
 

 
 

DISI - Via Sommarive 14 - 38123 Povo - Trento (Italy) 
http://www.disi.unitn.it 
 

  

 

SCALABLE SIMILARITY MATCHING 

IN STREAMING TIME SERIES 
 

 

Alice Marascu, Suleiman Ali Khan, Themis 

Palpanas 

 

 

 

December 2011 

 

Technical Report # DISI-11-484 

 

 

 

 

 

 
 

 

 

This work has been published in PAKDD 2012. Please 

reference as follows: Alice Marascu, Suleiman Ali Khan, 

Themis Palpanas. Scalable Similarity Matching in Streaming 

Time Series. Pacific-Asia Conference on Knowledge 

Discovery and Data Mining (PAKDD), 2012. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints Research

https://core.ac.uk/display/11830401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



Scalable Similarity Matching in Streaming Time Series 
 

Alice Marascu 

University of Trento 

marascu@disi.unitn.eu 

Suleiman Ali Khan 

Aalto University 

suleiman@cis.hut.fi 

Themis Palpanas 

University of Trento 

themis@disi.unitn.eu 

 

 

Abstract— Nowadays online monitoring of data streams is essential in many real life 

applications, like sensor network monitoring, manufacturing process control, and video 

surveillance. One major problem in this area is the online identification of streaming sequences 

similar to a predefined set of pattern-sequences.  

In this paper, we present a novel solution that extends the state of the art both in terms of 

effectiveness and efficiency. We propose the first online similarity matching algorithm based on 

Longest Common SubSequence that is specifically designed to operate in a streaming context, 

and that can effectively handle time scaling, as well as noisy data. In order to deal with high 

stream rates and multiple streams, we extend the algorithm to operate on multilevel 

approximations of the streaming data, therefore quickly pruning the search space. Finally, we 

incorporate in our approach error estimation mechanisms in order to reduce the number of false 

negatives. 

We perform an extensive experimental evaluation using forty real datasets, diverse in nature and 

characteristics, and we also compare our approach to previous techniques. The experiments 

demonstrate the validity of our approach. 

 

Keywords: data stream, online similarity matching, time series 

 

1. Introduction 

In the last years, due to accelerated technology developments, more and more 

applications have the ability to process large amounts of streaming time series in real 

time, ranging from manufacturing process control and sensor network monitoring to 

financial trading [1] [2] [3]. A challenging task in processing streaming data is the 

discovery of predefined pattern-sequences that are contained in the current sliding 

window. This problem finds multiple applications in diverse domains, such as in 

network monitoring for network attack patterns, and in industrial engineering for faulty 

devices and equipment failure patterns. Previous work on streaming time series 

similarity [4] [5] proposed solutions that are limited either by the flexibility of the 

similarity measures, or by their scalability (these points are discussed in detail in Section 

2).   

Motivated by these observations, in this paper we propose a new approach that 

overcomes the above drawbacks. First, we observe that in the absence of a time scaling 

constraint, degenerate matches may be obtained (i.e., by matching points in the time 

series that are too far apart from each other). In order to address this problem, we 

introduce the notion of the Continuous Warping Constraint that specifies the maximum 

allowed time scaling, and thus, offers only meaningful results. 

We propose the first adaptation of the Longest Common SubSequence (LCSS) 

similarity measure to the streaming context, since it has been shown that LCSS is more 



robust to noise (outliers) in time series matching [6].  

In order to enable the processing of multiple streams, we introduce a framework 

based on Multilevel Summarization for the patterns and for the streaming time series. 

This technique offers the possibility to quickly discard parts of the time series that 

cannot lead to a match. Our work is the first to systematically study the required sliding 

window sizes of these multilevel approximations, as well as take into account and 

compensate for the errors introduced by these approximations. Therefore, we avoid 

false negatives in the final results.  

Figure 1 is a schematic illustration of our approach. The streaming time series 

subsequences included in the current streaming window are summarized using a 

multilevel summarization method and the same operation is performed on the 

predefined pattern sequences. Then, the different levels of these summaries are 

compared using a streaming algorithm with very small memory footprint. 

The main contributions of this paper can be summarized as follows. 

 We propose the first method that employs the LCSS distance measure for the 

problem of time series similarity matching and is specifically designed to operate in 

a streaming context.  

