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ABSTRACT
The current search landscape consists of a small number
of centralized search engines posing serious issues including
centralized control, resource scalability, power consumption
and inability to handle long tail of user interests. Since,
the major search engines use syntactic search techniques,
the quality of search results are also low, as the meanings
of words are not considered effectively. A collaboratively
managed peer-to-peer semantic search engine realized using
the edge nodes of the internet could address most of the
issues mentioned. We identify the issues related to knowl-
edge management, word-to-concept mapping and efficiency
in realizing a peer-to-peer concept search engine, which ex-
tends syntactic search with background knowledge of peers
and searches based on concepts rather than words. We
propose a two-layered architecture for peer-to-peer concept
search to address the identified issues. In the two-layered
approach, peers are organized into communities and back-
ground knowledge and document index are maintained at
two levels. Universal knowledge is used to identify the ap-
propriate communities for a query and search within the
communities proceed based on the background knowledge
developed independently by the communities. We developed
proof-of-concept implementations of peer-to-peer syntactic
search, straightforward single-layered and the proposed two-
layered peer-to-peer concept search approaches. Our evalu-
ation concludes that the proposed two-layered approach im-
proves the quality and network efficiency substantially com-
pared to a straightforward single-layered approach.
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1. INTRODUCTION
Global scale search has become a vital infrastructure for

the society in the current information age. But, the current
search landscape is almost fully controlled by a small num-
ber of centralized search engines. Centralized search engines
crawl the content available in the world wide web, index and
maintain it in centralized data-centers. The user queries are
directed towards the data-centers where the queries are pro-
cessed internally and results are provided to the users. The
functioning of the search engines is controlled by individ-
ual companies. This situation raises a lot of serious issues
which need to be studied and addressed carefully, given the
importance of search as a vital service.

The individual companies which control the centralized
search engines decide upon what to(not to) index, rank etc.
Moreover, the complete details of the ranking and prepro-
cessing methods are not made available publicly by most
of the search engines. This leads to political and security
concerns. With the increase in the information needs of
the global community, the demands on the search engine in-
frastructure have increased manifold over the years. Since,
search involves a large amount of computational, storage and
bandwidth resources, the cost of acquiring and maintaining
resources are very high. Recently, the energy consumption
of search engines is causing environmental concerns. The
centralized nature also makes them a single point of failure.

The syntactic search techniques used in major search en-
gines consider words and multi-word phrases in the docu-
ments and queries to determine relevance. But, this leads
to low quality of search results due to the ambiguity of nat-
ural language. For example, ”bank” could mean ”depository
financial institution” or ”slope bordering a water body”. Se-
mantic search techniques like Concept search[8] address this
problem by incorporating knowledge bases to identify con-
cepts (eg: concept ”bank-2” means ”slope bordering a water
body”) and relationships between concepts(eg: poodle-1 ISA
dog-2). Thus, search can be performed based on the con-
cepts instead of words thereby improving quality of search
results. However, realizing such semantic search techniques
over a centralized search engine is difficult because of multi-
ple reasons. These techniques require availability of human
generated knowledge bases which cater to the interests of
the users. But, it is observed that the users of search en-
gines exhibit a ”long tail of interests”, i.e., a diverse range
of numerous niche interests. It will be extremely tough and



expensive, if not impossible for a centrally managed search
engine to develop and maintain rich knowledge bases ad-
dressing the long tail of user interests. Another difficulty is
that the semantic search techniques are often more computa-
tionally expensive compared to syntactic search techniques
making them difficult to be offered at global scale.

A peer-to-peer semantic search engine could address most
of the issues raised above related to centralized search en-
gines. A peer-to-peer semantic search engine uses the free
shared resources available in the edge nodes(peers) of the
internet to realize a distributed semantic search using the
background knowledge of the peers. In this paper, we in-
vestigate the applicability of a peer-to-peer semantic search
engine in addressing the issues related to global scale search.
The new issues which need to be addressed while realizing a
peer-to-peer semantic search engine are discussed. We show
the importance of a multi-layered approach in realizing peer-
to-peer semantic search. Experiments show the advantage of
a two-layered approach to peer-to-peer concept search over
a straightforward single-layered approach.

We explain the motivation and details of the architecture
in Section 2. Sections 3 and 4 describe the design choices for
the current implementation and the implementation details
respectively. We present the details of the evaluation per-
formed and the results in Section 5. We review the related
work in Section 6 and state our conclusions in Section 7.

2. ARCHITECTURE
In a peer-to-peer semantic search engine, the edge nodes

of the internet(peers) participate in providing the semantic
search service in addition to being consumers of the service.
The peers collaboratively maintain the background knowl-
edge base required for realizing semantic search. The open
and shared nature of the infrastructure and peer-to-peer
community will address the centralized control and trans-
parency issues inherent in centralized search engines. Since,
the peers participate in providing the search service in a vol-
untary fashion, the overhead and cost involved in acquiring
and maintaining dedicated resources in centralized data cen-
ters are avoided. As the idle computational power available
in non-dedicated edge nodes is used in providing the search
service, the power usage concerns are reduced compared to
a centralized approach. Since, the background knowledge
of the peers taking part in search is used to enhance search
quality using semantic search, the difficulty of centralized
search engines in addressing the long tail of niche user inter-
ests is absent in a peer-to-peer setting. But, the realization
of a peer-to-peer semantic search scheme is not straightfor-
ward and involves addressing various associated issues as
discussed below.

2.1 Issues with a single-layered approach
A straightforward way of realizing a peer-to-peer seman-

tic search system will be to reuse the substantial existing
work in the area of peer-to-peer syntactic search and ex-
tend it to semantic search. The index can be partitioned
among the participating peers and search can be done in a
distributed manner. The background knowledge of the peers
can also be partitioned and managed among the peers sup-
porting collaborative creation and maintenance of common
knowledge. Though, this straightforward approach (hence-
forth called single-layered approach) addresses the problems
mentioned earlier, it has the following issues which need to

be addressed.
Knowledge management at large scale: The com-

mon knowledge which every one agrees on is minimal as it
is difficult to have consensus at a large scale. This is be-
cause of the large amount of time and effort required to get
a wide understanding and meet requirements in a large di-
verse group as explained in [3]. Hence, a commonly agreed
monolithic knowledge base will be insufficient for realizing
semantic search.

