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Multiple Shapes Reconstruction by means of Multi-

region Level Sets

M. Benedetti, D. Lesselier, M. Lambert, and A. Massa

Abstract

In the framework of inverse scattering techniques for microwave imaging, this paper pro-

poses an approach based on the integration between a multi-scaling procedure and the level-

set-based optimization in order to properly deal with the shape reconstruction of multiple

and disconnected homogeneous scatterers. The effectiveness and robustness of the pro-

posed approach is assessed against both synthetic and experimental data. A selected set of

results concerned with complex shapes is presented and discussed.

Key Words - Microwave Imaging, Inverse Scattering, Level Set, Multiscale Reconstruction,

Multiple Objects, Homogeneous Scatterers.
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1 Introduction

Short-range remote sensing methods are aimed at detecting targets buried in an inaccessible host

domain as in nondestructive evaluation and testing (NDE/NDT) of industrial artifacts [1], sub-

soil inspection [2], biomedical imaging (BI) [3], and through-wall imaging (TWI) [4]. In order

to effectively image the investigation area,X-rays, ultrasonics, eddy currents, and microwaves

have been used. Microwave imaging techniques seemed to be very effective because of the

ability of electromagnetic fields at centimeter wavelengths to penetrate non-ideal conductors

[5]. Moreover, they usually require low power levels and arequite inexpensive. Furthermore,

microwave imaging techniques do not need a mechanical contact between object and source

and, unlike ultrasonics, a couplant is not usually necessary. On the other hand, they are opera-

tor/patient friendly [6] while a great care should be exercised when usingX-rays.

Among microwave imaging modalities, inverse scattering techniques have been employed to

obtain quantitative reconstructions of the domain under test in both 2-D [7]-[15] and 3-D ge-

ometries [16]-[20]. Notwithstanding the promising results [16]-[22], further efforts are still

necessary to allow a massive employment in real applications. As a matter of fact, the under-

lying mathematical model is usually characterized by several drawbacks, such as ill-posedness

[23] and non-linearity [24], that limit their feasibility because of the reduced achievable spatial

resolution and the non-negligible computational costs. Tomitigate the ill-posedness, multi-

view/multi-illumination systems are adopted to collect a sufficient amount of data. However,

the information available from the scattering experimentsis upper-bounded and the number

of independent data results lower than the dimension of the solution space [25][26]. There-

fore, suitable strategies aimed at effectively exploitingthe scattering data must be employed to

increase the accuracy of the reconstruction process.

A possible solution is the use of multi-resolution strategies. The idea is that of using an en-

hanced spatial resolution only in those regions of interest(RoIs) where the unknown scatterers

are supposed to be located [27] and/or where discontinuities occur [28][29]. Recently, adap-

tive multi-step approaches have been implemented to iteratively increase the spatial resolution

through a “zooming” procedure [30][31]. Such a technique also keeps, during the inversion

procedure, a fixed low ratio between unknowns and data in order to minimize the occurrence of

local minima [26].
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On the other hand, it should be also noticed that the lack of information causing the ill-posedness

can be also reduced by exploiting when/if available thea-priori knowledge on the scenario un-

der test. In several applications, the electromagnetic properties of the unknown targets are

known and the objects lie within a known host medium. Moreover, depending on the required

degree of accuracy, more complex scenarios can be approximated by a set of homogeneous

regions with different shapes and parameters [32]. Under such an hypothesis and by assuming

a suitable description of the Green’s operator [33], the imaging problem reduces to the recon-

struction of the support of a set of homogeneous regions (i.e., a shape retrieval procedure).

Parametric techniques aimed at describing the unknown object by means of a finite set of suit-

able descriptors [34][36] or more sophisticated approaches based on evolutionary-controlled

spline curves [37]-[38], shape gradients [39][40], level-sets [43]-[48], or binary profile [49][50]

have been proposed. On the other hand, the support of simply-connected scatterers [51] can be

also determined by means of the so-calledqualitativemethods [51]-[53].

As regards the level set description, it allows one to model complex shapes or regions in a

simpler way, unlike pixel-based or parametric-based strategies. Within such a framework, an

innovative strategy based on the integration of the iterative multi-scaling approach (IMSA) [30]

and the level-set (LS) representation [45][46] has been recently proposed [54] to fully exploit

the availablea-priori information (e.g., the homogeneity of the scatterer) and the information

content from the scattering measurements. Such an approach(calledIMSA-LSin the following)

has been validated in various scenarios characterized by one or multiple scatterers with complex

shapes. Despite the accuracy of the reconstruction resultsand the reduction of the computational

burden with respect to the standard strategy [45], such an implementation still needs some

improvements to better deal with multiple disconnected objects. As a matter of fact, the spatial

accuracy in resolving disconnected objects can be enhancedby associating to each scatterer a

differentRoI and processing the whole investigation domain as a collection of domains with

different discretizations instead of using, at each reconstruction step, a unique grid within the

whole scenario under test.

