solutions based on her preferences and the ranking information
will be included in the training examples setD for the following refinements of̂f .

3. Analysis of our approach

The number of refinement iterations does not need to be fixed atthe beginning. The DM may ask for an additional
iteration by comparing the recovered candidates with her own preferences. The termination criterion is thus repre-
sented by the satisfaction of the DM with the presented candidate solutions. Furthermore, the number of candidates
to be evaluated at each iteration is arbitrary. In the settings used here, we uses configurations at the first iteration
ands/2 examples at each following iteration. A larger number of configurations is suggested at the first iteration to
stimulate the preference expression of the DM, as discussedin Sec. 2.1, and to generate a good initial model. The
following iterations generate solutions distributed in the promising regions of the search space. The goal of our ap-
proach is indeed the identification of the solution preferred by the user (learning to optimize) rather than an accurate
global approximation of the DM utility function (learning per se). This requires a shift of paradigm with respect to
standard machine learning strategies, in order to model therelevant areas of the optimization fitness surface rather
than reconstruct it entirely.

3.1. Convergence of the algorithm

The limited size of the MAX-SAT instances (or MAX-SMT, as it will be explained in Sec. 4) enables the systematic
investigation of the search space by means of a complete solver (the adoption of local search for larger instances
is discussed in Sec. 7), which ensures the identification of the solutionx∗ maximizing the learnt utility model̂f
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(completeness property). However, our algorithm cannot guarantee the quality of the modelf̂ approximating the true
DM utilities, and therefore the optimality ofx∗ (or bounds on its quality) w.r.t. the true DM utilities cannot be proved.
As a matter of fact, the learning task in Eq. (2) is convex, andthus guaranteed to converge to its global optimum, but
the consistency of the learning algorithm with the true underlying user utility is only guaranteed asymptotically (i.e.,
provided that enough training data is available). On the other hand, our algorithm does not need to learn the exact
form of the DM utility function. The goal of our approach is indeed to elicit as few preference information from the
DM as possible in order to identify her favourite solution (learning to optimize). For example, consider the toy DM
utility function represented by the negation of a single ternary term:¬(x1 ∧ x2 ∧ x3). The approximation of the DM
utility function consisting, e.g., of the formula¬x1 is sufficient to find the favourite DM solution. More in general,
only the shape of the utility function locally guiding the search to the correct direction is actually needed. Indeed
the experimental results reported in Sec. 6 show the abilityof our method in identifying the optimal solution and the
improvements in the quality of the candidate solutions whenincreasing the number of refinement iterations (anytime
property).

3.2. User cognitive load

In preference elicitation systems the acquisition of feedback from a human DM, characterized by limited patience
and bounded rationality, is a crucial issue. Although providing explicit weights and mathematical formulas is in
general prohibitive for the DM, she can definitely evaluate the returned solutions. In the preliminary version of our
algorithm [11] quantitative judgments are asked to the DM. However, asking the final user for precise scores is in
many cases inappropriate or even impossible. Most of the users are typically more confident in comparing solutions,
providing qualitative judgments like “I prefer solutionx′ to solutionx′′ ”, rather than in specifying how much they
preferx′ over x′′. In order to reduce the embarrassment of the decision maker when specifying precise preference
scores, in this paper the evaluation by the user consists of just comparing and ranking candidate solutions.

3.3. Robustness to inaccurate preference information

Assuming that the user provides accurate and consistent preference information at any time is not realistic, due
to the bounded rationality and the limited capabilities of the humans when making decisions. Different factors may
generate uncertain and inconsistent feedback from the DM, including occasional inattentions, embarrassment when
comparing very similar solutions or solutions which are very different from her favourite one, DM fatigue increasing
with the number of queries answered. The adoption of regularized machine learning strategies in our algorithm enables
a robust approach that can handle ties and inaccurate rankings from the DM.

3.4. Computational complexity

The cognitive capabilities of the humans when making decisions limit the numbern of catalog features and the
sized of the Boolean terms. Therefore, the learning phase (problem (2)) is accomplished in a negligible amount of
time (w.r.t. the user response time). Analogous observation holds for the computational effort required by the search
phase. Proposing a query consists of generatingc candidates to be ranked. Each candidate is obtained by a run of the
complete MAX-SAT solver. Even if the search space size is 2n, the bounded value ofn and the efficient performance
of modern SAT solvers, that can manage problems with thousands of variables and millions of clauses, enable the
completion of the search phase in a negligible amount of time. An efficient implementation of the search phase is
also achieved in the more general case represented by MAX-SMT instances, that will be discussed in Sec. 4, as the
state-of-the-art SMT solvers are built on top of modern SAT solvers. Finally, the estimation of the cognitive load of
the DM isO(c log c), with c being the number of candidates to be ranked. In the experiments reported in Sec. 6, the
value ofc used in the refinement phase varies from 5 to 50. Keepingc low limits the computational effort of the DM.
As a matter of fact, the DM typically prefers to rank small batches of good quality solutions rather than a single large
batch of candidates, including also lower quality ones. Furthermore, the chance of obtaining inaccurate feedback from
the DM increases when she evaluates solutions which are verydifferent from her favourite one. Therefore, a rule of
thumb for the algorithm configuration consists of keeping the value ofc low and increasing the number of refinement
iterations.
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3.5. Scalability of the algorithm

The adoption of 1-norm regularization for the formulation of the learning problem requires that the input catalog
features are explicitly projected in the space of all possible Boolean terms which can be generated by their combina-
tion. Dealing with the explicit projectionΦ in Eq. (2) is tractable only for a rather limited number of catalog features
and size of conjunctionsd. However, this will typically be the case when interacting with a human DM. The bounded
rationality of humans indeed allows them to handle non-linear interactions just among a small number of features.

A possible alternative formulation consists of directly learning a non-linear function of the features, without explic-
itly projecting them to the resulting higher dimensional space. This can be achieved by replacing 1-norm regularization
with 2-norm in Eq. (2), thus recovering the original supportvector ranking formulation [16, 17], and considering the
kernelized version of the resulting dual problem. A similarsolution for the regression (rather than ranking) formula-
tion and plain MAX-SAT problems (rather than MAX-SMT, see later) was considered in our previous work [11]. As
expected, the experimental results showed the superior performance of 1-norm over 2-norm regularization in a setting
with many irrelevant noisy features, due to its sparsity-inducing property. See Section 7 for a discussion on how to
adapt the full MAX-SMT preference learning formulation to deal with implicit feature spaces.

4. Satisfiability Modulo Theory

In the previous section, we assumed our optimization task could be cast into apropositionalSatisfiability problem.
However, the formalism of plain propositional logic is not suitable or expressive enough to represent many real-world
applications, arising, for example, in the fields of real-time control system design and formal software verification.
For example, software verification applications need reasoning about equalities, arithmetic operations and data struc-
tures. These problems require or are more naturally described in more expressive theories as first-order logic (FOL),
involving quantifiers, functions and predicates. Considerthe toy example represented by the following formula from
the theory of arithmetic over integers:

x+ y+ z≤ 4, x, y, z ∈ {1,2,3}

We are interested in deciding whether there is an assignmentof integer values to the variablesx, y andzsatisfying the
formula. A possible encoding into an equisatisfiable SAT proposition is given by:

(x1 ∧ y1 ∧ z1) ∨ (x1 ∧ y1 ∧ z2) ∨ (x1 ∧ y2 ∧ z1) ∨ . . .

wherexi , yi , zi , with i = 1,2,3, is a Boolean variable which is true when the integer-valued variablex, y, z is assigned
the value i, respectively. Let us note the blow-up in the translation affecting the SAT instance size. In general,
propositional logic is not expressive enough for the efficient encoding of many real world tasks: important structural
information may be lost or exponential blow-up in the formula size may be caused (e.g., up to a 232 factor to represent
all the candidate values that a 32-bit integer variable may assume).

