
The period functions’ higher order derivatives

M. Sabatini ∗

February 9th, 2012

Abstract

We prove a formula for the n-th derivative of the period function T in a
period annulus of a planar differential system. For n = 1, we obtain Freire,
Gasull and Guillamon formula for the period’s first derivative [17]. We
apply such a result to hamiltonian systems with separable variables and
other systems. We give some sufficient conditions for the period function
of conservative second order O.D.E.’s to be convex.

Keywords: Period annulus, period function, normalizer, lineariza-
tion, hamiltonian system, separable variables.

1 Introduction

Let Ω be an open connected subset of the real plane. Let us consider a differential
system

z′ = V (z), z ≡ (x, y) ∈ Ω, (1)

V (z) = (V1(z), V2(z)) ∈ C∞(Ω, IR2). We denote by φV (t, z) the local flow
defined by (1). A topological annulus A ⊂ Ω is said to be a period annulus of
(1) if it is the set-theoretical union of concentric non-trivial cycles of (1). If the
inner component of A’s boundary is a single point O, then O is said to be a
center, and the largest connected punctured neighbourhood NO of O covered
with non-trivial cycles is said to be its central region. If A is a period annulus,
we can define on A the period function T by assigning to each point z ∈ A the
minimum positive period T (z) of the cycle γ passing through z. We say that
the period function T is increasing if outer cycles have larger periods. Let γa(s)
be a curve of class C1 meeting transversally the cycle γ at the point s = s0.
We say that γ is a critical cycle if

[
d
dsT (γa(s))

]
s=s0

= 0. It is possible to prove
that such a definition does not depend on the particular transversal curve γa

chosen.
The existence and number of critical cycles affects the number of solutions

to some boundary value problems. In fact, given a positive τ ∈ IR, the number
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of τ -periodic cycles contained in a period annulus A is bounded above by n+ 1,
where n the number of critical cycles contained in A. Similarly, the existence
of critical orbits is related to the study of some Neumann problems for systems
equivalent to second order differential equations, as well as to the study of mixed
problems. The absence of critical orbits is itself an important element in the
treatment of boundary value problems, bifurcation or perturbation problems
[8, 32], delay differential equations [11], thermodynamics [27], linearizability
[26].

The simplest case, that of monotone period functions, was dealt with in
several papers. For several references we address to the bibliographies of [17,
34, 38, 39]. A very special sub-case is that of isochronous systems, i. e. systems
having period annuli with constant period function, for which we refer to the
survey [4], and to the bibliographies of some recent papers as [3, 23]. Systems
with one or more critical orbits were studied in [2, 5, 6, 11, 18, 19, 21, 27, 30,
37, 38, 39].

In some papers upper bounds to the local or global number of critical or-
bits are studied [7, 8, 9]. Finding an upper bound to the number of critical
cycles is similar, to some extent, to the problem of finding an upper bound
to the number of limit cycles of a planar differential system. In fact, similar
techniques have been developped in the treatment of such problems, mainly in
a bifurcation perspective. In particular, the role played by the displacement
function’s derivatives in limit cycles’ bifurcation is similar to that of the pe-
riod function’s derivatives for critical cycles bifurcation [7, 8, 12, 15, 16, 25].
Dealing with bifurcation from a critical point O, the key piece of information is
the order of the first non-vanishing derivative at O. On the other hand, global
estimates to the number of critical orbits are usually based on some property of
T ’s derivatives in all of a period annulus. This task has been faced in different
ways in [2, 5, 9, 21, 22, 24, 37] for second order ODE’s, [8, 13, 30] for other
types of hamiltonian systems, [18, 19] for complex differential equations, [20]
for polynomial systems.

In this paper’s view, a key result was given in [17]. Let us denote by [V,W ] =
∂VW −∂WV the Lie bracket of V and W . A vector field W , transversal to V , is
said to be a non-trivial normalizer of V on a set A ⊂ Ω if there exists a function
µ defined on A such that [V,W ] = µV on A. We call µ its N-cofactor. Let
φW (s, z) be the local flow defined by the solutions of

z′ = W (z). (2)

In [17], it was proved that

∂WT (z) =
d

ds
T (φW (s, z)) =

∫ T

0

µ(φV (t, z))dt. (3)

Hence, if a normalizer is known, such an approach allows to get some information
about the first derivative of the period function, in particular when the function
µ does not change sign, avoiding the need to evaluate the above integral. In
order to find a normalizer, it is sufficient to know a first integral, as shown in
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[30]. In some special cases, more convenient normalizers can be found, as for
Hamiltonian systems with separable variables [17].

In this paper we give a formula for the n-th derivative of the period function,
based on an approach similar to that one introduced in [17]. Rather than
focusing on a N -cofactor, we base our approach on a the existence of a suitable
commutator, looking for a function m(z) such that [mV,W ] = 0. We call m a
C-factor. C-factors and N-cofactors are related by the equality ∂Wm = mµ, so
that they can be obtained from each other, at least in principle. Let us denote
by ∂

(n)
W T the n-th derivative of T (φW (s, z)) with respect to s. In our main

result, we prove that

∂
(n)
W T (z) =

dn

dsn
T (φW (s, z)) =

∫ T (z)

0

∂
(n)
W m(φV (t, z))
m(φV (t, z))

dt, (4)

In the case of the first derivative, our formula reduces to (3). We also give a
recursive formula that, starting from a N-cofactor µ, allows to avoid C-factors.
Setting

µ1 = µ, µn = µn−1µ+ ∂Wµn−1,

we prove that

∂
(n)
W T (z) =

∫ T (z)

0

µn(φV (t, z))dt.

In particular, T is W -convex if µ2 = µ2 + ∂Wµ ≥ 0. We also provide a wide
class of systems having explicit C-factors, including hamiltonian systems with
separable variables. In such a case, we extend the formula given in [17] for
hamiltonian systems with separable variables to higher order derivatives. In
particular, we prove that a hamiltonian system with separable variables

x′ = F ′(y), y′ = −G′(x)

has at most one critical orbit if

µs2 = 4
[
1 + 2

GG′′

G′2
· FF

′′

F ′2
+

+
3G2G′′2 − 3GG′2G′′ −G2G′G′′′

G′4
+

3F 2F ′′2 − 3FF ′2F ′′ − F 2F ′F ′′′

F ′4

]
.

has constant sign. As a consequence, we prove that for systems equivalent to
second order differential equations, the inequality

G′4 − 8GG′2G′′ + 12G2G′′2 − 4G2G′G′′′ ≥ 0

implies T ’s convexity.
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2 Some properties of normalizers and period func-
tions

We assume V and W to be transversal on a period annulus A, and W to be
a non-trivial normalizer of V , i. e. V ∧ W 6= 0, and [V,W ] = µV on Ω.

One has µ =
[V,W ] · V
|V |2

∈ C∞(A, IR). Let us choose arbitrarily a point z∗ in A.

