

DISI - Via Sommarive 14 - 38123 Povo - Trento (Italy)
http://www.disi.unitn.it

DISTRIBUTED NAME-BASED

ENTITY SEARCH

Fausto Giunchiglia and Alethia Hume

September 2012

Technical Report # DISI-12-033

Accepted at the workshop on Discovering Meaning on the Go in

Large Heterogeneous Data 2012 (LHD-12), at the 11th

International Semantic Web Conference (ISWC) 2012.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints Research

https://core.ac.uk/display/11830438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Distributed Name-based Entity Search

Fausto Giunchiglia and Alethia Hume

Department of Information Engineering and Computer Science
University of Trento, Italy

{fausto,hume}@disi.unitn.it

http://www.disi.unitn.it

Abstract. Internet can be seen as a network of peers that store digital
representations of entities from the real world (e.g., person, locations,
events). Different peers locally represent different “versions” (i.e., dif-
ferent points of view) of the same real world entity. In these different
versions, entities are normally identified by multiple (possibly different)
names. We propose a distributed entity search based on names that aims
to (i) find all the different versions of an entity starting from any name
used somewhere in the network to identify such entity; and (ii) allow
peers to have full control over the privacy of their local representations.
We evaluate our approach by setting up a network of 150 peers on Plan-
etLab. The results show that the performance of our algorithms is stable
with the network growth, which is promising in terms of scalability.

Keywords: Entity Search, Named Entities, P2P Networks, DHT

1 Introduction

We see Internet as a network of peers (a P2P network) where peers digitally
represent entities that exist in the real world. They can be of different types
(e.g., person, location, event and others), they have a name, and are described
by attributes (e.g., latitude-longitude, size, birth date), which are different for
different entity types [2]. Peers represent their own “versions” of entities, i.e., dif-
ferent points of view, showing possibly different aspects of them. These different
versions show that the information about entities is inherently distributed.

Entities are normally referred by their names (e.g., Fausto Giunchiglia, Trento,
Italy, University of Trento), which play a different role from the other attributes
because they are identifiers rather than descriptions [9]. The values of other types
of attributes have a meaning that can be understood, e.g., by mapping them to
concepts from a knowledge base, like WordNet1. Names, on the other hand, are
strings that behave very similarly to keywords. Variations and errors on names
makes peers use multiple (possibly different) names in their local representations
to identify the same real world entity (e.g., Fausto Giunchiglia vs. F. Giunchiglia
and Italy vs. Italia). These local names, make search of entities by name difficult.

1 http://wordnet.princeton.edu/

2 Distributed Name-based Entity Search

The reason is that for a given query, only the local representations that uses the
exact same name given in the query will be found.

In this paper, we propose a search algorithm that offers the following features:

– First, it takes into account the fact that different names can be used in the
local representations of peers to identify the same real world entity. As a
result, any name that is used in some local representation to identify an
entity can be used to find all the different versions of that entity that are
stored in the network of peers. Consider the example of the names Trento
and Trient being used on different entity representations (i.e., the name of
the same city but written in different languages). Then, when the peer issues
a query that contains one of the names, let us say Trient, our approach is
able to find both representations.

– Second, it incorporates into the search the notion of a real world entity
described by different local representations. Our approach allows peers to
locally represent their own versions of the entities of their interest and to have
full control on their data. In contrast to current applications (e.g., Facebook,
Google Plus, Linkedln, among others), which allow finding information only
if it has been uploaded to the central social network server, our approach
can find local representations stored on the peers. Only the names of the
entity and a link to the local representation are published in the network.

The paper is structured as follows. Section 2 provide the formalization of the
notion of entity. In Section 3, we explain the distributed search based on names.
Then, Section 4 presents the implementation and evaluation details. In Section 5,
we discuss the related work and the conclusions are presented in Section 6.

2 A World of Entities

A Real World Entity (WE) is modeled as a class of local representations that
we call Digital Entities (DEs). DEs are defined by different peers and provide a
local description of the same entity from the real world. We use a URI (Uniform
Resource Identifier) to identify each WE and a URL (Uniform Resource Loca-
tor) to identify each DE in the peer. Each URL can be used (by dereferencing)
to obtain the full local description (i.e., based on attributes). On the other hand,
the peers locally use a non-empty set {N} of names to identify a DE. Formally,

WE = 〈URI, {URL}〉 and DE = 〈URL, {N}〉,

where {URL} is a non-empty set of identifiers of different DEs that describe
WE. An example of formalization of entities is shown in Figure 1.