Satisfiability Modulo Theory(SMT) [10, 18] problems generalize SAT problems by considering the satisfiability
of a FOL formula with respect to a certainbackground theory Tfixing the interpretation of (some of the) predicate
and function symbols. Any procedure designed to solve a SMT problem is called SMT solver. Popular examples of
useful theories include various theories of arithmetic over reals or integers such as linear or difference ones. Linear
arithmetic considers+ and− functions alone, applied to either numerical constants or variables, plus multiplication
by a numerical constant. Difference arithmetic is a fragment of linear arithmetic limiting legal predicates to the form
x− y ≤ c, wherex, y are variables andc is a numerical constant. A number of theories have been studied apart from
standard arithmetic ones. Machine arithmetic, for instance, is more naturally modeled by the theory of bit-vector
arithmetic, which includes bit-wise operations. Other theories exist for data structures such as lists and strings [10].

Different approaches have been developed to solve SMT problems.When deciding the satisfiability of a first-
order formulaϕ in a given theoryT, a general purpose FOL reasoning system such as Prolog, based on the resolution
calculus, needs to add to the formula a conjunction of all theaxioms inT. This is, e.g., the standard setting in inductive
logic programming when verifying whether a certain hypothesis covers an example given the available background
knowledge. Let us note that, whenever the cost of including such additional background theory is affordable, our
optimization algorithm can be applied rather straightforwardly. Unfortunately, adding all axioms ofT is not viable for
many theories of interest: consider for instance the theoryof arithmetic, which defines the interpretation of symbols
such as+,≥,0,5.
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An alternative approach is represented byeagerSMT solvers. They translate the original formulaϕ taken from
the input theoryT into an equisatisfiablepropositional formulain one single step. In this way, any off-the-shelf
SAT solver can be used to check the satisfiability of the generated propositional formula. The SAT solver is called
once. However, a specific translator has to be developed for each theory of interest. Furthermore, the translation of
all the theory-specific information is required at thebeginningof the search process (hence the name “eager”), likely
resulting in large SAT formulas. Although optimizations inthe translation are possible, there is a trade-off between the
degree of optimization and the time required by the SAT encoding. Let us note the analogy with compilers, optimizing
the low-level object code (the SAT formula in our context) generated from a high-level program (the SMT problem
formulation) [10].

A more efficient approach is based on incremental translations and calls to the SAT solver. This is the case oflazy
SMT solvers, where the theory-specific information is incrementally encoded in the SAT formulation of the problem.
In particular, the lazy approach exploitsspecializedreasoning methods for the background theory of interest. When
integrated as submodules in a SMT solver, these theory-specific reasoning methods are often referred asT-solvers. T-
solvers are efficient decision procedures typically developed to check thesatisfiability ofconjunctionsof literals (i.e.,
atomic formulas and their negations) over the given theoryT. The generalization to arbitrary propositional structures
is handled in conjunction with the SAT solver integrated in the SMT solver.

In this work we focus on lazy SMT solvers and their optimization variant, which we integrated in our optimization
algorithm. The rest of this section provides details about lazy SMT solvers search process and introduces Optimization
Modulo Theory (OMT) solvers handling weighted Maximum Satisfiability Modulo Theory (MAX-SMT) problems.
Finally, the integration of MAX-SMT solvers in our optimization approach is discussed.

4.1. Lazy Satisfiability Modulo Theory solvers

The search process of a lazy SMT solver alternates calls to the Satisfiability and the theory solver respectively,
until a solution satisfying both solvers is retrieved or theproblem is found to be unsatisfiable. Letϕ be a formula in
a certain theoryT, made of a set ofn predicatesA = {a1, . . . ,an}. A mappingα mapsϕ into a propositional formula
α(ϕ) by replacing its predicates with propositional variablespi = α(ai). The inverse mappingβ replaces propositional
variables with their corresponding predicates, i.e.,β(pi) = ai . For example, consider the following formula in the
arithmetic theory over integers:

x+ y+ z≤ 3∧ (x ≤ y∨ z= 2)∧ (x ≥ 2∨ x , z) (4)

wherex, y, z are integer-valued variables. Then,p1 = α(x+ y+ z ≤ 3), p2 = α(x ≤ y), p3 = α(z = 2), p4 = α(x ≥ 2)
andp5 = α(x , z). The resulting propositional formulaα(ϕ) is:

p1 ∧ (p2 ∨ p3) ∧ (p4 ∨ p5)

Let us note that the truth assignment

p1 = ⊤, p2 = ⊥, p3 = ⊤, p4 = ⊤, p5 = ⊥

where⊤,⊥ symbols encode true and false truth values, respectively, is equivalent to the statement

x+ y+ z≤ 3∧ x > y∧ z= 2∧ x ≥ 2∧ x = z

in the theory T.
The SAT solver integrated in the SMT solver searches a solution of the propositional formulaα(ϕ). If the proposi-

tional formula in unsatisfiable, the original formulaϕ is also unsatisfiable and the whole SMT solver stops. Otherwise,
the SAT solver provides a truth assignment satisfyingα(ϕ). Considering the above example, it may be:

p1 = ⊤, p2 = ⊤, p3 = ⊤, p4 = ⊤, p5 = ⊤ (5)

The T-sover is used to validate the assignment (i.e., the conjunction of truth values) produced by the SAT solver. The
predicates are evaluated using the rules of the theoryT. If the validation is successful, the SMT solver stops returning
the assignment of values to the variables inT satisfyingϕ. Otherwise, when theT-solver detects unsatisfiability, an
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1. procedureSMT solver(ϕ)
2. ψ = α(ϕ)
3. while (true)
4. (r,M)← SAT(ψ)
5. if r = unsat then returnunsat
6. (r,J)← T-Solver(β(M))
7. if r = sat then returnsat
8. C←

∨
l∈J ¬α(l)

9. ψ← ψ ∧C

Figure 2: Pseudocode for a basic lazy SMT solver.

additional constraint explaining (i.e, justifying) the unsatisfiability is included inα(ϕ) and the SAT solver is asked for
a new assignment. For example, the assignment in Eq. 5 is not valid in the arithmetic theory over integers. Applying
the inverse mappingβ, we obtain:

x+ y+ z≤ 3∧ x ≤ y∧ z= 2∧ x ≥ 2∧ x , z

which is unsatisfiable asz is set to the value two whilex andy must be larger than value two. A possible justification
explaining the unsatisfiability is given by the following constraint:

¬(p1 ∧ p2 ∧ p3 ∧ p4)

which will be included in the propositional formulaα(ϕ) for the following calls to the SAT solver. Continuing with
the toy example, assume that the second call to the SAT solverreturns the following truth assignment:

p1 = ⊤, p2 = ⊥, p3 = ⊤, p4 = ⊥, p5 = ⊤ (6)

satisfying the above justification. Restoring the interpretation of the propositional variablespi , we obtain:

x+ y+ z≤ 3∧ x > y∧ z= 2∧ x < 2∧ x , z

which is satisfied by posing, e.g.,x = 1, y = 0, z= 2.
The termlazydenoting this approach is due to the incremental strategy generating constraints on demand. On the

contrary, eager methods produce all the constraints in one single step before the execution of the SAT solver.
Figure 2 reports the basic form [18] of a SMT algorithm.SAT(ψ) calls the SAT solver on theψ instance, returning

a pair (r,M), wherer is sat if the instance is satisfiable,unsat otherwise. In the former case,M is a truth assignment
satisfyingψ. T-Solver(S) calls the theory solver on the formulaS and returns a pair (r, J), wherer indicates if the
formula is satisfiable. Ifr = unsat, J is a justificationfor S, i.e., any unsatisfiable subsetJ ⊂ S. The next iteration
calls the SAT solver on an extended instance accounting for this justification.