This paper focuses on the qualitative retrieval of multiplescatterers by adding some innovative

features to the single-region implementation [54]. More specifically, a customized mathemat-

ical formulation for dealing with multiple disconnectedRoIs, but also keeping the reliability
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and efficiency of the previous approach in retrieving singleshapes, is presented to define an

unsupervised multi-scaling multi-region inversion procedure (IMSMRA-LS).

The outline of the paper is as follows. Section 2 presents themathematical formulation of the

multi-region strategy. A selected set of numerical resultsfrom the reconstructions of simple as

well as complex shapes is presented and discussed in Sect. 3.Finally, some conclusions are

drawn (Sect. 4).

2 Mathematical Formulation

With reference to a 2-D scalar electromagnetic inverse scattering problem [55], let us consider

a set ofP homogeneous obstacles with supportsD(p), p = 1, ..., P , located in an inaccessible

investigation domainDI and characterized by known relative permittivityε and conductivity

σ (Fig. 1). Such a scenario is probed by a set ofV transverse magnetic (TM) plane waves

whose electric fieldζv(r), v = 1, ..., V , r = (x, y), is directed along thêz coordinate and

parallel to the axis of the cylindrical geometry. The scattered field,ξv(r) = ξv(r)ẑ, is collected

at M measurement points located in a region, called observationdomainDO, external to the

investigation domain.

In order to model the scenario under test, let us define the contrast functionτ(r)

τ(r) =















τ r ∈ D(p), p = 1, ..., P

0 otherwise
(1)

whereτ = (ε − 1)− j σ
2πfε0

, f andε0 being the working frequency and the background permit-

tivity, respectively. As regards the scattering phenomena, the interactions between objects and

fields are described by the following integral equations

ξv (rm) =
(

2π

λ

)2 ∫

DI

τ (r′) Ev (r′) G2D (rm/r′) dr′, rm ∈ DO (2)

Ev (r) = ζv (r) +
(

2π

λ

)2 ∫

DI

τ (r′) Ev (r′) G2D (r/r′) dr′, r ∈ DI (3)

whereλ is the background wavelength,Ev is the total electric field, andG2D (r/r′) = − j

4
H

(2)
0

(

2π
λ
‖r − r′‖

)
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is the free-space 2-D Green’s function,H
(2)
0 being the second-kind0-th order Hankel function.

As far as the qualitative imaging of a single scatterer is concerned, the inverse scattering prob-

lem described by (2) and (3) has been solved in [54] by means ofthe IMSA-LS.The unknown

shape and position of the target have been retrieved by nesting aLS reconstruction procedure

into a multi-step process (s being the step index). More in detail, at each step of theIMSA, the

iterative (k(s) being the iteration index)LSprocedure minimizes the cost functionΘ

Θ
{

φ
(s)
k

}

=

∑V
v=1

∑M
m=1

∣

∣

∣ℑm,v

{

φ
(s)
k

}

− ξv
meas (rm)

∣

∣

∣

2

∑V
v=1

∑M
m=1 |ξ

v
meas (rm)|2

, (4)

which quantifies the discrepancy between the measured scattered fieldξv
meas (rm) and the re-

constructed fieldℑm,v

{

φ
(s)
k

}

computed from the current estimate of the level set function, φ(s)
k .

In order to properly take into account the presence of multiple disconnected scatterers, an en-

hancement and an extension of theIMSA-LSare necessary. Besides a suitable generalization

of the IMSA − LS architecture proposed in [54] to deal with single scatterers, the presence

of multiple RoIs is addressed by defining the following new procedural operations iteratively

repeated at each steps:

• Multi-Region Level Set Representation, aimed at defining a suitable representation of

the problem unknown when consideringQ(s) regions of interest,R(q), q = 1, ..., Q(s),

s = 1, ..., S;

• Termination Procedure, aimed at stopping theLS-based iterative minimization performed

at each steps;

• RoI Detection, aimed at determining the numberQ(s+1) and the extension of theRoIs at

the (s + 1)-th step starting from the reconstructed shape at the previous one.

2.1 Multi-Region Level Set Representation

At each steps of theIMSAand according to the multi-region multi-resolution representation, a

higher resolution level (i = s) is adopted to describe the level set functionφ(s) (r) only inside

theRoIs, R(q), q = 1, ..., Q(s), while the same spatial accuracy adopted at the (s − 1)-th step

is kept unaltered in the remaining part ofDI . More in detail, ifs = 1, the unique (Q(1) = 1)
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region of interestR(1) extends to the whole investigation domain,R(1) ≡ DI , and the level set

function is then expressed as the followingN-elements (N being the number of discretization

subdomains chosen according to the degrees-of-freedom of the scattered field [25][26]) linear

combination

φ(1) (r) =
N

∑

n=1

φnB (rn) (5)

whereB (rn) is a rectangular basis function whose support is centered atthe n-th partition

subdomain ofR(1), R(1)
n . Otherwise (s > 1), each region of interestR(q), q = 1, ..., Q(s),

is partitioned intoN (q) sub-domains,
∑Q(s)

q=1 N (q) = N , and the multi-region multi-resolution

representation of the level set function is adopted (Fig. 1)