The orbit φW (s, z∗) meets all the cycles of A. Since W is a normalizer, the map
φW (s, ·) takes V -cycles into V -cycles, hence there is a one-to-one correspondence
between V -cycles and the values of s in some real interval IW . We parametrize
such cycles by means of the parameter s. The transversality of V and W implies
that T ∈ C∞(A, IR). Since, by definition, T is constant on cycles, hence a first
integral of (1), we may write T (s) to denote the period of the unique V -cycle
corresponding to the parameter s. Different normalizer can produce the same
parametrization. In fact, since, by the transversality of V and W every vector
field definied in A can be expressed as a linear combination Z = αV + βW ,
β > 0 in order to preserve transversality, one has

[V,Z] = [V, αV + βW ] = (βµ+ ∂V α)V + (∂V β)W.

Hence αV + βW normalizes V if and only if ∂V β = 0, i. e. β is a first integral
of (1). Moreover, the new N-cofactor is βµ + ∂V α. In a sense, we can split
the action of αV + βW on A as the combination of a rotation along V -orbits,
determined by the term αV , plus a motion along the W -orbits determined by
the term βW . Applying the main theorem in [17] that gives the first derivative
of T w. resp. to s,

∂ZT =
∫ T

0

(βµ+ ∂V α)(φV (t, z)) dt =

= β

∫ T

0

µ(φV (t, z)) dt = β ∂WT,

we see that the contribution of the term ∂V α is zero, while the presence of the
V -first integral β only appears as a factor that can be taken out of the integral
in (3), since it is constant with respect to t on φV (t, z). In conclusion, every
normalizer gives the same expression for T ′(s), up to a multiplicative factor,
which is a first integral of (1).

In some cases a particular parametrization for the V -cycles is preferred. This
is the case of hamiltonian systems

x′ = Hy, y′ = −Hx, (5)

where the “natural” parameter is provided by the Hamiltonian function H(z).
A normalizer producing H(z) as a cycle’s parameter is

x′ =
Hx

H2
x +H2

y

, y′ =
Hy

H2
x +H2

y

, (6)
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since for such a system one has Ḣ = 1. In [31] it was proved that the related
N-cofactor is

µH =
(Hyy −Hxx)H2

x − 4HxyHxHy + (Hxx −Hyy)H2
y

|∇H|4
, (7)

so that

T ′(H) =
∫ T (H)

0

µH(φV (t, z))dt, (8)

performing the integration along a V -cycle φV (t, z). For some hamiltonian
systems it is possible to find other normalizers such that Ḣ = 1. For instance,
if H(x, y) = F (y) +G(x), one can consider the system

x′ =
G

HG′
, y′ =

F

HF ′
,

a special case of the normalizer U∗ in [17], remark 7, obtained choosing k(x, y) =

=
1

H(x, y)
. On the other hand, such a normalizer does not exist at points z such

that G(z) 6= 0, G′(z) = 0.
If W is a non-trivial normalizer of V , then it is a non-trivial normalizer of

ρV , for every non-vanishing function ρ ∈ C∞(Ω, IR2). In fact, assuming ρ > 0,
one has

[ρV,W ] = (ρµ− ∂W ρ)V =
(
µ− ∂W (ln ρ)

)
(ρV ) = µ (ρV ).

This finds an application when a first integral H(x, y) of a system (1) is known,
since the system (6) is a normalizer of every system having H(x, y) as a first
integral. We say that a non-vanishing function ρ ∈ C∞(Ω, IR2) is an inverse
integrating factor of the system (1) if (−V2(z), V1(z)) = ρ(z)∇H(z), for some
H(x, y). If this occurs, then the N-cofactor corresponding to the normalizer (6)
is

µH = µH − ∂W (ln ρ).

Next lemma shows that differentiating with respect to s produces new first
integrals of (1). Let us set

Lemma 1 For every n ≥ 1, T (n) is a first integral of (1).

Proof. it is sufficient to observe that both s and T (s) are first integrals of (1),
so that every derivative of the period function w. resp. to s depends only on s,
i.e. it is constant on the cycles of (1). ♣

In the following we shall denote by

T (n)(z) = ∂
(n)
W T =

dn

dsn
T (φW (s, z))

the n-th derivative of T with respect to s. Dealing with T (n), for n > 1, leads
to change one’ approach in relationship to the choice of normalizers. In fact,
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when studying the sign of T ′ it makes no difference to use any normalizer, but
for computational complexity. On the other hand, different normalizers might
produce higher order derivatives with different signs. Let us denote by σ the
parameter induced by Z, so that φW (s, z) = φZ(σ(s), z), with σ′(s) > 0. One
has

d

ds
T (φW (s, z)) = σ′(s)

d

ds
T (φZ(σ(s), z)),

while

d2

ds2
T (φW (s, z)) = σ′′(s)

d

ds
T (φZ(σ(s), z)) + (σ′(s))2 d

2

ds2
T (φZ(σ(s), z)).

This shows that convexity is not normalizer-invariant, so that we shall say that a
period function T is W -convex, rather than just convex. This opens the problem
to find the most convenient normalizer W in order to study the sign of ∂(n)

W T .

In general, the unique ∂(n)
W T to have normalizer-invariant sign is ∂WT . If

a cycle is critical with respect to a normalizer, then it is critical with respect
to any other normalizer, and a period annulus A can be split into sub-annuli
where T is monotonic with respect to any normalizer.

In this paper’s applications, we mainly consider the convexity problem and
its consequence on critical cycle’s uniqueness, in particular around a center O.
This leads to different situations for degenerate centers and for non-degenerate
ones. In order to illustrate the behaviour of the period function in a neighbour-
hood of a center, let us restrict to analytic systems. If O is a non-degenerate
center, then T has an analytic extension at the origin [35]. Since analytic func-
tions cannot have infinitely many zeroes accumulating at a point, every line
segment passing through the origin has an open subsegment Σ such that all
cycles meeting Σ have only two points on Σ. Possibly rotating the axes, we may
assume Σ to be contained in the x-axis, i.e. Σ = {(x, 0) : −ε < x < ε, ε > 0}.
Then one can define an involution ι : Σ → IR, i. e. a function such that such
that ι(ι(x)) = x, satisfying T (x) = T (ι(x)) [24]. For x-reversible centers, such
a property reduces to T (x) = T (−x), i. e. T is even. As a consequence, its
Taylor expansion on the x-axis has the form

T (x, 0) = a2kx
2k + a2k+1x

2k+1 + ...

Hence, if a2k > 0, it is both increasing and convex (decreasing and concave) in
a neighbourhood of O. Hence, if we want to prove the uniqueness of a critical
orbit, we can only try to prove convexity/concavity out of a neighbourhood of
O. If the center is degenerate, then the period function is unbounded at the
origin, so that T could be both decreasing in a neighbourhood of O and convex.

3 Results

We say that a map linearizes a differential system if it takes such a system into
a linear one. Next lemma was contained in the unpublished preprint [28] as
theorem 3.
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Lemma 2 Let A be a period annulus of (1), with [V,W ] = 0 on A. Then there
exists a map Λ ∈ C∞(A, IR2) that linearizes both (1) and (2).