 We introduce the Continuous Warping Constraint for the online processing setting 

in order to overcome the unlimited time scaling problem.  

 We describe a scalable framework for streaming similarity matching, based on 

streaming time series summarization. We couple these techniques with analytical 

results and corresponding methods that compensate for the errors introduced by the 

approximations, ensuring high precision and recall with low runtimes. 

 

 

Figure 1: Data stream monitoring for predefined patterns 

 

 Finally, we perform an extensive experimental evaluation with forty real datasets. 

The results demonstrate the validity of our approach, in terms of quality of results, 

and show that the proposed algorithms run (almost) three times faster than SPRING 

[7] (the current state of the art).  

 



The rest of the paper is organized as follows. We start by briefly presenting the 

background and the related work in Section 2.  Section 3 presents our approach and 

describes in detail our algorithm. Section 4 discusses the experimental evaluations, and 

Section 5 concludes the paper. 

2. Background and Related Work 

We now introduce some necessary notation, and discuss the related work. 

A time series is an ordered sequence of n real-valued numbers T=(t1, t2, …, tn). We 

consider t1 the first element and tn the last element of the time series. In the streaming 

case, new elements arrive continuously, so the size of the time series is infinite. In this 

work, we are focusing on a sliding window of the time series, containing the latest k 

streaming values. We also define a subsequence ti,j of a time series T=(t1, t2, …, tn) is 

ti,j=(ti, ti+1, …, tj), such that 1≤i≤j≤n. We say that two subsequences are similar if the 

distance D between them is less than a user specified threshold ε.  

 

2.1. Distance Measures 

The most frequently used distance measure is the Euclidean distance, which computes 

the square root of the sum of the squared differences between all the corresponding 

elements of the two sequences (Figure 2(a)). The Euclidean distance cannot be applied 

on sequences of different sizes, or for element temporal shifts and, in these cases, the 

optimal alignment is achieved by DTW (Dynamic Time Warping) [8] (Figure 2(b)). 

DTW is an elastic distance that allows an element of one sequence to be mapped to 

multiple elements in the other sequence. If no temporal bound is applied, DTW can lead 

to pathological cases [9] [10] where very distant elements are allowed to be aligned. To 

avoid this problem, temporal constraints can be added in order to restrict the allowed 

temporal area for the alignment; the most used such constraints are the Sakoe-Chiba 

band [11] and the Itakura Parallelogram band [12] (shaded area in Figure 3). The LCSS 

measure [6] is also an elastic distance measure that has an additional feature compared 

to DTW: it allows gaps in the alignment. This feature can be very valuable in real 

applications, since in this way we can model noise, outliers, and missing values (Figure 

2(c)).  

 

 
(a)                       (b)                    (c) 

 Figure 2: Time series distances: Euclidean (a), DTW(b), and 

LCSS (c) 

 

Figure 3: Sakoe-Chiba band (left) 

and Itakura Parallelogram (right). 

 

 

2.2. Similarity Matching 

The Euclidean distance is used by [4] for identifying similar matches in streaming 

time series. This study proposes a technique, where the patterns to be matched are first 

hierarchically clustered based on their minimum bounding envelopes. Since this 
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technique is based on the Euclidean distance, it requires the sequences to be of the same 

size and is rather sensitive to noise and distortion [13]. As a solution, [7] presented the 

SPRING algorithm that computes the DTW distance in a streaming data context. This 

algorithm allows comparison of sequences with different lengths and local time scaling, 

but does not efficiently handle noise (outlier points). We elaborate more on SPRING in 

the next subsection. 

The warping distance techniques are also studied by [14], who propose the Spatial 

Assembling Distance (SpADe), a new distance measure for similarity matching in time 

series. An R-tree is used to index the multi-dimensional patterns. Their approach allows 

incremental distance computation. 

Stream-DTW (SDTW) is proposed by [5] with the aim of having a fast DTW for 

streaming times series. SDTW is updatable with each new incoming data sequence. 

Nevertheless, the experimental results show that it is not faster than SPRING. In [15] 

the LCSS distance was used to process data streams, but was not adapted for online 

operation in a streaming context, which is the focus of our paper.  

Other related works to this topic focused on approximations, thus proposing 

approximate distance formula. One example is the method proposed by [16] that uses 

the Boyer Moore string matching algorithm to match a sequence over a data stream. 