φ(s) (r) =
s

∑

i=1

Q(i)
∑

q=1

N(q)
∑

n=1

φ(q)
n B

(

r(q)
n

)

(6)

whereB
(

r(q)
n

)

is equal to1 if r(q)
n ∈ R(q)

n and0 otherwise. Moreover,φ(q)
n indicates the constant

value of the level set function within the sub-domainR(q)
n of the q-th region of interest (q =

1, ..., Q(s)). As regardsN (q), it is defined as

N (q) =







N
A(q)

∑Q(s)

q=1 A(q)







 (7)

to have the same spatial resolution in everyRoIs,⌊·⌋ being the floor function andA(q) is the area

of R(q). According to the multi-region multi-resolution representation of the level set function,

Equation (2) assumes the following form

ℑm,v

{

φ(s)
}

=
s

∑

i=1

Q(i)
∑

q=1

N(q)
∑

n=1

τ
[

1 − H
{

φ(s)
(

r(q)
n

)}]

B
(

r(q)
n

)

Ev
(

r(q)
n

)

G(i)
(

rm/r(q)
n

)

rm ∈ DO

(8)

whereH { . } is the Heaviside step function equal to0 if its argument is negative and0 1 other-

wise, and

G(i)
(

r/r(q)
n

)

= G2D

(

r/r(q)
n

)

A(q)
n , r(q)

n ∈ R(q)
n , q = 1, ..., Q(i), i = 1, ..., S. (9)

Moreover, the value ofEv
(

r(q)
n

)

is numerically determined by solving (3) in its multi-scale

form
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Ev
(

r(q)
n

)

=
s

∑

i=1

Q(i)
∑

q=1

N(q)
∑

n=1

ζv
(

r(q)
p

) [

1 − τ
[

1 − H
{

φ(s)
(

r(q)
n

)}]

G(i)
(

r(q)
n , r(q)

p

)]−1
, r(q)

n ∈ DI

(10)

with a standard direct solver.

2.2 Termination Criterion

At each steps, theLS-based inversion is stopped when either (a) the reconstruction is “stable”

or (b) a maximum number of iterations is reached (k = K) or the value of the cost function (4)

is smaller than a fixed thresholdγ [i.e., Θ
{

φ
(s)
k

}

< γ, k = kopt]. As far as the stability of the

reconstruction is concerned, it is verified when the following conditions hold true:

• Shape Stability - Unlike the standard pixel-based criterion(1) used for quantitative imag-

ing, a technique based on the Hausdorff distanceL [56][57]-[59] is adopted to properly

deal with shape reconstruction. It is based on the computation of the value of the Haus-

dorff distance between the contour of the(k − h)-th estimated shape inR(q), ∂D
(q)
k−h, and

the current one,∂D
(q)
k , for a fixed number of iterations,h = 1, ..., KL

Lkh = max{maxaminb [|ra − rb|] , maxbmina [|ra − rb|]} (11)

whererb, b = 1, ..., B
(q)
k , andra, a = 1, ..., B

(q)
k−h, are the centers of the sub-domains to

which the contours∂D
(q)
k [i.e., φ

(s)
k (rb) = 0] and ∂D

(q)
k−h [i.e., φ

(s)
k−h (ra) = 0] belong,

respectively. Then, the stability takes place when

maxh=1,...,KL

{

Lhk

ℓ(q)

}

< γL (12)

γL being a user-defined threshold andℓ(q) =
√

2 A(q)

N(q) is the spatial resolution in eachRoI,

R(q), q = 1, ..., Q(s) [Fig. 2(a)];

(1) The standard pixel-based stability criterion based on the comparison between the pixels of the reconstruc-
tions at two different iterations [54] is not suitable forLS-based algorithms, since when a “blinking” behavior
arises during the iterative process without significantly modifying the estimated shapes (i.e., a small amount of
pixels of the reconstruction intermittently turns up), thestability condition does not hold true.
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• Cost Function Stationariness - Likewise [54], the cost function is assumed to be station-

ary when its variations are numerically negligible within awindow ofKΘ iterations. This

is assessed by evaluating the variance of the valuesΘ
{

φ
(s)
h

}

, h = 1, .., KΘ.