Proof. By hypothesis, V and W commute, i. e. if φV (t, (φW (s, z))) and
φW (s, (φV (t, z))) exist for all s and t in a rectangle Is×It, , then φV (t, (φW (s, z)))
= φW (s, (φV (t, z))). By the main theorem in [29], A is an isochronous annulus,
i. e. every V -cycle in A has the same period T > 0. Possibly multiplying
V by T

2π , we may assume (1) to have period 2π. Following [29], we choose
arbitrarily a point z∗ in A and define on A the functions t(z), s(z) such that
φV (t(z), (φW (s(z), z∗))) = φW (s(z), (φV (t(z), z∗))) = z. The regularity of t(z),
s(z) can be proved by the implicit function theorem, as in [29] or [14], section
4. By construction, one has{

∂V s(z) = 0
∂V t(z) = 1,

{
∂W s(z) = 1
∂W t(z) = 0. (9)

Let us define Λ : A 7→ IR2 as follows:

(u, v) = Λ(z) = (es(z) sin t(z), es(z) cos t(z)).

In order to show that Λ is injective, first consider that there is a one-to-one
correspondence between V -cycles and values of s(z). Moreover, there is a one-
to-one correspondence between points of a V -cycle and the values of t(z), for
t(z) ∈ [0, 2π). The map Λ transforms injectively the V -cycle corresponding to
s(z) into the circle (es(z) sin t(z), es(z) cos t(z)).

Using (9) it is immediate to show that Λ transforms (1) and (2) respectively
into the following systems{

u′ = v
v′ = −u ,

{
u′ = u
v′ = v

. (10)

♣

In next theorem we give a formula for the n-th derivative of T w. resp. to the
parametrization induced by a transversal vector field W such that [mV,W ] = 0,
for some non-vanishing multiplier m. We may assume m to be positive, since
the period function of V and that one of −V coincide.

Theorem 1 Let A be a period annulus of (1) and m ∈ C∞(A, IR), m 6= 0, such
that [mV,W ] = 0 on A. Then

∂
(n)
W T (z) =

∫ T (z)

0

∂
(n)
W m(φV (t, z))
m(φV (t, z))

dt, (11)

Proof. by hypothesis, the systems

z′ = m(z)V (z) z′ = W (z)
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commute. By lemma 2, there exists a transformation Λ ∈ C∞(A, IR2) which
takes such systems resp. into the systems (10). As a consequence, the system
(1) is transformed into the system{

u′ = v
m∗(u,v)

v′ = − u
m∗(u,v)

, (12)

where m∗(u, v) = m(Λ−1(u, v)). Since Λ preserves the time, the system (12)
has a period annulus with cycles having the same periods as their anti-images
in A. Denoting by θ∗ the argument function in the plane (u, v), one has

T =
∫ T

0

1 dt =
∫ 2π

0

dθ∗

θ̇∗
= −

∫ 2π

0

m∗dθ∗. (13)

The system (2) is transformed into the second system in (10), which is a nor-
malizer of (12). We denote its vector field by W ∗. We can find the derivative
of T with respect to the parameter s by differentiating the integral in (13) with
respect to s:

∂W∗T =
d

ds
T = − d

ds

∫ 2π

0

m∗dθ∗ = −
∫ 2π

0

∂

∂s
m∗dθ∗ =

∫ T

0

1
m∗

∂

∂s
m∗ dt. (14)

As for higher order derivatives, a similar conclusion holds, since the integration
extremes do not depend on s:

∂
(n)
W∗T =

dn

dsn
T = − dn

dsn

∫ 2π

0

m∗dθ∗ = −
∫ 2π

0

∂n

∂sn
m∗dθ∗ =

∫ T

0

1
m∗

∂n

∂sn
m∗ dt.

(15)
Since Λ preserves the time of all the systems considered, applying the inverse
transformation Λ−1 gives the formula (11). ♣

In next lemma we show that the relationship [mV,W ] = 0, for a non-
vanishing m, is equivalent to W being a normalizer of V , and find the rela-
tionship between m and the N-cofactor µ. We state it for a period annulus,
even if it holds in other subsets of Ω.

Lemma 3 Let V,W ∈ C∞(A, IR2). Then

i) there exists m ∈ C∞(A, IR), m(z) > 0, such that [mV,W ] = 0, if and only
if W is a normalizer of V , with cofactor µ = ∂W (lnm);

ii) m,m ∈ C∞(A, IR), m(z),m(z) > 0 in A, satisfy [mV,W ] = 0 = [mV,W ],
if and only if there exists J ∈ C∞(A, IR), first integral of (2), such that
m = Jm. Moreover,

∂
(n)
W m

m
=
∂

(n)
W m

m
. (16)
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Proof. i) If [mV,W ] = 0, then

0 = [mV,W ] = m[V,W ]− (∂Wm)V,

hence

[V,W ] =
(
∂Wm

m

)
V =

(
∂W (lnm)

)
V.

Conversely, let us assume there exists µ such that [V,W ] = µV . Let us choose
arbitrarily a point z ∈ A. Let t(z), s(z) be the functions defined in in lemma 2,
so that z = φV (t(z), φW (s(z), z)) = φW (s(z), φV (t(z), z)). Let us define m(z),
as follows:

m(z) = e

∫ s(z)
0

µ(φW (σ,φV (t(z),z))dσ
.

One has m ∈ C∞(A, IR) and

∂Wm(z) = µ(z) e
∫ s(z)

0
µ(φW (σ,φV (t(z),z))dσ = µ(z)m(z),

since ∂W s(z) = 1. Then

[mV,W ] = m[V,W ]− (∂Wm)V = mµV − µmV = 0,

ii) Let J be a first integral of (2). Then

[JmV,W ] = Jm[V,W ]−(∂W (Jm))V = J
(
mµ−∂Wm

)
V = J(mµV−µmV ) = 0.

Vice-versa, if [mV,W ] = 0 = [mV,W ], then one has(
mµ− ∂Wm

)
V = [mV,W ] = 0 = [mV,W ] =

(
mµ− ∂Wm

)
V.

From µ = ∂Wm
m = ∂Wm

m one has

m ∂Wm−m ∂Wm = 0,

that gives

∂W

(
m

m

)
= 0,

hence
m

m
is a first integral of (2).

As for (16), if m = Jm, then ∂
(n)
W m = ∂

(n)
W

(
Jm
)

= J ∂
(n)
W m, since J is a

first integral of (2). Hence the two fractions in (16) coincide. ♣
In lemma 3 the integration is performed only along the W -orbits, starting at

the intersection of the V -cycle through z with the W -orbit passing through z.
Performing the integration along the W -orbit, we have chosen an initial value
of 1 on the cycle φV (·, z), so that m(φV (t, z)) = 1 for all t ∈ IR. We could
have chosen other smooth initial values on φV (·, z), getting other isochronous
systems with the same period annulus A. All such functions m can be obtained
from one another multiplying by a first integral of W . All of them give the same
ratio that appears in the integral (11).