This approach is limited in that it operates with a single pattern and a single stream at a 

time. A multi-scale approximate representation of the patterns is proposed by [17] in 

order to speed up the processing. Even though the above representations introduce 

errors, neither these errors nor the accuracy of the proposed technique are explicitly 

studied.  

 

2.3. SPRING Overview 

The basic idea of SPRING (for more details see  [7]) is to maintain a single, advanced 

form of the DTW matrix, called Sequence Time Warping Matrix (STWM). This matrix 

is used to compute the distances of all possible sequence comparisons simultaneously, 

such that the best matching sequences are monitored and finally reported when the 

matching is complete. 

Each cell in the STWM matrix contains two values: the DTW distance d(t,i) and the 

starting time s(t,i) of sequence (t,i), where t=1,2,…n and i=1,2,…m are the time index 

in the matrix of the stream and of the pattern respectively. A subsequence starting at 

s(t,i)  and ending at the current time t has a cumulative DTW distance d(t,i), and it is the 

best distance found so far after comparing the prefix of the stream sequence from time 

s(t,i) to t, and the prefix of the pattern sequence from time 1 to i. On arrival of a new 

data point in the stream, the values of d(t,i) and s(t,i) are updated using Equations (1) 

and (2). A careful implementation of the SPRING algorithm leads to a space 

complexity of O(m) and time complexity of O(mn), just like DTW. 
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3. Our Approach 

In this section, we present two novel algorithms for streaming similarity matching 

called naiveSSM (naive Streaming Similarity Matching) and SSM (Streaming 

Similarity Matching).  

 The naiveSSM algorithm efficiently detects similar matches thanks to three features:  

it constrains the time scaling allowed in the matches, thus, avoiding degenerate 

answers; it handles outlier points in the data stream, by using LCSS; and it uses a 

special hierarchical summarization structure that allows it to effectively prune the 

search space. Although naiveSSM provides good results, it is not aware of the 

computation error introduced by the summarization method. SSM takes care of the 

computation error and improves the results by using a probabilistic error modeling 

feature.   

 

3.1. The naiveSSM Algorithm 

3.1.1. CWC Bands (Continuous Warping Constraint bands) 

We observe that the simple addition of a Sakoe-Chiba band for solving the problem of 

degenerate matches would not be enough, since not all matching cases would be 

detected. Figure 4 illustrates this idea; two sequences situated outside of the band, but 

very near of its bounds, are not detected as matching because they are outside of the 

allowed area. The solution we propose is a novel formulation of Sakoe-Chiba band, 

which we call Continuous Warping Constraint (CWC band). 

CWC band consists of multiple succeeding overlapping bands where each of these 

bands is bounding one possible matching sequence (Figure 5). More precisely, we 

propose to associate a boundary constraint to each possible matching, and not a general 

allowed area (as in Figure 4). In this way, the CWC band provides more flexible bounds 

that follow the matching sequences behavior. Figure 5 shows three CWC bands. The first 

matching sequence (dark grey) falls within the first CWC band, while the second 

sequence falls in the third CWC band, hence both being successfully detected as 

matching. A single CWC band is an envelope created around the pattern (the left 

allowed time scaling value being equal to the right allowed time scaling value); the size 

of the envelope is a user-defined parameter. The CWC bands have the additional 

advantage that they can be computed with negligible additional cost.  

 

 

Figure 4: Sakoe-Chiba band (shaded area), and two 

candidate matching sequences (dark grey) falling 

outside the constraint envelope. 

 

Figure 5: The same two candidate matching 

sequences as Figure 4, and three overlapping CWC 

bands. 

The CWC bands can be added to the SPRING algorithm, on top of the DTW. Due to 

lack of space, in the following, we only discuss the application of CWC on top of 

streaming LCSS. 