Note that the names are human readable identifiers, which are given to a
WE by the peers that locally used them (i.e., the names) in the DEs. Names
are labels composed by a combination of words, numbers and symbols and are
subject to different types of variations:

Distributed Name-based Entity Search 3

WE	

URI:	
 uri/en,ty/1	

URLs:	
 p1/en,ty/2	

p2/en,ty/1	

DE	

URL:	
 p1/en,ty/2	

Names:	
 • Fausto	
 Giunchiglia	

• F.	
 Giunchiglia	

DE	

URL:	
 p2/en,ty/1	

Names:	
 • Giunchiglia,	
 F.	

WE	

URI:	
 uri/en,ty/2	

URLs:	
 p1/en,ty/1	

DE	

URL:	
 p1/en,ty/1	

Names:	
 • Federico	
 Augusto	

Giunchiglia	

• Giunchiglia,	
 F.	
 	

Peer 1 Peer 2

DE	

URL:	
 p1/en,ty/3	

Names:	
 • Trento	

DE	

URL:	
 p2/en,ty/2	

Names:	
 • Trient	

• Trent	

WE	

URI:	
 uri/en,ty/3	

URLs:	
 p1/en,ty/3	

p2/en,ty/2	

Trento

Trient

Federico	
 Augusto	

Giunchiglia	

Giunchiglia,	
 F.	

F.	
 Giunchiglia	

Giunchiglia,	
 F.	

Fausto	
 Giunchiglia	

Trent

REAL WORLD
DIGITAL WORLD

Fig. 1. Examples of entity formalizations

– Order. The words of a name can be written in different order (e.g., Fausto
Giunchiglia and Giunchiglia, Fausto).

– Abbreviations. Multiple abbreviations can exist for the same full name
(e.g., Federico Augusto Giunchiglia can be abbreviated as F. A. Giunchiglia,
Federico A. Giunchiglia and others). On the other hand, the abbreviation
of a name can be a valid reference to many different full names (e.g., F.
Giunchiglia is valid for Fausto Giunchiglia but also for Federico Giunchiglia).

– Nicknames. Arbitrary nicknames are sometimes used by peers to refer to a
DE (e.g., Fede can be used as a nickname for Federico and also for Federica).

– Translations. Names sometimes change (are written differently) in different
languages (e.g., Trento in Italian, Trient in German or Trent in English).

– Misspellings. Names can be misspelled, either in the definition of a DE or
during the specification of a search query (e.g., Fasuto instead of Fausto).

The name variations together with the DE definition presented above, show
that the relation between names and DEs is of the type many-to-many. In turn,
this leads to a name-matching problem when we intend to search an entity based
on its names, see [9] for a more detailed discussion of the issues related to the
name matching problem. On the other hand, the relation between DEs and
WEs is of the type one-to-many. This is a consequence of the fact that one DE
can represent only one entity from the real world (i.e., one WE) and a WE can
be represented by different DEs stored on different peers. Moreover, Figure 1
shows that names are not unique, i.e., different WEs can be called by the same
name (e.g., when we have homonyms). We can also see that different DEs can
give different names to the same WE. As a result, names and WEs can also be
associated with a relation of the type many-to-many.

4 Distributed Name-based Entity Search

3 Distributed Name Search

Our goal is to address the problem of searching entities based on their names.
Formally, we define a query as Q = {NQ}, where {NQ} is the non-empty set of
names used to identify one target WE. Many candidates for the correct answer
can be found as a consequence of the many-to-many relation between names
and WEs. Let URLDE and {NDE}, be the identifier and the set of names of
a digital entity DE. The general problem of the Distributed Name-based Entity
Search can be seen as retrieving WEs that are described in the network by
at least one DE, such that, the intersection between {NDE} and {NQ} is not
empty. Formally, the Query Answer (QA) can be defined as:

QA = {WE | ∃ URL′ ∈ WE s.t., URL′ = URLDE ∧ {NDE} ∩ {NQ} 6= Ø}

This definition considers a partial matching between {NDE} and {NQ} in order
to allow finding a WE from any of the names given to it on different DEs.