Off-the-shelf solvers introduce a number of refinements to thisbasic strategy, by pursuing a tighter integration
between the SAT and the theory solvers. A common approach consists of pruning the search space for the SAT solver
by calling the theory solver on partial assignments and propagating its results. Finally, combination methods exist to
jointly employ different theories, see [19] for a basic procedure.

4.2. Weighted MAX-SMT and Optimization Modulo Theory solvers

Weighted MAX-SMT generalizes SMT problem much like weighted MAX-SAT does with SAT ones. Given a
cost functionc, an assignments in the input theoryT is sought with minimumc(s). The simplest formulation for the
MAX-SMT problem consists of assigning a weight to each part (i.e., constraint) of the Boolean formula to be jointly
satisfied. Weights represent penalties or costs for violating the constraints and are expressed by positive natural or
real numbers. The cost functionc(s) is defined by the sum of the weights of the constraints unsatisfied under the
assignments.

While a body of works exist addressing weighted MAX-SAT problems, MAX-SMT task has been tackled only
recently [8, 9, 20] and very few solvers have been developed.In particular, optimization in SMT was first introduced
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by the work in [8]. Let{(C1,w1), . . . , (Cm,wm)} the set of the weighted constraints, whereCi andwi identify the i-th
constraint and its associated weight, respectively. Clearly, the cost functionc takes values from the interval [0,W],
with W = w1 + . . . + wm. A simple effective method [8] to obtain solutions with costc(s) at mostW̄, with W̄ < W,
consists of generatingmadditional constraints (Ci ∨ pi) , i = 1 . . .m, with pi a fresh propositional variable. The initial
background theoryT is augmented with the integers and with the following assertions:

pi → (ki = wi), i = 1 . . .m

¬pi → (ki = 0), i = 1 . . .m

k1 + . . . + km ≤ W̄

In this way, any assignments with cost larger than the upper bound̄W on the cost function is inconsistent with the
augmented input theory. The search for the optimal assignment s∗ is based on a branch and bound technique. Each
time a lower upper bound̄W′ < W̄ on the cost function is computed, the theory is updated by replacingW̄ with W̄′

(this operation is called “theory strengthening”). A sequence of theories with an increasingly tight upper bound on
the cost function is therefore generated. This strategy is referred to as “SMT with progressively stronger theories”. A
different approach to handle MAX-SMT is used in the paper [9], where a theory of costsC is introduced to handle
cost functions in SMT and a specialized theory-solver forC is developed within the standard lazy SMT schema.

4.3. Preference elicitation with the MAX-SMT formalism

The adoption of the MAX-SMT formalism in our approach enables an efficient representation of non-Boolean
decisional features. The framework introduced in Sec. 2 does not need to be changed in the case of non-Boolean
decisional features, because the effort required to handle non-Boolean encodings is completelyperformed by the
MAX-SMT solver. As a matter of fact, when representing user preferences in the SMT setting, the DM utility
function f is expressed as a weighted sum of terms, where a term is the conjunction of up tod predicatesdefined
over the variables in the theoryT. The set ofall possible predicates represents the search spaceS of the MAX-
SAT solver integrated in the MAX-SMT solver. Our approach learns an approximation̂f of f and gets one of its
optimizers from the MAX-SMT solver, as an assignment to the decision variables in the input theoryT involved in
the predicates of̂f . The decision variables inT that are not used in the current formulationf̂ are assigned values
selected independently and uniformly at random from the their domains. In this way, a complete assignment to the
variables in the input theory (i.e., a candidate solution inT) is obtained. The candidate solution in turn determines an
assignmentp∗ = (p∗1, . . . , p

∗
n) of Boolean values (p∗i = {true, false}) to the predicates inS.

The diversification strategy to obtain multiple candidatessolutions is the same as described in Sec. 2.3. The
sequential optimization of̂f is performed, with the additionalhard constraint generated by the disjunction of all the
terms of f̂ unsatisfied byp∗. If p∗ satisfies all the terms of̂f , the additionalhard constraint consists of:

(¬p∗1 ∨ ¬p∗2 . . . ∨ ¬p∗n)

which excludesp∗ from the feasible solutions set of̂f .

5. Related work

The problem of automatically learning utility functions and eliciting preferences from users is widely studied
within the Artificial Intelligence community [21]. A popular approach to model the uncertain knowledge about the
DM preferences consists of assuming a set of hypotheses, with no belief on the strength of the hypotheses. The set of
hypotheses contains the feasible utility functions and reflects the partial knowledge about the DM preferences. The
uncertainty about the DM preferences is decreased by restricting the feasible hypothesis set, when relevant preference
information is received during the elicitation process. This approach is often referred to as reasoning under strict
uncertainty [22]. An alternative uncertainty model consists of defining a probability distribution over the hypotheses.
This is the case of Bayesian approaches to preference elicitation [23, 15, 24, 25].

Our work casts the preference elicitation task into the problem of learning combinatorial optimization instances
to be optimized for the generation of additional candidate solutions. The learning phase is accomplished by applying
techniques from Machine Learning, while the optimization (or search) stage is based on Combinatorial Optimization
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methods. Our approach satisfies the main principles [15] needed for practical applicability of preference elicitation
techniques: the need for multi-attribute models, i.e., candidate configurations represented by means of multiple de-
cisional features or attributes; the quest for real-time interaction with the DM, where both the query generation and
the solutions recommendation must be accomplished in no more than few seconds; the robustness to inconsistent and
contradictory feedback from the DM; the need for cognitively affordable queries to the user, i.e., comparison queries;
the demand for scalable methods, that evaluate at each preference elicitation stage a number of candidate queries that
grows linearly in the cardinality of the solutions space.

From the perspective of Machine Learning/Artificial Intelligence, the closest approaches to ours arethe methods
based on the minimax regret criterion [4, 5, 6], while a recent technique [7] developed within the Constraint Program-
ming community shares with our algorithm the combinatorialformulation of the DM preferences. In the following,
we review these alternative approaches and compare them with our technique.

5.1. Minimax regret-based approaches

The methods developed in the papers [4, 5, 6] perform preference elicitation under strict uncertainty. They assume
a parametric formulation of the candidate utility function(hypothesis) in the feasible utility set U. The parametriza-
tion, based on the generalized additive independence models discussed in Sec. 1, enables a compact way to specify
the feasible set, which is represented by bounds and constrains on the parameters. Uncertainty is thus reduced by
tightening the constraints or increasing (decreasing) thelower (upper) bounds.