 

 



3.1.2. LCSS in a Streaming Context 

LCSS provides a better support for noise compared to DTW, as we mention in Section 

2.  Equation (3) shows the LCSS computation of two sequences, A and B, of length n 

and m, respectively. The parameter γ is a user-defined threshold for the accepted 

distance. We now derive a novel formula for the streaming version of LCSS. 
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Since LCSS and DTW have similar matrix-based dynamic programming solutions 

(for the offline case), one may think that they also share the idea of the STWM matrix, 

thus, leading to a simple solution of replacing DTW with LCSS in the SPRING 

framework.  Unfortunately, this is not a suitable solution: simply plugging LCSS 

Equation (3) into SPRING introduces false negatives and degenerate time scaled 

matches. The false negatives occur because the otherwise clause in Equation (3) selects 

the maximum of the two preceding sequences irrespective of the portion of the δ time 

scaling they have consumed. Therefore, it is possible that the selected sequence may 

have a higher LCSS value than the discarded sequence, but has already exceeded its 

allowed time scaling limit. The problem is that even though such a sequence will never 

become a matching sequence (because of its length), it may prevent a valid sequence 

from becoming a match.  

To address this problem, we formulate the new CWC band constrained LCSS 

Equation (4) (due to lack of space, we omit the intermediate steps of deriving these new 

equations). In Equation (4), δ is a user defined parameter defining the maximum time 

scaling limit for the CWC bands, which corresponds to the size of the bands. The LCSS 

count is incremented only if the current pattern and stream value match, that is, they 

have a point to point distance less than the threshold γ, and the preceding diagonal 

LCSS falls within the CWC band (i.e., belongs to the allowed envelope area). Equation 

(5) describes the corresponding update of the starting time. 
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3.1.3. Multilevel Summarization  
 

When trying to identify candidate matches of a given pattern in a streaming time series, 

we are bound to waste a significant amount of computations on testing subsequences 

that in fact cannot be a solution. In this subsection, we describe how we can effectively 

prune the search space by using a multilevel summarization structure on top of the 

 

 

 

( 1, 1) ( , ) ( 1, 1)

( , ) ( 1, ) ( , ) ( 1, )

( , 1) ( , ) ( , 1)

s t i if l t i l t i

s t i s t i if l t i l t i

s t i if l t i l t i

    


   


  



streaming time series. Figure 6 illustrates the idea of a multilevel hierarchical summary 

(levels 1 and 2 in this figure), depicted in black-colored lines, of a streaming time series 

(level 0), depicted in black-colored points. 

In this study, we use PAA
1
 [18] as a summarization method, because of its simplicity, 

effectiveness, and efficiency in a streaming environment. However, other 

summarization methods can also be used. The algorithm operates in an incremental 

fashion. It processes the incoming values in batches and waits till the number of data 

points received is sufficient to build a complete new top level approximation segment, 

at which point the approximations of all levels are computed at once. 

The benefit of employing this hierarchical summary structure is that the similarity 

matching can be executed on the summaries of the streaming time series, instead of the 

actual values, whose size is considerably larger. If the algorithm finds a candidate 

match at a high level of approximation, then it also checks the lower levels, and if 

necessary the actual stream as well. 

Note that since we are using an elastic distance measure (i.e., LCSS), it is possible 

that the matching at lower approximation levels, and especially at the actual pattern or 

stream, may yield different starting and ending points. If not treated properly, this 

situation may lead to false negatives.  

 

 

Figure 6: Multilevel Summarization 

 

 
Figure 7: Sequence Placement in Streaming 

Window at t δ 

First of all, the window size must be at least as big as the searched pattern. Then, 

since we use elastic matching, a candidate matching sequence can be extended up to δ 

data points in both directions (i.e., to the left and right), which gives the following 

inequality for the window size (refer to area “A” in Figure 7):  WindowSize ≥ 

patternLength + 2δ. When a candidate matching sequence is detected, we must 

determine its locally optimal neighbour. For this purpose, and since δ is the maximum 

allowed time scaling, the window has to contain an extra δ data points (depicted as “B” 

in Figure 7). Finally, one more data point is needed for the optimality verification of the 

candidate sequence. The above statements lead to the following inequality for the 

window size:  WindowSize = patternLength +3 δ +1.  

 

                                                           
1 PAA (Piecewise Aggregate Approximation) divides the time series into N equal segments and approximates 

each segment by its average value.  

 



3.2. SSM algorithm 

3.2.1. Probabilistic Error Modelling  

As all approximations result in loss of information, multilevel summarization is also 

expected to lead to some loss of information. Therefore, it is highly probable that the set 

of candidate matches found at the highest level may not contain all the actual matches. 

One way of addressing this problem is by lower bounding the distance of the time 

series. Even though this is possible, this approach would lead to a computationally 

expensive solution. Instead, we propose an efficient solution based on the probability 

with which errors occur in our distance computations.  