Difficulty in identifying concepts from words: A
major issue in semantic information retrieval approaches like
Concept search is that, given limited context, it is tough to
identify the concept from the words in queries and docu-
ments(word sense disambiguation problem). For example,
from a query ”bank” without any context, it is difficult to
infer the intended meaning. Statistical techniques for word-
sense disambiguation(WSD) also suffer from low accuracy.

Network bandwidth usage of peer-to-peer search
techniques: Although there has been substantial amount of
work done in the area of peer-to-peer (syntactic) search, the
network bandwidth consumption of these techniques remain
high due to the distributed nature of the index. This affects
the applicability of the approach at internet scale.

We propose a two-layered architecture for peer-to-peer
concept search to address the above mentioned issues re-
lated to single-layered peer-to-peer concept search.

2.2 Two-layered architecture for peer-to-peer
concept search

In the two-layered architecture for peer-to-peer concept
search, the peers are organized as communities based on
common interests. Each community maintains its own back-
ground knowledge base(DBK) pertaining to its specific in-
terests distributed among the peers of the community. The
DBK of a community is created and collaboratively man-
aged by the peers in the community. Thus the long tail
of peer interests can be supported in the community-based
knowledge management scheme. Since, the DBKs in differ-
ent communities evolve independently based on the specific
interests of the smaller set of peers within the communi-
ties, the ”consensus problem of monolithic knowledge base”
present in the single-layered approach is absent.

The word-to-concept mapping of documents and queries
within the community is performed based on the DBK of the
community. This allows to perform better word-to-concept
mapping within the community. For example, within a ”Fi-
nance” community, ”bank” could mean ”depository financial
institution”and related concepts almost surely. Performance
of WSD can be significantly improved if it is performed
within a specific branch of knowledge as explained in [4].

The index of the documents shared by the peers in a com-
munity is distributed among the peers within the community
and the existing peer-to-peer syntactic search approaches
are extended and reused for performing distributed search.
Since, the indexes are distributed and searched only within
scope of various communities instead of the entire network,
the bandwidth consumption overhead associated with the
existing techniques is substantially reduced.

Maintaining background knowledge bases and document
indexes independently in different communities leads to the
issue of performing search across communities. If the DBKs
are created and maintained independently by the different
communities, performing semantic-enabled search for com-
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Figure 1: Two-layered architecture for peer-to-peer
concept search

munities will not be possible as there is no commonly agreed
knowledge base to represent and search for communities.
Hence, we introduce a top layer consisting of a universal
knowledge base(UK) and the global community index into
the architecture forming a two-layered architecture. UK
consists of minimal knowledge which is accepted globally in
the network. The different DBKs are initially bootstrapped
from the UK and developed independently by the different
communities. Search for communities is enabled using the
global community index which includes the representations
of all the communities based on the UK. The community
index consists of aggregate information from the document
indexes from all the communities. The upper layer is main-
tained in a distributed manner across all communities.

The two-layered architecture is illustrated in figure 1. The
lower(community) layer supports search within community,
i.e., given a query and community, it searches the document
index within the community using the DBK of the com-
munity and returns potentially relevant documents within
the community. The upper(global) layer supports search
for communities, i.e., given a query, it searches the global
community index based on the UK and return the potential
communities having the relevant documents to the query.
Using the above two search methods, the users have the fol-
lowing options for search.

Option 1 : The user can select a previously known com-
munity and scope the search within the community.

Option 2 : The user can first query and obtain the list of
communities relevant to the query. Then, the user can select
the appropriate communities manually and search within
them as in Option 1.

Option 3 : The user wants to perform a search over the
entire network without further intervention. The ranked list
of communities relevant to the query are obtained and search
is performed automatically on the top-ranked communities
in parallel. The individual results are combined and ranked,
and only the final results are presented to the user.

3. DESIGN CHOICES IN THE IMPLEMEN-
TATION OF THE ARCHITECTURE

To implement the two-layered architecture, design choices
need to made on the overlay network to use(interconnection
among peers), index partitioning and search scheme, and
knowledge management scheme. We developed proof of con-

cept implementations of both single-layered and two-layered
approaches using similar design choices(details described be-
low). This allowed a fair comparison of the two approaches
under similar settings. But, note that further improvements
can be made in the design choices and implementation(mentioned
at appropriate places) to improve the performance of both
the approaches.

Index partitioning and search: Index partitioning is
used to distribute the search over parts of the index present
in different peers. The two major index partitioning schemes
are partition-by-document and partition-by-term. In partition-
by-document, the entire set of documents are divided into
different smaller collections. Each of the smaller sub-collections
are indexed separately and stored on separate peers. The
query needs to be sent to all the sub-collection indexes in
different peers to obtain complete search results. This leads
to high network bandwidth consumption if the number of
peers are large.

In partition-by-term, the portion of the index associated
with a term, ie, the list of documents having the particu-
lar term(posting list) in the whole collection is stored on a
particular peer. Thus, the index is partitioned term-wise
and stored on different peers. The query is forwarded to the
peers responsible for the query terms to obtain the results.
But, for multi-term queries, posting list intersection over the
network is required which result in high network load. Sev-
eral optimizations(see Section 6) address this issue and is
still an active area of research. We use the partition-by-term
scheme which is popular among the research community in
our current implementation of both single-layered and two-
layered approaches.