To make decisions with the partial utility information under strict uncertainty and, in particular, to select the final
configuration to be returned to the DM, theminimax regretdecision criterion is used. It prescribes the configuration
that minimizes the maximum regret with respect to all the possible realizations of the DM utility function in the set U.
Thus, the minimax regret criterion minimizes theworst-case losswith respect to the possible realizations of the DM
utility function. In detail, the minimax regret criterion is defined in two stages, building on the maximum pairwise
regret and the maximum regret. The maximum pairwise regret of configurationx with respect to configurationx′ over
the feasible utility set U is defined as:

R(x, x′,U) = max
u∈U

u(x′) − u(x) (7)

This formulation can be interpreted by assuming an adversary that can impose any DM utility functionu in U and
chooses the one that maximizes the regret of selecting solution x. The functionuw = argmax R(x, x′,U) is thus termed
the “adversary’s utility” or “witness utility”. The maximum regret of choosing solutionx with respect to the feasible
utility set U is defined as:

MR(x,U) = max
x′

R(x, x′,U) (8)

Within the “adversary metaphor”, let us note that thex′ chosen by the adversary for the specificuw is the optimal
decision underuw (i.e., x′ maximizesuw) and any alternative choice would give the adversary less utility and thus
reduce the user regret. Finally, the minimax regret of the feasible utility set U is as follows:

MMR(U) = min
x

MR(x,U) (9)

and the solutionxr = argmin MR(x,U) minimizing the maximum regret is the configuration recommended to the DM
by the minimax regret decision criterion. The quality of thesolutionxr is guaranteed to be no more than MMR(U)
away from the quality of the DM favourite solution, and no alternative solution has a better guarantee, i.e., for all
x , xr , MR(x,U) ≥ MMR(U).

The initial bounds about the utility parameters defined by the DM are not usually tight enough to identify config-
urations with provably low regret, and a configuration satisficing the DM cannot be recommended without eliciting
additional preference information. This is achieved through an interactive elicitation algorithm that asks queries to
the DM and, based on the information elicited, refines the bounds and the constraints on the utility parameters. The
generic framework of the approach is as follows:

input : initial constraints (e.g., bounds) on the utility parameters defining
the initial feasible set U

compute minimax regret MMR(U);
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repeat until termination criterion
ask queryq;
refine U by updating the constraints over utility parameters to reflect the
response toq;
recompute MMR(U) with respect to the refined set U;
return to the DM the solutionxr minimizing MR(x,U)

Computationally tractable techniques have been proposed [4, 5, 6] to compute the minimax regret MMR (U). The
iterative algorithm may be stopped by the DM when she is satisfied by the returned solutionxr or when the minimax
regret MMR(U) reaches a certain levelτ. When the minimax regret is reduced to the value zero, the solution xr

returned by the algorithm is guaranteed to be the DM favourite solution. The minimax regret-based approach also
enables a principled method to define informative queries that will be asked the DM (query optimization), and different
query strategies have been proposed [4, 5, 6].

5.1.1. Comparison with our method
While the target of our work is a preference elicitation method approximately correct with high probability, the

minimax regret-based approaches assume an adversarial entity that acts to maximize the DM regret and they aim at
beating the adversary by recommending the best solution with respect to the worst case loss. However, this adversarial
model is not always strongly motivated by real-world applications, where users are typically interested in the actual
obtained results rather than in regret. The main advantage of the regret-based approaches with respect to our algorithm
is the ability to provide a lower bound about the quality of the recommended solution and guarantee the convergence
to provably-optimal results. However, these theoretical guarantees are valid under the assumption that the feasible
set U contains the true DM utility function atany iteration of the elicitation process. That is, the regret-based meth-
ods do not consider the uncertain and inconsistent preference information characterizing the typical human decision
processes. As a matter of fact, uncertain feedback from the DM translates into constraints on the utility parameters
that can potentially rule out the true utility from the feasible set U. Furthermore, the best performance observed in the
experiments presented in the paper [4] is achieved by query strategies that include standard gamble queries, which
require the users to state their preference over a probability distribution of configurations. These queries demand a
higher DM cognitive load than the comparison queries adopted in our work, and thus in real-world applications they
are more prone to errors and inconsistent answers from the users. Without suitable modifications (e.g., constraints
relaxation) to recover from the inevitable uncertain and inconsistent preference information elicited from the DM,
regret-based approaches cannot be applied in the realisticproblem settings and the noisy test cases that we consider
in this work.

5.2. Preference elicitation methods based on constraint satisfaction

Recent work in the field of constraint programming [7] shareswith our technique the combinatorial approach to
model user preferences. It defines the user preferences in terms of soft constraints and introduces constraint opti-
mization problems where the DM preferences are not completely known before the solving process starts. Let us first
briefly describe the c-semiring formalism [26] adopted in paper [7] to model soft constraints.

In soft constraints, a generalization of hard constraints,each assignment to the variables of one constraint is
associated with a preference value taken from a preference set. The preference value represents the level of desirability
of the assignment to the variables of the constraint. As the preference score is associated to a partial assignment to
the problem variables, it represents alocal preference value. The desirability of a complete assignment is defined by
a global preference score, computed by applying a combination operator to the local preference values. A set of soft
constraints generates an order (partial or total) over the complete assignments of the variables of the problem. Given
two solutions of the problem, the preferred one is selected by computing their global preference levels. Soft constraints
are represented by an algebraic structure, calledc-semiring(where letter “c” stays for “constraint”), providing two
operations for combining (×) and comparing (+) preference values. In detail, the c-semiring is a tuple (A,+,×,0,1)
where:

• A is a set and0,1 ∈ A;

• + is commutative, associative and idempotent;0 is its unit element and1 is its absorbing element;
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• × is commutative, associative, distributes over+; 1 is its unit element and0 is its absorbing element.

Let us note that a c-semiring is a semiring with additional properties for the two operations: the operation+ must
be idempotent and with1 as absorbing element, the operation× must be commutative. The relation≤A over A,
a2 ≤A a1 iff a2 + a1 = a1, is a partial order, with0 and1 its minimum and maximum elements, respectively. The
relation≤A allows to compare (some of) the desirability levels, witha2 ≤A a1 meaning thata1 is “better” thana2; 0
and1 represent the worst and the best preference levels, respectively, and the operations+ and× are monotone on≤A.
Consider, e.g., the following instance of c-semiring:

({5,10,15, . . . ,50},max,min,5,50)

with preference values from the set{5,10,15, . . . ,50} and elements0 and 1 represented by the values 5 and 50,
respectively. The desirability of a complete assignment isobtained by taking its minimum local preference value. A
complete assignmentc1 with preference scorea1 is preferred to a complete assignmentc2 with lower preference score
a2. That is,a2 ≤A a1 iff max(a2,a1) = a1.

The generality of the semiring-based soft constraint formalism permits to express several kinds of preferences,
including partially ordered ones. For example, different instances of c-semirings encode weighted or probabilistic soft
constraint satisfaction problems [27]. However, the c-semiring formalism can model justnegativepreferences. First,
the best element in the ordering induced by≤A, denoted by1, behaves as indifference, since∀a ∈ A,1× a = a. This
result is consistent with intuition: when using only negative preferences, indifference is the best level of desirability
that can be expressed. Furthermore, the combination of desirability levels returns a lower overall preference, since
a× b ≤A a,b, again consistently with the fact of dealing with negative preferences.

Preference elicitation strategies have been introduced [7] within this formalism in order to deal with scenarios
where preference value information is partially unknown. Some of the local preference values attached to soft con-
straints are assumed to be missing, and the DM is asked for an explicit feedback on specific assignments for these
constraints, in terms of score values quantifying her preference for a certain assignment. The elicitation strategy is
aimed at minimizing the number of queries to the DM.

