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An Adaptive Multi-Saling Imaging Tehniquebased on a Fuzzy-Logi Strategy for dealing withthe Unertainty of Noisy Sattering DataManuel Benedetti, Aronne Casagranda, Massimo Donelli, and Andrea Massa
AbstratInverse sattering data, even though olleted in a ontrolled-environment, are usu-ally orrupted by eletromagneti noise, whih strongly a�ets the e�etiveness ofthe reonstrution tehniques beause of the intrinsi ill-positioning of the problem.In order to limit the e�ets of the noise on the retrieval proedure and to fully ex-ploit the limited information ontent available from the measurements, an innovativeinversion sheme based on the integration of an adaptive multi-sale proedure anda fuzzy-logi-based deision strategy is proposed. The main goal of the approahis to redue the omplexity of the problem as well as to improve the robustnessof the inversion proedure allowing an aurate retrieval of the pro�le under test.The approah is based on an adaptive, oarse-to-�ne suessive representation ofthe unknown objet obtained through a sequene of nonlinear reonstrutions wheresuitable weighting oe�ients are de�ned through a fuzzy logi. Key elements ofthe theoretial analysis are given and several numerial examples, onerned withsyntheti and experimental test ases, illustrate the onsequenes of the proposedapproah in terms of both resolution auray and robustness as well as omputa-tional osts.

Key-words:Mirowave Imaging, Inverse Sattering, Fuzzy-Logi, Iterative Multi-Saling Approah.2



1 IntrodutionImaging an unknown objet from the �eld sattered by the same objet when probed byan eletromagneti soure is a very interesting and hallenging topi [1℄. Let us onsiderthe wide range of possible appliations from subsurfae imaging [2℄ to biomedial anddiagnosti appliations [3℄. However, several theoretial di�ulties our in developinga pratial imaging system based on inverse sattering phenomena [4℄. As a matter offat, inverse sattering problems are intrinsially ill-posed and their numerial ounterpartill-onditioned beause of the limited amount of information olletable from satteringexperiments [5℄[6℄. To limit/overome these drawbaks several approahes have beenproposed. Two main paths of researh seem to be usually taken into aount:
• Some methods, taking into aount the ahievable spatial resolution in relation tothe amount of data [7℄ and the nonlinearity of the problem in hand, de�ne suitablerepresentations of the unknowns in order to allow reliable reonstrutions throughe�etive optimization methods both deterministi [8℄ and stohasti [9℄[10℄;
• Other approahes onsider multi-resolution strategies in order to enhane the ahiev-able resolution auray fully exploiting all the sattering information [7℄[11℄-[13℄.Nevertheless, suh tehniques do not onsider or partially address the problem of thereliability/unertainty of the data. As a matter of fat, if quantifying the number ofinformative (i.e., independent) data [6℄ is a key-issue in solving inverse sattering problems,on the other hand the e�etiveness of a retrieval proedure strongly depends on the levelof reliability of suh data.In olleting the eletromagneti measurements, experimental and environmental noisesadd to the sattered signals beause of the mehanial positioning of the eletromagneti�eld sensors or the eletromagneti interferenes in the test-site. The presene of theseorrupting fators, beause of the high intrinsi instability aused by the ill-posedness ofinverse sattering problems, strongly a�ets the auray of the reonstrution withoutproper ountermeasures. 3



Certainly, a diret estimation of the unertainty/reliability assoiated with satteringmeasurements would be really useful. But, beause of the ost and the omplexity ofsuh an estimate, it is quite hard to be obtained (e.g., multiplexing and time averaging ofmultiple measurements ould be a solution strategy [14℄[15℄[16℄, but notwithstanding ana-priori knowledge on the noise type is needed). Moreover, suh a knowledge usually isavailable not as an objetive knowledge (i.e., in terms of a mathematial model or numerialvalues), but as a subjetive knowledge (e.g., �data are a�eted by low noise� or �data area�eted by muh noise� or �data are quite reliable�), whih represents an information thatis usually di�ult or omplex (and expensive) to quantify using traditional mathematisor experimental methods. Beause of these problems, subjetive information is usuallyignored or partially taken into aount. In general, the impat of orrupted data beauseof the ill-posedness of the inverse problem is handled by looking for a regularized solution,whih better �ts all the available data (orrupted or not by the noise and haraterizedby a di�erent degree of reliability) by minimizing the disrepany funtion omposedby two terms, namely the Data term and the State term. These terms depend on thesattered �eld olleted in the observation domain and on the inident �eld measuredin the investigation domain, respetively. Suitable weighting parameters heuristiallyde�ned [17℄[10℄ or iteratively tuned [18℄ allow one to weight more the one or the otherterm, depending on the unertainties assoiated with both of them. In suh a way, thesetehniques allow a �global � ontrol on the whole set of data and they do not onsidereah measure individually with its degree of reliability. Moreover, the arising ontrol is�indiret� sine it does not quantify the reliability of the sattering data, but their impaton the ost funtion.As far as the use of the subjetive information for e�etively exploiting the �lean� in-formation (i.e., without noise and independent) ontained in noisy sattering data isonerned, the following onsiderations should be taken into aount. If the amplitude ofthe total �eld sattered by the target under test is small, then the olleted samples mightbe easily and irremediably a�eted by e.m. experimental and environmental noises. Onthe ontrary, the higher is the amplitude of the �eld samples, the lower is the risk of beingheavily orrupted. Starting from these physial bases, this paper proposes an innovative4



automati approah preliminary assessed in [19℄ and here integrated with a ustomized it-erative multi-saling proedure, whih takes into aount the unertainty on the reliabilityof the measured data, due to the presene of the noise, through a fuzzy-logi-based strat-egy [20℄. To the best of the authors' knowledge, although fuzzy theory has been widelyemployed espeially in the framework of automated ontrols [21℄[22℄ where unertaintyand subjetive knowledge play an important role, its use in the framework of eletromag-netis has been limited for example to the fuzzy partitioning of ANNs input spae [23℄,to the ombination of ompeting objetive funtions [24℄, and to determine the values ofregularization parameters in ECT appliations [25℄. Therefore, in the authors' opinion,the use of a fuzzy-based strategy for dealing with the unertainty on the reliability ofnoisy sattered data represents a novelty in the framework of mirowave imaging.The underlying idea of the proposed approah is that of de�ning a system able to reatautomatially to any noisy ondition providing a degree of reliability of the sattering dataso that they an be usefully employed during the retrieval proess and for an �amount�related to their auray [i.e., by properly weighting the required �tting between eahsample of measured and reonstruted data, see Eq. (6)℄. The system is required togive suh an indiation starting from the same measured data without other a-prioriinformation or onstraints both on satterers and on the aquisition setup.The paper is strutured as follows. A brief desription of a standard two-dimensionalmirowave imaging problem will be given in Set. 2 where a suitable weighted multi-resolution ost funtion will be de�ned in order to onveniently take into aount thepresene of orrupted sattering data fully exploiting the available information ontent.Then, a detailed explanation of the fuzzy-logi-based strategy and of its ustomization tothe mirowave imaging framework will be presented in Set. 3. Set. 4 will be devotedto the alibration and numerial testing of the fuzzy logi system (FLS). The riterionfor seleting the FLS desriptive parameters will be brie�y summarized and the resultsof a sensitive analysis will be disussed in order to de�ne the optimal setting (Sub-Set.4.1). In Sub-Set. 4.2, a numerial assessment will be performed by onsidering di�erentsattering senarios (syntheti as well as experimental) and various environmental on-ditions. Moreover, a omparative study among the proposed approah and the standard5