Overlay network: To support a partition-by-term scheme,
each term needs to be assigned to a unique peer in the net-
work. This assignment has to be realized in a distributed
manner and should handle node join/leave. Structured over-
lays like Distributed Hash Tables(DHTs) [19, 16] serve this
purpose. DHTs realize a distributed hash table-like func-
tionality by assigning the responsibility of different keys in
the hash table to different peers and handle dynamic join/leave.
Each peer maintains a routing table consisting of O(logN)
entries where N is the total number of peers. The key
lookups(reaching the peer responsible for the key) are per-
formed within O(logN) hops with probabilistic guarantee.
To maintain the document indexes of different communi-
ties separately and enable search across communities in top
layer, we use a two-layered overlay inspired from our earlier
works on computational grid(Vishwa[15]) and data grid(Virat[18]).
In the two-layered overlay, different communities form sepa-
rate overlays in the lower layer supporting indexing, search
and knowledge management within the communities. To
ensure management of global community index, search for
community and UK management, the different community-
level overlays are connected together forming a top-layer
consisting of peers from all communities. The overlay sup-
ports key-lookup operations at both layers.

putC(c, key, value) stores the value associated with key
in the node responsible in community c.

getC(c, key) → value retrieves the value associated with
key from community c.

putG(key, value) stores the value associated with key in
the node responsible in the global layer.

getG(key) → value retrieves the value associated with
key from the global layer.



Even though, the neighbor-maintenance and lookups are
supported at two levels, the routing table size and lookup
hops are still O(logN). More details of the overlay used are
present in the evaluation section(Section 5). Further details
are available in [15, 18].

Knowledge management: The DBK of each commu-
nity is maintained across the different peers which form part
of the community. Each word or concept in the DBK is as-
signed to a peer in the community using the DHT get/put
operations. The details are available in Section 4.2.4. The
UK is also maintained in a similar manner in the top layer.

4. IMPLEMENTATION DETAILS

4.1 Community management
The communities are managed in a similar manner as

public communities in flickr, facebook etc. A peer want-
ing to start a community provides a name and description
and creates the community background knowledge by boot-
strapping the relevant portions from the UK and extending
it. The other peers can join the community initially by con-
tacting the creator peer and later on by contacting any other
peer within the community.

During the creation of the community, a new community
overlay is formed and the community overlay gets connected
to the global layer through an inter-community bootstrap
process. A unique community identifier is generated based
on the community name. The newly joining peers form part
of the community overlay as well as the global layer. A
peer joining the system participates in the overlay of one of
the communities in which it belongs. When the peer wants
to join more communities, it sends a subscription message
to one peer each from the desired communities. The other
peers act as proxies for the peer in the other communities
and perform operations like indexing, search etc. on behalf
of the peer. The proxy peer is dynamically chosen for each
access and can be identified through routing in the upper
layer. Henceforth, peer in a community means either a peer
participating in the community overlay or a proxy peer in
the community overlay acting on behalf of another peer.

4.2 Search within community
We extend our earlier work on (centralized)Concept search[8]

to realize the underlying semantic search scheme within com-
munities. Concept search extends syntactic search technique
with available knowledge to realize semantic search. Since,
Concept search falls back to syntactic search when no knowl-
edge is available, it does not suffer from the difficulty faced
by purely knowledge-based systems due to lack of initial
knowledge during the starting phase(knowledge acquisition
bottleneck problem). The essential details of the Concept
search scheme used are described first, in Sections 4.2.1 to
4.2.3. The details related to realizing peer-to-peer concept
search over the peers within the communities are described
next, in Sections 4.2.4 to 4.2.61. Further details are available
in the technical report [6].

4.2.1 Representation of knowledge
The knowledge base consists of description of concepts,

relationships between concepts and word-to-concept map-
ping. For the sake of presentation, an atomic concept is
1A preliminary version of the single-layered approach was
presented in [7].

A small baby dog runs after a huge white cat. D1: 

A laptop computer is on a coffee table. D2: 

A huge cat left a paw mark on a table. D3: 

Babies and dogs Q1: 

Computer table Q3: Carnivores Q4: 

Paw printQ2: 

Documents: 

Queries: 

The canine population is growing fast. D4: 

Figure 2: Queries and a document collection
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Figure 3: Document and Query Representations

represented as lemma-sn having the lemma(lemma) of a
word having the meaning of the atomic concept and its sense
number(sn) within the knowledge base. For example, con-
cept bank-1 could refer to ”depository financial institution”
while bank-2 refers to ”sloping land near a water body”.
Description of an atomic concept also consists of its part
of speech(POS) and natural language description(GLOSS).
The relationships between concepts are represented through
subsumption relations of the form A1 v A2 where A1 and
A2 are atomic concepts(For example, dog-1 v canine-2 ).
The concept relations form an acyclic graph with vertices
representing concepts and edges representing subsumption
relations. Word-to-concept mapping consists of the list of
atomic concepts associated with each word.

4.2.2 Document and query representations
The concepts in documents and queries are extracted by

analyzing the meanings of words and natural language phrases
present. Single words are converted into atomic concepts us-
ing the knowledge base. If no relevant concepts are found
for a word, then the word itself is used as a concept. If
there are many possible candidate concepts for a word and
the meaning of the word cannot be reliably disambiguated,
then disjunction of at most three most probable concepts for
the word are used. Noun phrases are identified and trans-
lated into complex concepts which are logical conjunctions
of all the atomic concepts corresponding to the words. For
example, the noun phrase ”A little dog” is translated into
the complex concept little-4udog-1. After extracting the
complex concepts, documents and queries are represented
as enumerated sequences of these complex concepts as illus-
trated in figures 2 and 3. Figure 2 shows the original doc-
ument and query collection. Figure 3 shows the resulting
representations after complex concept extraction(examples
from [8]). Rectangles in Figure 3 represent individual com-
plex concepts and the number in the left square of each
rectangle represents the position of the associated complex
concept in the document.

4.2.3 Relevance model



The relationship between complex concepts(denoted by
Cx) is defined based on the relationship between the con-
stituent atomic concepts(denoted by Ax) in the knowledge
base(KB) as follows.