We randomly choose a sample of actual data point sequences from the streaming 

window. For all the sequences in the sample, we compute the error in the distance 

measure introduced by the approximation (by comparing to the distance computed 

based on the raw data). Then, we build a histogram that models the distribution of these 

errors, the Error Probability Distribution (EPD). Evidently, errors are smaller for the 

lower levels of approximation, since they contain more information, and are 

consequently more accurate than the approximations at higher levels. 

The pruning decision of a candidate matching sequence is based on the EPD: we 

define the error-margin as 1-3σ (standard deviations) of the EPD. Intuitively, the error-

margin indicates the difference that may exist between the distance computation based 

on the summarization levels and the true distance. Using an error-margin of 3σ, we 

have a very high probability that we are going to account for almost all errors.  

Then, if the distance of a candidate sequence computed at one of the approximation 

levels is larger than the user-defined threshold ε, but less than ε + error-margin, this 

sequence remains a candidate match (and is further processed by the lower 

approximation levels).  

 

3.2.2. Change-Based Error Monitoring 

The data stream characteristics change continuously over time and EPD must reflect 

them. For this purpose, we set up a technique allowing the effective streaming 

computation of EPD. The most expensive part of the EPD computation is the 

computation of the LCSS distance between the pattern and all the samples. The 

continuous computation of EPD can be avoided by setting up a mechanism that will 

trigger the EPD re-computation only when the data distribution changes significantly.  

In the work, we propose to use a technique that is based on the mean and variance of 

the data. This technique was proven to be effective [19] [20] and can be integrated in a 

streaming context. Though, more complex techniques for detecting data distribution 

changes can be applied as well [21]. 

Our algorithm operates as follows. When sufficient data arrives in the stream 

window, the EPD is constructed. Then the mean and the variance of the original 

streaming data are computed and registered together with the error margins. We 

consider that the EPD needs to be updated (i.e., reconstructed), only when the mean and 

variance of the current window changes by more than one standard deviation compared 

to the previous value. We will call this technique change-based error monitoring. 

The only remaining question to answer is how often to sample. If we look for a 

pattern of size k within a streaming window of size n, there are (n – k + 1) possible 

matching sequences for the first element of the window, (n – k + 1 - 1) possible 

matching sequences for the second element of the window and so on until there is 1 



single possible matching sequence for the n-k element of the window. Therefore there 

are (n–k+1)+(n–k+1-1)+(n–k+1-2)+...+1=(n–k+1)*(n–k+2)/2 possible matching 

sequences.  

Given the large number of possible matching sequences, even a very small sampling 

rate (i.e., less than 1%) can be sufficient for the purpose of computing EPD. In the 

following section, we experimentally validate these choices. 

4. Experimental Evaluation 

All experiments were performed on a server configured with 4xGenuine Intel Xeon 3.0 

GHz CPU, and 2 GB RAM, running the RedHat Enterprise ES operating system. The 

algorithm was coded in Matlab. 

We used forty real datasets with diverse characteristics from the Time Series 

Repository [22] of the University of California, Riverside
2
. Patterns are randomly 

extracted from the streams, and the experiments are organized as follows. A dataset 

consists of several streams and several patterns. An experiment carried out on a single 

dataset means that each pattern in that dataset is compared with each stream in the same 

dataset. All experiments are carried out with patterns of length 50 (unless otherwise 

noted), and we report the averages over all runs, as well as the 95% Confidence 

Intervals (CIs). 

We use precision and recall to measure accuracy: precision is defined as the ratio of 

true matches over all matches reported by the algorithm; recall is the ratio of true 

matches reported by the algorithm over all the true matches. 

Due to lack of space, we only report the most important experimental results. All the 

results, as well as a detailed description of the algorithms, including the SSM version 

with DTW and all the pseudocodes, can be found in the full version of this paper
3
. 

 

4.1. Approximate Similarity Matching  

We first examine the performance of the naiveSSM algorithm. In this case, we use up 

to 5 levels for the multilevel summarization. The performance when using only some of 

these 5 levels of the summarization is lower (these results are omitted for brevity). This 

is because level skipping results in more matches to be processed at lower levels, where 

processing is more expensive. We also did not observe any significant performance 

improvements when considering more than 5 levels. 