IMSA as well as with state-of-the-art regularization methods will be arried out. Finallysome onlusions will be drawn and future developments will be proposed (Set. 5).2 Inverse Problem FormulationLet us onsider a ylindrial two-dimensional geometry where a set of V transverse-magneti (TM) plane waves E
v
inc (x, y) = Ev

inc (x, y) ẑ, v = 1, ..V , suessively illuminatesan investigation domain denoted by Γinv where an unknown inhomogeneous dieletriobjet is supposed to lie. Without loss of generality, the host medium is a homoge-neous, non-magneti and lossless bakground with dieletri properties equal to that ofthe vauum (ε0, µ0). The dieletri inhomogeneity that identi�es the unknown sattereris desribed by means of the distribution of the objet funtion τ given by
τ (x, y) = [εR (x, y) − 1] − j

σc (x, y)

2πfε0
(1)where εR and σc are the relative dieletri permittivity and the eletri ondutivity ofthe satterer, respetively, and f is the working frequeny of the probing soure.The �eld sattered by the senario under test E

v
scatt (x, y) = Ev

scatt (x, y) ẑ, v = 1, ..., V ,is olleted in an external observation domain Γobs where a set of M(v), v = 1, ..., V ,measurement points are uniformly distributed. Starting from the knowledge of the sat-tered �eld and of the inident �eld radiated by the eletromagneti soure, the sattereris usually reonstruted/imaged by solving the nonlinear inverse sattering equations:
Ev

scatt

(

xm(v), ym(v)

)

= k2
0

∫

Γinv
G2D

(

xm(v), ym(v)|x′, y′
)

τ (x′, y′) Ev
tot (x′, y′) dx′dy′

(

xm(v), ym(v)

)

∈ Γobs m(v) = 1, ..., M(v), v = 1, ..., V
(2)

Ev
inc (x, y) = Ev

tot (x, y) − k2
0

∫

Γinv
G2D (x, y|x′, y′) τ (x′, y′) Ev

tot (x′, y′) dx′dy′

(x, y) ∈ Γinv v = 1, ..., V
(3)

where G2D denotes the Green funtion of the bakground medium and Ev
tot is the �eldwith the objet. Towards this end, sine a losed-form solution is generally not available,6



a suitable disretization is performed for allowing a numerial solution. As far as thewell-known Rihmond's proedure [26℄ is onerned, the investigation domain is equallypartitioned into N sub-domains of area An, n = 1, . . . , N .However, beause of the limited information ontent available from sattering data [6℄,multi-resolution strategies are neessary [11℄-[12℄ for ahieving a suitable resolution of theobjet funtion in Γinv keeping a limited number of unknowns at the same time. In suh aframework, the iterative multi-saling approah [13℄ an be pro�tably used. By assuminga multi-resolution representation of the problems unknowns, namely the objet funtion
τ(x, y) =

R(s)
∑

r=1

N(r)
∑

n(r)=1

τ
(

xn(r), yn(r)

)

Bn(r) (x, y) (x, y) ∈ Γinv (4)and of the total �eld
Ev

tot(x, y) =

R(s)
∑

r=1

N(r)
∑

n(r)=1

Ev
tot

(

xn(r), yn(r)

)

Bn(r) (x, y) (x, y) ∈ Γinv (5)where r is the resolution index at the s-th step of multi-saling proess, n(r) denotesthe orresponding disretization sub-domain in Dinv, and Bn(r) is a known retangularbasis funtion de�ned over the n(r)-th sub-domain, the IMSA onsists of a sequene of Ssuessive reonstrutions (s = 1, . . . , S) of the unknown oe�ients oded into the array
f (s) =

{

τ
(

xn(r), yn(r)

)

, Ev
tot

(

xn(r), yn(r)

) ; n(r) = 1, ... , N(r); r = 1, ... , R(s)}, R(s) = sbeing the urrent resolution index. Towards this end and at eah step s, the followingmulti-resolution ost funtion is minimized
Φ

(s)
IMSA

{

f (s)
}

=

∑V
v=1

∑M(v)
m(v)=1

∣

∣

∣
Ev

scatt

(

xm(v), ym(v)

)

− ΦData

{

f (s)
}
∣

∣

∣

2

∑V
v=1

∑M(v)
m(v)=1

∣

∣Ev
scatt

(

xm(v), ym(v)

)
∣

∣

2 (6)
+

∑V

v=1

∑R(s)
r=1

∑N(r)
n(r)=1 w

(

xn(r), yn(r)

)

∣

∣

∣
Ev

inc

(

xn(r), yn(r)

)

− ΦState

{

f (s)
}
∣

∣

∣

2

∑V

v=1

∑R(s)
r=1

∑N(r)
n(r)=1

∣

∣w
(

xn(r), yn(r)

)

Ev
inc

(

xn(r), yn(r)

)
∣

∣

2where the �rst term represents the normalized global mismath between estimated (from
7



the reonstrution of f (s))
ΦData

{

f (s)
}

=

R(s)
∑

r=1

N(r)
∑

n(r)=1

w
(

xn(r), yn(r)

)

τ
(

xn(r), yn(r)

)

Ev
tot

(

xn(r), yn(r)

)

G2D

(

k0ρm(v)n(r)

)(7)and measured data in Γobs [i.e., Ev
scatt

(

xm(v), ym(v)

)℄, while the seond term is the normal-ized global error in mathing the State Equation sine
ΦState

{

f (s)
}

= Ev
tot

(

xn(r), yn(r)

)

−
N(r)
∑

p(r)=1

τ
(

xp(r), yp(r)

)

Ev
tot

(

xp(r), yp(r)

)

G2D

(

k0ρn(r)p(r)

)(8)determines the estimated value of the inident �eld in Γinv.Moreover, w is a weighting funtion
w
(

xn(r), yn(r)

)

=











0 if
(

xn(r), yn(r)

)

/∈ D(s−1)

1 if
(

xn(r), yn(r)

)

∈ D(s−1)
(9)and D(s−1) the support of the Region-of-Interest (RoI) where the unknown satterer hasbeen deteted at the (s − 1)-th step [13℄. Starting from the oarse reonstrution ahievedat the �rst step (s = 1, D(s−1) = Γinv), the iterative �zooming� proess is repeated untilthe �stationary� ondition [13℄ holds true (s = Sopt).Although suh a formulation allows an e�etive use of the available sattering data interms of the ahievable spatial resolution, it does not take into aount the unertaintyon the reliability of the sattering data [Ev

scatt

(

xm(v), ym(v)

) and Ev
inc

(

xn(r), yn(r)

)℄, whihin real appliations are usually orrupted by equivalent soures of noise.In order to fully exploit the available subjetive knowledge on the sattering data andto take into aount the unertainty/reliability assoiated with the measurements, let usrepresent/quantify the unertainty/reliability-degree of the data by introduing in (6) aset of suitable weighting parameters αm(v) and βn(r),v. Thus, the arising IMSA − Fuzzyost funtion is expressed as follows
8