As a special case of lemma 3, we obtain the cited formula for the first deriva-
tive of the period function [17].
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Corollary 1 Let A be a period annulus of (1), with [V,W ] = µV on A. Then

∂WT (z) =
∫ T

0

µ(φV (t, z))dt.

Proof. It is sufficient to observe that

∂Wm =
∂

∂s
m =

∂

∂s
e

∫ s(z)
0

µ(φW (σ,φV (t(z),z))dσ = µ(z)e
∫ s(z)

0
µ(φW (σ,φV (t(z),z))dσ

,

hence
∂Wm(z)
m(z)

= µ(z).

♣

In some cases it is computationally more convenient to look for a µ such
that [V,W ] = µV , rather than for a m such that [mV,W ] = 0. In next theorem
we give a direct way to compute high-order derivatives of T working only on µ.
This can be done by means of a recursive formula.

Theorem 2 Let A be a period annulus of (1), with [V,W ] = µV on A. Then

∂
(n)
W T (z) =

∫ T

0

µn(φV (t, z))dt.

where µn is recursively defined by

µ1 = µ, µn = µn−1µ+ ∂Wµn−1. (17)

Proof. Let us define m as in the proof of lemma 3. Then, let us set

mn =
∂

(n)
W m

m
.

By corollary 1, one has m1 = µ. For n > 1, one has

∂Wmn−1 = ∂W

(
∂

(n−1)
W m

m

)
=

1
m2

(
m ∂

(n)
W m−

(
∂

(n−1)
W m

) (
∂Wm

))
=

=
∂

(n)
W m

m
−
∂

(n−1)
W m

m

∂Wm

m
= mn −mn−1m1,

hence
mn = mn−1m1 + ∂Wmn−1.

This shows that the functions mn satisfy the recurrence equations (17), hence
mn = µn. Then the statement comes from theorem 1 . ♣
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In the next formulae we replace the notation ∂Wµ with the simpler one µ′.
Similarly for higher order derivatives with respect to W . We write the forms of
some low order µn’s:

µ2 = µ2 + µ′.

µ3 = µ3 + 3µµ′ + µ′′.

µ4 = µ4 + 6µ2µ′ + 4µµ′′ + 3µ′2 + µ′′′.

µ5 = µ5 + 10µ3µ′ + 10µ2µ′′ + 15µµ′2 + 5µµ′′′ + 10µ′µ′′ + µ(4).

We say that a function h ∈ C∞(A, IR) satisifies the condition (B) if h(z)
does not change sign in A, and every cycle contained in A contains a point z
such that h(z) 6= 0.

Corollary 2 Let A be a period annulus of (1), with [mV,W ] = 0, with m > 0,
and [V,W ] = µV on A. If one of the following holds,

i) ∂
(n)
W m satisfies the condition (B),

ii) µn satisfies the condition (B),

then A contains at most n− 1 critical cycles.

Proof. i) T is a first integral, hence every critical cycle of (1) corresponds to
a critical point of T (φW (s, z)). By (11), if ∂(n)

W m ≥ 0, then ∂
(n)
W T ≥ 0. The

presence on every cycle of a point where ∂(n)
W T 6= 0 implies that on every cycle

∂
(n)
W T > 0. Similarly if ∂(n)

W m ≤ 0.
ii) If µn satisfies the condition (B), then also ∂(n)

W m satisfies the condition
(B). ♣

In particular, the corollary 2 holds for n = 2, in presence of a convex or
concave (w. resp. to the parametrization induced by W ) period function. The
convexity may be proved under a condition on ∂Wµ, rather than on ∂

(2)
W m.

Corollary 3 Let A be a period annulus of (1), with [V,W ] = µV on A. If
∂Wµ ≥ 0 on A then T is W -convex. If ∂Wµ satisfies the condition (B), then T
is strictly W -convex on A.

Proof. By theorem 2, one has

µ2 = µ2 + ∂Wµ ≥ 0.

Then

∂
(2)
W T (z) =

∫ T

0

µ2(φV (t, z))dt ≥ 0.

If every cycle contains a point where µ2 > 0, the above integral is positive. ♣

Remark 1 It is remarkable the asymmetry of such a situation, where convexity
can be proved by only considering the sign of ∂Wµ, while concavity cannot. This
agrees with the fact that T can be upper unbounded, but it cannot be lower
unbounded.
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4 Applications

4.1 Reparametrized isochronous centers

A center is isochronous if and only if it has a non-trivial commutator [29].
Given an isochronous center, finding a commutator is not always easy. There
are systems which are known to have isochronous centers, for which no com-
mutators are known, as for reversible Liénard systems [1, 10, 4]. A collection
of isochronous systems with their commutators have been provided in [4], other
isochronous systems may be found in [3, 23] and their bibliographies.

In this section we consider centers of the form

z′ = ξ(z)V (z), ξ ∈ C∞(A, IR), ξ(z) 6= 0, (18)

where V satisfies [V,W ] = 0 on a period annulus A, W transversal to V , ξ > 0.

By lemma 3, an obvious choice to study the period function of V is m =
1
ξ

.

Hence we have the following corollary.

Corollary 4 Let A be a period annulus of (1), and W be such that [V,W ] = 0.

If
1
ξ

satisfies the condition (B), then the system (18) has at most n critical

cycles.

Proof. It is an immediate consequence of corollary 2, choosing m =
1
ξ

. ♣

It is not difficult to find examples of systems (18) with exactly n critical
cycles. It is sufficient to consider a linear center

x′ = y ξ(x, y), y′ = −x ξ(x, y), (19)

with ξ(z) = ω(|z|), 1
ω(r) having exactly n critical points. In fact, in this case

one has T (z) =
1
ξ(z)

=
1

ω(|z|)
.

Replacing again the notation ∂Wµ with µ′ one has

µ1 = µ =
∂Wm

m
= ξ ∂W

(
1
ξ

)
= −ξ

′

ξ
.

µ2 = µ2 + µ′ =
2ξ′2 − ξ′′ξ

ξ2
.

µ3 = µ3 + 3µµ′ + µ′′ =
−6ξ′3 + 6ξξ′ξ′′ − ξ2ξ′′′

ξ3
.

µ4 = µ4+6µ2µ′+4µµ′′+3µ′2+µ′′′ =
24ξ′4 − 36ξξ′2ξ′′ + 8ξ2ξ′ξ′′′ + 6ξ2ξ′′2 − ξ3ξ(4)

ξ4
.

µ5 = µ5 + 10µ3µ′ + 10µ2µ′′ + 15µµ′2 + 5µµ′′′ + 10µ′µ′′ + µ(4) =

12



=
−120ξ′5 + 240ξ′3ξ′′ξ − 60ξ′2ξ′′′ξ2 − 90ξ′ξ′′2ξ2 + 10ξ′ξ(4)ξ3 + 20ξ′′ξ′′′ξ3 − ξ(5)ξ4

ξ5
.