Figure 8 shows the precision, recall and runtime of naiveSSM as a function of the 

pattern size, which ranges from 50 to 500 data points. We report results for naiveSSM 

for the cases where we have 3 (PAA3) and 5 (PAA5) approximation levels. We observe 

that naiveSSM scales linearly with the length of the patterns. The precision and recall 

results show that even though precision remains consistently high (averaging more than 

98%), recall is rather low: naiveSSM using LCSS averages a recall of 90%.  

These results confirm that the errors introduced by the approximation may lead to 

some matches being missed. Precision numbers are nevertheless high, because every 

candidate match is ultimately tested using the raw data as well. Finally, the results show 

that using 5 levels for the summarization leads to higher accuracy, but also higher 

                                                           
2
 A detailed list of the datasets we used is available as an anonymous online resource: 

http://tinyurl.com/42vlss5 
3
 Available as an anonymous online resource: http://tinyurl.com/3z7x27z 



running times (Figure 8(right)). 

 

Figure 8: Precision (left), Recall (middle), and Run Time (right) for different variants of naiveSSM. 

 

4.2. Compensating for Approximation Errors  

We now present results for SSM, which aims to compensate for the errors introduced 

by the multilevel summarization, and thus, lead to higher recall values.  

Table 1 shows the precision and recall numbers achieved by SSM with continuous 

and with change-based error monitoring, as a function of the error-margin. The results 

show that precision is in all cases consistently above 99%, while recall is over 95%, a 

significant improvement over naiveSSM. We also observe that SSM with change-based 

error monitoring performs very close to SSM with continuous monitoring (which is 

much more expensive). This validates our claims that the change-based error 

monitoring is an effective and efficient alternative to continuous error monitoring for 

producing high quality similarity matches. Finally, we observe that by increasing the 

error-margin from 1σ to 3σ, recall is only slightly improving. As expected, precision is 

unaffected.  

We now study the role of the sampling rate on performance. Remember that this is 

the rate at which we sample the stream sequences during change-based error-

monitoring, for computing the distance error introduced by the approximation and for 

building the EPD. In these experiments, we used an error-margin of 1σ, and sampling 

rates between 0.1% and 10%. Figure 9 presents the runtime of SSM as a function of the 

sampling rate. The results demonstrate that SSM with change-based error monitoring 

(curve with black squares) runs almost three times faster than the current state of the art 

(red, constant curve): SPRING (for fairness, with LCSS and CWC bands). Note that the 

time performance of SSM with continuous error monitoring (curve with dark blue 

circles) is better than only for very low sampling rates (0.1%). 

It is also interesting to note that SSM performs very close to the lower bound 

represented by the naiveSSM algorithm (light grey curve), which does not use any error 

monitoring at all, and suffers in recall, averaging less than 90% (refer to Figure 8). In 

contrast, SSM achieves a significantly higher recall value, more than 95% (refer to 

Table 1). We note that the precision and recall of SSM with change-based monitoring 

remain stable, 99% and 96%, respectively, as the sampling rate varies between 0.1%-

10% (results omitted for brevity). Overall, we can say that the SSM algorithm with 

change-based error monitoring is not only time efficient, but also highly accurate even 

when the error margin is small (1σ). 



In the final experiment, we measure the number of distance computations performed 

by SSM with change-based error monitoring, using 3 levels of summarization. 

(Changing the sampling rate between 0.1%-10% does not affect the results.) We 

measured separately the number of computations for each level of summarization, 

including level 0: the raw data. The results show that the largest percentage of 

computations, 66%, occur at level 0 (18% at level 1, 12% at level 2, and 4% at level 3). 

These results signify that future attempts to further improve the runtime of the 

algorithm should focus on techniques for more aggressive, early (i.e., at higher levels) 

pruning of the candidate sequences.  

 

 SSM 

continuous 

SSM  

change-based 

error- 

margin 
Pr R Pr R 

1σ 0.99 0.95 0.99 0.95 

2σ 0.99 0.96 0.99 0.96 

3σ 0.99 0.97 0.99 0.96 

Table 1: Precision and Recall for SSM 

with continuous and change-based error 

monitoring, as a function of the error 

margin. 
 