Φ
(s)
IMSA−Fuzzy

{

f (s)
}
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m(v)=1
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αm(v)

∣

∣

∣
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xm(v), ym(v)
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f (s)
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∣

∣

2
}
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v=1

∑M(v)
m(v)=1

∣

∣Ev
scatt

(

xm(v), ym(v)

)
∣

∣

2 (10)
+

∑V
v=1

∑R(s)
r=1

∑N(r)
n(r)=1

{

βn(r),vw
(

xn(r), yn(r)

)

∣

∣

∣
Ev
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(

xn(r), yn(r)

)

− ΦState

{

f (s)
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∣

∣

∣

2
}
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v=1
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r=1

∑N(r)
n(r)=1

∣

∣w
(

xn(r), yn(r)

)

Ev
inc

(

xn(r), yn(r)

)
∣

∣

2where the weighting parameters are omputed starting from a fuzzy representation ofthe unertainty assoiated with the measurements and by means of a fuzzy logi basedstrategy desribed in the following setion (Set. 3).
3 The Fuzzy-Logi StrategyThe framework of fuzzy logi (FL) is unique in its ability to represent subjetive orlinguisti knowledge in terms of a mathematial model. Furthermore, its oupling withrule-based systems is enabling the modeling of the approximate and impreise reasoningproesses ommon in human problem solving [21℄. Therefore, FLSs have been widely usedin the last deades espeially in the �eld of automati ontrols after Zadeh introdued thebasi priniples of FL and approximate reasoning in his pioneering work [20℄. For anoverview, the interested reader is suggested to refer to the dated and lassial refereneson FL and systems. For example, [27℄[28℄ as well as [29℄[30℄[31℄[32℄ and the referenesited therein.Generally speaking, a FLS system an be desribed through the blok-diagram in Fig.1(a). The FLS maps a risp input (or a olletion of risp inputs) into a risp output. Atthe heart of the FLS Fig. 1 [Fig. 1(a)℄ there is a fuzzy rule base, whih ontains fuzzyrules expressed in the form of IF − THEN statements. The mapping of the input datato the desired output is generally performed in three stages. These are the fuzzi�ationof the input data (assuming this data is risp), the fuzzy inferene using fuzzy rules, anda defuzzi�ation stage used for produing a risp salar output. Usually, if the rule baseof the FLS inludes several rules, their individual outputs are ombined in the inferenestage for produing a single fuzzy output set.9



3.1 The FLS for Eletromagneti ImagingLet us refer to the blok diagram shown in Fig. 1(b). The proposed implementation of afuzzy-logi strategy for automatially evaluating the level of unertainty on the reliabilityof measured data needs of a normalization step before the fuzzy-logi system. The nor-malization blok , haraterized by the transfer funtion N { � }, de�nes the risp inputsto the fuzzy system starting from the knowledge of the total and sattered eletri �eldin the observation domain and of the inident eletri �eld in the investigation domain.Suh normalized values are omputed as follows
ηm(v) = N

{

Ev
scatt

(

xm(v), ym(v)

)

, Ev
tot

(

xm(v), ym(v)

)}

=

∣

∣

∣

∣

Ev
scatt(xm(v),ym(v))
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tot(xm(v),ym(v))

∣

∣

∣

∣
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∣

∣

∣
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scatt(xm(v),ym(v))
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tot(xm(v),ym(v))

∣

∣

∣

∣

}(11)
ξn(r),v = N

{

Ev
inc

(

xn(r), yn(r)

)}

=

∣

∣Ev
inc

(

xn(r), yn(r)

)
∣

∣

maxv

{

maxr

[

maxn(r)

∣

∣Ev
inc

(

xn(r), yn(r)

)
∣

∣

]} (12)in order to �rank � the whole set of sattering data in terms of their relative amplitudesaording to the idea that the higher is the normalized amplitude of a sample, the loweris its risk of being heavily orrupted as well as the unertainty on its reliability for re-onstrution purposes. Then, in order to obtain a reliability index for eah measurement,the normalized oe�ients ηm(v) and ξn(r),v are mapped into the risp oe�ients αm(v)and βn(r),v by means of the transfer funtion ℑ{ � } shematially-desribed in the blokdiagram shown in Fig. 1(a). More in detail, given a set of rules (ℜi, i = 1, ..., I, I beingthe number of rules) de�ned by a set of anteedents/premises (Ai, i = 1, ..., I) and relativeonsequenes/onlusions (Ci, i = 1, ..., I), the inferene proess proeeds in �ve steps.1. Inputs Fuzzi�ation - The fuzzi�er Ω { � } applies to the atual values of theoe�ients ηm(v) and ξn(r),v the Gaussian membership funtion µ ( � ) in order todetermine the degree to whih they belong to the appropriate fuzzy sets Fi de�nedin eah premise Ai. The Gaussian funtion is de�ned as
µ
(

η; ηm(v); σ
)

=
1√

2πσ2
exp

(

−
(

η − ηm(v)

)2

σ2

) (13)10



or
µ
(

ξ; ξn(r),v; σ
)

=
1√

2πσ2
exp

(

−
(

ξ − ξn(r),v

)2

σ2

) (14)entered in orrespondene with the atual value of the input oe�ient (ηm(v) or
ξn(r),v) and haraterized by a variane value σ proportional to the unertainty levelassoiated to the urrent measure;2. Rule Ativation - One the risp input has been fuzzi�ed, the i-th rule ℜi isativated when there is a non-zero degree of similarity between the fuzzy input[µ (η; ηm(v); σ

) or µ
(

ξ; ξn(r),v; σ
)℄ and the anteedent Ai. Mathematially, it an beexpressed as follows

µ
(

η; ηm(v); σ
)

∩ Ai (η) 6= {0} ⇒ ℜi activated (15)
µ
(

ξ; ξn(r),v; σ
)

∩ Ai (ξ) 6= {0} ⇒ ℜi activated. (16)The ativation value of eah rule, Ri, is omputed evaluating the highest valueamong the intersetion points between the membership funtion of the i-th an-teedent Ai and the membership funtion assoiated to the input. Analytially,
Ri = max

η∈[0,1]

{

µ (η) : µ
(

η; ηm(v); σ
)

= Ai (η)
} (17)

Ri = max
ξ∈[0,1]

{

µ (ξ) : µ
(

ξ; ξn(r),v; σ
)

= Ai (ξ)
}

; (18)
3. Rule Impliation - The output fuzzy subset G′

i, to be assigned to eah output vari-able of eah rule, is omputed by de�ning the orresponding membership funtion[C ′

i (α) or C ′

i (β)℄ through the MIN inferening rule [33℄ starting from the ativationvalue Ri. The output membership funtion Ci (de�ning the fuzzy set Gi) is lippedo� at a height orresponding to the degree of truth Ri of the premise Ai

C ′

i (α) = min
α∈[0,1]

{Ci (α) , Ri} , α ∈ [0, 1] (19)11



C ′

i (β) = min
β∈[0,1]