Let us assume ξ(x, y) to be analytic, ξ(x, y) =
∑∞
n=0 ξn(x, y), where ξn =∑n

j=0 cn,jx
n−jyj is an n-degree homogeneous polynomial. If ξ > 0 in a neigh-

bourhood of O, then the origin is a center of (19). One has V (x, y) = (y,−x),
W (x, y) = (x, y), so that, by Euler’s formula,

ξ′ = ∂W ξ = xξx+yξy = x

( ∞∑
n=0

ξn(x, y)

)
x

+y

( ∞∑
n=0

ξn(x, y)

)
y

=
∞∑
n=0

n ξn(x, y).

Similarly

ξ(k) = ∂
(k)
W ξ =

∞∑
n=0

nkξn(x, y).

Then, working as in corollary 3, if

ξ′′ = ∂
(2)
W ξ

∞∑
n=0

n2ξn(x, y) ≤ 0,

then T is W -convex, since µ2 = µ2 + µ′ =
2ξ′2 − ξ′′ξ

ξ2
≥ 0. Moreover, if ξ′′

satisfies the condition B, then T is strictly W -convex. This is the case of the
system

x′ = y (1− ξn(x, y)), y′ = −x (1− ξn(x, y)),

if ξn(x, y) ≥ 0, ξn(x, y) homogeneous of degree n. On the other hand, since
−ξ′ = nξn(x, y) ≥ 0, T is increasing, hence there are no critical orbits. In
this case the period annulus is contained in the oval defined by the inequality
ξn(x, y) < 1.

In next corollary we consider a class of systems admitting critical orbits.

Corollary 5 Let ξl(x, y) homogeneous of degree l for l = k, n. Assume k < n,
(3 − 2

√
2)n ≤ k ≤ (3 + 2

√
2)n, ξk(x, y) > 0 for (x, y) 6= (0, 0). Then O is a

center of

x′ = y (ξk(x, y)− ξn(x, y)), y′ = −x (ξk(x, y)− ξn(x, y)),

with period function T W -convex on NO. If, additionally, ξn(x, y) < 0, then
there exists exactly one critical orbit in NO.

Proof. The origin is a center, since the condition ξk > 0 implies that in a
neighbourhood of O the orbits coincide with those of the linear center. The
numerator of

µ2 = µ2 + µ′ =
2ξ′2 − ξ′′ξ

ξ2

is
2ξ′2 − ξ′′ξ = k2ξ2

k + (k2 + n2 − 4kn)ξkξn + n2ξ2
n.

13



Considering it as a quadratic form in the indeterminates ξk, ξn, a sufficient
condition for µ2 not to change sign is

∆ = (k2 + n2 − 4kn)2 − 4k2n2 = (n2 − 6nk + k2)(n− k)2 ≤ 0.

If (3− 2
√

2)n ≤ k ≤ (3 + 2
√

2)n, then n2 − 6nk + k2 ≤ 0, hence ∆ ≤ 0.
If, ξn(x, y) < 0, then the central region NO is contained in the oval having

equation ξk(x, y) − ξn(x, y) = 0. Such an oval consists of critical points. The
system is analytical, hence the boundary ∂NO cannot be a limit cycle, so that
at least one of such critical points lies on the external boundary of NO. As a
consequence, T goes to∞ approaching the oval. Moreover, T goes to∞ as well
approaching O, since the center is degenerate. Hence T has a minimum in A,
reached on a critical orbit φV (t, z), which is the unique critical orbit in A by
T ’s W -convexity. ♣

4.2 Jacobian maps and Hamiltonian systems with separa-
ble variables

Let Ψ(z) = (P (z), Q(z)) ∈ C∞(Ω, IR2), with jacobian matrix JΨ(z). If δ(z) =
det JΨ(z) 6= 0, we say that it is a jacobian map. If Ψ is a jacobian map,
possibly exchanging P and Q, we may assume its jacobian determinant δ(z) =
det JΨ(z) to be positive on Ω. This ensures local, but not global invertibility.
Let us consider the function H(z) defined by 2H(z) = |Ψ(z)|2. The Hamiltonian
system having H as Hamiltonian is

x′ = Hy = PPy +QQy, y′ = −Hx = −PPx −QQx. (20)

We consider also the system obtained dividing (1) by δ(z),

x′ =
PPy +QQy

δ
, y′ = −PPx +QQx

δ
, (21)

and the system

x′ =
PQy −QPy

δ
, y′ =

−PQx +QPx
δ

. (22)

From now on, we denote by VΨ the vector field of (1), Vδ the vector field of (21),
Wδ the vector field of (22). We denote by φVΨ(t, z) a solution to (1), and by
φWδ

(t, z) a solution to (22).
In [36] critical points of (21) were proved to be isochronous centers, under

the assumption δ > 0. In fact, the systems (21) and (22) commute with each
other, that allows us to apply the theorem 1 to find a formula for the n-th
derivative of some hamiltonian period functions. We denote by ∂(n)

H T the n-th
derivative of T with respect to the function H.
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Theorem 3 Let Ψ(z) = (P (z), Q(z)) ∈ C∞(Ω, IR2). If A is a period annulus
of (20), then

∂
(n)
Wδ
T (z) =

∫ T (z)

0

δ(φVΨ(t, z)) ∂(n)
Wδ

(
1

δ(φVΨ(t, z))

)
dt = (23)

=
∫ T (z)

0

µψn(φVΨ(t, z)) dt, (24)

where µψn is defined recursively as in theorem 2, with µψ = − ln δ. Moreover,

∂
(n)
H T (z) =

∫ T (z)

0

µn(φVΨ(t, z)) dt, (25)

where µn is defined recursively as in theorem 2, with µ = − ln δ
2H

.

Proof. The transformation Ψ takes locally the systems (21) and (22) into the
systems (10), which commute with each other. Since the system (20) is obtained

from (21) multiplying by δ, setting m =
1
δ

one has [mVΨ,Wδ] = 0. Then the

equality (23) comes from theorem 1. By lemma 3, one has

µΨ =
∂Wδ

m

m
= δ ∂Wδ

(
1
δ

)
= δ

(
−∂Wδ

δ

δ2

)
= −∂Wδ

(ln δ).

The formula (24) comes from theorem 2.
The function H vanishes only at critical points of VΨ, which coincide with

those of Vδ and Wδ, hence the vector field
Wδ

2H
is a non-trivial normalizer of

(20), with N-cofactor µ = − ln δ
2H

. The formula (25) comes as well from theorem
2. ♣

In theorem’s 3 proof one does not need the invertibility of Ψ on all of the

period annulus, since one only needs a C-factor, provided by
1
δ

.
The applicability of theorem 3 depends on the possibility to write a hamil-

tonian function H(z) in the form 2H(z) = |Ψ(z)|2, with det JΨ(z) 6= 0. Such a
question was addressed in [33, 26].

Since the above theorem can be stated in terms of normalizers, we can con-
sider also non-hamiltonian systems, as observed in section 2.