If the convergence of the iterative process is successful, the process is stopped by settingφ(s) =

φ
(s)
k and performing theRoIs detection. Otherwise, the iteration index is increased (k → k +

1) and the level set function is updated within theq-th RoI by solving the Hamilton-Jacobi

equation

φ
(s)
k

(

r(q)
n

)

= φ
(s)
k−1

(

r(q)
n

)

− ∆t
(s)
k v

(s)
k−1

(

r(q)
n

)

Ψ
{

φ
(s)
k−1

(

r(q)
n

)}

, r(q)
n ∈ R(q), q = 1, ..., Q(s)

(13)

whereΨ {·} is the numerical Hamiltonian andv indicates the velocity function [54]. Further-

more,∆t is the time-step chosen according to the Courant-Friedrich-Leroy condition [41][42]

and defined as follows

∆t
(s)
k =

ℓ(q)

maxr
{

v
(s)
k (r)

} . (14)

2.3 RoIs Detection

Until the convergence [54] (s = sopt), theRoIs at the(s + 1)-th step are defined as the rectan-

gular regionsR(q), q = 1, ..., Q(s+1), containing the contours∂D(q), q = 1, ..., Q(s+1). In order

to determine the locations and extensions of theRoIs, the definition of closed curves in [60] is

exploited to overcome the limitations of other and well-known topology theories in dealing with

practical purposes. More specifically, starting from the distribution of the level set function at

thes-th step,φ(s) (r), an estimate of theq-th object contour,∂D(q), q = 1, ..., Q(s+1), is given

by determining the set of discretization domains whose locationsrb, b = 1, ..., B
(q)
k , satisfy the

following conditions [60]

φ(s) (rb) = 0

0 < |xb − xb+1| + |yb − yb+1| ≤ 2ℓ(q)
. (15)
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When the coordinates(xb, yb) of the B
(q)
k subdomains belonging to the8-connected simple

closed curves [60] that edge the targets [Fig. 2(b)] are available, theRoIs are then identified by

computing their centers,r(q), q = 1, ..., Q(s+1),

x(q) =

∑B(q)

b=1 xb

B(q)
, y(q) =

∑B(q)

b=1 yb

B(q)
, (16)

and the corresponding sides,L(q)
x , L(q)

y , q = 1, ..., Q(s+1),

L(q)
x = max

b,a∈[1, B(q)] [|xb − xa|] , L(q)
y = max

b,a∈[1, B(q)] [|yb − ya|] . (17)

3 Numerical Validation

To show the effectiveness and limitations of the proposed approach, this section discusses the

results from a selected set of inversions concerned with different geometries including a set of

experimental data collected in a controlled environment [61].

3.1 Analysis of the Robustness

The first test case is concerned with the reconstruction of three off-centered scatterers with

complex shapes. The objects whose contours are indicated bythe red dashed lines in Figs.

3(a)-3(c)-3(e) have known dielectric permittivity equal toε = 1.8. Such a scenario has been

illuminated fromV = 40 directions,θv = 2π (v−1)
V

, v = 1, ..., V , and the scattered field has been

collected atM = 40 (i.e.,M = V since each probe can act as electromagnetic source/receiver)

equally-spaced angular locations on a circleρ = 5λ in radius external to the investigation

domainL = 5 λ-sided. The number of measurement points has been chosen to take into account

the degrees of freedom of the scattered fields,which dependson the size of the investigation

domain [25], and to collect all the information “coded” in the measured data.

As far as the initialization of theIMSMRA-LStechnique is concerned, a centered circular scat-

terer of radiusλ
2

and permittivityεa = ε has been chosen as guess solution and theRoI has

been partitioned intoN (1) = 29 × 29 sub-domains according to the guidelines suggested in
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[26] to minimize the occurrence of local minima. Moreover, the maximum number ofRoIs

has been set toQ = 10. Concerning the stopping criterion, the following thresholds have been

adopted:S = 5 (maximum number of steps),K = 500 (maximum number of iterations), and

KΘ = KL = K
10

(stability counters). The choice of the optimization threshold γL strongly

influences the trade-off between reconstruction accuracy and convergence rate of the iterative

process. More specifically,γL = 0 forces the “Shape Stability” condition to hold true only

when the current shape is equal to those estimated at the(k − h)-th, h = 1, ..., KL, previous

iterations. On the contrary, a high value ofγL may cause a premature convergence of the itera-

tive process to a wrong solution. A good trade-off between convergence rate and reconstruction

accuracy is generally obtained by setting1 < γL < 2 (i.e., the Hausdorff distance betweenℓ(q)

and2ℓ(q)). After a detailed heuristic analysis (not reported here for want of space),γL has been

set to1.5 throughout the numerical validation.

As a representative result, Figure 3 shows the reconstructed profile in correspondence with

blurred data characterized by a signal-to-noise-ratio (SNR) value

SNR = 10log

{

∑V
v=1

∑M
m=1 |ξ

v (rm)|2

∑V
v=1

∑M
m=1 |µ

v,m|2

}

(18)

equal toSNR = 20 dB, µv,m being a complex Gaussian random variable with zero mean

value. At the first step [s = 1 - Fig. 3(a)], the supports of the scatterers are inaccurately

estimated although their centers turn out to be close to the actual ones. Thanks to enhanced

spatial resolution within theRoIs, the reconstruction accuracy improves at the successive step

[s = 2 - Fig. 3(c)] as confirmed by the quantitative indexes in Tab. I,δ and∆ being the

values of the localization error and the support estimationerror [30][36], respectively. At the

convergence (s = sopt = 3), Q(s) = 3 RoIs discretized intoN (1) = 18 × 18, N (2) = 15 × 15,

andN (3) = 16 × 16 cells are properly identified and the object shapes fairly retrieved. When

reducing the numberV of views, the amount of information is not enough to reach thesame

reconstruction accuracy. As a matter of fact, the average reconstruction errors,< δ > and

< ∆ >, get sensibly worse asV decreases (e.g.,< δ >V =30= 4.2 × 10−2, < ∆ >V =30=

4.9 × 10−3; < δ >V =20= 5.2 × 10−2, < ∆ >V =20= 9.0 × 10−3; < δ >V =10= 8.7 × 10−2,

< ∆ >V =10= 1.93 × 10−2).