KB|=C2 v C1 ⇐⇒ ∀A1 ∈ C1, ∃A2 ∈ C2, s.t.KB|=A2 v A1

(1)
A document is relevant to a query if the document con-

tains concepts which are specific than the query concepts
according to knowledge base. The potentially relevant doc-
uments for a single complex query concept Cq in a document
collection D, based on knowledge base KB is defined by

QAD,KB(Cq)={d ∈ D |∃Cd∈d, s.t.KB|=CdvCq} (2)

When multiple complex query concepts are present in the
query(e.g.,baby-1 AND dog-1 ), the potentially relevant doc-
uments consist of the documents which are present in the
query answer of all the individual complex query concepts
as shown below.

QAD,KB(Q) =
⋂

Cq∈Q

QAD,KB(Cq) (3)

The degree of relevance of documents(for ranking of results)
is computed by adopting the cosine similarity from the vec-
tor space model for syntactic search. Atomic concepts in a
query are weighted by the tf-idf weight measure. The only
difference is that, frequency tf ′(Aq, d) of atomic concept Aq

in document d is computed by taking into account the esti-
mated word-concept and concept-concept similarities also.

tf
′
(A

q
,d) =

∑
AdvAq

1

10d(A
q,Ad)

·
f(Aq, wq)

maxF (wq)
·
f(Ad, wd)

maxF (wd)
·tf(Ad

, d) (4)

where wq (wd) is a word in the query (in the document) from
which the atomic concept Aq (Ad) is extracted, d(Aq, Ad)
is the distance between concepts Aq and Ad in the con-
cept hierarchy from KB, f(A,w) is a value which shows
how frequently the specified word w is used to represent the
meaning A (incremented by one in order to avoid zero val-
ues), maxF (w) is the maximum f(A,w) for word w, and
tf(Ad, d) is the frequency of Ad in d. Informally, higher
ranks are assigned for the following: (i) concepts Ad which
are closer in the meaning to the concept Aq, (ii) concepts Aq

which are frequent for word wq, and (iii) concepts Ad which
are frequent for word wd.

4.2.4 Distributed maintenance of background knowl-
edge

The background knowledge of each community is main-
tained in the DHT within the community. Each atomic
concept is uniquely identified by a unique concept ID (AID)
composed of peer ID of the peer which created the atomic
concept and its local concept ID in the knowledge base of
the peer. The concept ID(AID) is hashed to generate unique
keys for each concept. The generated key is used to assign
the responsibility of maintaining each concept to a different
node in the community using the putC operation.

The peer responsible for an atomic concept maintains the
associated POS and GLOSS. In addition, it stores IDs of
the immediate specific concepts and IDs of the general con-
cepts which are related to the concept. To handle relations,
we can use a modified putC operation, putC(c, A,B,Rel)
which stores the ID of atomic concept B with relation Rel

on the peer responsible for atomic concept A in commu-
nity c, e.g., putC(c,canine-2, dog-1, ’v’), putC(c,canine-2,
carnivore-1, ’w’). The list of all atomic concepts(IDs) re-
lated to each word(word-to-concept mapping) is maintained
by hashing each word to obtain a unique key and main-
taining the list in the node responsible for the key in the
community DHT. This can be implemented using the putC
operation, e.g., putC(c, canine, {canine-1, canine-2}). Sim-
ilar modifications of the getC operation are used to access
the DBK to obtain the list of all concepts related to a word
and the description and more specific/general concepts of a
particular concept.

4.2.5 Document indexing
After document representations are computed as in Figure

3, the indexing of documents within community is performed
as follows. Every peer computes the set of atomic concepts
which appear in the representations of the peer’s document
collection. For every atomic concept A, the peer computes
the set of documents which contain A. For every concept-
document pair 〈A, d〉, the peer computes the set S(d,A) of
all the complex document concepts Cd in d, which contain
A.

S(d,A) = {Cd∈d | A∈Cd} (5)

For example, if d is document D1 in Figure 3 and A is dog-1,
then S(d,A) = {small-4u baby-3u dog-1}. For every A, the
peer sends document summaries corresponding to A, i.e.,
pairs 〈d, S(d,A)〉, to the peer pA responsible for A in com-
munity DHT using the putC operation. The peer pA indexes
these summaries using a local positional inverted index[8].
The inverted index dictionary consists of atomic concepts
from DBK (e.g., concepts baby-3 and dog-1). The posting
list P (A) = [〈d, freq, [position]〉] for an atomic concept A
stores the postings of complex concepts which contain A,
where 〈 d, freq, [position]〉 is a posting consisting of a doc-
ument d associated with A, the frequency freq of A in d,
and a list [position] of positions of A in d. For example,
P(dog-1)=〈D1, 1, [1]〉.

Overall, peers maintain the following information of the
words and concepts they are responsible for:

1. For every word, the peer stores the set of atomic con-
cepts (word senses) associated with the word.

2. For every atomic concept, the peer stores the descrip-
tion and a set of more specific and general concepts.

3. Document summaries 〈d, S(d,A)〉 for all the atomic
concepts A (for which the peer is responsible) are stored
on the peer and indexed in the local inverted index.

An example of the information, which can be stored on
the peer responsible for a single word bank and for a sin-
gle atomic concept canine-2, is shown in Figure 4.

4.2.6 Distributed search
For performing search within a community with docu-

ment collection D and background knowledge DBK, the
query answer for a complex query concept (QAD,DBK(Cq))
is computed using the distributed document index as fol-
lows. Consider a subset QAD,DBK(Cq, A) of the query an-
swer QAD,DBK(Cq). QAD,DBK(Cq, A) consists of docu-
ments which contain at least one concept Cd which is more



Word senses
bank bank-1, bank-2

Concept descriptions
canine-2 AID-192.., noun, {A mammal with..}

More specific concepts
canine-2 dog-1, wolf-1

More general concepts
canine-2 carnivore-1

Inverted index
canine-2 〈D4, 1, [1]〉

population-4 〈D4, 1, [1]〉

Figure 4: Peer’s information

specific than the complex query concept Cq and contains
atomic concept A.