Figure 9: Runtime vs Sample Percentage for SSM 
  

5. Conclusions 

Similarity matching in streaming time series has recently attracted lots of interest. In 

this work, we propose a new algorithm, able to efficiently detect similarity matching in 

a streaming context that is both scalable and noise-aware.  

Our experiments on forty real datasets show that the proposed solution runs (almost) 

three times faster than previous approaches. At the same time, our solution exhibits 

high accuracy (precision and recall more than 99% and 95%, respectively), and ensures 

that we do not obtain degenerate answers, by employing the novel CWC bands.  
 

6. References 

 

[1]  "Airoldi E., Faloutsos C., Recovering latent time-series from their observed sums: 

network tomography with particle filters, KDD 2004".  

[2]  " Borgne Y.-A. L., Santini S., Bontempi G., Adaptive model selection for time 

series prediction in wireless sensor networks. Signal Process, 87(12):3010–3020 

2007".  

[3]  "Zhu Y., Shasha D., Statstream: statistical monitoring of thousands of data streams 

in real time, VLDB 2002".  

[4]  "Wei, L., Keogh, E. J., Herle, H. V., and Neto, A. M. Atomic Wedgie: Efficient 

Query Filtering for Streaming Times Series. ICDM 2005, 490-497".  

[5]  "Capitani, P., and Ciaccia, P. Warping the time on data streams, Data and 



Knowledge Engineering (62) 2007, 438–458".  

[6]  "Vlachos, M., Gunopulos, D., and Kollios, G. Discovering similar 

multidimensional trajectories. ICDE 2002, 673–684".  

[7]  "Sakurai, Y., Faloutsos, C., and Yamamuro, M. Stream Monitoring under the Time 

Warping Distance. ICDE 2007".  

[8]  "Ratanamahatana, C. A., and Keogh, E. Everything you know about Dynamic 

Time Warping is Wrong, Third Workshop on Mining Temporal and Sequential 

Data, 2004".  

[9]  "Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., and Keogh, E. Querying 

and Mining of Time Series Data: Experimental Comparison of Representations and 

Distance Measures, VLDB 2008".  

[10]  "Stan Salvador and Philip Chan, FastDTW: Toward Accurate Dynamic Time 

Warping in Linear Time and Space, in Intelligent Data Analysis 11(5), 2007 561-

580".  

[11]  "Sakoe, H. and Chiba, S. Dynamic programming algorithm optimization for 

spoken word recognition, ASSP 1978".  

[12]  "Itakura, F. Minimum Prediction Residual Principle Applied to Speech 

Recognition, ASSP-23, 1975, 52-72".  

[13]  "Agrawal, R., Faloutsos, C., and Swami, A. N. Efficient Similarity Search in 

Sequence Databases. FODO 1993, 69-84".  

[14]  "Chen, Y., Nascimento, M. A., Ooi, B. C., and Tung, A. K. H. SpADe: On Shape-

based Pattern Detection in Streaming Time Series. ICDE 2007".  

[15]  "Marascu A., Masseglia F., Mining Sequential Patterns from Data Streams: a 

Centroid Approach, J. Intell. Inf. Syst. Volume 27, number 3, 2006, pages 291-

307".  

[16]  "Harada, L. Detection of complex temporal patterns over data streams. Information 

Systems 29(6) 2004, 439–459".  

[17]  "Lian, X., Chen, L., Yu, J. X., Wang, G., and Yu, G. Similarity Match Over High 

Speed Time-Series Streams. ICDE 2007".  

[18]  "Keogh E. J., Chakrabarti K., Pazzani M.J., and Mehrotra S., Dimensionality 

Reduction for Fast Similarity Search in Large Time Series Databases. Knowl. Inf. 

Syst., 3(3), 2001.".  

[19]  "Babcock, B., Datar, M., and Motwani, R. Sampling From a Moving Window 

Over Streaming Data, SODA, 2002".  

[20]  "Babcock, B., Datar, M., Motwani, R., and O’Callaghan, L. Maintaining Variance 

And k-medians Over Data Stream Windows PODS, 2003, 234–243".  

[21]  "Ben-David, S., Gehrke, J., and Kifer, D. Identifying Distribution Change in Data 

Streams. In VLDB, Toronto, ON, Canada, 2004".  

[22]  "UCR: Time Series Data Archive. 

http://www.cs.ucr.edu/~eamonn/time_series_data/".  

 

 