The notions of WE and DE, introduced in section 2, allow the separation of
the problem of taking into account multiple names for a WE, and the problem
of finding the DEs that represent different versions of a WE. In turn, this
separation can be used to split the QA in two sub-problems:

1. Searching WEs that match with the names in {NQ}
2. Searching DEs that correspond to a given WE

In order to search WEs based on names, we define a Name Index, which
stores mappings between names and WEs (i.e., the URIs of the WEs) that are
identified by such names:

{N} ⇒ {URI}
This index encodes the many-to-many relation between names and WEs. The
dynamics of the index is given by the publication and the deletion of DEs (from
peers) in the network. When the peer publishes a DE, the mapping between
each name NDE

i in {NDE} and the WE that is associated to the DE is added
to the index. We assume that the peer locally caches the identifier (i.e., the URI)
of the WE that is represented by its DE2. On the other hand, the deletion of
a DE from the network does not directly affect the Name Index. A mapping
between NDE

i and WE can be removed from the index only when there are no
DEs in the network that represent such WE. Periodic checks are performed over
the Name Index in order to detect this situation and remove such mappings.
In the first step of the search, this index allows taking advantage of the many
local names specified in different DEs to find the WEs that are related to the
names given in {NQ}. For example, let us suppose that a peer issues a query
Q = {Giunchiglia, F.}. The Name Index is used to find the relevant WEs, i.e.,
uri/entity/1 and uri/entity/2.

In order to search DEs that represent the same WE, we define a WE Index
that store information about the different versions of a WE. The index store
2 Note that the initial identification of the WE described by a DE is a problem of

identity management and is out of the scope of this work.

Distributed Name-based Entity Search 5

mappings between each WE (i.e., URI of the WE) and the DEs (i.e., URLs
of the DEs) that represent it:

URI ⇒ {URL}
This index is affected by the publication and deletion of DEs in a straightfor-
ward manner. The mapping of a WE and a DE that represent it, is added to
the WE Index when a peer publishes the DE. The same mapping is removed
from the index when the peer deletes the DE. In the second step of the search,
the WE Index is used to complete the query answer with the different DEs
that are stored on peers and describe the WEs found in the first step. Con-
sider the previous example and suppose that its output is used as input here,
i.e., uri/entity/1 and uri/entity/2. Next, the Uri Index is used to get the set
{〈uri/entity/1, {p1/entity/2, p2/entity/1}〉, 〈uri/entity/2, {p1/entity/1}〉} of
WEs that complete the QA for the query Q = {Giunchiglia, F.}.

4 Implementation and Evaluation

The indexes are stored in the P2P network by extending the basic functions of
Distributed Hash Tables (DHTs)3. We use a DHT library called TomP2P4, which
allow us to (i) store multiple values mapped to the same key; and (ii) execute
the operations over different index domains. The different index domains can be
seen as having one DHT for the Name Index and other for the WE Index.

In order to evaluate the proposed approach, we conducted a set of experi-
ments where the scalability of our search algorithm was analyzed. We are inter-
ested on measuring how much the performance (considered in terms of the query
processing time) is affected by the network growth. Networks of different sizes
were set up for the evaluation using PlanetLab5, a network of computers (i.e.,
nodes) available as a testbed for research. For the generation of data-sets, we
used data from the proceedings of the International Joint Conference on Artifi-
cial Intelligence (IJCAI)6, which are available online. We extracted the titles of
publications, names of authors and names of locations related to the conference.

Three data-sets were generated to populate networks of 50, 100 and 150
peers. Each data-set was produced by generating triples of 〈Name,URI, URL〉.
Names and URIs were replicated in order to simulate different WEs having the
same name and different peers storing DEs that describe the same WE. Let us
call pn to the popularity of a name n (i.e., number of WEs that are called by n)
and pwe to the popularity of a WE (i.e., number of DEs that represent a WE).
First, for each name n, we generated pn triples with the same name (different
URI and URL). Second, for each URI, we generated pwe triples with the same
name and URI but with different URLs. The popularities pn and pwe follow
a Zipf distribution, which means that there is a long tail of unpopular names

3 http://en.wikipedia.org/wiki/Distributed_hash_table
4 http://www.tomp2p.net/
5 https://www.planet-lab.eu/
6 http://ijcai.org/

6 Distributed Name-based Entity Search

and WEs. The distribution of both popularities are independent, which means
that a popular WE do not necessarily has a popular name and vice versa. We
assume that the local entity base of each peer contains, in average, 2000 DEs.
We had overall around 100000, 200000 and 300000 DEs. The query set for each
peer was generated by randomly selecting a set of 1400 names from the initial
set of entity names.