QAD,DBK(Cq, A)={d ∈ D|∃Cd∈d, s.t.DBK|=CdvCq

andA∈Cd}
(6)

If we denote the set of all atomic concepts Ad, which are
equivalent to or more specific than concept A by C(A), i.e.,

C(A) = {Ad | DBK |= Ad v A} (7)

then, it can be shown that, given Equation 6, the query
answer QAD,DBK(Cq) can be computed as follows

QAD,DBK(Cq)=
⋃

A∈C(A∗)

QAD,DBK(Cq,A) (8)

where A∗ is an arbitrarily chosen atomic concept Aq ∈ Cq.
For each A in C(A∗), the query answer QAD,DBK(Cq, A)
can be computed using the local inverted index(partition
of the index) present at the node responsible for A. Thus,
the final result can be obtained by sending the query to the
nodes responsible for each A in C(A∗) and combining the
results obtained from all the nodes. But, each node stores
the ID of only the immediate more specific concepts and
hence multiple lookups will be required for finding C(A∗).
Hence, query is first sent to nodes responsible for immediate
more specific concepts of A∗. The nodes responsible for the
concepts return their own immediate more specific concepts
also along with the partial query result. The query is then
propagated to the newly obtained specific concepts and the
process is continued in a recursive fashion. We choose the
concept with the least number of more specific concepts from
Cq as A∗, as it will minimize the number of iterations. The
detailed algorithm where a peer pI initiates a query Cq to
obtain results QA is shown below.

Step 1 A peer pI initiates the query process for complex
query concept Cq.

Step 2 pI selects A in Cq with the smallest number of more
specific atomic concepts. Cq is propagated to the peer
pA responsible for A. On pA, QA and auxiliary sets
Cms and C′ms are initialized to ∅. A is added to Cms

2.

Step 3 pA selects an atomic concept B from Cms and re-
peats steps 4 and 5.

2If a word w in the query is not disambiguated to a single
concept A, then the query is propagated to the peer pw
responsible for w and all non-disambiguated senses of w are
added to Cms.

Step 4 pA submits Cq to the peer pB responsible for B.
pB receives the query concept Cq and locally (by using
inverted index) computes the set QAD,DBK(Cq,B) as
described in [8]. The results are sent back to pA. Note
that if B=A, then the query propagation is not needed.
On receiving new results QAD,DBK(Cq,B), pA merges
them with QA.

Step 5 pB also computes the set of atomic concepts which
are more specific than B by querying locally stored
(immediate) more specific concepts (e.g., see ‘More
specific concepts’ in Figure 4). The results are also
propagated to peer pA where they are added to set
C′ms. If B=A, then the set of more specific concepts
are computed on pA itself.

Step 6 If C′ms 6= ∅, then pA assigns Cms = C′ms, C′ms = ∅
and repeats step 3. Otherwise the results are sent to
the initiator peer pI .

In order to optimize the query answering, each peer pA
pre-computes (and regularly updates) addresses of peers pB
which are responsible for immediate more specific concepts,
and uses DHT to locate such peers only when pre-computed
information is outdated. Steps 4 and 5 are done in parallel
for all the concepts in Cms. We allow the user to specify
the maximum number of more specific concepts which can
be used per atomic concept in Cq. In the current imple-
mentation, we use upto 10 more specific concepts per query
concept.

An example showing how the query answer is computed
is given in Figure 5. Peers, represented as small circles,
are organized in the community DHT, represented as a cir-
cle. A query consisting of a single query concept Cq =
little-4 u canine-2 is submitted to peer PI . Assume that
the atomic concept, canine-2 has smaller number of more
specific atomic concepts than concept little-4. In this case,
Cq is propagated to a peer Pcanine-2, i.e., the peer respon-
sible for atomic concept canine-2. The query propagation
is shown as a firm line in Figure 5. Pcanine-2 searches in its
local inverted index with Cq. No results are found in this
case. Pcanine-2 collects all the atomic concepts which are
more specific than canine-2, i.e., atomic concepts dog-1 and
wolf -1. Query concept Cq is propagated to peers Pdog-1
and Pwolf-1. Pwolf-1 finds no results while Pdog-1 finds
document D1. D1 is an answer because it contains con-
cept small-4 u baby-3 u dog-1 which is more specific than
little-4 u canine-2. D1 is sent to PA. The propagation of
the results is shown as a dashed line in Figure 5. Both peers
Pdog-1 and Pwolf-1 have no more specific concepts than dog-1
and wolf -1. Therefore Cq is not propagated to any other
peers. PA sends the final result, i.e. D1, to peer PI .

When the query contains multiple complex concepts, the
query answer from all the complex concepts need to be in-
tersected. In this case, first one concept is chosen from each
of the complex concepts in the query(as in step 2 in the algo-
rithm). The responsible peers for each of these concepts and
the corresponding lengths of posting lists are obtained from
the DHT by issuing getC operations in parallel. The peers
are traversed in the increasing order of length of posting
lists in an attempt to reduce the network cost due to inter-
section. This peer order is encoded in the query message.
The query is then sent to responsible peers in peer order.
Within each peer, the search is performed and partial re-
sults are computed as mentioned in the previous algorithm.



MS Concepts:

canine-2 {dog-1, wolf-1} 

Inverted index:

canine-2 <D4, 1, [1]>

population-4 <D4, 1, [1]>

Cq = little-4  canine-2 

PI
Pcanine-2

Pdog-1

Pwolf-1MS Concepts:

wolf-1 {}  

Inverted index:

wolf-1 {}

MS Concepts:

dog-1 {} 

Inverted index:

dog-1 <D1, 1, [1]>

small-4 <D1, 1, [1]>

Figure 5: Query Answering

The resulting document list is intersected with the results
obtained from the previous peer in peer order. In the Step 4
of the query-answer algorithm, if the results from the previ-
ous peer are smaller in size than the new results which need
to be transferred from peer pB to pA, the previous results are
sent to the peer pB to filter the new results before they are
transferred. The intermediate results obtained at each stage
are sent to the next peer in peer order. The final results are
ranked and transferred to the peer who issued the query, by
the last node in the peer order. For an efficient implemen-
tation of the intersection, various optimization techniques
available for peer-to-peer syntactic search can be reused(see
e.g. Section 6).

