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Abstract—In recent years, indoor localization has become a
hot research topic with some sophisticated solutions reaching
accuracy on the order of ten centimeters. While certain classes
of applications can justify the corresponding costs that come with
these solutions, a wealth of applications have requirements that
can be met at much lower cost by accepting lower accuracy. This
paper explores one specific application for monitoring patients in
a nursing home, showing that sufficient accuracy can be achieved
with a carefully designed deployment of low-cost wireless sensor
network nodes in combination with a simple RSSI-based local-
ization technique. Notably our solution uses a single radio sample
per period, a number that is much lower than similar approaches.
This greatly eases the power burden of the nodes, resulting in
a significant lifetime increase. This paper evaluates a concrete
deployment from summer 2012 composed of fixed anchor motes
throughout one floor of a nursing home and mobile units carried
by patients. We show how two localization algorithms perform
and demonstrate a clear improvement by following a set of
simple guidelines to tune the anchor node placement. We show
both quantitatively and qualitatively that the results meet the
functional and non-functional system requirements.

I. INTRODUCTION

Indoor localization has been a much-researched topic with
increasingly complex solutions such as those based on ultra
wide band achieving accuracy on the order of 10 cm. Such
solutions often come with a high cost both to establish the
required infrastructure for and the maintenance of that infras-
tructure. Recently, several techniques have been developed to
exploit low-power wireless sensor networks (WSNs), specifi-
cally using RSSI. However, due to the high, inherent variability
of RSSI, these approaches tend to take many samples in a
small time window, fusing the results in sophisticated ways,
and even so, the results have large errors. Frequent sampling
not only saturates the communication network, it also drains
the batteries, increasing maintenance costs.

While some applications demand high accuracy, a wealth of
others can accept lower accuracy and still meet the application
needs. In this paper we explore one such application in a
nursing home, detailed in Section II. In brief, our system offers
both real-time information to caregivers about patient location
as well as summary data for offline evaluation for changes
in movement patterns. Neither of these objectives requires a
high degree of accuracy, therefore our goal was to identify a
solution with sufficient accuracy at low cost.

Our solution relies on standard WSN nodes, some anchored
to known locations in the environment, and some carried by
the patients. We use our own energy-efficient contact detection

protocol to identify when a mote is in range of one or more
anchors. The actual location is calculated using two off-the-
shelf RSSI-based techniques described in Section III. We then
quantitatively and qualitatively evaluate all these solutions in
Section IV, showing that their accuracy is sufficient for our
application. The qualitative perspective is missing from most
relevant literature, but it is critical to a complete analysis of
the techniques that relates accuracy and user acceptability. We
also show that by properly tuning the anchor node placement
according to a simple set of guidelines, detailed in Section V,
significant accuracy gains are possible at the same cost.

We end the paper with an overview of related work in
Section VI and brief concluding remarks.

II. THE APPLICATION SCENARIO: ACUBE

The study presented in this paper is part of ACUBE (Ambi-
ent Aware Assistance), a four-year locally-funded project. The
goal of ACUBE is to provide a technological infrastructure for
improving the quality of life for elderly and disabled persons.
The system combines a number of core sensing technologies
such as video, audio, and WSN to offer support to caregivers.

While the system has been deployed in several test facilities,
we focus here on the summer 2012 installation at a nursing
home. The goal of this system is to support the staff in
monitoring and evaluating the patients. For example, inside a
patient’s room, the video subsystem is used to detect repetitive
movements as is common for Alzheimer’s patients. Our focus
here is on the WSN, which has two primary tasks. First, it is
used to indicate the patient’s approximate location on the floor.
This is important as the common areas, shown in Figure 1, are
quite large and patients are not always in view of a caregiver.
A related functionality is an immediate warning if a patient
leaves the monitored area, e.g., exiting into a stairwell. Second,
the caregivers are provided an offline summary of patient
movements, reporting the time a patient spent in each area.