Corollary 6 Let ρ > 0 be an inverse integrating factor of the system (1), with
first integral H(x, y) satisfying 2H(z) = |Ψ(z)|2, for some jacobian map Ψ. If
A is a period annulus of (20), then

∂
(n)
Wδ
T (z) =

∫ T (z)

0

µn(φVΨ(t, z)) dt, (26)
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where µn is defined recursively as in theorem 2, with µ = − ln(δρ). Moreover,

∂
(n)
H T (z) =

∫ T (z)

0

µn(φVΨ(t, z)) dt, (27)

where µn is defined recursively as in theorem 2, with µ = − ln(δρ)
2H

.

Proof. By hypothesis, one has (−V2(z), V1(z)) = ρ(z)∇H(z), with 2H(z) =
|Ψ(z)|2, hence V (z) = ρ(z)VΨ(z). Working as in section 2, one has

[V,Wδ] = [ρVΨ,Wδ] = (µΨρ− ∂Wδ
ρ)V =

(
− ∂Wδ

(ln δ)− ∂Wδ
(ln ρ)

)
(ρV ) =(

− ∂Wδ

(
ln(δρ)

))
(ρVΨ) =

(
− ∂Wδ

(
ln(δρ)

))
V.

that gives the formula (26). The formula (27) can be proved as formula (25) in
theorem 3. ♣

In this paper we only consider the applicability of theorem 3 to some hamil-
tonian systems with separable variables. Let IF , IG be intervals containing 0,
F ∈ C∞(IF , IR), G ∈ C∞(IG, IR). Assume G(x) and F (y) to have isolated
minima at 0. Then the origin O is a center of the hamiltonian system having
H(x, y) = G(x) + F (y) as hamiltonian function,{

x′ = F ′(y)
y′ = −G′(x). (28)

Under quite general conditions, such systems can be considered as special cases
of (20), obtained taking Ψ(x, y) = (P (x), Q(y)) = (s(x)

√
2G(x), s(y)

√
2F (y)),

where s(t) the sign function, assuming values −1, 0, 1 for t < 0, t = 0, t > 0,
respectively. The jacobian determinant of such a map is δ(x, y) = P ′(x)Q′(y) =

s(xy)
F ′(y)G′(x)

2
√
F (y)G(x)

. In this case, the normalizer (22) has the form

x′ =
PQy −QPy

δ
=

P

P ′
=

2G
G′
, y′ =

−PQx +QPx
δ

=
Q

Q′
=

2F
F ′
, (29)

and differs from that one given in [17] for the presence of a factor 2. Also the
corresponding N-cofactor

µs(x, y) = −∂Wδ
(ln δ(x, y)) = −∂Wδ

(
ln(P ′(x)Q′(y)

)
=

= −∂Wδ

(
ln
s(x)G′(x)√

2G(x)

)
−∂Wδ

(
ln
s(y)F ′(y)√

2F (y)

)
= 2

(
G(x)
G′(x)

)′
+2
(
F (y)
F ′(y)

)′
−2

differs from that one given in [17] for the presence of a factor 2. The commuting
system (21) has the form

x′ =
2s(xy)

√
G(x)F (y)

G′(x)
=

Q(y)
P ′(x)

, y′ = −
2s(xy)

√
G(x)F (y)

F ′(y)
= − P (x)

Q′(y)
.

(30)
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Let us set

ms(x, y) =
1

δ(x, y)
=

2s(xy)
√
G(x)F (y)

G′(x)F ′(y)
,

whenever F (y)G(x) ≥ 0, F ′(y)G′(x) 6= 0. We say that a function L : IL → IR,
IL open interval containing 0, satisfies the hypothesis (Sep) if

sep1) L ∈ C∞(IL, IR), L(0) = 0, tL′(t) > 0 in IL, L is not flat at 0;

sep2)
√
L

L′
∈ C∞(IL, IR), s(t)

√
L(t) ∈ C∞(IL, IR).

The condition sep1) implies L(t) > 0 for t close to 0, t 6= 0, hence its Taylor
expansion starts with an even power of t,

L(t) = c2kt
2k + o(t2k).

As a consequence,
L′(t) = 2kc2kt2k−1 + o(t2k−1),

so that √
L

L′
=

√
L

L′2
=

√
c2kt2k + o(t2k)

4k2c22kt
4k−2 + o(t4k−2)

.

Such a function can be differentiable only if 4k − 2 ≤ 2k, i. e. k ≤ 1, hence
k = 1. This agrees with the fact that non-degeneracy is a necessary condition
for a center’s linearizability [35].

Theorem 4 Let F and G satisfy (Sep) on IF , IG, open intervals containing 0.
Then

i) the transformation Ψ(x, y) =
(
s(x)

√
2G(x), s(y)

√
2F (y)

)
linearizes both

systems (29) and (30);

ii) O is an isochronous center of the system (30);

iii) the period function of the system (28) satisfies

∂
(n)
Wδ
T (z) =

∫ T (z)

0

∂
(n)
Wδ
ms(φVΨ(t, z))

ms(φVΨ(t, z))
dt, (31)

where the integration is performed along the cycle φVΨ(t, z) starting at z.

Proof. One can prove i) by direct computation. The systems (30) and (29) are
transformed into the systems (10).

In order to prove ii), it is sufficient to observe that the systems (10) commute,
hence also (30) and (29) commute. By the main result in [29], every period
annulus of the system (30) is isochronous.

The statement iii) is an immediate consequence of theorem 3. ♣
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The theorem 4 does not apply to degenerate centers of hamiltonian systems.
In order to study such systems’ higher order derivatives, one can apply the
corollary 2, starting with a suitable normalizer.

A ”universal” normalizer, as pointed out in section 2 (see [31]), that allows
to cover both centers and period annuli, is

x′ =
Hx

H2
x +H2

y

=
G′

G′2 + F ′2
, y′ =

Hy

H2
x +H2

y

=
F ′

G′2 + F ′2
,

which gives the N-cofactor

µH =
(F ′′ −G′′)(G′2 − F ′2)

(G′2 + F ′2)2
. (32)

This allows to cover both degenerate and non-degenerate hamiltonians, obtain-
ing T ’s derivatives without need to explicitly find the corresponding m, by using
the recursive formulae of theorem 2. Moreover, such derivatives are computed
with respect to the variable H. On the other hand, even in the simplest non-
degenerate cases, this leads to more complex computations than using ms and

the related normalizer µs. As an example, If H(x, y) =
x2 + x4 + y2

2
, one has

µs = −x
2(3 + 2x2)

(1 + 2x2)2

µH = −6x2(x2 + 4x4 + 4x6 − y2)
(x2 + 4x4 + 4x6 + y2)2

.

The same N-cofactor can be obtained by using the system

x′ =
G

HG′
, y′ =

F

HF ′
,

which is defined on all of the central region NO, but is not defined in a neigh-
bourhood of every point (x, y) where G′(x) = 0 and G(x) 6= 0, or F ′(y) = 0 and
F (y) 6= 0. This is the case of the hamiltonian system

x′ = y, y′ = −x+ 2x2 − x3.