4.3 Global search
Given a query, the search for communities involves re-

turning a list of communities, such that, there is a high
chance that the relevant documents will be found in these
communities. The search for communities is performed in
the upper layer based on the aggregate community index
and UK. The aggregate community index is maintained as
follows. In each community, when the posting list for an
atomic concept A with id AID exceeds a specified threshold,
the peer responsible for the concept, sends an ”index com-
munity with concept AUK” message to the overlay through
putG(AUK , AID), where AUK is the most specific subsumer
in UK for concept A. The document frequency df(A, c) for
concept A in community c is also stored.

The current implementation uses a simple popularity-based
method to search for communities. The potentially relevant
communities are retrieved from the global layer in the same
manner as the documents are indexed and retrieved inside
each of the communities with some differences. One dif-
ference is that UK is used instead of BK of the community.
The concepts from UK (and also words, if the corresponding
concepts are not found in UK) are used for indexing the com-
munity in the global layer as explained before. The second
difference is that in the scoring function, the term frequency
tf(A, d) is replaced by df(A, c) and the document frequency
is replaced by the community frequency. The third differ-
ence is that the getC operations are replaced by getG oper-
ations.

To support search in the entire network without user in-
tervention in community selection (Option 3 in Section 2.2),
a subset of the most relevant communities is selected. Only
those communities whose score score(ci) is greater than a

predefined threshold t, (i.e., score(ci) > t∗maxi(score(ci)))
are selected for search. The query is then propagated in par-
allel to all the selected communities and search is performed
within the communities as in Section 4.2. The top-k results
from all the communities are then propagated back to the
requesting peer and are merged into a single ranked result
list. Scores(score(d, ci)) for the documents d from each com-
munity are normalized by the community score score(ci) as
below

score(d) = score(ci) ∗ score(d, ci) (9)

The search for relevant communities is similar to the re-
source selection problem in case of federated peer-to-peer
search on digital libraries[10] and metasearch. The solutions
in these areas can be studied and enhanced by taking ad-
vantage of the knowledge base(UK) to enhance the accuracy
of community selection.

5. EVALUATION
The evaluation is done mainly to compare two-layered

approach with single-layered one, keeping various design
choices same(for fair comparison). In our opinion, the clos-
est existing work to our approach is Semantic Overlay Net-
work(SON)[5]. However, there are significant differences
between SON and two-layered architecture as explained in
Section 6 and hence, no experimental comparison was made
with SON. But, the evaluation clearly establishes the advan-
tages of two-layered approach over a single layer of knowl-
edge.

We developed three prototypes with similar design choices:
single-layered P2P Syntactic Search, single-layered P2P Con-
cept Search(P2PCS) and two-layered P2PCS . P2P Syntac-
tic Search is based on Lucene3 and implements partition-
by-terms scheme for syntactic search(see Section 3). Single-
layered P2PCS extends P2P Syntactic Search with a single
knowledge base and performs concept search in the scope
of the entire network 4. Two-layered P2PCS extends the
single-layered P2PCS implementation to realize the pro-
posed community-based two-layered search. Experiments
with the real implementation could not be performed on
thousands of nodes due to physical limitations. Hence, to
obtain the results on quality, a custom simulator was de-
veloped by reusing parts of real implementation for both
single-layered and two-layered approaches. To obtain the
results on network performance, the simulations were per-
formed by using a peer-to-peer simulator PeerSim [9]. The
simulation setting and evaluation parameters are described
below.

Simulation setting: The single-layered approaches (syn-
tactic and semantic) were simulated by modifying the Pas-
try(DHT) [16] implementation available with PeerSim. The
parameters used for Pastry were: (base = 2b = 16, id length
= 128 bits, leafset size = 32) with the theoretical lookup
cost of O(log16 N) hops.

To implement the two-layered architecture, using the hi-
erarchical DHT based scheme, the Pastry-based implemen-

3http://lucene.apache.org/java/docs/index.html
4To validate that there are no optimizations which can af-
fect the fair comparison between syntactic and semantic
approaches, we compared the results of syntactic approach
with the results of semantic approach when the background
knowledge was empty. No difference in quality and perfor-
mance was found.



tation for single-layer was reused to form communities in the
community layer, combined with a Chord(DHT) [19] imple-
mentation developed by us to realize the global layer. To
ensure fairness while comparing two-layered approach with
single-layered one, the theoretical lookup cost in hops for
both the approaches need to be same for the same number
of nodes. Hence, the fingers of each Chord node were placed
at distances that are all integral powers of (1 + 1/d) instead
of 2, where d = 15, so that the theoretical lookup cost of
Chord becomes O(log1+d N) = O(log16 N) as mentioned in
[19]. The Chord parameters were: (base = 2, id length =
10 bits), making the total id length of two-layered overlay
138 bits. The node ids were randomly generated and exper-
iments were performed after all the nodes joined the overlay
with no subsequent join/leave. Each experiment was per-
formed five times (with different seeds for random number
generator) and the results were averaged.

Evaluation parameters:
quality: For evaluating quality of results, we used stan-

dard IR measures: the mean average precision (MAP) and
precision at K (P@K), where K was set to 10 and 20.

network bandwidth consumption: The average number of
postings ANP (document id and additional related infor-
mation, e.g., score of document) transferred per query was
taken as the measurement of network bandwidth consump-
tion as they form the majority of network traffic for search
(DHT lookup cost is comparatively negligible). ANP is inde-
pendent of different optimizations and representations used
for posting list transfer.

response time: The query processing involves both se-
quential as well as parallel operations (e.g., sequential post-
ing list transfer in syntactic search, parallel search across
communities). Also, each operation can include numerous
sub-operations. The effective delay of a set of sequential
operations (i.e., operations which need to be performed se-
quentially) is the sum of the individual delays of the opera-
tions, while the effective delay of a set of parallel operations
(i.e., operations which can be performed in parallel) is the
maximum of the individual delays. This can be combined
recursively for each of the sub-operations to obtain the total
response time.