5.2.1. Comparison with our method
Concerning expressivity of the representation formalisms, the work in [28] shows how to encode semiring-based

soft constraint satisfaction problem (SCSP) instances into equivalent weighted MAX-SAT formulations. Each solution
of the latter instance corresponds to a solution of the former one. Details on the encoding algorithm can be found in the
Appendix. The rationale for the MAX-SAT encoding is the exploitation of the efficient and widely studied techniques
implemented in modern SAT solvers, which can efficiently handle large size structured problems [29]. The encoding
can in principle be applied also to SCSPs with continuous decision variables or discrete variables defined over large
size finite domains, possibly however at the cost of a significant blow-up in the translation. In this case, one may cast
the SCSP instance into a weighted MAX-SMT rather than a weighted MAX-SAT formulation.

Concerning the preference elicitation setting, our formulation assumes a much more limited amount of initial
knowledge about the problem to be optimized. In the work on preference elicitation for SCSPs [7], decision variables,
soft constraint topology and structure are assumed to be known in advance and the incomplete initial information
consists only of missing local preference values. We assumecomplete ignorance about the structure of the constraints
over the decisional variables of the user. The initial problem knowledge is limited to a set of catalog features. Our
algorithm extracts the decisional items of the DM from the set of catalog features and learns the weighted terms
constructed from them modeling the DM preferences. If the MAX-SAT encoding is applied to the SCSP with missing
preferences, it produces a Boolean formula where some of theweights of the terms are not known. On the other hand,
our preference elicitation algorithm handles MAX-SAT instances where both the terms and their associated weights
are initially unknown and are learnt by interacting with theDM.

Furthermore, the technique in [7] is based onlocal elicitation queries, with the final user asked to reveal her
preferences about assignments for specific soft constraints. Global preferences or bounds for global preferences
associated to complete solutions of the problem are derivedfrom the local preference information. Our technique goes
in the opposite direction: it asks the user to compare complete solutions and learns local utilities (i.e., the weights of
the terms of the logic formula) from global preference values. In many cases, recognizing appealing or unsatisfactory
global solutions may be much easier than defining local utility functions, associated to partial solutions. For example,
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while scheduling a set of activities, the evaluation of complete schedules may be more affordable than assessing how
specific ordering choices between couples of activities contribute to the global preference value. Furthermore the
preference elicitation technique in [7] asks the DM for quantitative evaluations of partial solutions: she does not just
rank couples of activities, she provides score values quantifying her preference for the partial activity rankings, a
much more demanding task.

In order to reduce the embarrassment of the decision maker when specifying precise preference scores, interval-
valued constraints [30] allow users to state an interval of utility values for each instantiation of the variables of a
constraint. As a matter of fact, the informal definitions of degrees of preference such as “quite high”, “more or less”,
“low” or “undesirable” cannot be naturally mapped to precise preference scores. However, the technique described
in [30] requires the user to provide all the information she has about the problem (in terms of preference intervals)
beforethe solving phase, without seeing any optimization result.

Even if interval-valued constraints [30] have been introduced to handle uncertainty in the evaluations of the DM,
inconsistent preference information is not addressed [7].This is a requirement to retain the optimality guarantees
provided by the preference elicitation strategy. Conversely, our algorithm trades optimality for robustness and can
effectively deal with imprecise information from the DM, modeled in terms of inaccurate ranking of the candidate
solutions.

Finally, while the work in [7] considersunipolar preference problems, modeling just negative preferences,our
approach naturally accounts for bipolar preference problems, with the final user specifying what she likes and what
she dislikes. Bipolar preference problems provide a betterrepresentation of the typical human decision process, where
the degree of preference for a solution reflects the compensation value obtained by comparing its advantages with the
disadvantages. Let us note that the work in [27] extends the soft constraint formalism to account for bipolar preference
problems.

6. Experimental results

The following empirical evaluation demonstrates the versatility and the efficiency of our preference elicitation
approach. First, the simplest formulation of our method, which considers Boolean decisional features only, is eval-
uated over a set of synthetic MAX-SAT benchmarks. Then, our approach is tested over a benchmark of MAX-SMT
problems, formulating realistic preference elicitation tasks. Because the Satisfiability Modulo Theory formalism en-
compasses the propositional logic, our algorithm simply handles MAX-SAT preference models as instantiations of
the MAX-SMT task without any auxiliary information. The MAX-SMT tool used for the experiments is the “Yices”
solver [20], which is publicly available athttp://yices.csl.sri.com/ (as of September 2012). Each point of the
curves depicting our results is the median value over 400 runs with different random seeds, unless otherwise stated.

6.1. Weighted MAX-SAT

Our algorithm was tested over a benchmark of randomly generated utility functions according to the triplet (num-
ber of features, number of terms, max term size), wheremax term sizeis the maximum allowed number of Boolean
variables per term. We generate functions for the followingvalues:{(5,3,3), (6,4,3), (7,6,3), (8,7,3), (9,8,3), (10,9,3)}.
Each utility function has two terms with maximum size. Termsweights are integers selected uniformly at random in
the interval [−100,0)∪ (0,100]. We consider asgold standard solution the configuration obtained by optimizingthe
DM unknown utility function (henceforth thetargetutility function).

The number of catalog features is 40. The maximum size of terms is assumed to be known. Furthermore, the
probability of inaccurate feedback swapping a pairwise preference is fixed to the value 0.1.

We run a set of experiments where the training set is initialized by the ranking of 10,20, . . . 100 configurations
generated by sampling uniformly at random the Boolean feature values. Fig. 3 reports the utility loss (or regret)
of thebestconfiguration, i.e., the solution optimizing the current approximation of the target utility function, at the
different iterations for an increasing numbers of initial configurations to be ranked. At the following iterations,
s/2 configurations are generated and their ranking is added to the training set (see Sec. 2). The utility loss is the
amount of utility lost by recommending the best rather than the gold configuration and it is measured as the difference
between their respective costs (approximation error). Considering the simplest problems with three and four terms,
our algorithm can identify the solution preferred by the DM at the first iteration, provided that at least 90 initial
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Figure 3: Learning curves for different iterations of our algorithm observed when increasingthe number of initial configurations to be ranked. The
y-axis reports the utility loss, while thex-axis contains the number of initial configurations. The dotted line with triangular markers, the dashed line
with circular markers and the solid line with square markers show the performance of the algorithm at the first, the second andthe third iteration,
respectively. The number of configurations for each iteration following the first one is half the number of initial configurations. See text for details.

configurations are available. With three iterations, the number of configurations needed to recover the optimal solution
for both problems is reduced to 20+10+10=40 configurations divided in three batches. Utility functions including
more than five terms are quite unrealistic in the case of a human decision maker, however they are reported here to
show the scalability of our approach to more complex elicitation tasks. With more than four terms in the target utility
function, the optimal solution cannot be recovered at the first iteration. However, our algorithm succeeds in exploiting
its active learning strategy and converges to the optimal solution when enough iterations are provided. For instance, in
the case of eight terms in the target utility function, the optimal solution is discovered at the second and third iterations
with 90 and 50 and initial configurations, respectively.