One has

µs =
x(3x2 − 9x+ 8)

12(1− x)3
,

which diverges at 1. The hamiltonian system has a center at O, with central

region defined by NO =
{

(x, y) : 0 <
x2

2
− 2x3

3
+
x4

4
+
y2

2
<

1
12

}
. The central

region’s external boundary consist of a critical point at (1, 0) and a homoclinic
orbit having (1, 0) as α- and ω-limit set. Every orbit external to NO is a cycle
enclosing NO. One cannot study T ’s derivatives on such cycles by means of
µs, since every external cycle has a point (actually, two points) where µs is not
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defined. Obviously, also the jacobian map approach can no longer be applied,
since δ vanishes where G′ vanishes. On the other hand, we can compute µH for
the normalizer

x′ =
x− 2x2 + x3

(x− 2x2 + x3)2 + y2
, y′ =

y

(x− 2x2 + x3)2 + y2
.

One has

µH =
x(−4 + 3x)(y + x− 2x2 + x3)(−y + x− 2x2 + x3)

(x− 2x2 + x3)2 + y2
.

The study if T ’s monotonicity requires an additional study of
∫ T

0
µH , in order

to determine its sign. Higher order derivatives require the study of much more
complex functions.

When dealing with the period function of an analytic system (28) in a central
region NO, the second, and more convenient approach, consists in applying the
theorem 2 to µs. Assume

G(x) = O(x2k), F (y) = O(y2h).

Then the system (29) is of class C∞ on NO, as well as µs. Applying the theorem
2 does not require to produce the corresponding C-factor, even if in some simple
cases it can be found, as for the systems

x′ = y2k−1, y′ = −x2k−1, k ∈ IN, k > 0.

The normalizer (29) is
x′ =

x

k
, y′ =

y

k
,

with N-cofactor µs =
2(k − 1)

k
and µs2 = µ2

s =
4(k − 1)2

k2
. There exist infinitely

many C-factors, all producing µs as N-cofactor. Among them, one has all the

functions m(x, y) =
1

ν(x, y)
, with ν homogeneous of degree 2k − 2.

In order to perform next computations with the N-cofactor µs, we find

convenient to write next formulae in terms of the functions Γ(x) =
2G(x)
G′(x)

,

Φ(y) =
2F (y)
F ′(y)

, using the normalizer (29)

x′ = Γ(x), y′ = Φ(y),

as well as its N-cofactor

µs(x, y) = Γ′(x) + Φ′(y)− 2.
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One can write µs as follows, choosing α and β such that α+ β = 1.

µs = (Γ′(x)− α) + (Φ′(y)− β) =
(2− α)G′2 − 2GG′′

G′2
+

(2− β)F ′2 − 2FF ′′

F ′2
.

Hence, if there exists a couple (α, β) such that on a period annulus (2−α)G′2−
2GG′′ ≥ 0, and (2 − β)F ′2 − 2FF ′′ ≥ 0, then T is increasing. For systems
equivalent to second order conservative equations one does not have such a
freedom of choice, since

F (y) =
y2

2
, Φ′(y) = 1, µs =

(
2G(x)
G′(x)

)′
− 1 =

G′2 − 2GG′′

G′2
.

As a consequence, if G′2−2GG′′ ≥ 0 in a period annulus A, then T is increasing
in A (see [17]).

Let us denote by Ws the normalizer vector field (29). One can compute
µs2 = µ2

s + ∂Wsµs:

µs2 = 4
[
1 + 2

GG′′

G′2
· FF

′′

F ′2
+

+
3G2G′′2 − 3GG′2G′′ −G2G′G′′′

G′4
+

3F 2F ′′2 − 3FF ′2F ′′ − F 2F ′F ′′′

F ′4

]
.

Such a formula has been written in such a way to emphasize the presence of a
single term with mixed variables.

If O is a center of (28), we denote by Nx
O, Ny

O the projections of NO on the
x-axis and on the y-axis, respectively.

Corollary 7 Assume G(x) = b2kx
2k + rg(x) ∈ C∞(IG, IR), F (y) = c2hy

2h +
rf (y) ∈ C∞(IF , IR), 0 ∈ IG ∩ IF , 0 < k, h ∈ IN, b2k, c2h > 0, rg(x) =
o(x2k), rf (y) = o(y2h). Then O is a center, (29) is of class C∞(NO, IR2),
µs ∈ C∞(NO, IR2). If µs2 ≥ 0 (≤ 0) in Nx

O × N
y
O, then T is Wδ-convex (con-

cave) on NO. If, additionally, on every cycle of NO there exists a point where
such inequality holds strictly, then T is strictly Wδ-convex (concave).

Proof. The functions F ′(y) and G′(x) vanish only at 0. As for the regularity of
(29) and µs at x = 0 and y = 0, one has

G(x)
G′(x)

= x
b2k + rg(x)

2k b2k + r′g(x)
, rg(x) =

rg(x)
x2k

, r′g(x) =
r′g(x)
x2k−1

which is the product of two functions of class C∞ at O. Similarly for F (y).
Since µn is obtained multiplying µ’s derivatives by the components of (29), one
has µn ∈ C∞. Then the (strict) Wδ-convexity comes from the formula

∂
(2)
Wδ
T (z) =

∫ T (z)

0

µs2(φVΨ(t, z)) dt.

♣
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Looking for simpler conditions which imply T ’s convexity, one can write

µs2 = (Γ′ + Φ′ − 2)2 + Γ′′Γ + Φ′′Φ =

= (Γ′ + Φ′)2 − 4Γ′ − 4Φ′ + 4 + Γ′′Γ + Φ′′Φ.

Here µs2 appears in two ways as the sum of a squared term plus terms depending
only on x or y. This allows to study its sign in a simpler way than with genuine
two-variables functions. We say that a function L(t) satisfies the condition (Cλ)
if

ζλ = 2L2L′′2 + LL′2L′′ − L2L′L′′′ ≥ λL′4, λ ∈ IR.

We say that a function L(t) satisfies the condition (C) if

ζ = 2LL′′2 − L′2L′′ − LL′L′′′ ≥ 0.

Corollary 8 Under the hypotheses of corollary 7, if one of the following con-
dition holds, then T is Ws-convex.

i) G satisfies (Cα) on Nx
O, F satisfies (Cβ) Ny

O, respectively, with α+β−3 ≥
0;

ii) both G and F satisfy the condition (C) on Nx
O and Ny

O, respectively;

Proof. i) One has

µs2i = −4Γ′ − 4Φ′ + 4 + Γ′′Γ + Φ′′Φ =

4
[

2G2G′′2 +GG′2G′′ −G2G′G′′′

G′4
+

2F 2F ′′2 + FF ′2F ′′ − F 2F ′F ′′′

F ′4
− 3
]
≥

≥ 4(α+ β − 3) ≥ 0.

hence µs2 = (Γ′ + Φ′)2 − 4Γ′ − 4Φ′ + 4 + Γ′′Γ + Φ′′Φ ≥ 0.
ii) One has

µs2ii = Γ′′Γ+Φ′′Φ = 4
[

2G2G′′2 −GG′2G′′ −G2G′G′′′

G′4
+

2F 2F ′′2 − FF ′2F ′′ − F 2F ′F ′′′

F ′4

]
.