A. ACUBE System Architecture

The overall ACUBE system is designed to decouple the
sensing subsystems from the applications that exploit the pro-
duced data. This is accomplished with an Apache Active-MQ
message queue middleware [1] to which applications register
to receive data published by the various sensor subsystems.
For example, a GUI application visualizes the patient locations
generated by the WSN subsystem. A separate application
collects the locations for offline analysis.
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Fig. 1. Monitored areas of a single 45x20 m floor in a nursing home. The total monitored area is 307 m2. Dashed lines indicate virtual boundaries between
areas, while solid lines indicate walls or doors. The photo shows a 2 euro coin and the mobile mote carried by the patients.

B. WSN Subsystem

The WSN subsystem is composed of approximately 20
anchor nodes attached to the walls at a height of 2 m. Each pa-
tient is also given a mobile mote fastened to their clothing, e.g.,
pinned inside a shirt pocket. While the anchors are standard
TelosB motes, the mobile motes are a custom modification
that reduces the physical footprint to approximately 2 cm2, as
shown in Figure 1. Both anchors and mobile motes are battery
powered and run TinyOS. The lifetime of the anchor motes
running with two standard AA batteries is approximately 45
days while the mobile motes, with a rechargeable lithium
ion LR2450 button battery, have a 5-day lifetime. The local
processing and communication protocols running on all motes
are described in Section III.

To collect data from the motes, we deployed two sink motes
connected via USB to Gumstix embedded PCs. These PCs
were connected via wired Ethernet to a PC running the so-
called WSN adapter, which elaborated the raw data from the
motes and then published events on the message queue. In this
paper we focus on the localization events, reporting the (x, y)
coordinates of the mobile motes.

III. CONTACT DETECTION AND LOCALIZATION

As noted previously, the primary goal of the WSN is to
approximately track the patient, specifying the area where they
are located. Most RSSI-based localization techniques use the
signal strength between the mobile and multiple anchors to
periodically offer the location of the mobile units. Further,
common instantiations of these localization techniques collect
signal strength many times in each period, ensuring that
sufficient measurements are taken to balance the inherent
inaccuracies of using RSSI to approximate location. Our
instantiation separates the collection of RSSI measurements
into a contact detection module that detects when the mobile
is within range of one or more anchors, and reports the signal
strength of the detected contact. Notably, our contact detection
is based on a single message from the mobile to the anchor
in each period. This greatly reduces the energy burden on the
motes, however it simultaneously limits the accuracy of the
RSSI-based localization technique.

This section outlines our contact detection mechanism, then
briefly describes the two RSSI-based localization techniques
we adopt. The next section returns to the accuracy analysis.

A. Contact Detection
Our localization approach takes input from the contact

detection performed by the mobile and anchor elements of
the WSN, thus it is important to consider the maintenance
costs of this network, in particular the node lifetime. The
anchor nodes are powered by two AA batteries, and changing
these batteries is a labor intensive task. Instead, the mobile
motes have rechargeable batteries, and it is straightforward to
dedicate two motes per patient, one worn and one charging.
Therefore, our contact detection protocol places a heavier
power burden on the mobile units than on the anchor nodes.

As noted, the localization algorithm must report a new
location periodically, with this period corresponding to the
refresh frequency of the graphical interface presented to the
caregivers. This period is a tunable parameter, set to 5 s in our
experiments. We determined this value experimentally, as the
nursing home patients are not fast-moving, and their location
will not change dramatically in 5 s.

This period is important to the functionality of the contact
detection algorithm, as we must guarantee that all anchors
in range of the mobile unit detect the contact once in each
interval. To do this in an energy-efficient fashion, the anchor
nodes put their radios to sleep for half of the interval, then
operate in a Low Power Listening mode (specifically BoX-
MAC [2] with a sleep interval of 50 ms) for the remainder of
the period. In contrast, the mobile motes transmit a broadcast
beacon packet at -15 dBm once every half period, for a total
of two transmissions per period. This combination ensures
that the beacon will be received by all anchors in range, thus
triggering contacts between the mobile and all nearby anchors.

The RSSI of all detected contacts are forwarded from the
anchor nodes to the sinks and then to the WSN adapter where
the location is calculated once per period according to one of
the following two localization approaches.