We registered the time that the system takes to respond to each query exe-
cuted by the peers. Then, we computed the average query time for the network.
The average query processing times for the different networks are shown in Ta-
ble 1. We can see that, although the average times are high (in particular if we
compare them to what is expected from an information retrieval system), they
are maintained stable in the different sizes networks.

Table 1. Average query time

Network Size 50 peers 100 peers 150 peers

Avg. Query Time (in seconds) 2.77 2.75 2.61

In Figure 2, we show the distribution of the query time in the different
networks. We can see that more than 55% of the queries are actually answered
in less than a second, while in almost 70% of the cases the response arrives in
less than 2 seconds (which is less than the average time). Moreover, only 9% of
queries take more than 5 seconds to be answered. Another interesting remark is
that also the query time distribution is stable with regard to the network growth.

56.42%	
 55.27%	
 56.28%	

12.19%	
 11.92%	
 13.31%	

22.63%	
 23.12%	
 22.61%	

8.76%	
 9.68%	
 7.80%	

0%	

20%	

40%	

60%	

80%	

100%	

50	
 peers	
 100	
 peers	
 150	
 peers	

	
 t	
 >	
 5	
 s.	

2	
 s.	
 <	
 t	
 <=	
 5	
 s.	

1	
 s.	
 <	
 t	
 <=	
 2	
 s.	

t	
 <=	
 1	
 s.	

Fig. 2. Query time of different networks

In the current implementation, the DHT lookups to answer a query are ex-
ecuted sequentially. Moreover, all the lookups have to end before returning any
result and a perfect matching between the names in the query and the names
in the index is assumed. On the other hand, we need to consider that slow
DHT lookups can be a consequence of some slow peers that participate in the
network. We foresee that parallelization, result catching and existing techniques
that avoid routing through slow peers (see for example [16]) can be implemented
in order to reduce the absolute query time. Because of this, we believe that the
stability in the performance of the approach is a promising result.

Distributed Name-based Entity Search 7

5 Related Work

The search approach presented in this paper combines the areas of entity search
and P2P systems. To the best of our knowledge there are no approaches that
integrates these areas, i.e., that performs search of entities over a p2p network.
Existing entity aware approaches concentrate the attention on the definition of
models and structures for the representation of entities. In [2, 3], the Semantic
Web is seen as a global space into which the semantic knowledge from different
sources is integrated. Few approaches that return entities as search result can be
found in the literature [4, 10], but in both approaches the search is centralized.
In contrast to these approaches, our approach performs a distributed search in
a P2P network and allows users to maintain their data locally.

On the other hand, we have P2P approaches, which perform distributed
search but are not aware of entities [17, 14]. They are mainly classified as un-
structured and structured approaches. The first unstructured networks (e.g.,
Gnutella7) have scalability problems due to the number of messages generated
and do not guarantee that all answers will be found. Other approaches use clus-
tering techniques [1, 5, 18, 6, 12], their goal is to find the best group to answer
a query and then send the query to the peers in that group. Our approach can
find all available answers and has proven to be promising in terms of scalability.

Structured approaches aim to guarantee the location of the content shared on
the network (e.g., CAN8, Chord9, Pastry10 and Tapestry11). They store pairs of
〈key, value〉 in a Distributed Hash Table (DHT) and then retrieve the value as-
sociated with a given key. Other approaches perform multi-keyword search using
DHTs but they can be very expensive in terms of required storage and gener-
ated traffic (e.g., see [13]). Hierarchical structures combine clustering techniques
with the structure of DHTs [7, 11, 15, 8]. In general, P2P approaches provide the
techniques needed in order to build our solution. The novelty of our approach is
in the domain of application of such techniques.

6 Conclusions

We presented an approach that can find different versions of an entity, which are
stored on different peers, from any name that is used in the network to identify
such entity. Moreover, our algorithm allow peers to have full control over the
privacy of their data. We evaluated the search on networks of 50, 100, and 150
peers running on PlanetLab. The approach shows evidence of being scalable
because the performance is stable with the different network sizes.