Fig. 4 and Fig. 5 show the learning curves for our approach at the first and third iterations in the case of target
utility functions with three and nine terms, respectively.Error bars indicate the range between the 25th and 75th
percentiles of the underlying data distributions. As expected, in both cases the sample percentiles demonstrate a more
stable behavior of our technique at the third iteration. In particular, at the third iteration the stability of our algorithm
increases with additional training examples, while the variability of performance observed at the first iteration does
not decrease to the same extent. Considering the more challenging case represented by target utility functions with
nine terms, at the third iteration our algorithm consistently finds the gold solution with at least 70 initial configurations
(the interquartile range value is within the 20 units). An unstable behavior is still observed at the first iteration even
in the case of 100 configurations.

6.2. Weighted MAX-SMT

MAX-SMT is a recent research area. Even if existing results [8] indicate that MAX-SMT solvers can efficiently
address real-world problems, to the best of our knowledge nowell-established publicly available MAX-SMT bench-
marks exist and preference elicitation tasks have not been encoded into MAX-SMT instances yet.

In this work, we modeled aschedulingproblem as a MAX-SMT instance, where the DM expresses her preferences
about the candidate schedules of a set of jobs. In order to mimick a realistic recommendation task, we also designed
a housingproblem aimed at selecting a location for building a house. The formulation consists of both unknown soft
constraints representing the user preferences and known hard constraints defining the feasible search space.
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Figure 4: Learning curves at the first (left figure) and the third (right figure) iterations in the case of target utility functions with three terms. Error
bars denote the range among the 25th and the 75th percentiles of the measurements.
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Figure 5: Learning curves at the first (left figure) and the third (right figure) iterations in the case of target utility functions with nine terms. Error
bars denote the range among the 25th and the 75th percentiles of the measurements.
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Figure 6: Learning curves observed at different iterations of our algorithm while solving the scheduling problem. They-axis reports the utility loss,
while thex-axis contains the number of initial configurations. The dotted line with triangular markers, the dashed line with circular markers and
the solid line with square markers show the performance of the algorithm at the first, the second and the third iteration, respectively. The number
of configurations for each iteration following the first one is half the number of initial configurations. See text for details.

6.2.1. Scheduling problem
A set of five jobs must be scheduled over a given period of time.Each job has a fixed known duration, the

constraints define the overlap of two jobs or their non-concurrent execution. The target utility function is generated by
selecting uniformly at random weighted terms over the constraints. The solution of the problem is a schedule assigning
a starting date to each job and minimizing the cost, where thecost of the schedule is the sum of the weights of the
violated terms of the target utility function. The temporalconstraints are expressed by using the difference arithmetic
theory. In detail, letsi anddi , with i = 1 . . . 5, be the starting date and the duration of the i-th job, respectively. Ifsi is
scheduled beforesj , the constraint expressing the overlap of the two jobs issj − si < di , while their non-concurrent
execution is encoded bysj−si ≥ di . Let us note that there are 40 possible constraints for a set of 5 jobs. The maximum
size of the terms of the target utility function is three and it is assumed to be known. Their weights are distributed
uniformly at random in the range [1,100]. Similarly to the MAX-SAT case, the probability of inaccurate ranking
examples swapping the correct positions of the solutions isfixed to the value 0.1.

Fig. 6 depicts the performance of our algorithm for the casesof 3, 4, 6, 7, 8, 9 terms in the target utility function.
They-axis reports the utility loss measured in terms of deviation from the cost of the gold solution, while thex-axis
contains the numbers of initial configurations to be ranked.

As expected, the learning problem becomes more challengingfor increasing number of terms. However, the
results for the scheduling problem are promising: our approach identifies the gold standard solution in all of the cases.
In detail, less than 60 initial configurations are required to identify the gold solution at the second iteration. With
three iterations, in the simplest cases of three up to six terms, the gold solution is recovered by using 20+10+10=40
configurations divided in three batches. When considering the more complex utility functions with seven, eight and
nine terms, our algorithm needs at most 40 initial configurations for convergence to the gold solution at the third
iteration. Let us note that the bounded human rationality when making decision limits the number of non-linear
interactions among the user features. Human utility function with more than three/five terms are therefore quite
unrealistic. Analogously to the MAX-SAT experiments, utility functions with six up to nine terms are used to test the
scalability of our approach.

The plots in Fig. 7 and Fig. 8 show that at the third iteration our approach finds the gold solution consistently in
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Figure 7: Learning curves at the first (left figure) and the third (right figure) iterations observed while solving the scheduling problem with three
terms in the target utility function. Error bars denote the range among the 25th and the 75th percentiles of the measurements.

the case of three terms target utility functions. When considering nine terms target utility functions, the value of the
75th percentile is within 20 units from the median value, provided that at least 60 initial configurations are used. As
expected, a more unstable behavior is observed at the first iteration for both three and nine terms cases.

6.2.2. Housing problem
For a second realistic application of our preference elicitation technique, we consider a customer planning to build

her own house and judging potential housing locations provided by a real estate company (henceforth thehousing
problem). There are different locations available, characterized by different housing values, prices, constraints about
the design of the building (e.g., usually in the city center you cannot have a family house with a huge garden and
pool), etc. The customer may formulate her judgments by considering a description of the housing locations based
on a predefined set of parameters, including, e.g., crime rate, distance from downtown, location-based taxes and
fees, public transit service quality, cultural resources accessibility, walking and cycling facilities, etc. In addition,
she is free to express her own requirements, consisting of financial issues, working opportunities, personal interests
(e.g., the proximity to commercial facilities or green areas), etc. As a result, this problem is characterized by a
plethora of decisional features whose contribution to the definition of the user preferences cannot be quantified in
advance. Many of them may be uninformative, as they do not represent any decisional criterion for the customer.
Furthermore, while specifying in advance hard constraintsfor the locations may be straightforward (consider, e.g., cost
bounds stated by the user or building design requirements asserted by the company), assessing the user preferences
in terms of the combination of this redundant set of decisional features may demand a prohibitive effort. In the
real world, the elicitation process is usually driven by thesales personnel of the company in collaboration with the
customer. Their joint effort identifies the customer decisional features from the catalog set and defines the (non-
linear) relationships among the selected features. For example, consider the following preference information from
the decision maker: “I like family houses with a big garden and I’m not interested in living near the place where I
work. On the other hand, I would like a location near the school of my children. However, in the case of good price,
I could accept a flat downtown, provided that commercial facilities are reachable on foot and there is free parking in
the neighborhood”. Finally, in order to provide satisfactory solutions to the customer, the sales personnel has to assess
a rank for the (possibly conflicting) stated preferences. Considering the previous preference information statement,
the sales personnel should quantify, e.g., how much a familyhouse with big garden is preferred to a location near the
children’s school (or vice versa).

However, this process may often produce poor results, whichdo not fulfill the expectations of the user. In most
cases, a complete and precise formulation of the user preferences cannot be elicited before the customer becomes
aware of some possible solutions. As a result, soft constraints remain in the mind of the decision maker, and revisions
of the stated preferences after seeing the actual optimization results are an inescapable fact. To complicate things,
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Figure 8: Learning curves at the first (left figure) and the third (right figure) iterations for scheduling problems with target utility functions of nine
terms. Error bars denote the range among the 25th and the 75th percentiles of the measurements.

misunderstanding between the persons may arise and possibly imprecise and inconsistent answers of the user to the
elicitation queries have to be considered. In this context,our preference elicitation technique provides a robust housing
location recommendation system that can evaluate the suitability of the solutions and optimize them for the customer.
On the other side, the application of the preference elicitation technique introduced in [7] is difficult, as it assumes
to know in advance both the decisional features of the user and their detailed combination (represented in terms
of soft constraints), while the elicitation process focuses exclusively on assessing the preferences for the different
instantiations of the variables of the constraints.