B. Localization with Maximum RSSI
Our first localization approach was designed to be simple,

and to adhere to the goal of merely approximating location.



Recall that the algorithm must work in a periodic manner, of-
fering a location once per period. Therefore, our first technique
collects the RSSI measurements of all contacts in each period,
then identifies the anchor mote with the highest RSSI value.
The assumption is that the mote is closest to this anchor.

C. Localization with REWL

Our second approach sought to offer a more refined loca-
tion, but without modifying the functionality of the contact
detection system. Therefore we adopted from the literature
a free-range localization scheme called Relative Span Expo-
nential Weighted Localization, REWL [3]. Notably, REWL
has an extremely low computational overhead and our Java
implementation requires only 6 lines of code. As with Max-
RSSI above, REWL collects all RSSI values in a given period,
then offers an (x, y) location by combining these values with
the known locations of the anchor motes.

Intuitively, one can visualize the functionality of REWL by
placing the mobile unit at the central point of a star graph
where each edge is between the mobile and an anchor with
which a contact was detected in the period. The RSSI values
reported by each anchor specify edge weights that affect the
length of the edge, like a spring. Stronger RSSI signals shorten
the edge while weaker signals allow for longer edges. When
the springs reach equilibrium, the coordinates of the mobile at
the center of the weighted springs is reported as the location.

Notably, it is possible for the reported location to be
outside of the monitored area. For example, if the patient is
standing in the central corridor (C.Cd), weak contacts may be
detected with anchors in the bathroom (BthR). The resulting
localization, therefore, may place the patient in the “empty
space” between the corridor and the bathroom. Although this
occurred infrequently, when it did, we placed the mote on
the edge of monitored area that contained the mote with the
strongest RSSI contact in the given period.

IV. EVALUATION

To evaluate the combination of our power-efficient contact
detection algorithm with the two localization schemes, we
placed several anchor motes in the nursing home facility
available to the ACUBE project. We then ran a number
of test scenarios with researchers standing in for patients.
Unfortunately due to legal privacy concerns, we were unable
to run experiments with actual patients. Nevertheless, the
experiments were executed in a controlled way, allowing for
repeatability and complete coverage.

The test scenarios and their objectives are outlined next,
followed by both quantitative and qualitative assessments.

A. Deployments

Over the course of our experiments in the summer of 2012,
we explored two different physical deployments of the nodes;
the second being a refinement of the first, designed to improve
the accuracy without increasing system cost by adding new
nodes or changing the energy consumption of the motes.

In both deploymentes, we applied TRIDENT [4], a connec-
tivity assessment tool, to ensure that at least one anchor was
visible from all possible patient positions. Thus if the patient
remains in the monitored area, their location can be estimated.

Our first deployment spread the motes throughout the floor
as shown in the left of Figure 2. All anchors are placed on
walls or building support columns in the middle of the rooms.

Based on the collected results, described next, we chose to
move the anchors for the second deployment to increase the
quantitative accuracy. To achieve this, we applied a simple
heuristic: maximizing the distance between anchors placed
in adjacent areas. The result is shown on the right of Fig-
ure 2. Notably, we removed one node from an area whose
coverage was too dense and moved to the area interiors most
anchors that were formerly placed on the borders between
two areas. This deployment evenly spreads anchors throughout
the monitored area. This is especially important for REWL,
as uneven deployment could incorrectly “pull” the location
towards an area with more anchors, even if those anchors
report weak signals. Additional details concerning guidelines
for node placement appear in Section V.

B. Scenarios

Conversations with the caregivers revealed that certain areas
are more critical than others. For example, as the patients
spend most of their time in either the living rooms or their
bedroom, it is more important that locations are accurate for
these areas. Similarly, the central corridor (C.Cd) is also the
location of the elevators and primary stairwell. It is important
that if a person enters this corridor, they are detected so that
if a patient is subsequently not detected, the caregivers will
know from which area they exited.

To evaluate the behavior of the system, we ran three
scenarios with a single mobile mote. In all scenarios, the
ground truth was also collected.