For completeness, the plot of the multi-resolution level set φ(s) at different steps is shown [s = 1
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- Fig. 3(b), s = 2 - Fig. 3(d), ands = sopt = 3 - Fig. 3(f )] and the behavior of the cost function

Θ
(s)
k versus the iteration indexk is reported in Fig. 4. It is worth to notice that the level set

distribution within the investigation domain is quite different from the object function behavior

and it determines, instead of the distribution of the objectfunction itself, the evolution of the

reconstruction during the iterative process. The final results and the corresponding level set

functions for theIMSA-LS[54] [Figs. 5(a)-(b) - N = 29 × 29] and theBare LS[Fig. 5(c)-

(d) - N = 50 × 50] are also given for a comparative analysis. From the comparison, the

reconstructions without the multi-region detection appear to be less accurate and the decrease

of the misfit function worsen (Fig. 4). The single-region approach does not perform an accurate

data inversion, although the scatterers are still well localized [Fig. 5(a)]. As a matter of fact,

the actual objects are too far to allow a suitable allocationof the unknowns for achieving a

satisfactory spatial resolution within the uniqueRoI and the multi-step process stops ats =

sopt = 1. On the other hand, theBare LSis able to detect only two scatterers, while the third

one is fully omitted. A summary of the results in terms of the quantitative error indexes is given

in Tab. I.

As regards the data fitting, the plots of the misfit function inFig. 4 show a similar behavior

between theIMSA-LSand the multi-region strategy only at the initial step just during the first

iterations, while the multi-region implementation guarantees a better fitting with the scattering

data. As expected, a more significant mismatch is present in correspondence with theBare LS

inversion because of the failure of the approach in detecting the hollow cylinder.

Concerning the computational issues, since the complexityof the algorithm is of orderO
(

2 ×
[

η(s)
]3

)

,

η(s) =
∑Q(s)

q=1 N (q), because of the solution of two forward problems at each iteration, the burden

reduces ass increases (η(1) = η(2) = 841 and η(3) = 805 - Tab. I). Moreover, the multi-

resolution implementations appear to be more effective than the bare approach because of the

reduction of the total number of complex floating point operations to reach the convergence,

fpos =
∑sopt

s=1 O
(

2 ×
[

η(s)
]3

)

× k
(s)
opt (Tab. II).

In the second experiment, theSNR value is varied from20 dB down to5 dB to further assess

the robustness of the proposed approach as well as its ability to detect disconnected regions in

the presence of high levels of noise. Thanks to this latter property and the consequent greater

spatial resolution within theRoIs to which the actual scatterers belong, the reconstructions
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with the multi-region strategy turn out to be better than those with theIMSA − LS [Fig. 6(a)

vs. Fig. 6(c) - SNR = 10 dB and Fig. 6(b) vs. Fig. 6(d) - SNR = 5 dB] and almost

insensitive to the blurring of the data except for the estimation of the support of the hollow

square scatterer. As a matter of fact, it can be observed thatthe shapes of the actual objects are

quite carefully reconstructed with theIMSMRA-LSwhile some difficulties occur in retrieving

the hollow circular cylinder withe theIMSA-LS.

The third experiment deals with the sensitivity of the reconstruction to the target permittivity.

Towards this end, the value ofε has been increased from1.8 up to4.0, while keeping theSNR

equal to20 dB. Figure 7 shows the inversion results when settingε = εa = 2.5 [Fig. 7(a)-(c)],

ε = εa = 3.0 [Fig. 7(d)-(f )], andε = εa = 4.0 [Fig. 7(g)-(i)]. As it can be observed, the

reconstructions worsen when the permittivity value increases. On the other hand, it should be

also noticed that, untilεa ≤ 4.0, the results from theIMSMRA-LSturn out to be quite accurate

and certainly better than those of theIMSA-LSand theBare-LS. as further confirmed by the

average values of the error indexes in Tab. III.

3.2 Analysis of the Resolution

The second test case deals with the different scattering scenario shown in Fig. 8 and composed

by two objects of permittivityε = 1.8, while the imaging setup has been kept equal to that

of the previous example. In order to focus on the resolution of the multi-region approach,

the minimum distanced between the objects has been varied in successive experiments from

d = 2.5 λ down tod = 0.1 λ and the reconstructions [Figs. 8(a)-8(d)-8(g)-8(l)] have been

compared with those from the standard multi-resolution approach [54] [Figs. 8(b)-8(e)-8(h)-

8(m)] and the bare method [Figs. 8(c)-8(f )-8(i)-8(n)].