In our experiments, the formulation of the housing problem is as follows. The set of catalog features is listed
in Table 1. A set of 10 hard constraints (Table 2) defining feasible housing locations and known in advance is

Table 1: Decisional features for the housing problem.

num feature type

1 house type ordinal
2 garden Boolean
3 garage Boolean
4 commercial facilities in the neighborhood Boolean
5 public green areas in the neighborhood Boolean
6 cycling and walking facilities in the neighborhood Boolean
7 distance from downtown numerical
8 crime rate numerical
9 location-based taxes and fees numerical

10 public transit service quality index numerical
11 distance from high schools numerical
12 distance from nearest free parking numerical
13 distance from working place numerical
14 distance from parents house numerical
15 price numerical

considered. The hard constraints are stated by the customer(e.g., cost bounds) or by the company (e.g, constraints
about the distance of the available locations from user-defined points of interest). Let us note that constraints 5, 6, 7
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define a linear bi-objective problem among distances from user-defined points of interest. Prices of potential housing
locations are defined as a function of the other features. Forexample, price increases if a semi-detached house rather
than a flat is selected or in the case of green areas in the neighborhood. On the other side, e.g., when crime index of
potential locations increases, price decreases. Soft constraints are represented by weighted terms including predicates
in the linear arithmetic theory or Boolean variables, in thecase of features number 2,3, . . . ,6 in Table 1. For example,
one predicate may model the preference for a location with distance from nearest free parking smaller than a given
threshold, while a Boolean variable encodes, e.g., the aspiration for houses with garage.

Table 2: hard feasibility constraints for the housing problem. Parametersρi , i = 1 . . .13, are threshold values specified by the user or by the sales
personnel, depending on who states the hard constraint which they refer to.

num hard constraint

1 price≤ ρ1

2 location-based taxes and fees≤ ρ2 => not public green ares in the
neighborhoodand notpublic transit service quality index≤ ρ3

3 commercial facilities in the neighborhood=> not (gardenand
garage)

4 crime rate≤ ρ4 => distance from downtown≥ ρ5

5 distance from working place+ distance from parents house≥ ρ6

6 distance from working place+ distance from high schools≥ ρ7

7 distance from parents house+ distance from high schools≥ ρ8

8 distance from nearest free parking≤ ρ9 => not public green areas
in the neighborhood

9 distance from parents house≤ ρ10 => distance from downtown≥
ρ11 andcrime rate≥ ρ12

10 garden=> house type≥ ρ13

We generated a set of 40 predicates. The target utility function is composed of terms with two or three predicates,
with at least one term with three predicates. Term weights are integer values selected uniformly at random in the range
[1, 100]. Inaccurate preference information can be due to occasional inattention of the DM which with probability 0.1
swaps the correct positions of the solutions in the ranking examples.

Fig. 9 reports the results over a benchmark of 400 randomly generated utility functions for each of the following
instantiation of the triplet (number of features, number of terms, max term size): {(5,3,3), (6,4,3), (7,6,3), (8,7,3),
(9,8,3), (10,9,3)}. The promising results observed for the scheduling problemare confirmed. A stable behavior is
observed for our approach at the third iteration: the quality of the solution rapidly improves with a larger number of
examples and the algorithm succeeds in exploiting its active learning strategy. As a consequence, the gold solution is
quickly identified.

Fig. 10 and 11 show the substantial stability improvement achieved by three iterations over a single one for the
three and nine term problems respectively, confirming the effectiveness of our incremental approach.

7. Discussion

We presented an interactive optimization strategy for combinatorial problems over an unknown utility function.
The algorithm alternates a search phase using the current approximation of the utility function to generate candidate
solutions, and a refinement phase exploiting feedback received to improve the approximation. We introduced a generic
framework, enabling the adoption of well-assessed learning methods and MAX-SMT solvers. 1-norm regularization is
employed to enforce sparsity of the learned function. The DMis asked to rank the solutions optimizing the generated
weighted MAX-SMT instance. Thanks to the MAX-SMT formalism, our approach can handle a large class of relevant
optimization tasks. Experimental results on both weightedMAX-SAT and MAX-SMT problems demonstrate the
effectiveness of our approach in focusing towards the optimal solutions, its robustness, as well as its ability to recover
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Figure 9: Learning curves observed at different iterations of our algorithm while solving the Housingproblem. The data are presented analogously
to that in Fig. 6.
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Figure 10: Learning curves at the first (left figure) and the third (right figure) iterations obtained while solving the Housing problem with target
utility function of three terms. Error bars represents the range among the 25th and the 75th percentiles of the measurements.
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Figure 11: Learning curves at the first (left figure) and the third (right figure) iterations obtained while solving the Housing problem with target
utility function of nine terms. Error bars represents the range among the 25th and the 75th percentiles of the measurements.

from suboptimal initial choices. Our tests include a preference elicitation task with both known hard constraints
limiting the set of feasible solutions and unknown user preferences. In the housing problem the hard constraints
define the available house locations and the preferences of the DM drive the search within the set of feasible solutions.

The algorithm introduced in this work can be generalized in anumber of directions. The learning stage employs
a ranking loss function based on pairwise preference evaluation. More complex ranking losses have been proposed
in the literature (see for instance [31]), especially to increase the importance of correctly ranking the highest scoring
solutions, and could be combined with 1-norm regularization.

Active learningis a hot research area and a broad range of different approaches has been proposed (see [32] for a
review). The simplest and most common framework is that ofuncertainty sampling: the learner queries the instances
on which it is least certain. However, the ultimate goal of a recommendation or optimization system is selecting
the best instance(s) rather than correctly modeling the underlying utility function. The query strategy should thus
tend to suggest good candidate solutions and still learn as much as possible from the feedback received. Typical
areas where research on this issue is quite popular are single- and multi-objective interactive optimization [1] and
information retrieval [33]. The need to trade-off multiple requirements in this active learning setting is addressed
in [34] where the authors consider relevance, diversity anddensity in selecting candidates. Our future research will
consider the application of these active learning techniques. The performance of our method indeed depends on the
trade-off between the identification of candidates solutions satisfying the DM (i.e., solutions optimizing the current
learnt preference model) and the generation ofinformativetraining examples for the following refinement of the learnt
model.

Bayesian preference elicitation models [23, 15, 24, 25] express the knowledge about the DM preferences in terms
of probabilistic beliefs. The uncertainty about the user preferences is expressed by a probability distribution, or
beliefs, over the spaceW of candidate utility functions. In this probabilistic uncertainty setting, the expected utility of
a configuration is defined as the average utility with respectto the probability distribution over the utility functionsand
the configuration maximizing the expected utility is considered as the best configuration to be recommended to the
user. This choice enables a robust approach that minimizes risk in expectation. The beliefs about the candidate utility
functions are refined by Bayesian inference. Given a training datasetD, Bayesian inference requires the specification
of both a prior p(w) over the utility functionsw and a likelihood model p(D|w) of the data given the utility function.
However, depending on the selected prior and likelihood formulations, Bayesian inference may not be analytically
tractable and approximation techniques have to be adopted [24]. Furthermore, the quality of the approximation has to
be traded off against the strict time constraints characterizing interactive preference elicitation [24, 15]. In the context
of preference elicitation, Bayesian approaches are attractive as they quantify the uncertainty in the learnt DM utility
models and provide a principled approach to estimate the value of the information obtained by asking a certain query
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to the DM. In particular, the value of the information estimates the extent to which a certain query helps in improving
the quality of the learnt preference model. The value of information is exploited to design efficient query strategies
consisting of informative queries (see, e.g, the approach in [15] for an example). Adapting these concepts to our
setting, where the utility function is a complex formula over one or more theories and is optimized by specific solvers,
is an interesting and challenging direction for future work.