The delay of a network operation depends both on the net-
work latency (determined by RTT and queuing delay) and
the data transfer time (depends on available bandwidth).
While comparing the different approaches, the latency and
data transfer time will depend on the various optimizations
and representations used as well as the network conditions
like bandwidth and latency. To indicate the effective re-
sponse time independent of optimizations and network con-
ditions, we define two response time indicators: sequential
hops (s-hops) and sequential posting transfer (s-postings).
s-hops approximates the contribution to response time due
to the network latency, which in turn is determined by the
number of hops. s-postings approximates the contribution
to response time due to the bandwidth constraints, which
in turn is determined by the posting lists to be transferred
(major contributor to bandwidth consumption). The two
response time indicators are calculated in the same manner
as total effective response time is calculated (shown below).

The s-hops (s-postings) of a set of sequential operations is
the sum of the individual hops (posting transfers) involved
in the operations, while the s-hops (s-postings) of a set of
parallel operations is the maximum of the individual hops

TREC8 (401-450)
P2P Syn. Search P2PCS

MAP 0.1672 0.2012(+20.3%)
P@10 0.3900 0.4360(+11.8%)
P@20 0.3140 0.3510(+10.4%)

ANP 3574.78 31905.28
s-posting 3574.78 20894.60

s-hops 5.25 17.75

Figure 6: Evaluation results: Syntactic vs. Semantic

(posting transfers) involved. This can be combined recur-
sively for each of the sub-operations to obtain the total s-
hops (s-postings). These measures though not precise, still
help in comparing response times of different approaches.

5.1 P2P Syntactic Search vs. P2PCS
In this section, we compare the performance of P2P Syn-

tactic Search and P2PCS (with WordNet stored in DBK).
As a data-set for this experiment, we used the TREC ad-hoc
document collection5 (disks 4 and 5 minus the Congressional
Record documents) and the query set from TREC8 (topics
401-450). The title for each topic was used as a query. The
data-set consists of 523,822 documents and 50 queries. The
peer-to-peer network was simulated with 10,000 nodes and
queries were issued from randomly chosen peers. The results
of the evaluation are shown in Figure 6. The experiments
show that, on TREC ad-hoc data set, the results achieved
by P2PCS are better in quality than those achieved by P2P
Syntactic Search. The achieved improvement is statistically
significant according to Wilcoxon signed rank test at the
level of 0.1. The network overhead of concept-based search
(measured by ANP) is 9 times that of syntactic search.
The response time indicators are also higher. Thus, though
concept-based search provides higher quality of results com-
pared to syntactic search, the network performance is lower.
Also, more techniques need to be explored for peer-to-peer
concept-based search other than the term-partitioned DHT-
based scheme used. Next, we show how the performance and
quality can be improved using a two-layered architecture.

5.2 P2PCS vs. Two-Layered P2PCS
In this section, we compare the performance of single-

layered P2PCS and two-layered P2PCS approaches. The
data-set for this experiment was automatically generated by
using data from WordNet Domains [2], YAGO ontology [20],
and Open Directory Project6 also known as DMoz. The
DMoz was chosen for generating document collections be-
cause it is a collaborative effort of more than 80,000 editors
who work independently in different domains and, therefore,
the resulting document collections approximate the docu-
ments in the real communities well.

First, we created 18 background knowledge bases BK by
using the following top-level WordNet Domains: agriculture,
architecture, biology, chemistry, computer science, earth, en-
gineering, food, history, law, literature, mathematics, medicine,
music, physics, religion, sport, transport. Universal knowl-
edge was created by using concepts and relations from Word-
Net which do not correspond to any domain (i.e., facto-
tum in WordNet Domains). Knowledge from UK was added
to every BK and then we enriched concepts in each BK
with the more specific concepts (and corresponding rela-

5http://trec.nist.gov/data/test_coll.html
6http://www.dmoz.org/
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Figure 7: Ranking of communities

tions) from YAGO ontology. Thus UK represents globally
accepted knowledge while BK is specialized based on com-
munity interest.

Second, for every domain we selected a corresponding sub-
tree in DMoz (e.g. Top/Science/Agriculture for agriculture
domain and Top/Society/History for history domain). Doc-
uments classified to categories in the corresponding domain
subtree were used as the document collection for the do-
main. The concatenation of DMoz description, title, and
the first page of the corresponding web page was used as the
document. The document collection size varies from 1387
documents in architecture domain to 71661 documents in
computer science domain. The total number of documents
is 318175.

Third, queries were generated by using labels of categories
in the domain subtree, namely, queries were created by con-
catenation of each category and its parent’s labels adding “,”
in between. Queries created from the labels which contain
punctuation, special symbols, or boolean operators (e.g.,
’+’, and ’*’), queries which contain the words shorter than 3
letters, and queries created from categories which contained
less than 10 documents were eliminated. Two query sets
were created. First query set contains 1432 queries (i.e., 100
or less randomly selected queries from each domain) and is
used to evaluate the community selection process (see Fig-
ure 7). Second query set contains 18 queries (i.e., 1 randomly
selected query from each domain) and is used to compare
single-layered P2PCS versus two-layered P2PCS (see Fig-
ure 8).

Finally, in order to generate a set of relevance judgments
for the second query set, we used a mapping from categories
for which queries are created to the documents classified to
these categories by DMoz editors. For every category, we
collect all the documents classified in the subtree of this
category. All such documents are considered to be relevant
to the query.

In Figure 7, we show the results of the community selec-
tion algorithm. We plot the number of times (y-axis) the
correct (the one with the most relevant documents) com-
munity was ranked at position n (x-axis). As we can see
from Figure 7, in 65% of cases, the correct community was
ranked first. In 86% of cases, it was ranked within first three.
Note that this was obtained using our simple community se-
lection algorithm and could be improved as mentioned in
Section 4.3.