• Area experiments are designed to evaluate the detection
performance in individual areas/rooms. Specifically, the
mobile user moves randomly in each single area for a du-
ration of 5 minutes. As described earlier, low accuracies
recorded for these experiments in our first deployment
led us to move multiple anchors.

• Walk experiments are designed to assess system ac-
curacy in tracking a mobile node as it moves around
the monitored floor. The mobile user walks across the
monitored area on the path shown in Figure 3, ensuring
that the user traverses each area twice.

• Patient emulation tests focus on the prospective of
patients and caregivers, the end users of the system,
and are designed specifically for qualitative evaluation.
Here, our test subject tries to realistically emulate patient
behavior including sitting periods and walking pace. Si-
multaneously one of the caregivers qualitatively evaluates
the conformance of the tracking visualization.
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Fig. 2. Area accuracy for first (left) and second (right) deployments. Motes moved between deployments are shaded in the second deployment. Values in
parenthesis report the accuracy metric as (Max-RSSI, REWL).

Fig. 3. Walking path taken during the walk experiments.

C. Quantitative Evaluation

For an an objective assessment of the system, we measure
accuracy, defined as the percentage of time the mobile user
is correctly detected in its present area or the area it visited
less than 5 s ago. The latter is the refresh period described in
Section II, after which the localization techniques update the
position of the mobile node.

To ensure proper measurement, we designed a small appli-
cation to collect the ground truth during the experiment. A
simple GUI allows an operator to interactively indicate when
the mobile user moves from one monitored area to another.
We then correlate this data to the locations given by the
localization approaches.
Area Experiments. The accuracy results for the area experi-
ments with both Max-RSSI and REWL are shown in Figure 2.
No results are shown inside the patient room as we could not
enter it to conduct our experiments. To our surprise, the REWL
and Max-RSSI accuracies are remarkably similar, despite the
fact that the techniques are very different. Instead, the accuracy
varies significantly across areas, with the area shape greatly
affecting accuracy: lower accuracy occurs in the long, narrow
areas. Further, areas with many neighboring monitored areas
have lower accuracy. This can be seen for the western corridor
near the bedroom (W.Cd.1), whose accuracy is much lower
than the analogous corridor on the eastern side of the building
(E.Cd.1). Finally, relatively small areas with no walls with the
neighboring monitored areas (e.g., W.Cd.2 and E.Cd.2) also
experience low accuracy.

These observations can all be traced to the propagation
properties of the wireless signals used for location approx-
imation. In dense areas, many contacts are detected, and

with only a single sample per anchor, the signal noise is
significant. Nevertheless, walls between areas inhibit signals,
slightly increasing accuracy. Instead, in the large open spaces,
divided into a living room and a corridor, there are no physical
barriers and thus the wireless signals propagate quite well.
Therefore in many cases, REWL pulls the location into the
living area, even if the signal from the corridor motes is strong.

Considering only the first deployment, we note that the
accuracies in the identified critical areas are quite good, above
72%. Nevertheless, some areas such as the west inner corridor
(W.Cd.1), bathroom (BthR) and west and east outer corridors
(W.Cd.2 and E.Cd.2) have very low accuracies between 45 and
65%. Analysis of the experimental data indicates that anchors
deployed on doors, e.g., nodes 11 and 14, or on the border
between two monitored areas, e.g., nodes 7 and 19, negatively
affect performance. Specifically, each of these border nodes is
mapped to a single area, but the signal is often equally well
detected in multiple areas. Thus, placing nodes on the border
increases the probability of localizing the mobile node in the
wrong area, especially for Max-RSSI, even if the mobile is
moving only in a single room.

When planning the node placement for the second de-
ployment, our goals were to increase the accuracy without
increasing the cost. Therefore the behavior of the nodes was
not modified, and we relocated nodes, as shown in the right
of Figure 2. While details of our redeployment methodology
appear in Section V, in brief, we sought to increase the
distance between the anchors deployed in neighboring areas. In
most cases the accuracy improved with our new deployment.
The one exception is the east living room (E.LvR) where the
accuracy decreased due to the malfunctioning of anchor 19.
Further, accuracy in the critical areas remains over 80%.