Another research direction is the extension of our approachto handle feedback from multiple DMs [35]. In
particular, an interesting case study is the exploitation of preferences of previous DMs to minimize the elicitation
effort for a new user [23, 25]. We also plan the extension of our algorithm to tackle preference drift [36], i.e., the
tendency of the decision maker to change her preferences during the interactive utility elicitation stage. As a matter of
fact, the DM has typically a limited initial knowledge of theproblem at hand and only when seeing the actual tentative
solutions she becomes aware of “what is possible”. Confronted with this new knowledge, her preferences may thus
evolve. Furthermore, the DM may not be aware of her preference changes and may not explicitly alert the utility
elicitation system. In our combinatorial utility settings, the DM preference drift can be modeled by weights of soft
constraints evolving over time and by logic formulas gradually changing (e.g., the Boolean termx1 ∧ x2 becoming
x1 ∧ x2 ∧ x4 when the DM realizes to have a more complex requirement).

Finally, in this paper the experimental evaluation is focused on small-scale problems, typical of an interaction with
a human DM. In principle, when combined with appropriate SMTsolvers, our approach could be applied to larger
real-world optimization problems, whose formulation is only partially available. In this case, alocal searchalgorithm
rather than a complete solver will be used during the optimization stage. However, the cost of requiring an explicit
representation of all possible conjunction of predicates (even if limited to the unknown part) would rapidly produce an
explosion of computational and memory requirements. An option consists of resorting to an implicit representation
of the function to be optimized, like the kernelized one we used in [11] when learning quantitative scores. As our
previous results seem to confirm [11], this can produce a degradation in the quality of returned solutions when the
utility function is very sparse. Kernelized versions of zero-norm regularization [37] could be tried in order to enforce
sparsity in the projected space if needed. Let us note however that the lack of an explicit formula would prevent the
use of all the efficient refinements of SMT solvers, based on a tight integration between SAT and theory solvers. A
possible alternative is that of pursuing an incremental feature selection strategy and iteratively solving increasingly
complex approximations of the underlying problem.
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Appendix A. Econding SCSP into weighted MAX-SAT instances

The work in [28] introduces a method to encode a semiring-based soft constraint satisfaction problem (SCSP)
instance into a weighted MAX-SAT instance, with each solution of the generated MAX-SAT instance corresponding
to a solution of the original SCSP. With no loss of generality, assume a soft constraint problem withn variables
v1, . . . vn having domainD1, . . .Dn, andm constraintsc1, . . . cm. Each instantiation of the variables of a constraint
c j , j = 1 . . .m, is associated with a value from the c-semiring (A,+,×,0,1). For each variablevi , i = 1 . . . n, and each
valued ∈ Di , a Boolean variablebi,d is introduced. Whenbi,d is set to true thenvi is assigned the valued ∈ Di . The
variablesbi,d, i = 1 . . . n, d ∈ Di , represent the Boolean variables of the weighted MAX-SAT problem.

The set of Boolean constraints of the MAX-SAT problem consists of clauses ensuring that each variablevi , i =
1 . . . n, is assigned exactly one valued ∈ Di , and of terms representing the soft constraints of the original SCSP. In the
former case, for each variablevi , i = 1 . . . n, theat-least-one-valuehard clause:

(bi,d1 ∨ bi,d2 ∨ . . . ∨ bi,d|Di |
)

and the set of (|Di |(̇Di | − 1))/2 binaryat-max-one-valuehard clauses:

(¬bi,d j ∨ ¬bi,dk) for every pair (d j ,dk) with d j ,dk ∈ Di and 1≤ j < k ≤ |Di |
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v1 v2 preference value

1 1 10
1 2 40
1 3 50
2 1 5
2 2 10
2 3 30
3 1 5
3 2 5
3 3 10

num term weight

1 (b1,1 ∧ b2,1) 10
2 (b1,1 ∧ b2,2) 40
3 (b1,1 ∧ b2,3) 50
4 (b1,2 ∧ b2,1) 5
5 (b1,2 ∧ b2,2) 10
6 (b1,2 ∧ b2,3) 30
7 (b1,3 ∧ b2,1) 5
8 (b1,3 ∧ b2,2) 5
9 (b1,3 ∧ b2,3) 10

Table A.3: (left) example of soft constraint. The DM prefers assignments withv1 < v2. (Right) weighted Boolean terms encoding the soft constraint
defined in the left table. When the Boolean variablebi,d : d ∈ Di , is set to true thenvi is assigned the valued.

are generated. They ensure that for eachi ∈ {1 . . . n} exactly one variablebi, j , j ∈ {1,2, . . . , |Di |} is set to true.
Each soft constraint of the original SCSP is represented by aset of weighted Boolean terms encoding all the

possible assignments of values (i.e., configurations) to its variables. The weight of a term is set to the c-semiring
value associated to the encoded configuration. For example,consider a binary soft constraint over variablesv1 and
v2 both with discrete domainD = {1,2,3} and with preference scores defined by the semiring ({5,10,15, . . . ,50},
max,min,5,50). The possible configurations are specified in Table A.3 (left). Each row shows an assignment of
values tov1 andv2 and the c-semiring value associated to the assignment. Given the six Boolean variablesb1,d and
b2,d with d = 1,2,3 defined as above, the soft constraint in Table A.3 (left) is encoded into the set of Boolean terms in
Table A.3 (right).

A structured MAX-SAT formulation can be obtained by considering generalized Boolean clauses which are the
disjunction of the terms encoding for a given soft constraint the assignments with the same preference value. For
example, the terms defined at rows number 1,5,9 in Table A.3 (right) can be merged into a single generalizedweighted
clause:

(b1,1 ∧ b2,1) ∨ (b1,2 ∧ b2,2) ∨ (b1,3 ∧ b2,3)

with weight equal to 10. Furthermore, eachat-least-one-valueandat-max-one-valuehard clauseh can be cast into
a soft clause represented by its negation¬h and with associated the semiring value0 [28]. The value0 is indeed
both the minimum value in the partial order defined by the relation ≤A and the absorbing element for the operator×
combining the semiring values. Therefore, a candidate solution b of the generated MAX-SAT instance that does not
satisfy one of these soft clauses receives the minimum semiring value0. However, this implementation of the hard
clauses does not allow to discern infeasible solutions fromfeasible ones with lowest possible preference, i.e., feasible
solutions getting the lowest semiring value.

Given the generated MAX-SAT formulation, the optimizationtask consists of finding the assignmentb∗ to the
Boolean variablesbi,d, i = 1 . . . n, d ∈ Di , maximizing f (b), with f (b) the semiring value obtained by combining
by the operator× the weights of the solution components satisfied byb. Each candidate solution (b, f (b)) of the
generated MAX-SAT instance identifies an assignment of values to the variablesvi , i = 1 . . . n, of the original SCSP
with associated semiring valuef (b).
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