For two-layered approach, each community had 1000 sim-
ulated nodes and hence, the total number of nodes was
18,000. The queries were issued from randomly chosen peers
from one of the communities. For single-layered approach,
the peer-to-peer network was simulated with 18,000 nodes
and the queries were issued from randomly chosen peers.
In Figure 8, we show the results of the evaluation of single

WordNet Domains + YAGO + DMoz

1-layer 2-layers (t=0.8) 2-layers (t=0.2) 2-layers (opt.)

MAP 0.1544 0.1573(+1.9%) 0.1736(+12.4%) 0.2039(+32.1%)*

P@10 0.2667 0.2500(-6.3%) 0.2833(+6.2%) 0.3222(+20.8%)

P@20 0.1750 0.1944(+11.1%) 0.2278(+30.2%)* 0.2556(+36.9%)*

ANP 30700.22 7545.94 22396.72 2151.83

s-posting 24582.70 3878.78 9246.89 1455.72

s-hops 17.31 24.99 24.39 23.05

Figure 8: Evaluation results: single vs. two lay-
ered(* The improvement is statistically significant
according to Wilcoxon signed rank test at the level
of 0.1)

and two-layered approaches. For the two-layer approach we
performed two experiments where a set of communities was
automatically selected with thresholds t = 0.8 and t = 0.2
(see Option 3 in Section 2.2). Also we performed an experi-
ment where only the correct communities were selected, i.e.,
we evaluated the performance in the optimal case, when the
user manually selects the set of communities to be queried
(see Options 1 and 2 in Section 2.2). From Figure 8, we
can see that if the threshold is too high (e.g. 0.8), then we
have a high risk of retrieving the results which are worse
in quality than in the case of single layered approach. It
is mainly because the correct communities can be missed
by the community selection algorithm. If the threshold is
relatively low (e.g. 0.2) it is likely that the correct commu-
nity will be among the selected ones and the quality of the
results is improved. The quality is further improved if the
community is manually selected.

In the above experiments, with t = 0.2, the network cost
(ANP) is 72.95% as that of single-layered approach while
it reduces to 24.58% when t = 0.8. Thus, with our sim-
ple community search algorithm itself, the network cost was
drastically reduced. With Option 2, i.e., when the relevant
community was manually selected, the network cost is only
7.01% as that of single-layered approach. This shows that
with user intervention in community selection, the search
quality as well as network cost reduction can be dramatically
improved. Also, there is a lot of scope for better commu-
nity search algorithms to improve the performance of Option
3 further. Although, there is in an increase (increased by
33.2% for optimal) in s-hops for two-layered approach due to
search for communities, the delay due to posting list trans-
fer is substantially reduced (decreased by 94% for optimal)
due to parallelization across communities. Thus, the experi-
ments show the improvements obtained (both in quality and
network performance) by using a two-layered architecture.

6. RELATED WORK
A number of variants of DHT inverted index based P2P

search approaches have been proposed in the literature (e.g.,
[11, 22]). All of these approaches are based on syntactic
matching of words and, therefore, the quality of results pro-
duced by these approaches can be negatively affected by
the problems related to the ambiguity of natural language.
P2PCS is based on semantic matching of concepts which al-
lows it to deal with ambiguity of natural language. Since our
approach extends syntactic search and does not replace it,
the optimization techniques which are used in P2P syntactic
search can be easily adapted to P2PCS.

Some P2P search approaches use matching techniques which
are based on the knowledge about term relatedness (and not
only syntactic similarity of terms). For instance, statistical
knowledge about term co-occurrence is used in [21]. Knowl-



edge about synonyms and related terms is used in [12]. Un-
like these approaches, P2PCS is based on semantic matching
of complex concepts. Knowledge about concepts and con-
cept relatedness is distributed among all the peers in the
network. Note that, in principle, the knowledge about con-
cept relatedness can be stored in DHT based RDF triple
store (see e.g. [1]). But in our approach we use only one
type of relation (i.e., subsumption) and therefore the ad-hoc
approach for storing distributed background knowledge (as
discussed in Section 4.2.4) will require less resources, e.g.,
we don’t need to index triples by predicates as in [1].

Semantic overlay networks[5] follow the scheme of clas-
sifying nodes and queries based on semantics. The nodes
are clustered together by forming links among each other
based on the classification. The queries are classified and
are directed to the corresponding cluster. This approach in-
creases the scalability of the search compared to a pure un-
structured approach. But, a globally accepted shared clas-
sification scheme is required which may not be feasible in
a general case. This problem is reduced in our two-layered
approach as the universal knowledge, which all the peers
need to agree on, is minimal. The rest of the knowledge
(community background knowledge) evolves independently
in various communities.

In general, formation of peer groups to improve the effi-
ciency of peer-to-peer search has been exploited in various
approaches. The node grouping could be based on term dis-
tributions[13], group hierarchy[17] or clustering[14]. Unlike
these approaches, in our architecture, search and indexing in
each node group(community) is done based on background
knowledge of the community, made interoperable through a
universal knowledge base.

Federated peer-to-peer search[10] addresses the problems
of resource representation, ranking and selection, result merg-
ing, heterogeneity, dynamicity and uncooperativeness for
searching federated text-based digital libraries. But, the
knowledge and overlay related issues differ in our case.

7. CONCLUSIONS
We have proposed and implemented a two-layered archi-

tecture for peer-to-peer concept search. Our experiments
show that peer-to-peer concept search achieves better qual-
ity compared to traditional peer-to-peer keyword-based search.
The proposed two-layered architecture improves the search
quality and network performance compared to a straightfor-
ward single-layered approach. However, peer-to-peer search
still has scalability issues and is an active area of research.
We expect the two-layered approach to be a stepping stone
in achieving scalable and pragmatic global-scale semantic
search. Future works include implementing and comparing
alternate design choices, introducing novel search mecha-
nisms, elaborate experiments with peer and community dy-
namics and experimenting in a large scale deployment across
universities.
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