{Ci (β) , Ri} , β ∈ [0, 1] ; (20)
4. Output Fuzzy Subsets Aggregation - Sine deisions are based on the testing ofthe whole set of rules {ℜi, i = 1, ..., I}, the rules must be ombined in order to makea deision. The list of trunated output fuzzy sets {G′

i, i = 1, ..., I} returned by theimpliation proess for eah rule are ombined (�aggregation� proess) into a singleoutput fuzzy set O. The membership funtion ϑ of the aggregate output fuzzy set Ois omputed taking the maximum value among all the output membership funtions
{C ′

i, i = 1, ..., I}

ϑ (α) = max
i=1,...,I

{C ′

i (α)} , α ∈ [0, 1] (21)
ϑ (β) = max

i=1,...,I
{C ′

i (β)} , β ∈ [0, 1] ; (22)
5. Defuzzi�ation - The defuzzi�ation blok Θ { � } is used for onverting the ag-gregate fuzzy output set O into the reliability oe�ient αm(v) (or βn(r),v) onernedwith the normalized oe�ient ηm(v) (or ξn(r),v), respetively. For its simpliity, letus onsider the so-alled height defuzzi�er [34℄. Let gi denote the enter of grav-ity of the fuzzy set Gi, then the defuzzi�er omputes the ost funtion weightingoe�ients as follows

αm(v) =

∑I
i=1 [giC

′

i (α = gi)]
∑I

i=1 C ′

i (α = gi)
(23)

βn(r),v =

∑I

i=1 [giC
′

i (β = gi)]
∑I

i=1 C ′

i (β = gi)
. (24)

4 Numerial Analysis and TestingThe aim of this setion is twofold. Firstly, a sensitivity analysis on the impat of some FLSparameters on the reonstrution performane are reported to determine their optimal12



setting for mirowave imaging. Then, by onsidering suh an optimal on�guration, thee�etiveness and robustness of the FL-based approah are assessed in reonstrutingdi�erent sattering senarios starting from synthetially-generated as well as experimentalinverse sattering data.4.1 FLS CalibrationSeveral hoies ould be made in de�ning eah blok of the diagram of the FLS shown inFig. 1(a). As a matter of fat, the FLS user is requested to deide on the type of fuzzi-�ation (singleton or non-singleton), mathematial expression of the membership fun-tions (triangular, trapezoidal, Gaussian, et...), desriptive parameters of the membershipfuntions, impliation (MIN inferene or PRODUCT inferene rule), aggregation rule(MAX or SUM), and defuzzi�er (maximum, mean-of-maxima, entroid, height, et...).In our implementation, a non-singleton fuzzi�er has been seleted for the fuzzi�ationproedure. Unlike the singleton fuzzi�er , suh a fuzzi�er is haraterized by a Gaussianmembership funtion µ (ς; ς̄; σ) (entered in ς̄ and with variane σ) in order to take into a-ount the unertainty onerned with the reliability of measured data [33℄. Conerning theother hoies for the inferene blok, beause of our interest in the engineering appliationof FL, the riterion of the omputational simpliity has been adopted. Therefore, triangu-lar/trapezoidal membership funtions {Ci, i = 1, ..., I} have been used by representing lin-guisti variables (e.g., reliability of measured data, amplitude ∈ {slight, low, medium, strong, high})in terms of fuzzy sets [33℄-[37℄. Moreover, simple inferene rules (MIN inferene and
MAX omposition) have been onsidered in the impliation and aggregation phase, re-spetively. Furthermore, the height defuzzi�er has been adopted for simpliity sine theenters of gravity {gi, i = 1, ..., I} of triangular/trapezoidal membership funtions area-priori known.Nevertheless these assumptions/simpli�ations, the FLS needs of a areful tuning of theremaining parameters, whih are expeted to a�et the imaging performanes. Therefore,a sensitivity study on the e�ets of the parameter σ of the non-singleton Gaussian fuzzi�erand of the fuzzy rules has been performed for presenting a reliable FL-based approah for13



mirowave imaging. Towards this end, the following experiments have been arried out:
• Experiment 1 - Di�erent sets of rules, de�ned aording to the suggestions in thereferene literature, have been analyzed;
• Experiment 2 - The value of σ has been varied in a range of admissible values,

σ ∈ [10−5, 10−1], for attributing the more appropriate level of unertainty to thesattering data.As a measure of e�etiveness, the values of the quantitative error indexes (ζtot = totalreonstrution error, ζint = internal reonstrution error, and ζext = external reonstru-tion error) de�ned in [13℄ have been used and the following referene senarios have beenonsidered:
• Senario 1 - A square homogeneous investigation domain Γinv, Linv = 1.125 λ0-sided, where an o�-entered dieletri homogeneous satterer of side l = 0.2 λ0and objet funtion τ = 1.5 is loated at xc = yc = 0.3 λ0. Moreover, a multi-illumination/multi-view imaging setup haraterized by V = 4 views and M(v) =

20, v = 1, ..., V equally-spaed sensors on a irular domain Γobs (of radius robs =

1.125 λ0) has been used for probing the sattering on�guration under test.;
• Senario 2 - A square homogeneous dieletri (τ = 1.5) ylinder of side l = 1.2 λ0loated in a Linv = 4 λ0-sided investigation domain at xc = 0.4 λ0 and yc = 1.0 λ0.

Γinv has been illuminated by V = 8 plane waves and the sattering data have beenolleted in M(v) = 50, v = 1, ..., V measurement points on a irular observationdomain Γobs with radius robs = 2.93 λ0.In order to simulate noisy onditions, the sattering data have been orrupted by addinga syntheti Gaussian noise haraterized by an assigned signal-to-noise ratio (SNR) [13℄.Consequently, in order to take into aount the stohasti nature of the noise, eah testase has been repeated P = 100 times with the same parameters setup and the average
14



values of the error indexes
ζj =

1

P

P
∑

p=1

ζj j = tot, int, ext (25)have been reorded.Furthermore, beause of the needs of fousing on FLS by evaluating the e�ets of itsharateristi parameters, �bare� reonstrutions (i.e., single-step homogeneous-resolutioninversions) have been arried out negleting the �overboost� e�et of the multi-step pro-edure. Aordingly, Γinv has been uniformly-partitioned into N = 15 × 15 (Senario 1 )and N = 45 × 45 (Senario 2 ) square sub-domains.4.1.1 Experiment #1As a general riterion for de�ning the set of rules, let us onsider that a greater resolutionis generally ahieved by using more membership funtions at the prie of greater ompu-tational omplexity. Moreover, membership funtions an be made to overlap in order todistribute our deision on the data reliability over more than one input lass making the
FLS more robust. Conerning the de�nition of ustomized rules for the imaging problem,the following key-points have been taken into aount: (i) the smallest is the amplitudeof the measured �eld, more relevant ould be the blurring/masking e�et of the noise;(ii) the greater is the amplitude of the �eld sattered by the objet (i.e., Ev

tot) omparedto the inident �eld (i.e., Ev
scatt - where a sort of �print� of the satterer is �oded � - isnot negligible), the higher is usually the information on the satterer olletable fromsattering data.Starting from these onsiderations and from known referene on�gurations, the sets ofrules pitorially-represented in Fig. 2 have been dedued by interpreting, aording to theguidelines in [33℄-[37℄, the linguisti variables onerned with the amplitudes of the �eldsamples for the anteedents, and the value of the reliability oe�ient αm(v) (or βn(r),v) forthe onsequenes. More in detail, the sets of rules (i.e., anteedents and onsequenes) ofFigs. 2(a)-(l) have been generated by varying position and shape of their fuzzy sets. Then,the most suitable rule has been hosen by using eah pair of anteedents/onsequenes15