With the second deployment, we also evaluated the magni-
tude of the inaccuracy. In other words, if the area identified did
not match the ground truth, how many areas were between the
reported and the true areas. In Figure 4 the lower, shaded part
of each bar corresponds to the accuracies reported in Figure 2,
while the upper bars indicate the extent of the inaccuracy as
off-by-1 or off-by-2 areas. We never experienced inaccuracies
greater than 2, and detection off-by-2 is rare. This is important
for our application, as approximate location is often sufficient.
For example, to locate a patient, a caregiver needs only to
know the general area they were last detected in. Consider
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Fig. 4. Area accuracy for the second deployment using Max-RSSI (top) and
REWL (bottom).

also an alternate application that sounds an alarm when the
patient leaves the area. By knowing generally where the patient
was last known to be, the number of exits to check is greatly
reduced. Thus a measurement that is off-by-1 is sufficient.
Walk Experiments. To evaluate the system when the patient
is moving, we conduct four repetitions of the walk scenario,
collecting ground truth as before. The localization accuracy
shown in Figure 5 indicates that REWL outperforms Max-
RSSI. This is due to the fact that REWL bases the location
on beacon receptions by all in-range anchors, making it less
prone to movement dynamics and body shielding between the
mobile node and anchors.

For space reasons we do not present the analogous plots
for the first deployment, but remark that the average accuracy
increased from 70% to 85% for REWL and from 67% to 82%
for Max-RSSI.

In addition to the inherent uncertainty of RSSI measure-
ments, our contact detection protocol also influences the
accuracy during movement. Recall that the mobile mote sends
two beacons in every period, and each anchor in range receive
only one of these beacons as anchors sleep for half of the
period. This means that, in any given period, on average half
of the anchors receive the first beacon while the other half
receive the second. Nevertheless, the RSSI values based on
both beacons are integrated to offer the location for that period.
Thus, if the patient moves a significant distance in 2.5 s,
the location could be negatively affected by this integration.
Nevertheless, given the average walking speed of the patients
in a nursing home in combination with the expected use of the
location information, this is unlikely to cause any problems.

D. Qualitative Evaluation

While the previous section presents quantitative accuracy
measurements that are acceptable given our low-power, low-
cost solution, numbers cannot assess whether the system pro-
vides a reasonable service to the caregivers. To evaluate this,
we enlisted a caregiver to observe the ACUBE visualization
during patient emulation tests. At the end of each experiment,
the operator was asked to rate how well the visualization
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Fig. 5. Accuracy of walk experiments for the second deployment using
Max-RSSI (left) and REWL (right).

represented the actual movement of the patient and whether
the information provided on the GUI would be useful for
finding a patient. Based on these experiments, we extracted
the following three observations.
Qualitative evaluation depends heavily on the visualization.
The visualization offered to the caregiver essentially shows a
patient icon placed on a floor map similar to those shown
in this paper. For Max-RSSI, we evaluated two different
visualizations, namely placing the patient icon at the center of
the room or co-locating the icon with the anchor that reported
the maximum RSSI value.

Interestingly, despite the fact that the underlying data is
identical, the caregiver gave a much more favorable rating
to the less precise visualization that placed the node at the
center of the area. Consider that the GUI is updated every 5 s.
If the user stays within a single area, the icon remains at the
center of the room, even if different motes in that area report
the maximum RSSI. Instead, in the latter visualization, the
icon frequently jumps from one anchor location to another
every 5 s, producing a visually disruptive view. In the end,
the caregivers preferred the visualization that contained less
specific location information.
REWL is preferred over Max-RSSI. The third visualization
offered to the caregiver placed the patient icon at the (x, y)
location indicated by REWL. Although the icon changed po-
sition on the GUI after every 5 s period, this visualization was
much preferred over the Max-RSSI visualization at the center
of the area. Consider that when the patient moves from room
to room, REWL produces subsequent (x, y) locations that are
relatively close together. Instead, with the other approach, the
icon moves from the center of one area to the center of another.
This is typically a much larger distance that does not represent
a realistic movement. Thus it is more visually disruptive.