As expected, theIMSMRA-LSoutperforms theIMSA-LSwhen the detection procedure allows

one to distinguish the disconnected regions (d > 0.9λ). In such cases, the differences between

the corresponding values of both the localization errorδ and the support misfit∆ increases

as the distanced enlarges (Fig. 9). Otherwise, both techniques achieve the same results still

significantly better than those coming from theBaretechnique as depicted in Fig. 8 (left column

and center column versus right column) and confirmed by the values of the error indexes (Fig.

9).
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It should be also noticed that the performances of the standard LS and IMSA-LSworsen asd

increases, while the accuracy of the multi-region strategyappears to be almost constant. Con-

cerning the minimum inter-objects distance (d = 0.1λ), theIMSAmethods still improve theLS

reconstruction because of the higher resolution achieved within the smallestRoI including the

two actual scatterers.

These conclusions are also highlighted by the plots of the convergence values of the cost func-

tion (4) versus the object distance in Fig. 10. As it can be noticed, the enhanced resolution

granted by the multi-region strategy results in a better matching with the scattering data. As

an example, the cased = 2.5 λ corresponds to a convergence valueΘ(sopt) for the IMSMR-LS

(Θ(sopt)
⌋

IMSA−LS
≈ 10−2) of about one order and two orders in magnitude lower than that of

theIMSA-LS(Θ(sopt)
⌋

IMSA−LS
≈ 10−1) and theBare-LS(Θ(sopt)

⌋

Bare−LS
≈ 100), respectively.

3.3 Analysis of the Sensitivity to the A-Priori Information

With reference to the same scattering geometry of the test case in Sect. 3.2 and considering

the distanced = 2.5 λ, the third example is aimed at analyzing the dependence of the recon-

struction accuracy on the knowledge of the permittivity of the scatterers. Towards this end, the

reconstruction process has been initialized with a wronga-priori information on the dielectric

characteristics of the trial shape. More specifically, the permittivity of the objects has been

assumed equal toεa = 1.62 and εa = 1.98 instead ofε = 1.8 (i.e., an underestimate and

an overestimate of the actual value of about10 %). Under these conditions theLS-based ap-

proaches have been applied and the reconstructions are shown in Fig. 11 along with the plots

of Θk versus the iteration number (Fig. 12). Figure 11 confirms thesame conclusions yielded

from the analysis of Figs. 8(a)-8(c) and assesses the robustness of the multi-region approach not

only with respect to data blurring, but also in the presence of an incorrecta-priori information.

As it can be observed, the quality of the retrieved contours turns out to be very similar to that

with an exact knowledge of the scatterer permittivity [Fig.11(a) vs. Fig. 8(a)] as well as the

convergence value of the cost function [Fig. 12(a) vs. Fig. 12(b) and Fig. 12(c)].

To further investigate on such a potential positive featureof the IMSMR-LS, the analysis has

been extended from synthetic data to experimental measurements. Towards this end, the multiple-

frequency angular-diversity bi-static dataset “twodielTM_4f.exp” of the Marseille repository
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[61] has been considered as representative test case because of the presence of multiple dis-

connected and homogeneous scatterers. Such a benchmark is related to two off-centered ho-

mogeneous circular cylinders (15 mm in radius) having a nominal value of the object function

equal toτ = 2.0 and illuminated by a probing source fromV = 36 different angular directions.

For each view, the field samples have been collected atM = 49 measurement points in an

aspect-limited configuration on a circleρ = 0.9 m in radius. As regards the application of the

inversion algorithms, the following parameters have been used:L = 30 cm, N
(1)
IMSA = 11 × 11

at f = 2 GHz, N
(1)
IMSA = 19 × 19 at f = 4 GHz, andNLS = 41 × 41. The value ofNLS has

been kept constant in order to perform a fair comparison in terms of spatial accuracy among

BareandIMSAapproaches (i.e., similar spatial resolution within theRoIs).

Figures 13 and 14 show the results at the convergence whenf = 2 GHz (Fig. 13) andf =

4 GHz (Fig. 14) withεa = 3.0 [Figs. 13(a)-13(d)-13(g) and Figs. 14(a)-14(d)-14(g)], εa =

3.1 [Figs. 13(b)-13(e)-13(h) and Figs. 14(b)-14(e)-14(h)], and εa = 3.3 [Figs. 13(c)-13(f )-

13(i) and Figs. 14(g)-14(h)-14(i)]. The scatterers are quite carefully located and estimated at

f = 2 GHz and for an accurate knowledge of the dielectric properties of the scatterers being

εa = 3.0 [Figs. 13(a)-13(d)-13(g)], while non-negligible differences arise in correspondence

with a higher frequency [f = 4 GHz - Figs. 14(a)-14(d)-14(g)]. The enhanced performances

of the IMSMR-LSstand out in a more significant fashion whenεa = 3.1. In such a case, the

reconstructions worsen for both theIMSA-LSand theBare-LS, especially when the frequency

increases [f = 4 GHz: Fig. 14(d) vs. Fig. 14(e) - IMSA-LS; Fig. 14(g) vs. Fig. 14(h) -