in reonstruting both referene senarios and by evaluating its e�etiveness in terms ofinversion auray. Table 1 summarizes the obtained results in a representative situationwhen SNR = 5 dB [Tab. I (a) - Senario 1 and Tab. I (b) - Senario 2 ℄. As it an benotied, the smallest values of the error indexes our in orrespondene with the set ofrules #3. Suh a situation usually veri�es whatever the SNR value.4.1.2 Experiment #2Under the assumption of a non-singleton Gaussian fuzzi�er , the level of unertainty oninputs depends on the variane σ. Let us onsider that the higher is the σ value, thegreater is the unertainty of data. Otherwise, when the reliability of the measures is high,then σ redues to 0 and the Gaussian membership funtion beomes of singleton type.However, no analytial rules for de�ning the optimal variane value exist (to the best ofthe authors' knowledge), thus a heuristi alibration must be arried out. Towards thisend, σ has been varied in the range between 10−5 and 10−1 by onsidering various noisyonditions (i.e., di�erent SNR values). Sine the positive e�et of the FL-based strategyis expeted to our when signi�ant levels of noise are present, the situation haraterizedby a SNR = 5 dB has been assumed as a representative test ase. Fig. 3 illustrates thebehavior of the FLS in terms of averaged error �gures when dealing with Senario 1 .Although non-so-signi�ant di�erenes arise, the value of σ = 10−4 guarantees the bestreonstrution providing the smallest values of the error �gures (ζtot = 6.38, ζ int = 23.10,and ζext = 5.68). The same onsiderations hold true for the Senario 2 , as well.In onlusion, the following parametri on�guration will be our referene FLS setup: setof rules #3 and σ = 10−4.4.2 TestingIn this setion, the potentialities of the proposed FL-based mirowave imaging tehniquewill be assessed by presenting a seleted set of results from several numerial experiments.16



The behavior of the proposed method will be illustrated by onsidering di�erent satterersand syntheti noisy onditions (Set. 4.2.1). Moreover, the inversion of experimentally-aquired data will be dealt with for a hek in a real framework (Set. 4.2.2).The obtained results will be mainly ompared with those from the standard implementa-tion of the IMSA [13℄ in order to show the enhanement in the reonstrution aurayallowed by the FL strategy when dealing with noisy/orrupted data. As far as the IMSAis onerned, the RoI has been partitioned into N(R) = 10 × 10 square sub-domains.Moreover, the minimization of (10) has been iteratively performed with a deterministionjugate-gradient proedure [13℄ with a maximum number of iterations at eah step �xedto K(s) = 2000, s = 1, ..., Sopt. The use of a deterministi tehnique for this analysis ismotivated by the need of fousing on the improvement guaranteed by the use of a FLSnegleting the randomness arising from the integration of the reonstrution proedurewith a stohasti optimizer (more e�etive in avoiding the solution is trapped in the loalminima of the ost funtion).4.2.1 Numerial AssessmentThe �rst example is aimed at showing the e�et of the reliability indexes αm(v) and βn(r),von the reonstrution apabilities of the imaging proedure in di�erent noisy onditions.The grey-sale representations(1)of the reonstrutions obtained without and exploitingthe FLS are reported in Fig. 4 for di�erent SNR values when the so-alled Senario 2is taken into aount. As requested in de�ning the guidelines of the FLS, when the noiselevel is non-so-signi�ant (SNR ≥ 20 dB), the FL blok behaves in a �transparent� wayand its e�et in terms of reonstrution auray appears almost negligible as pitoriallyshown in Figs. 4(a) and 4(b) and quantitatively on�rmed by the averaged values of theerror �gures in Tab. II (ζtot
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situations where the measured data are seriously orrupted by the noise. Suh an eventan be learly observed omparing the representative samples of reonstruted pro�lesshown in Figs. 4()-(d) (SNR = 10 dB) and Figs. 4(e)-(f ) (SNR = 5 dB). As a matterof fat, when the level of noise inreases, the dieletri pro�le reonstruted by meansof the standard IMSA presents some inhomogeneities [SNR = 10 dB - Fig. 4()℄ andsome artifats adds in heavy noise onditions [SNR = 5 dB - Fig. 4(e)℄. Whereas, theimages retrieved by the FL-based system are more homogeneous and quite faithfully �tthe atual shape of the satterer whatever the SNR value [Figs. 4(d)-(f )℄. For om-parison purposes, let us onsider that on average ζint⌋IMSA
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≃ 1.8.The performanes of the IMSA−Fuzzy and IMSA are summarized in Fig. 5 where theplots of both qualitative error indexes (δ and ∆ de�ned as in [13℄) and the quantitative er-ror �gures ζj (j = {tot, int, ext}) versus SNR are shown. On average, the IMSA−Fuzzyusually overomes the standard approah in loating as well as in shaping [Fig. 5(a)℄the satterer. Suh a behavior is more and more evident as the noise level inreases.As far as the loalization error is onerned, we have δ⌋
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o ≃ 1.7.For omparison purposes, let us onsider the inversion results of the same on�gurationby using, for example, two regularization methods, namely the Tikhonov [38℄ [Figs. 6(a),(), and (e)℄ and the Landweber [5℄ [Figs. 6(b), (d), and (f )℄ methods. Whatever thenoise level, the atual square ylinder is neither loalized nor shaped. On the other hand,sine the ondition of �weak satterer � does not hold true, also the Born approah (eventhough in noiseless onditions) is not able at ahieving a satisfatory reonstrution [Fig.6(g)℄. 18



From the omputational point of view, the IMSA−Fuzzy tehnique favorably ompareswith the standard multi-resolution approah and the minimization of the IMSA ostfuntion bene�ts of the ation of the reliability oe�ients αm(v) and βn(r),v as pointedout in Fig. 7 where some representative samples of the ost funtion versus the iterationnumber k are shown [Fig. 7(a) - SNR = 20 dB, Fig. 7(b) - SNR = 10 dB, and Fig.7() - SNR = 5 dB℄. As it an be observed, the total number of iterations needed forahieving the stationary ondition de�ned as Kopt =
∑Sopt

s=1 k
(s)
conv (k(s)

conv being the numberof iterations needed to ahieve �onvergene� at the s-th step of the multi-saling proess,
k

(s)
conv ≤ K(s)) usually inreases when the noise level grows and the IMSA is used, whileit keeps an almost onstant value (Kopt ≃ 1200) when the FL-based strategy is adopted.In order to numerially analyze the onvergene issue, let us onsider the behavior of theonvergene index ∆Kopt de�ned as follows