The current algorithm considers the name variations used by the peers in
the network. In the future we want to extend this work by studying the name

7 http://en.wikipedia.org/wiki/Gnutella
8 http://en.wikipedia.org/wiki/Content_addressable_network
9 http://en.wikipedia.org/wiki/Chord_(peer-to-peer)

10 http://en.wikipedia.org/wiki/Pastry_(DHT)
11 http://en.wikipedia.org/wiki/Tapestry_(DHT)

8 Distributed Name-based Entity Search

matching problem in more detail in order to support the disambiguation of
queried names that do not match with any of the names used in the network.
This should also help to improve the ranking of search results. Additionally, our
next steps include the parallelization of our algorithm, the study of techniques
that help improving the performance of the search and further tests with more
realistic data-sets.

References

1. M. Bawa, G. Manku, and P. Raghavan. Sets: Search enhanced by topic segmenta-
tion. In Proceedings of ACM SIGIR Conference, pages 306–313, 2003.

2. B. Bazzanella, J. A. Chaudhry, Themis Palpanas, and H. Stoermer. Towards a
General Entity Representation Model. 5th Workshop on SWAP, 2008.

3. P. Bouquet, H. Stoermer, C. Niederee, and A. Maña. Entity name system: The
back-bone of an open and scalable web of data. In Proceedings of the 2nd IEEE
ICSC, pages 554–561, Washington, DC, USA, 2008. IEEE Computer Society.

4. T. Cheng and K. C.-C. Chang. Entity search engine: Towards agile best-effort
information integration over the web. In CIDR 2007, pages 108–113, 2007.

5. E. Cohen, H. Kaplan, and A. Fiat. Associative search in peer to peer networks:
Harnessing latent semantics. In Proceedings of IEEE INFOCOM, 2003.

6. A. Crespo and H. Garcia-Molina. Semantic overlay networks for p2p systems.
Technical report, Stanford University, 2002.

7. P. Ganesan, K. Gummadi, and H. Garcia-Molina. Canon in g major: designing
dhts with hierarchical structure. In ICDCS’04, pages 263 – 272, 2004.

8. L. Garcés-Erice, E. W. Biersack, P. Felber, K. W. Ross, and G. Urvoy-Keller.
Hierarchical peer-to-peer systems. In Euro-Par, pages 1230–1239, 2003.

9. G. Holloway and M. Dunkerley. The Math, Myth and Magic of Name Search and
Matching. Search Software America, 5th edition, 2004.

10. G. Hu, J. Liu, H. Li, Y. Cao, J.-Y. Nie, and J. Gao. A supervised learning approach
to entity search. In AIRS’06, volume 4182 of LNCS, pages 54–66. 2006.

11. D. Janakiram, F. Giunchiglia, H. Haridas, and U. Kharkevich. Two-layered archi-
tecture for peer-to-peer concept search. In 4th Int. Sem Search Workshop, 2011.

12. S. Joseph. Neurogrid: Semantically routing queries in peer-to-peer networks. In
Proc. Intl. Workshop on Peer-to-Peer Computing, pages 202–214, 2002.

13. J. Li, B. Thau, L. Joseph, M. Hellerstein, and M. F. Kaashoek. On the feasibility
of peer-to-peer web indexing and search. In IPTPS’03, 2003.

14. E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A survey and compari-
son of peer-to-peer overlay network schemes. IEEE Communications Surveys and
Tutorials, 7:72–93, 2005.

15. O. Papapetrou, W. Siberski, and W. Nejdl. Pcir: Combining dhts and peer clusters
for efficient full-text p2p indexing. Computer Networks, 54(12):2019–2040, 2010.

16. S. Rhea, B. Chun, J. Kubiatowicz, and S. Shenker. Fixing the embarrassing slow-
ness of OpenDHT on PlanetLab. Proc. of the Second USENIX Workshop on Real,
Large Distributed Systems, 0:25–30, 2005.

17. J. Risson and T. Moors. Survey of research towards robust peer-to-peer networks:
Search methods. Computer Networks, 50:3485–3521, 2006.

18. K. Spripanidkulchai, B. Maggs, and H. Zhang. Efficient content location using
interest-based locality in peer-to-peer systems. In Proceedings of IEEE INFOCOM,
volume 3, pages 2166–2176, 2003.