Bare-LS]. Incidentally, the larger number of unknowns considered in theBare-LSmy explain it

poor performance. On the contrary, the quality of the inversion turns out to be almost equivalent

using the multiregion strategy [Fig. 13(a) vs. Fig. 13(b) - f = 2 GHz; Fig. 14(a) vs. Fig. 14(b)

- f = 4 GHz]. Similar conclusions holds true also whenεa = 3.3, even though theIMSA-LS

reconstructions slightly improve [Fig. 13(f ) vs. Fig. 13(e) - f = 2 GHz; Fig. 14(f ) vs. Fig.

14(e) - f = 4 GHz].
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4 Conclusions

In microwave imaging, an automatic procedure based on the integration of a multi-region ap-

proach and the level set optimization has been proposed to properly deal with the qualitative

imaging (i.e., positions and shapes) of multiple scatterers. The method is characterized by an

effective exploitation of the scattering data by means of the multi-region multi-scale representa-

tion that allows a smart allocation of the problem unknowns to enhance both detection properties

and the spatial resolution in theRoIs where the unknown objects are supposed to be located.

The most significant methodological novelties of this work consist in:

• a multi-region level set representation nested into a multi-step architecture to properly

deal with multiple shapes reconstruction, thus improving and generalizing the range of

applicability ofLSapproaches;

• an innovative unsupervised object detection technique based on the theory of closed

curves in discrete spaces;

• a new unsupervised termination criterion based on the use ofthe Hausdorff distance.

Thanks to the numerical assessment concerned with different scenarios and both synthetic and

experimental data, the following main indications can be drawn:

• the IMSMRA-LSproved to give an always better or equivalent resolution of the IMSA

single-region implementation and a non-negligible improvement over the bareLS;

• the multi-region strategy turned out less computationally-expensive than the standardLS

approach and comparable (even though with an enhanced reconstruction efficiency) with

theIMSA-LS.

Future developments will be aimed at extending the multi-region approach to the quantitative

imaging (i.e., the reconstruction of the dielectric profiles of the scatterers) and three-dimensional

geometries where a reduction of the computational costs anda high spatial resolution are not

only useful, but mandatory. Concerning the latter item, it should be also pointed out that the pro-

posed approach can be profitably used in conjunction with fast direct solvers further improving

and multiplying its intrinsic positive features.
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FIGURE CAPTIONS

• Figure 1. Problem geometry.

• Figure 2. IMSMR-LS: (a) descriptive parameters of aRoI and (b) RoI detection proce-

dure.

• Figure 3. IMSMR-LS - Numerical Assessment(“Three objects” -ε = εa = 1.8, L = 5λ,

SNR = 20 dB). Inversion results at (a) s = 1, (c) s = 2, and (e) s = sopt = 3. Plot of

the level set function: (b) φ(1), (d) φ(2), and (f ) φ(3).

• Figure 4. IMSMR-LS - Numerical Assessment(“Three objects” -ε = εa = 1.8, L = 5λ,

SNR = 20 dB). Behavior of the cost functionΘk versusk.

• Figure 5. IMSMR-LS - Comparative Analysis(“Three objects” -ε = εa = 1.8, L = 5λ,

SNR = 20 dB). Inversion results obtained with (a)(b) theIMSA-LS(sopt = 1) and (c)(d)

theBare-LS: (a)(c) reconstructions and (b)(d) plot of the level set function.

• Figure 6. IMSMR-LS - Robustness Analysis(“Three objects” -ε = εa = 1.8, L = 5λ).

Object supports estimated at the convergence by (a)(b) the IMSMRA-LSand (c)(d) the

IMSA-LSin correspondence with blurred data characterized by aSNR value equal to

(a)(c) SNR = 10 dB and (b)(d) SNR = 5 dB.

• Figure 7. IMSMR-LS - Robustness Analysis(“Three objects”,L = 5λ, SNR = 20 dB).

Inversion results obtained at the convergence by (a)(d)(g) IMSMRA-LS, (b)(e)(h) IMSA-

LS, and (c)(f )(i) Bare-LSwhen (a)(b)(c) ε = εa = 2.5, (d)(e)(f ) ε = εa = 3.0, and

(g)(h)(i) ε = εa = 4.0.

• Figure 8. IMSMR-LS - Resolution Analysis(“Two objects” - ε = εa = 1.8, L = 5λ,

SNR = 20 dB). Reconstructed shapes with (a)(d)(g)(l) the IMSMRA-LS, (b)(e)(h)(m)

the IMSA-LS, and (c)(f )(i)(n) theBare-LSwhen (a)(b)(c) d = 2.5 λ, (d)(e)(f ) d = 1.7 λ,

(g)(h)(i) d = 0.9 λ, and (l)(m)(n) d = 0.1 λ.
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• Figure 9. IMSMR-LS - Resolution Analysis(“Two objects” - ε = εa = 1.8, L = 5λ,

SNR = 20 dB). Localization errorδ (a)(c) and area error∆ (b)(d) versusd.