∆Kopt =
{Kopt}IMSA

− {Kopt}IMSA−Fuzzy

{Kopt}IMSA

× 100 (26)for di�erent noisy onditions (Fig. 8). As expeted, beause of the positive e�et of the
FLS in dealing with orrupted sattering data, the value of ∆Ktot grows as the SNRvalue dereases. Moreover, in orrespondene with low levels of noise (SNR > 30 dB), theomputational performanes of the two approahes are very similar further on�rming the�transparent� behavior of the FLS in these onditions. Therefore, the proposed approahallows a saving of the total number of iterations espeially dealing with noisy data. Suh aredution guarantees a omputational saving greater than the omputational load due tothe use of the FLS sine the oe�ients αm(v) and βn(r),v are omputed one and o�-line.The seond experiment is aimed at evaluating the dependene of the reonstrution a-pability of the proposed FL-based approah on the dimension of the objet under test.Towards this purpose, the side of the homogeneous (τ = 1.5) square ylinder has been var-ied from l = 0.24 λ0 up to l = 0.72 λ0 and a noise haraterized by SNR = 5 dB has beenadded to sattering data. Although the values of the error indexes inrease as the supportof the atual satterer enlarges (Fig. 9), it should be notied that the dynamis of thesevariations is very limited (ζ int
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Suh an event seems to indiate a substantial invariane of the reonstrution e�etive-ness of the IMSA−Fuzzy versus the satterer dimension. For omparison purposes, thesame plots onerned with the standard IMSA are shown.For ompleteness, the last experiment deals with a senario (Senario 3 ) haraterizedby an homogeneous (τ = 3) irular ylinder l in diameter with a signi�ant noise level(SNR = 5 dB) blurring the sattering data. Fig. 10 shows some inversion samples ob-tained without [Figs. 10(a)()℄ and with the FLS [Figs. 10(b)(d)℄ when l = 0.26 λ0 [Figs.10(a)(b)℄ and l = 1.46 λ0 [Figs. 10()(d)℄. Suh results further on�rm the e�etivenessas well as the enhanement of the FL-based approah ( ζtot⌋IMSA
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≃ 4.34) also in dealing with strong satterers (beyond the �weaksatterer � ondition).4.2.2 Experimental ValidationThe last part of the numerial testing is devoted at assessing the e�etiveness of the
IMSA − Fuzzy tehnique when experimental sattering data are dealt with. Towardsthis end, the multiple-frequeny angular-diversity bistati data provided by the InstitutFresnel, Marseille, Frane [39℄ have been used as referene benhmark. The experimentalimaging setup onsists of a 2D bistati measurement system with an emitter plaed at a�xed position, while a reeiver is rotating with an arm along the vertial axis of the ylin-drial satterer under test. Suh a system allows to implement a multi-illumination/multi-view aquisition proedure haraterized by V = 36 views and M(v) = 49, v = 1, ..., V ,sample measurement points.The onsidered experimental dataset (�dielTM_de8f.exp�) is onerned with an o�-entered homogeneous irular ylinder d = 30 mm in diameter. Suh an objet is har-aterized by a nominal value of the objet funtion equal to τ(x, y) = 2.0 ± 0.3 and itis loated at xc = 0.0, yc = −30 mm. As far as the investigation domain Dinv is on-erned, a square domain 30× 30 cm2 has been assumed and beause of the aspet-limitednature of the experimental setup, the omplete set of measures has been used, but onlymono-frequeny data have been onsidered.20



The �rst omputational test has been performed by using the sattering data at f =

3 GHz. Even though the retrieved distributions are smoothed versions of the atualpro�le [Figs. 11(a)-(b)℄, it is possible to learly detet the objet under test as well asits loation and shape (Tab. III). As far as the omparison between the IMSA andthe IMSA − Fuzzy is onerned, the FL-based approah allows one to obtain a morehomogeneous representation of the dieletri pro�le under test. However, non-so-relevantdi�erenes an be observed and the improvement in the reonstrution auray are notas large as for syntheti test ases. Moreover, the omputational osts required by the twoapproahes for reahing the stationary ondition [13℄ appear almost equivalent as shownin Fig. 12(a).Suh a behavior an be justi�ed by a better SNR (greater than that of previous syn-theti test ases) for the low-frequeny sattering data when olleted in a ontrolled-environment (as pointed out in [40℄). On the other hand, it is well known that an enhanedorruption of the sattering data our as the frequeny inreases.In order to verify suh a hypothesis, some reonstrutions at higher frequenies (f =

6 GHz and f = 8 GHz) have been arried out and the results are shown in Figs. 11()-11(f ). As shown in [13℄, the reonstrution auray redues apart from the IMSAstrategy used. However, beause of the dereasing of the SNR in orrespondene with theinreasing of f , the improvement in the reonstrution allowed by the FLS is onsiderablein terms of both quantitative imaging [Fig. 11() vs. Fig. 11(d) and Fig. 11(e) vs. Fig.11(f ) - Tab. III℄ and onvergene rate [Figs. 12(b)-()℄.
5 ConlusionsIn this paper, an innovative tehnique that integrates the iterative multi-saling approahwith an automati strategy for estimating the unertainty assoiated with the results ofsattering measurements has been developed for mirowave imaging purposes. By onsid-ering a multi-resolution representation of the pro�le under test, the proposed methodologyallows one to yield a reliable reonstrution by means of the exploitation of the informa-21



tion ontent available from noisy-orrupted sattering data.Towards this end, a fuzzy-logi-based deision strategy has been adopted in order to assoiate to eah satteringsample a degree of �reliability�.The main features of the proposed system are the following:
• apability to estimate the unertainty assoiated with sattering measurements inan automati fashion (allowing a �transparent� behavior when noise levels are neg-ligible) thanks to the FL-based deision strategy;
• apability to exploit the amount of information olletable from sattering datathanks to a multi-resolution representation of the dieletri pro�le of the objetunder test;
• redution of the omputational osts thanks to the integration of the multi-salingreonstrution sheme and the FL approah;
• robustness to orrupted data and noise;
• apability to deal with omplex nonlinear ost funtions.Conerning the methodologial novelties of this work, besides the de�nition of the globalarhiteture of the whole system, they mainly rely on the ombination of the innovative

FL-based deision sheme within the multiresolution inversion arhiteture in order toontemporaneously and fully exploit limited and noisy sattering data haraterized byan a-priori unknown degree of reliability.In the numerial assessment, arried out on di�erent onditions and datasets onernedwith various sattering on�gurations and data (syntheti as well as experimental), theproposed arhiteture proved e�etive, providing both aeptable reonstrution aurayand robustness to the noise. Final reonstrutions have usually shown a general agreementwith atual pro�les and they on�rm the enhaned inversion auray (ompared to thestate-of-the-art approahes) in orrespondene with a dereasing of the SNR. Moreover,the numerial results pointed out that, as requested, the FL-based inversions are very22



lose and essentially idential to those obtained with a standard multi-resolution approahin the presene of low (or negligible) levels of noise.Beause of the preliminary positive results and the favorable trade-o� between omplex-ity/osts and reonstrution e�etiveness, the proposed approah seems a promising toolto be extended to layered/strati�ed media as well as inhomogeneous bakgrounds fordealing with biomedial and more realisti industrial appliations where the reliability ofsattering data is a ritial key-issue.AknowledgementsA. Massa wishes to thank E. Vio and M. Repetto for their support. Moreover, theauthors are grateful to Ing. D. Franeshini for useful disussions.This work has been partially supported in Italy by the Center of REsearh And Teleom-muniation Experimentations for NETworked ommunities (CREATE-NET).Referenes[1℄ Speial Issue on �Mirowave imaging and inverse sattering tehniques,� J. Eletro-magn. Waves Appliat ., vol. 17, Apr. 2003.[2℄ A. C. Dubey et al., Detetion tehnology for mines and minelike targets. Eds. Or-lando, FL, 1995.[3℄ Q. Fang, P. M. Meaney, and K. D. Paulsen, �Mirowave imaging reonstrution oftissue property dispersion harateristis utilizing multiple-frequeny information,�IEEE Trans. Mirowave Theory Teh., vol. 52, pp. 1866-1875, Aug. 2004.[4℄ J. C. Bolomey and C. Pihot, �Mirowave tomography: from theory to pratialimaging systems,� Int. J. Imag. Sys. Teh., vol. 2, pp. 144-156, 1990.[5℄ M. Bertero and P. Boai, Introdution to Inverse Problems in Imaging . IOP Pub-lishing Ltd, Bristol, 1998. 23