Additionally, for locating a patient, if the REWL (x, y)
location places the patient on the border between two areas,
even if it is in the wrong area, it is much less of a problem than
either of the other approaches which place the icon well inside
the wrong area. Further, with REWL, the caregiver receives
an indication of the direction of the patient movement, which
is a further aide in finding the patient.
Low accuracy does not yield an unacceptable solution. Here
we reported qualitative results only for the second deployment.
Nevertheless, it is worth mentioning that preliminary experi-



ments with the first deployment, especially with the REWL
visualization, also received positive qualitative assessments
from our fellow researchers participating in the testing. This
is despite the fact that the quantitative accuracy was, for some
areas, very low. Instead, it was our own dissatisfaction with the
accuracy of the first deployment that led us to move the nodes
and fully evaluate a system with better quantitative accuracy.

V. LESSONS LEARNED

As seen in the previous section, we improved the ac-
curacy by slightly modifying anchor node placement. Here
we summarize the guidelines we followed to aide in future
deployments: i) Maximize the distance between anchor nodes
deployed in two adjacent monitored areas. ii) Place anchor
nodes toward the center of the monitored areas. iii) Do not
unevenly place more nodes in similarly sized areas. iv) Exploit
physical barriers in the environment to provide radio shielding.
To illustrate the final point, we note that anchor 19 was placed
on a vertical column in the middle of the room. For the second
deployment, we moved it to the opposite side of the column,
allowing it to shield the anchor from motes in corridor E.Cd.2.

Looking back at our experience, we summarize the key
lessons: i) The qualitative results are much better than the
quantitative measurements would lead one to expect, implying
that our application has a high tolerance for low accuracy.
ii) Anchor placement can be refined to match the environment
as well as the localization algorithm by following a few simple
guidelines. iii) Adjacent areas without physical barriers such
as walls decrease accuracy. Further, we note that accuracy
could be further improved by processing the resulting stream
of locations to remove transient locations that do not make
logical sense, e.g., a mobile unit that moves too far in the
period or transiently moves off the expected path. Additionally,
improvements in the GUI could be made to smooth the motion
of the patient icon, perhaps further increasing the positive
evaluation by the caregivers.

VI. RELATED WORK

A plethora of localization techniques have been proposed
that are broadly classified in two categories: range-based and
range-free [5]. Range-based localization estimates the distance
or angle between two nodes to calculate their relative location
by employing Time of Arrival (TOA), Time Difference of
Arrival (TDOA) and Angle of Arrival (AOA) or using RSSI
to calculate the distance. TOA, TDOA and AOA require
specialized hardware such as redundant transceivers, high pre-
cision clocks and ultra-wide band technology to achieve high
localization accuracy. However, the accompanying increase in
the cost and power consumption make them a less than ideal
for large-scale WSNs of battery-powered nodes. It is also been
observed that distance estimation with RSSI is very inaccurate
in practice even for “ideal” outdoor environments [6].

For our target scenario, range-free techniques, such as
centroid-based algorithms [7], [3], offer cost-effective solu-
tions for low-power scalable localization system as they use
standard radio technology. Although range-free localization

is simple, reportedly it does not provide good accuracy [8].
To mitigate this accuracy problem, additional mechanisms
for redundancy and aggregation [9] have been researched,
however they are computationally complex and require addi-
tional network traffic. These mechanisms must be evaluated
in each application scenario to weigh the additional cost
versus the increase in accuracy. Instead, most studies of these
techniques have been conducted in simulations or on testbeds
without any reference application. One quantitative study in [8]
evaluated four different RSSI-based localization techniques
in an indoor environment, with the conclusion that RSSI is
unsuitable for accurate localization. Nevertheless, our work
clearly shows that RSSI can produce acceptable results for
end users, therefore the quality of RSSI-based localization is
suitable for at least some real-world applications.

VII. CONCLUSION

Despite the widespread belief that RSSI-based localization
techniques yield poor results, the qualitative evaluation pre-
sented here clearly shows that for a real scenario in a nursing
home high accuracy is not required. Instead, our low cost, low
maintenance system formed of standard WSN components and
simple localization techniques is more than acceptable for this
scenario and for many others.
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