Since

2G2G′′2 −GG′2G′′ −G2G′G′′′

G′4
=

G

G′4

(
2GG′′2 −G′2G′′ −GG′G′′′

)
,

and G ≥ 0 in NO, under the the condition (C) one has Γ′′Γ ≥ 0 in NO. The
same holds for Φ′′Φ, hence µs2 = (Γ′ + Φ′ − 2)2 + Γ′′Γ + Φ′′Φ ≥ 0. ♣

An important special case is that of second order conservative ODE’s. In

this case F (y) =
y2

2
. In next corollary we just write the conditions i) and ii) of

corollary 8 specialized to such a case.
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Corollary 9 Under the hypotheses of corollary 7, if F (y) = y2

2 , one has

µs2 =
G′4 − 8G′2GG′′ + 12G2G′′2 − 4G2G′′′G′

G′4
.

Moreover, the condition i) of corollary 8 holds if and only if

GG′2G′′ + 2G2G′′2 −G2G′G′′′ − 2G′4 ≥ 0.

The condition ii) of corollary 8 does not change.

We can apply the corollary 8 ii) to the system

x′ = 2 sin y cos y, y′ = −2 sinx cosx, (33)

obtained taking G(x) = (sinx)2, F (y) = (sin y)2. The origin is a center whose
central region is a punctured open square having vertices at

(
π
2 , 0
)
,
(
0, π2

)
,(

−π2 , 0
)
,
(
0,−π2

)
. One has Γ(x) = tanx, Γ′′(x)Γ(x) = 2(tan2 x)(1 + tan2 x) ≥ 0

in NO. Similarly for Φ(y).

Figure 1: The central region of system (33).

We have an example of system satisfying the hypotheses of corollary 9 taking

G(x) = e(cos3 x−3 cos x), F (y) =
y2

2
. The related system is

x′ = y, y′ = −3 sin3 xe(cos3 x−3 cos x). (34)

The origin is a degenerate center, with bounded central region NO. Its bound-
ary ∂NO contains a critical point, hence T diverges as a cycle approaches

∂NO (see Figure 1). One has Γ(x) =
1

3 sin3 x
, Γ′′(x)Γ(x) =

1 + 3 cos2 x

3 sin8 x
> 0,

Φ′′(y)Φ(y) = 0 in NO, hence T is strictly convex. This implies the existence of
a single critical point, since T goes to ∞ both as a cycle approaches O and as
it approaches ∂NO.
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Figure 2: The central region of system (34).

The possibility to consider separately the terms depending only on x and
those depending only on y implies that we may swap the components of the
above systems, obtaining a new system with convex period function,

x′ = 2 sin y cos y, y′ = −3 sin3 xe(cos3 x−3 cos x).

In [24, 30], potential functions of the form
xm

axn + b
were considered. We

consider here some other rational functions.

Corollary 10 Let G(x) =
P (x)

1 + P (x)
, with P (x) = ax4 + bx6 + cx8. If a ≥ 0,

b ≥ 0, c ≥ 0, abc 6= 0, 20a4c ≤ 267b2ac + 194a2c2 + 18b4 + 90a6 + 219a3b2,
8a3c ≤ 40a5 + 99a2b2, then O is a center, and T has exactly one critical orbit
in NO.

Proof. One has G′(x) =
P ′(x)

(1 + P (x))2
. In a neighbourhood of O, xG′(x) ≥ 0,

G′(x) = 0 if and only if x = 0, hence O is a center. If G′(x) = 0 only at
x = 0, the central region NO is a strip defined by y2 < 2, since lim

x→±∞
G(x) = 1.

The vector field is bounded on such a strip, hence T goes to +∞ as the cycle
approaches the boundary ∂NO. The same occurs as the cycle approaches the
origin, since O is a degenerate critical point.

If there exists a point x 6= 0 such that G′(x) = 0, then the central region has
at least a critical point on its boundary, hence T goes to infinity as the cycle
approaches ∂NO. Moreover, one has

µ =
1

D(x)

(
36x16c3 + 89x14bc2 +

(
66ac2 + 74b2c

)
x12 +

(
110abc+ 21b3

)
x10

+
(
48ab2 − 12c2 + 40a2c

)
x8
(
37a2b− 19bc

)
x6+
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+
(
10a3 − 6b2 − 18ac

)
x4 − 9abx2 − 2a2

)
,

with D(x) = (2a+ 3bx2 + 4cx4)2. Finally,

µs2 =
A(x) +B(x)

D(x)2

with A(x) = (534b2ac+388a2c2−40a4c+36b4 +180a6 +438a3b2)x8 +(−8a3c+
40a5 + 99a2b2)x4, B(x) polynomial of degree 32 with positive coefficients, such
that B(0) = 4a4 > 0. Under the condition given in the hypothesis, A is non-
negative, hence T is strictly convex. ♣

Let su consider the following functions:

j) the functions
1

a+ bt4 + ct8
, with a, b, c > 0, 5b2 ≤ 56ac;

jj) the functions
at4k

1 + bt2k + ct6k
, with k positive integer, a, b, c > 0, 2b3k ≤

+108a2ck + 18a2c+ b3.

Corollary 11 Let G(x) and F (y) be of type j) or jj). Then the period function
of the corresponding system (28) is convex.

Proof. Under the given hypotheses, all the functions of the points j), jj), jjj)
satisfy the condition (C). In fact, computing the expression ζ = 2LL′′2−L′2L′′−
LL′L′′′ for such functions gives the following.

j) ζ =
64x4(6bc2x12 + (56ac2 − 5b2c)x8 + 18abcx4 + 3ab2)

(a+ bx4 + cx8)6
≥ 0, if a, b, c > 0,

5b2 ≤ 56ac;
jj)

ζ =
A(x) +B(x)

D(x)2
,

with D(x) = x2(a+ bx4 + cx8)7, B(x) polynomial of degree 32k − 2 with pos-
itive coefficients, A(x) = (−2ab3k + 108a3ck + 18a3c + ab3)x18k−2 + (54k −
9)ac3x30k−2 +(16k−4)bc3x32k−2. Since k is a positive integer, one has 54k−9 >
0, 16k−4 > 0. The same holds for the coefficient of x18k−2, under the hypothesis
2b3k ≤ +108a2ck + 18a2c+ b3.

By corollary 8, ii), if both G and F satisfy one of the above, one has T ’s
convexity. ♣

We cannot include in the above list the functions
P (x)

1 + P (x)
of corollary 10,

since in that case one has

2G2G′′2 −GG′2G′′ −G2G′G′′′ =
−6a2b+ o(1)

(1 + ax4 + bx6 + cx8)6
.
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