[6℄ O. M. Bui and T. Isernia, �Eletromagneti inverse sattering: Retrievable infor-mation and measurement strategies,� Radio Si., vol. 32, pp. 2123-2138, Nov.-De.1997.[7℄ O. M. Bui, L. Croo, T. Isernia, and V. Pasazio, �Subsurfae inverse satteringproblems: Quantifying qualifying and ahieving the available information,� IEEETrans. Geosi. Remote Sensing , vol. 39, pp. 2527-2537, Nov. 2001.[8℄ P. M. van den Berg and R. E. Kleinman, �A ontrast soure inversion method,� Inv.Probl ., vol. 13, pp. 1607-1620, 1997.[9℄ L. Garnero, A. Franhois, J.-P. Hugonin, Ch. Pihot, and N. Joahimowiz, �Mi-rowave imaging-omplex permittivity reonstrution by simulated annealing,� IEEETrans. Mirowave Theory Teh., vol. 39, pp. 1801-1807, 1991.[10℄ S. Caorsi, A. Massa, and M. Pastorino, �A omputational tehnique based on areal-oded geneti algorithm for mirowave imaging purposes,� IEEE Trans. Geosi.Remote Sensing , vol. 38, no. 4, pp. 1697-1708, 2000.[11℄ E. L. Miller and A. Willsky, �A multisale, statistially based inversion sheme forlinearized inverse sattering problems,� IEEE Trans. Geosi. Remote Sensing , vol.34, pp. 346-357, Mar. 1996.[12℄ A. Baussard, E. L. Miller, and D. Lesselier, �Adaptive multisale reonstrution ofburied objets," Inverse Problems, Speial setion on �Eletromagneti harateri-zation of buried obstales�, W.C. Chew and D. Lesselier eds., vol. 20, pp. S1-S15,2004.[13℄ S Caorsi, M. Donelli, and A. Massa, �Detetion, loation, and imaging of multiplesatterers by means of the iterative multisaling method,� IEEE Trans. MirowaveTheory Teh., vol. 52, pp. 1217-1228, Apr. 2004.[14℄ R. Bhargava, and I.W. Levin, �E�etive time averaging of multiplexed measurements:a ritial analysis,� Anal. Chem., 74, pp. 1429-1435, 2002.24



[15℄ S. Kondaki, �E�ieny evaluation of the averaging noise redution system,� Pro.EMBS International Conf., pp. 1958-1961, Ot. 2001.[16℄ Y.-C. Jenq, �Disrete-time method for signal and noise measurement,� Pro. IEEEInstrum. Meas. Tehnol. Conf ., 24-26, pp. 68-71, April 1995.[17℄ A. Franhois and Ch. Pihot, �Mirowave imaging - Complex permittivity reonstru-tion with a Levenberg-Marquardt method,� IEEE Trans. Antennas Propagat., vol.45, pp. 203-215, 1997.[18℄ E. Bort, M. Donelli, A. Martini, and A. Massa, �An adaptive regularization strategyfor mirowave imaging problems,� IEEE Trans. Antennas Propagat., vol. 53, pp.1858-1862, May 2005.[19℄ A. Casagranda, D. Franeshini, and A. Massa, �Assessment of the reliability andexploitation of the information ontent of inverse sattering data through a fuzzy-logi-based strategy - Preliminary results,� IEEE Trans. Geosi. Remote SensingLett., vol. 2, pp. 36-39, Jan. 2005.[20℄ L. A. Zadeh, �Fuzzy Sets,� Information and Control , vol. 8, pp. 338-353, 1965.[21℄ S. Dutta, �Fuzzy logi appliations: tehnologial and strategi issues,� IEEE Trans.Eng. Manage., vol. 40, pp. 237-254, Aug. 1993.[22℄ L. X. Wang, Adaptive Fuzzy Systems and Control - Design and Stability Analysis.Englewood Cli�s, NJ: Prentie-Hall, 1994.[23℄ F. C. Morabito and E. Coorese, �A fuzzy modelling approah for the solution ofan inverse eltrostati problem,� IEEE Trans. Magn., vol. 32, no. 3, pp. 1330-1333,May 1996.[24℄ M. Chiampi, C. Ragusa and M. Repetto, �Fuzzy approah for multiobjetive op-timization in magnetis,� IEEE Trans. Magn., vol. 32, no. 3, pp. 1234-1237, May1996.
25



[25℄ Y. Tsuhida and M. Enokizono, �Fuzzy regularization method for ill-posed problemson ECT with Laplae transform BEM,� IEEE Trans. Magn., vol. 36, no. 4, pp.1158-1162, July 2000.[26℄ J. H. Rihmond, �Sattering by a dieletri ylinder of arbitrary ross setion shape,�IEEE Trans. Antennas Propagat., vol. 13, pp. 334-341, 1965.[27℄ L. A. Zadeh, �Outline of a new approah to the analysis of omplex systems anddeision proesses,� IEEE Trans. Syst., Man, Cybern., vol. 2, pp. 28-44, 1973.[28℄ L. A. Zadeh, �Fuzzy logi and approximate reasoning,� Synthese, vol. 30, pp. 407-428,1975.[29℄ R. R. Yager et. al., Fuzzy Sets and Appliations: Seleted papers by L. A. Zadeh.Wiler-Intersiene, New Jork, 1987.[30℄ K. Hirota, Industrial Appliations of Fuzzy Tehnology . Springer-Verlag, New Jork,1993.[31℄ D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Appliations. Aa-demi, Orlando, 1980.[32℄ C. C. Lee, �Fuzzy logi in ontrol systems: fuzzy logi ontroller, part I-II,� IEEETrans. Syst., Man, and Cybern., vol. 20, pp. 404-435, 1990.[33℄ J. M. Mendel, �Fuzzy logi system for engineer - A tutorial,� Pro. IEEE , vol. 83,pp. 345-377, Marh 1995.[34℄ H. Hellendoorn and C. Thomas, �Defuzzi�ation in fuzzy ontrollers,� J. Intell. FuzzySyst., vol. 1, pp. 109-123, 1993.[35℄ E. Cox, �Fuzzy fundamentals,� IEEE Spetr., vol. 3, pp. 58-61, Ot. 1992.[36℄ A. Homaifar and E. MCormik, �Simultaneous design of membership funtions andrule sets for fuzzy ontrollers using geneti algorithm,� IEEE Trans. Fuzzy Syst., vol.3, pp. 129-139, May 1995. 26