• Figure 10. IMSMR-LS - Resolution Analysis(“Two objects” - ε = εa = 1.8, L = 5λ,

SNR = 20 dB). Value of the cost function at the convergence (s = sopt) versusd
λ
.

• Figure 11. IMSMR-LS - Sensitivity Analysis(“Two objects” -ε = 1.8, L = 5λ, SNR =

20 dB). Reconstructions when using (a)(b) the IMSMRA-LS, (c)(d) the IMSA-LS, and

(e)(f ) Bare-LSwhen (a)(c)(e) εa = 1.62 and (d)(e)(f ) εa = 1.98.

• Figure 12. IMSMR-LS - Sensitivity Analysis(“Two objects” -ε = 1.8, L = 5λ, SNR =

20 dB). Plot of the cost functionΘk versusk when (a) εa = 1.8, (b) εa = 1.62, (c)

εa = 1.98.

• Figure 13. IMSMR-LS - Experimental Data(“twodielTM_4f.exp” - Dataset “Marseille”

[61] - f = 2 GHz). Reconstructions with (a)(b)(c) the IMSMRA-LS, (d)(e)(f ) the IMSA-

LS, and (g)(h)(i) theBare-LSwhen (a)(d)(g) εa = 3.0, (b)(e)(h) εa = 3.1, and (c)(f )(i)

εa = 3.3.

• Figure 14. IMSMR-LS - Experimental Data(“twodielTM_4f.exp” - Dataset “Marseille”

[61] - f = 4 GHz). Reconstructions with (a)(b)(c) the IMSMRA-LS, (d)(e)(f ) the IMSA-

LS, and (g)(h)(i) theBare-LSwhen (a)(d)(g) εa = 3.0, (b)(e)(h) εa = 3.1, and (c)(f )(i)

εa = 3.3.

TABLE CAPTIONS

• Table I. Comparative Analysis(“Three objects” -ε = εa = 1.8, L = 5λ, SNR = 20 dB).

Reconstruction errors.

• Table II. Comparative Analysis(“Three objects” -ε = εa = 1.8, L = 5λ, SNR =

20 dB). Computational indexes.

• Table III. Robustness Analysis(“Three objects”,L = 5λ, SNR = 20 dB). Summary of

the averaged reconstruction errors.
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IMSMRA − LS

Step s = 1

Object 1 2 3 Average

δ 8.4 × 10−2 3.5 × 10−1 3.2 × 10−2 1.6 × 10−1

∆ 1.8 × 10−2 1.2 × 10−2 8.2 × 10−2 3.8 × 10−2

Step s = 2

Object 1 2 3 Average

δ 2.6 × 10−2 4.3 × 10−2 5.1 × 10−2 4.0 × 10−2

∆ 6.9 × 10−3 3.9 × 10−3 4.2 × 10−3 5.0 × 10−3

Step s = 3

Object 1 2 3 Average

δ 2.8 × 10−3 1.7 × 10−2 4.5 × 10−2 2.2 × 10−2

∆ 1.3 × 10−3 1.9 × 10−3 4.3 × 10−3 2.5 × 10−3

IMSA − LS

Step s = 1

Object 1 2 3 Average

δ 4.2 × 10−3 6.1 × 10−2 4.5 × 10−2 3.7 × 10−2

∆ 1.8 × 10−2 9.0 × 10−3 1.0 × 10−2 1.2 × 10−2

Bare − LS

Step -

Object 1 2 3 Average

δ 3.4 × 10−2 − 3.2 × 10−2 −

∆ 5.3 × 10−3 4.0 × 10−2 4.4 × 10−3 1.6 × 10−2

Table I - M. Benedetti et al. - “ Multiple shapes reconstruction ...“

39



IMSMRA − LS IMSA − LS Bare − LS

SNR = 20 dB

k
(1)
opt 79 96 302

η(1) 841 841 2500

k
(2)
opt 264 − −

η(2) 841 − −

k
(3)
opt 53 − −

η(3) 805 − −

fpos 4.63 × 1011 1.14 × 1011 9.44 × 1012

Table II - M. Benedetti et al. - “ Multiple shapes reconstruction ...“
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IMSMRA − LS IMSA − LS Bare − LS

ε < δ > < ∆ > < δ > < ∆ > < δ > < ∆ >

2.5 2.3 × 10−2 7.5 × 10−3 4.4 × 10−2 1.1 × 10−2 1.6 × 10−1 4.9 × 10−2

3.0 3.2 × 10−1 1.9 × 10−2 2.8 × 10−1 2.3 × 10−2 3.4 × 10−1 2.2 × 10−2

4.0 6.8 × 10−1 3.1 × 10−2 6.8 × 10−1 3.1 × 10−2 8.2 × 10−1 1.0 × 10−1
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