[37℄ H. S. Hwang, �Automati design of fuzzy rule base for modelling and ontrol usingevolutionary programming,� IEEE Pro.-Control Theory Appl., vol. 146, pp. 9-16,Jan. 1999.[38℄ A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-Posed Problems. Washington, DC:Winston, 1977.[39℄ K. Belkebir, S. Bonnard, F. Sabouroux, and M. Saillard, �Validation of 2D in-verse sattering algorithms from multi-frequeny experimental data,� J. Eletromagn.Waves Appl., vol. 14, pp. 1637-1668, De. 2000.[40℄ M. Testorf and M. Fiddy, �Imaging from real sattered �eld data using a linearspetral estimation tehnique,� Inverse Problems, vol. 17, pp. 1645-1658, De. 2001.
Figure Captions

• Figure 1. (a) Blok diagram of the FLS. (b) System arhiteture of the FL-basedApproah.
• Figure 2. Anteedents (left) and onsequenes (right). Pitorial representation ofthe set of rules (a)(b) #1, ()(d) #2, (e)(f ) #3, (g)(h) #4, and (i)(l) #5.
• Figure 3. FLS Calibration (Senario 1 - SNR = 5 dB). Behaviors of the errorindexes (ζj , j = tot, int, ext) versus the value of the variane σ of the fuzzi�ationGaussian membership funtion.
• Figure 4. Reonstrution of an o�-entered square (l = 1.2 λ0) homogeneous di-eletri (τ = 1.5) ylinder - Samples of the dieletri pro�les reonstruted by usingthe IMSA (left olumn) and the IMSA − Fuzzy method (right olumn): (a)(b)

SNR = 20 dB, ()(d) SNR = 10 dB, and (e)(f ) SNR = 5 dB.
• Figure 5. Reonstrution of an o�-entered square (l = 1.2 λ0) homogeneous di-eletri (τ = 1.5) ylinder - Average values of the error �gures versus SNRs: (a)27



loalization error δ, (b) area-estimation error ∆, () total reonstrution error ζtot,(d) internal reonstrution error ζ int, and (e) external reonstrution error ζext.
• Figure 6. Reonstrution of an o�-entered square (l = 1.2 λ0) homogeneous di-eletri (τ = 1.5) ylinder - Samples of the dieletri pro�les reonstruted by usingthe T ikhonov (left olumn) and the (b) Landweber (right olumn) regularizationmethods: (a)(b) SNR = 20 dB, ()(d) SNR = 10 dB, and (e)(f ) SNR = 5 dB.

Born approah (Noiseless ase) (g).
• Figure 7. Reonstrution of an o�-entered square (l = 1.2 λ0) homogeneous di-eletri (τ = 1.5) ylinder - Behavior of the ost funtion during the multi-salingminimization proess: (a) SNR = 20 dB, (b) SNR = 10 dB, and () SNR = 5 dB.
• Figure 8. Reonstrution of an o�-entered square (l = 1.2 λ0) homogeneous di-eletri (τ = 1.5) ylinder - Behavior of the onvergene index ∆Ktot versus SNR.
• Figure 9. Reonstrution of an o�-entered square homogeneous dieletri (τ =

1.5) ylinder (SNR = 5 dB) - Average values of the reonstrution error �guresversus objet side l: (a) ζtot, (b) ζ int, and () ζext.
• Figure 10. Reonstrution of an o�-entered irular homogeneous dieletri (τ =

3) ylinder (SNR = 5 dB) - Samples of the dieletri pro�les reonstruted by usingthe IMSA (left olumn) and the IMSA − Fuzzy method (right olumn): (a)(b)
l

λ0
= 0.26 and ()(d) l

λ0
= 1.46.

• Figure 11. Reonstrution of an o�-entered homogeneous irular ylinder (Realdataset �Marseille� [39℄ - �dielTM_de8f.exp�). Dieletri distributions reonstrutedat the onvergene by means of (left olumn) the standard IMSA and (right ol-umn) the IMSA − Fuzzy method. (a)(b) f = 3 GHz, ()(d) f = 6 GHz, and(e)(f ) f = 8 GHz.
• Figure 12. Reonstrution of an o�-entered homogeneous irular ylinder (Realdataset �Marseille� [39℄ - �dielTM_de8f.exp�). Behavior of the ost funtion duringthe multi-saling minimization proess: (a) f = 3 GHz, (b) f = 6 GHz, and ()

f = 8 GHz. 28



Table Captions
• Table I. FLS Calibration - Set of rules. Average values of the error indexes (ζj ,

j = tot, int, ext) for di�erent sets of rules when SNR = 5 dB for (a) Senario 1and (b) Senario 2 .
• Table II. Reonstrution of an o�-entered square (l = 1.2 λ0) homogeneous diele-tri (τ = 1.5) ylinder - Average reonstrution errors ( ζtot, ζ int, and ζext) obtainedby the IMSA and IMSA − Fuzzy for di�erent values of SNR.
• Table III. Reonstrution of an o�-entered homogeneous irular ylinder (Realdataset �Marseille� [39℄ - �dielTM_de8f.exp�). Atual and estimated satterer pa-rameters (f = 3 GHz, f = 6 GHz, and f = 8 GHz).
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Set of Rules ζ tot ζ int ζext#1 5.73 19.55 5.20#2 6.97 18.85 6.47#3 5.63 18.24 5.05#4 6.06 26.18 5.22#5 7.15 22.22 6.52(a)
Set of Rules ζ tot ζ int ζext#1 10.00 32.62 8.39#2 9.56 30.86 8.30#3 9.01 28.29 7.69#4 9.56 32.57 8.00#5 9.36 29.31 7.95(b)

Tab. I - M. Benedetti et al., �An adaptive multi-saling imaging tehnique ...�43



SNR = 20 dB SNR = 10 dB SNR = 5 dB

Errors IMSA IMSA Fuzzy IMSA IMSA Fuzzy IMSA IMSA Fuzzy

ζ tot 5.98 5.45 6.18 6.17 14.49 8.07

ζ int 11.78 10.40 11.63 8.09 10.84 8.77

ζext 5.77 5.16 6.09 5.92 14.66 8.03

Tab.II-M.Benedettietal.,�Anadaptivemulti-salingimagingtehnique...�
44



xc

λ0

yc

λ0

LRoI

2λ0

f = 3 GHz

Actual 0.0 −0.30 0.150

IMSA Fuzzy 0.02 −0.27 0.144

IMSA 0.02 −0.27 0.140

f = 6 GHz

Actual 0.0 −0.60 0.30

IMSA Fuzzy 0.03 −0.52 0.33

IMSA 0.02 −0.68 0.74

f = 8 GHz

Actual 0.0 −0.80 0.40

IMSA Fuzzy 0.0 −0.95 0.91

IMSA −0.16 −1.08 1.43

Tab. III - M. Benedetti et al., �An adaptive multi-saling imaging tehnique ...�45


	OF TRENTO
	DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE


