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An Improved Excitation Matching Method based on an Ant

Colony Optimization for Suboptimal-Free Clustering in Sum-

Difference Compromise Synthesis

P. Rocca, L. Manica, and A. Massa

Abstract

Dealing with an excitation matching method, this paper presents a global optimization strat-

egy for the optimal clustering in sum-difference compromise linear arrays. Starting from a

combinatorial formulation of the problem at hand, the proposed technique is aimed at deter-

mining the sub-array configuration expressed as the optimalpath inside a directed acyclic

graph structure modelling the solution space. Towards thisend, an ant colony metaheuris-

tic is used to benefit of its hill-climbing properties in dealing with the non-convexity of the

sub-arraying as well as in managing graph searches. A selected set of numerical experi-

ments are reported to assess the efficiency and current limitations of the ant-based strategy

also in comparison with previous local combinatorial search methods.

Key words: Sum and Difference Patterns Synthesis, Monopulse Antennas, Linear Arrays, Ex-

citation Matching, Directed Acyclic Graph, Ant Colony Optimization.
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1 Introduction

In order to properly solve the “optimal compromise” problemin monopulse radar tracking ar-

ray antennas, several techniques based on sub-arraying have been proposed to reduce the com-

plexity of the feed network and to realize cheap and compact devices still maintaining a high

angular resolution in tracking moving objects. First proposed in [1], the sub-arraying consists

in optimizing, for a fixed and ideal sum mode, pre-specified sub-array layouts to synthesize a

difference pattern having the slope around the central nullas larger as possible (i.e., the high-

est accuracy of the radar localization) and well-shaped sidelobes for clutter and interferences

rejection. In his work [1],McNamara mathematically determined the compromise solution

through the solution of an over-determined system of linearequations coming from the exci-

tation matching of the independently optimal sum [2][3] anddifference [4][5] sets, while the

sub-arraying wasa-priori set. Unfortunately, such an approach usually requires manysub-

arrays to get satisfactory results. Therefore, the synthesis of large arrays with a non-negligible

number of elements turns out to be practically infeasible.

Alternative approaches based on evolutionary algorithms have been developed [6][7][8][9].

These techniques do not suffer from the ill-conditioning asthe formulation in [1] and have

shown to work effectively dealing with complex functionals. Moreover, they allow a simple

and efficient inclusion ofa-priori information and only require a suitable definition of the ob-

jective function to be optimized (e.g., sidelobe level [6][7][8][9] or directivity [10]). On the

other hand, it cannot be neglected that the computational load and the memory requirements

rise very rapidly when the number of array elements increases even if enhanced versions (e.g.,

[11]) are used.

Recently, a new approach still based on the optimal excitations matching has been proposed in

[12]. Besides the methodological and algorithmic novelties introduced, the main result yielded

is the proof that the compromise synthesis problem can be formulated as a combinatorial one

where the dimension of the solution space grows as a binomialfunction of the number of ar-

ray elements (and not exponentially as in classical optimization formulations). Moreover, only

the sub-array aggregations are looked for, while the sub-array weights are obtained as a “free

by-product”. In order to solve the problem at hand, the solution space has been represented
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through a tree structure where the best compromise solutioncorresponds to the minimum cost

path. Moreover, anad-hoc local search strategy (calledBEM) has been implemented to ef-

fectively sample the solution space. In spite of the good results obtained in pattern matching

[12][13], or boresight slope optimization [14], andSLL control [15] also further improved by

means of a hybrid approach [16] aimed at exploiting the problem convexity [9][17] once the

aggregation has been set, the whole procedure could suffer from a misleading clustering of

the array elements that would deeply influence the second step (i.e., the weight computation)

since the functional to be optimized is non-convex with respect to the sub-array memberships

of the array elements. To avoid this drawback, global optimization is required for solving the

clustering step since local searches could get stuck into local minima. However, “standard”

evolutionary techniques or general purpose optimizers cannot be adopted because of their com-

putational costs especially when dealing with high-dimension problems andad-hoc algorithms

must be used. Accordingly, this paper describes and analyzes the performance of a suitable

state-of-the-art evolutionary strategy, namely the Ant Colony Optimizer (ACO) [18], whose

intrinsic structure seems to be very appropriate to fully exploit a suitable defined graph-like

model of the solution space. The preliminary assessment carried out in [19] and concerned with

a tree-based representation of the solution space providedsome indications on the effective-

ness of theACO in dealing with compromise problems. As a matter of fact, such an approach

should in principle avoid the local minima of the cost function because of itshill climbing be-

havior as a global optimizer. On the other hand, it should perform better than other ’physically

inspired’ optimization algorithms because its intrinsic combinatorial nature able to fully adapt

to the description of the solutions as an ensemble of contiguous partitions [12].

The outline of the paper is as follows. In Section 2, the synthesis problem of the optimal

compromise among sum and difference patterns is formulatedin terms of combinatorial opti-

mization by also representing the solution space through aneffective graph-like structure for

dealing with high-dimensionality. Then, after a short review of theBEM (Sect. 2.1), the ACO

for graph-searching is carefully described (Sect. 2.2). InSection 3, the results of a selected set

of numerical experiments are reported in order to firstly describe theACO behavior and then

to point out its advantages and best features compared to theBEM . Finally, some conclusions
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are drawn (Sect. 4).

2 Mathematical Formulation

Let us consider an isophoric linear array ofN equally-spaced elements. The array excita-

tions are supposed to be real and symmetric with respect to the antenna center, such that

only M = N
2

elements are considered in the calculations. The problem ofthe compromise

between sum and difference patterns can be mathematically formulated as the constrained

minimization of a functionΨ (A, W ) [17] whose arguments are the sub-array vectorA =

{am ∈ [1, Q] ; m = 1, ..., M}, wheream = q if the m-th radiating element belongs to theq-th

sub-array, and the real values of theQ sub-array weightsW = {wam
; am = 1, ..., Q}. For a

given and optimal sum mode setΣ = {sm = s−m; m = 1, ..., M} [2][3], the problem solution

is the definition of the two unknown vectorsA andW , such that the compromise difference

excitationsB = {bm = −b−m; m = 1, ..., M} given by

bm = smwam
; m = 1, ..., M (1)

afford a difference pattern that satisfies an user-defined requirement (e.g., matching a refer-

ence difference pattern or difference pattern-features optimization as good trade-off among deep

slope at boresight, low sidelobes, and narrow beamwidth). The coefficientwam
, am = 1, ..., Q,

in (1) is the weight of the sub-array to which then-th element belongs to. Figure 1 shows

a sketch of the antenna feed network where only half array structure is shown. Dealing with

an excitation matching problem [1], once the independentlyoptimal sumΣ [2][3] and differ-

ence∆ = {dm = −d−m; m = 1, ..., M} [4][5] excitations are given, the compromise synthe-

sis recasts as the minimization of the square distance between the optimal/target∆ and ac-

tual/compromiseB difference coefficients

Ψ (A, W ) =
1

M
‖∆−B‖2 . (2)
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In [12], it has been shown that after simple algebra Eq. (2) turns out to be a weighted summation

of square distances

Ψ (A, W ) =
1

M

M
∑

m=1

[sm (gm − wam
)]2 (3)

where each term of the summation is weighted by the corresponding s2
m value, 1

M
being a

normalization coefficient. Moreover,gm = dm

sm
, m = 1, . . . , M , are the so-calledoptimal

weights [12]. Equation (3) defines a least square problem, where eachterm of the summa-

tion (gm − wam
)2, m = 1, ..., M , is the square distance between them-th optimal weight gm

(known) and the corresponding sub-array weightwam
(unknown).

By virtue of the fact that all terms in (3) are real-valued (i.e.,sm, gm, wam
∈ R, m = 1, ..., M ;

am = 1, ..., Q) and the problem solution is a least square solution, the conclusions drawn in

[21] also apply in such a case and can be profitably exploited to reach a suitable compromise

solution. More specifically, (a) a least square partition that minimizes the cost function in (3) is

a contiguous partition (1); (b) the number ofessential contiguous partition is finite and equal to

T (ess) =







M − 1

Q− 1






; (c) the values of the sub-array weightswam

, am = 1, . . . , Q, are equal

to

wam
(A) =

∑M

r=1 s2
rδaram

gr
∑M

r=1 s2
rδaram

(4)

since, for a given contiguous partitionA, the point minimizing the sum of the square distances

in each contiguous subset (i.e., a convex set containing theelements assigned to the same sub-

array) is the weighted arithmetic mean of the correspondinggm values. In (4),δamar
is the

Kronecker delta (δamar
= 1 if ar = am andδamar

= 0 otherwise). According to these guide-

lines, the problem solution only requires the synthesis of the optimal clusteringAopt since the

sub-array weightsW opt are computed as a by-product through Eq. (4) [i.e.,wopt
am

= wam

(

Aopt
)

,

am = 1, ..., Q].

(1) A partition is calledcontiguous when given any three real elements (gi, gj , andgk ), wheregi < gj < gk,
if gi andgk belongs to a subset, then alsogj has to belong to the same subset.
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2.1 BEM for Graph-Searching

In [12], it has been shown how the solution space of thecontiguous partitions can be represented

in an effective fashion through a non-complete binary tree of depthM − 1, wherein each level

of the tree from the root to the leaves defines the sub-array membership for an element of the

array. A more compact and non-redundant structure able to give a complete representation

of the whole set of admissible sub-array configurations is based on aDirected Acyclic Graph

(DAG) [20]. As a matter of fact, the non-complete binary tree of [12] can be reduced to an

equivalentDAG by simply noticing that some parts of the tree recursively repeat themselves.

Generally speaking, theDAG is a graphG = (V , E) composed by a set ofV vertexes and

E edges indicated in Fig. 2 (for the case whenM = 10 andQ = 3) by circles and arrows,

respectively. As regards to the compromise problem, theDAG is made ofQ rows (i.e., the

number of sub-arrays) andM −Q + 1 vertexes within each row (i.e., the maximum number of

elements that can be assigned to a single sub-array by considering non-null clusters). Moreover,

the paths inside the solution graph have the same length(2) equal toM − 1 and each path codes

a trial sub-array configurationA.

In order to explore the solution graph looking for the path minimizing (3), theBorder Element

Method (BEM) first proposed in [12] dealing with a tree architecture is adapted here to work

with theDAG, as well. Accordingly, the so-calledborder elements [12] are now those elements

of the actual configuration/path whereof at least one closest element of the path belongs to a

different row of theDAG (i.e., it is assigned to a different sub-array). For sake of clarity and

with reference to Fig. 2, the cluster configurations are indicated by the red edges and the border

elements are denoted by the blue vertexes. Likewise to [12],it is possible to obtain a new

admissible trial aggregationA′ just changing the membership of a border element.

As far as the sampling of theDAG structure is concerned, theBEM is first aimed at looking

for the border elements of the current pathA(k) belonging to theDAG and successively at

changing their memberships (once a time), until a termination criterion based on a maximum

number of iterationsK (k = 0, ..., K; k being the iteration index) or on a stationary condition of

the cost function valueΨ
{

A(k)
}

is reached. For illustrative purposes, a pictorial representation

(2) The length of aDAG is equal to the number of edges of the longest directed path.
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of theBEM-based searching is given in Fig. 2. Starting from the guess solutionA(0) displayed

in Fig. 2(a), the iterative process stops after two iterations determining the final aggregation

ABEM = A(2) shown in Fig. 2(c).

2.2 ACO for Graph-Searching

Analyzing theBEM [12], it is simple to recognize that such a method, for both tree and graph-

like architectures, is a deterministic technique that suffers of the usually standard drawbacks

of local search algorithms. In particular, theBEM solution might be trapped in a local mini-

mum and strongly influenced by the starting guess aggregation A(0) chosen at the initialization

because of the non-convexity of the problem at hand.

In order to overcome the problems related to the presence of local minima in the cost function

(3), theAnt Colony Optimizer (ACO) is adopted here to search for the optimal pathAopt within

the solution graph that minimizes (3). TheACO is a global optimization algorithm inspired by

the foraging behavior of ant colonies looking for food sources [18]. The ants look for the short-

est path between the food sources and the nest. Towards this end, each ant leaves a chemical

substance, calledpheromone, while moving in the space surrounding the nest. The amount of

pheromone on a path quantifies its degree of optimality, but it decays with time (evaporation

mechanism). These mechanisms allow one to avoid poor food sources on one hand (pheromone

release) and on the other, to efficiently sample the whole solution space (pheromone evapora-

tion).

TheACO developed byDorigo [22] has been widely applied especially in distributed and dis-

crete problems such as routing [23][24], assignment [25][26], scheduling [27][28], subset [29],

but it is relatively infrequent in electromagnetics. To thebest of authors’ knowledge, it has been

recently applied to few electromagnetic problems (e.g., antenna synthesis considering binary

[30] or real implementations [31][32][33] and microwave imaging [34]). However, because of

its effectiveness in facing hard combinatorial problems and since the combinatorial formulation

of the optimal compromise between sum and difference patterns requires the searching of the

best path within a graph, theACO seems to be a suitable metaheuristic for the problem at hand.

Towards this aim, the simplest version of theACO, namelyAnt System [18], is used. Unlike
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[19] where some preliminary results concerned with the tree-basedACO have been reported,

the proposedACO implementation is customized to the graph architecture to properly address

the synthesis of small as well as large arrays. As a matter of fact, due to the high number of

vertexes needed for the storage of the solution, the approach in [19] presents some memory

limitations when dealing with very large dimensional spaces. On the other hand, it must be

pointed out that theACO performances in terms of solution accuracy do not depend on the rep-

resentation of the solution space, but only the feasibilityand the computational indexes (i.e., the

storage resources and the rate of sampling the solution space) are affected by the architecture at

hand.

The proposed implementation of theACO-based approach can be summarized as follows. Each

i-th (i = 1, ..., C) ant codes a vectorci of M integer values that models a trial sub-array con-

figurationAi (i.e., ci = c {Ai}). Every vector is initialized to the null one at each iteration

(i.e., c(k)
i = {0, ..., 0}, k = 1, ..., K andi = 1, ..., C), such that all ants start from the root of

the graph (Fig. 3). Successively, the vectors are filled step-by-step while the ants are moving

through each level of the graph as shown in Fig. 3. At the initialization (k = 0), the quantity

of pheromone on each edgeτ (0) (er
z), er

z = 1, ..., E is the same and each edge of the graph can

be explored with a uniform probabilityp(0) (er
z) = 0.5. As regards to the apexr, it is equal to

q → q if the edgeer
z connects two vertexes belonging to the same sub-array (i.e., the same row

of theDAG) and toq → q + 1 if it connects two vertexes assigned to different sub-arrays (i.e.,

different rows of theDAG). Moreover, the pedexz, z = z1, ..., zM−1, identifies the level of the

edge within the graph. Concerning the iterative loop (k > 0), the probability of choosing one

of the two subsequent edges (if present) at each vertex is given by

p(k) (er
z) =

τ (k) (er
z)

τ (k) (eq→q
z ) + τ (k)

(

eq→q+1
z

) , z = z1, ..., zM−1; r = q → q + [0, 1] . (5)

When the whole ant colony has completed a path within theDAG, the pheromone levelτ (k) (er
l )

of each edge is updated as follows

τ (k+1) (er
z)← τ (k) (er

z) +
C

∑

i=1

δ
er
zc

(k)
i

H

Ψ
(

A
(k)
i

) , ∀τ (k) (er
z) (6)
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whereδ
er
zc

(k)
i

= 1 when er
z ∈ c

(k)
i [c(k)

i = c
{

A
(k)
i

}

] and δ
er
zc

(k)
i

= 0 otherwise,H being a

positive constant. Successively, the evaporation procedure takes place in order to reduce and at

most delete worse paths from the graph

τ (k+1) (er
z)← (1− ρ) τ (k+1) (er

z) , ∀τ (k+1) (er
z) (7)

ρ ∈ (0 , 1] being a parameter aimed at controlling the evaporation rate. Finally, the same

stopping criterion (k = kend) used for theBEM is adopted here for theACO-based method to

allow fair comparisons.

3 Numerical Simulations and Results

Because of the novelty of the proposed approach, the first part of this section (Sect. 3.1) is de-

voted to the calibration of theACO algorithm [35] when dealing with the searching of the “best

compromise” solution among those admissible within the solution graph. Successively, the use

of the ACO is motivated (Sect. 3.2) showing how theBEM solution suffers from the non-

convexity of the aggregation problem because of the local nature of the algorithm. Finally, a

set of comparative results concerned with a wide number of compromise problems are reported

(Sect. 3.3) to point out potentialities and current limitations of theACO-based approach. Since

bothBEM andACO are aimed at determining thebest compromise difference pattern close as

much as possible to the optimal one, besides theEMM by McNamara [1] discussed in [12], no

comparisons with other pattern-features optimization procedures (i.e., [6][7][8][9][15][16][17])

will be reported since these latter are devoted to satisfy different criteria and not at better match-

ing an optimal difference pattern.

3.1 ACO Calibration

A key feature of theACO algorithm is the simple implementation. As a matter fact, besides

the numberC of ants in the colony, it only requires the definition of two parameters to work,

namely the pheromone update coefficientH and the pheromone evaporation coefficientρ. In

order to determine their optimal values for the problem at hand, an extensive set of numerical
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experiments has been carried out by considering an array ofN = 40 elements andQ = 6

sub-arrays as reference benchmark. In this case, the numberof contiguous partitions is equal to

T (ess) =







19

5






= 11628. As far as the reference excitations are concerned, those affording

a Dolph-Chebyshev sum pattern withSLL = −25 dB [3] and a Zolotarev difference pattern

with SLL = −30 dB [36] have been chosen. Concerning the calibration study, the values of

theACO control coefficients have been varied in the rangeH ∈ [0 : 5] andρ ∈ (0 : 1] [18],

respectively. Moreover, because of the stochastic nature of the ACO algorithm,100 different

simulations have been performed for each setting of the calibration parameters. Each simulation

has been run with a number of ants equal toC = [3, 5, 8, 10, 100, 1000] for a maximum

number ofK = 1000 iterations.

As a representative result, the average performances for each parameter configuration when

C = 3 are reported in Fig. 4. As it can be observed, the convergencecost function value is more

sensitive to the evaporation coefficientρ and less to the value of the parameterH that controls

the pheromone update. A similar conclusion holds true whatever the value ofC. Concerning the

optimal setup, the configurationH = 1 andρ = 0.05 has been selected since the corresponding

representative point in Fig. 4 lies in the “lowest-Ψ-value” region and the valueH = 1 has

already been identified as an optimal choice in other graph searching problems (e.g.,Traveling

Salesman Problem [23]).

As regards to the dimension of the ant colony, the analysis has been devoted to define the

optimal value ofC in relationship to the dimension of the solution spaceT (ess). Towards this

end,C has been varied between1 and 1
10

T (ess). Figure 5 shows the results of the statistical

study, each cross being the averageΨ among the values reached at the end of each group of100

simulations. For completeness, the standard deviation is shown, as well. From these results,

it can be inferred that the choiceC ≃
[

1
125

T (ess) : 1
100

T (ess)
]

defines a good rule of thumb to

reach the global solution with a percentage above90% (3) . On the other hand, the minimum

value ofClb = 5 ants has been set as lower bound in order to exploit the cooperative behavior

of theACO in those problems where the previous criterion would give too small values (i.e.,

(3) It is worth noting that the results here reported have been obtained under the assumption of a maximum
number of iterations equal toK = 1000. Probably, increasing the number of iterations would allowa reduction of
the number of ants for obtaining the same conclusions.
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C < Clb).

3.2 ACO’s Hill-Climbing Behavior

In order to show how the performance of theBEM [12] are influenced from the choice of the

initial solution, while theACO is not dependent on the starting guess and therefore more robust

to the local minima problem thanks to its hill-climbing properties, three samples of compromise

syntheses concerned with small as well as larger arrays for different number of sub-arrays are

discussed in the following.

The first experiment deals with a20-elements array (M = 10) with inter-element spacingd = λ
2
.

The optimal sum and difference coefficients have been chosento afford a Dolph-Chebyshev sum

pattern withSLL = −25 dB [3] and a Zolotarev difference pattern withSLL = −30 dB [36],

respectively. As regards to the compromise feed network,Q = 3 sub-arrays have been used.

Concerning theContiguous Partition Method (CPM) presented in [12] and customized in the

present work to the searching within the solution graph, theoptimal weightsgm, m = 1, . . . , M ,

are first computed as described in Sect. (2) and then sorted ona line in order to obtain the list

L = {lh : lh ≤ lh+1, h = 1, ..., M − 1} [12], wherel1 = min {gm} and lM = max {gm}.

Each element of the sorted listL is assigned to a level of the solution graph as shown in Fig.

2. Starting from a uniform sub-arraying (i.e., a sub-array configuration wherein the number

of elements within each sub-array differs at most of one element whenM is or not a multiple

of Q), the initial sub-array vector turns out to beA(0) = {1 1 1 2 2 3 3 3 2 1} andΨ
(

A(0)
)

=

2.17 × 10−2. Then, the iterative loop of theBEM takes place as described in Sect. 2.1. For

completeness, Figure 2 shows the corresponding evolution of the BEM trial solution in the

solution graph. As it can be noticed, theBEM gets stuck only afterkBEM
end = 2 iterations. The

final grouping isABEM = A(2) = {1 1 2 2 3 3 3 3 2 1} [Fig. 2(c)] with a convergence fitness

value ofΨ
(

ABEM
)

= 1.08× 10−2, while the intermediate solutionA(1) = {1 1 2 2 2 3 3 3 2 1}

[Fig. 2(b)] has a fitness equal toΨ
(

A(1)
)

= 1.48× 10−2. The radiation patterns generated at

the various iterations and the reference pattern are reported in Fig. 6, as well.

Successively, theACO has been applied to the same test case. Since the number of trial so-
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lutions within the graph is equal toT (ess) =







9

2






= 36 and C, according to the crite-

rion previously defined, would result lower than one, theACO population has been set to

C = Clb = 5. Moreover, the pheromone updateH and the evaporationρ have been fixed

to their optimal values. As expected, theACO outperforms theBEM since the fitness value

of the synthesized solutionAACO = {1 2 2 3 3 3 3 3 3 2} is equal toΨ
(

AACO
)

= 8.26 × 10−3

[vs. Ψ
(

ABEM
)

= 1.08 × 10−2]. To further confirm theACO effectiveness, it is worth noting

that the clustering determined by theACO is the one having the minimum fitness among the

T (ess) = 36 admissible different clustering. On the contrary, theBEM has been able to retrieve

the second best solution coded into the solution graph as shown in Fig. 7 (red line) where each

cross denotes theΨ value among theT (ess) = 36 contiguous partitions ranked according to their

cost function values. More specifically, theBEM solution is evidenced with a circle, while the

minimum fitness value or global minimum of the excitation matching cost function coincides

with the ACO clustering [i.e.,Ψopt = Ψ
(

AACO
)

]. On the other hand, it is also interesting

to point out that, even though theBEM solution is the second best compromise, it has four

elements over ten whose sub-array memberships are different from those of the global optimum

Aopt recognized by theACO-based algorithm,AACO = Aopt.

For completeness, Table I details the results obtained withthe BEM and theACO by re-

porting the final sub-array configurations and the weight values. Moreover, the synthesized

difference compromises are shown in Fig. 8(a). Because of the excitation-matching nature of

the proposed technique, let us quantify the closeness of thearising patterns with respect to the

optimal/reference one by computing thepattern matching ∆ index [12] defined as follows(4):

∆ =

∫ 1

0

∣

∣

∣
|AF (u)|ref

n − |AF (u)|syn

n

∣

∣

∣
du

∫ 1

0
|AF (u)|ref

n du
, (8)

whereu = sinθ, θ ∈ [0, π/2], |AF (u)|ref

n and|AF (u)|syn

n are the normalized reference pattern

and the synthesized one, respectively. As expected and indicated by the corresponding lower

(4) Such an index is the main performance indicator since bothACO and BEM are concerned with an
excitation matching problem [1][12][13] and not with the minimization of a pattern parameter (e.g., theSLL) as
it happens in [6][7][8][9][15][16][17].
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fitness value, theACO pattern is closer to the reference one. As a matter of fact, itis ∆ACO =

0.2689 vs. ∆BEM = 0.3199 (Tab. II). Table II also reports the values of other indexes in order to

give a complete overview of the features of the obtained patterns (i.e., sidelobe level,SLL, and

main lobe width,BW ). Moreover, the computational issues are pointed out by thefollowing

indexes: the number of convergence iterations,kend, the number of function evaluations,Fend,

and theCPU-time t necessary to findA(kend) on a3.4 GHz PC with 2 GB of RAM. As it

can be noticed, bothBEM andACO are able to find a convergence solution almost in real

time sincet < 10−8. Such an event points out once again the computational efficiency of the

CPM approach [13], but also the usefulness of the graph representation that enables the use of

an evolutionary algorithm without excessively increasingthe computational costs and memory

resources.

In the second experiment, the same array geometry of the previous example has been consid-

ered, but the array has been partitioned intoQ = 8 sub-arrays. Moreover, a Zolotarev dif-

ference pattern withSLL = −40 dB [36] has been adopted as reference target. It is worth

observing that despite the higher number of sub-arrays, thedimension of the solution space

is still equal toT (ess) = 36 thanks to the symmetric nature of the binomial distribution[i.e.,

T (ess) =







9

7






=







9

2






= 36]. Analogously to the previous example, theBEM stops after

kBEM
end = 2 iterations synthesizing the solution in Tab. III, but in this case other8 solutions with

lower fitness values are present in the solution graph (Fig. 7- green line). On the other hand,

theACO has been able to reach the global optimum in Tab. III afterkACO
end = 2 iterations with

a total number of fitness evaluation equal toF ACO
end = 10 sinceC = Clb = 5. In particular, the

ACO solution presents a fitness value of more than one order in magnitude below the one of

theBEM [i.e., Ψ
(

AACO
)

= 1.13 × 10−5 vs. Ψ
(

ABEM
)

= 2.49 × 10−4] and ∆BEM

∆ACO ≃ 3.76

as it can be qualitatively observed by comparing the patterns in Fig. 8(b). For the sake of

completeness, Table II compares the retrieved solutions interms of performance indexes.

The last experiment of this section is concerned with a larger uniform array of40 λ
2
-spaced

elements. A Dolph-Chebyshev sum pattern withSLL = −25 dB [3] and a Zolotarev difference

pattern withSLL = −30 dB [36] have been chosen as reference patterns and the number ofsub-

arrays has been set toQ = 4. In such a case, the number of possible sub-array configurations
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within the solution space is equal toT (ess) = 969. As far as theACO is concerned,C =

10 ants have been used. The two approaches have found the corresponding solutions after

kBEM
end = 21 andkACO

end = 34 as shown in Fig. 9 where the behavior of the cost function during

the iterative searching process for both theBEM and theACO is described. The synthesized

sub-array configurations and weights are given in Tab. IV, whereas the corresponding patterns

indexes are reported in Tab. II. As expected and likewise to the previous experiments, the

BEM is still trapped into a local minimum and the retrieved solution turns out to be sub-

optimal. However, it should be observed (Fig. 7 - blue line) that theBEM configuration is

the third best contiguous partition amongT (ess) = 969 different solutions and the value of the

ratio ∆BEM

∆ACO ≃ 1.11 assesses its closeness to the optimal one. As regards to the computational

issues, such a test further confirms the efficiency of theBEM (in terms of speed) in exploring

the solution space beingtBEM < 10−7 while tACO = 4.5× 10−3. As a matter of fact, although

theCPU-time required by theACO-based approach is certainly smaller than that of standard

global optimizers, it cannot be omitted that from a computational point of view theBEM results

more competitive than theACO when the ratioM
Q

gets larger and larger. Such a statement will

be further analyzed in the following section.

3.3 ACO’s Performances and Problem Dimensions

In dealing with the optimal compromise between sum and difference patterns, different global

optimization techniques have been applied to determine themost suitable partition of the ar-

ray elements into sub-arrays that minimizes a suitable costfunction related to some pattern

features. Among them, it is worth mentioning theGenetic Algorithm [7], theDifferential Evo-

lution Algorithm [8] and its enhanced version [11], and theSimulated Annealing [9]. Despite the

different way of tackling the problem at hand (i.e., direct optimization of element memberships

and weights [7][8][11] or two-step nested approach [9] exploiting functional convexity), the

dimension of the solution space to be explored for retrieving the elements aggregation is equal

to T (tot) = QM since each clustered configuration can be expressed as a string of M digits in

a Q-based notation system [12]. Let us now suppose to use in a standard fashion (i.e., without

reformulating the problem at hand as a combinatorial one) a global optimizer and to apply the
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rule deduced in Sect. (3.1) for the population size [i.e.,C(tot) ≃ 10−2 × T (tot)] for running a

simulation in a fixed number of iterationŝK looking for the optimal aggregation within the set

of T (tot) possible solutions. The totalCPU time necessary to complete such a simulation turns

out be∆t(tot) = δt×K̂×C(tot), δt being theCPU-time for one evaluation of the cost function.

Moreover, it should be pointed out that there is not guarantee that the synthesized aggregation

is the global optimum of the functional at hand. Then, let us refer to the combinatorial formu-

lation of the compromise problem and map the reduced solution space of dimensionT (ess) into

the graph representation described in Sect. 2.1. By exploiting such a structure and accordingly

using the proposed implementation of theACO, the number of ants of the colony turns out to

beC(ess) ≃ 10−2×T (ess) much smaller thanC(tot) sinceT (ess) grows at most polynomially [i.e.,

T (ess) =







M − 1

Q− 1






] and not exponentially asT (tot) [T (tot) = QM ]. Therefore, the iterative

optimization runs for a time∆t(ess) = δt× K̂ × C(ess), which satisfies the following condition

∆t(ess) ≪ ∆ttot (5) sinceC(ess) ≪ C(tot). Such a conclusion clearly evidences the significant

reduction of the computational burden as well as the more profitable and proper use of a suit-

able global optimization technique within the combinatorial framework. As a matter of fact,

although also in this case the convergence to the global optimum solution is not guaranteed, the

probability of reaching it significantly grows compared to the standard use of global optimizers.

In order to detail such an argumentation, let us assume one has at disposal a limited amount

of time ∆t(tot) for defining the best aggregation for the compromise problemat hand. On one

hand, theACO-based approach would have∆K = K̂ ′ − K̂ more iterations for exploring the

solution space, beinĝK ′ = ∆t(tot)

δt×C(ess) . On the other hand, it would be possible to use a larger

colony ofC(ess)
1 = ∆t(tot)

δt×K̂
ants for the same number of iterationsK̂ and the following conditions

would hold true:C(ess)
1 ≫ C(ess) andC

(ess)
1 ≃ T (ess). In this latter case, the convergence of

theACO-based procedure to the optimum clustering would be assuredsince each ant could be

assigned to explore a single and different path of the solution graph thus covering/sampling the

whole solution space.

In order to assess and confirm these indications, Figures 10 and 11 summarize the performance

(5) For the sake of simplicity,δt has been assumed to be equivalent for both standard and combinatorial
optimizations. However, please also consider thatδt(ess) < δt(tot) since usuallyδt(tot) requires the computation
of a pattern feature, whileδt(ess) is related to a matching operation Eq. (3).
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achieved with theBEM andACO methods. The plots refer to a representative set of simula-

tions performed by varying the number of elements of the array aperture betweenN = 20 and

N = 500, but maintaining a uniform inter-element distance (d = λ
2
). In all the experiments, the

sets of reference excitations have been chosen to generate aDolph-Chebyshev sum pattern with

SLL = −25 dB [3] and a Zolotarev difference pattern withSLL = −25 dB [36]. Moreover,

the number of sub-arrays has been fixed toQ = 8. As regards to theACO values, they are

related to the average performance over a statistical set of50 independent executions of the

same simulation (i.e., with the same parametric configuration, but varying the randomness in

theACO). In particular, the plots denoted byACO andACO∗ indicate the values obtained

when theACO algorithm has been run for̂K = 1000 iterations with a colony ofC(ess) and

C
(ess)
1 ants, respectively. As expected, theACO-based approach withC(ess)

1 trial solutions for

each iteration always outperforms theBEM . Unfortunately, whenT (ess) turns out to be too

large, both the computational load and the storage requirements of theACO result quite cum-

bersome and once again, although with larger dimensions, verify the same drawbacks usually

encountered by standard global optimizers when dealing with non-small array geometries. In

such a situation, theBEM seems to be more attractive even though less robust against local

minima problems.

4 Conclusions

In a recent paper, it has been shown how the excitation matching formulation of the optimal

compromise problem can be recast as a combinatorial one by exploiting the knowledge of in-

dependently optimal sum and difference modes. Thanks to a tree representation of the set of

admissible solutions, a local search strategy, called border element method (BEM), has been

implemented to efficiently explore the reduced solution space with a large saving of computa-

tional resources. Instead, anACO-based technique has been considered in this paper in order

to avoid the occurrence of sub-optimal aggregations causedby the presence of local minima

in the non-convex excitation matching functional. Towardsthis end, the solution space has

been described through a directed acyclic graph and the Ant Colony Optimizer has been used

to look for the minimum cost path of the graph fully exploiting its intrinsic characteristics very
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appropriate for exploring such a kind of architectures.

From the analysis carried out within this research work and summarized in this paper, the fol-

lowing conclusions can be drawn:

• unlikeACO-based approach, both the dimension of the solution space and computational

burden rise much more rapidly when standard global optimizers are used. In practice,

these standard stochastic algorithms work effectively only with small arrays thus synthe-

sizing array solutions having a limited angular resolution;

• being a local search technique, theBEM depends on the initial solution, but it is an

excellent computational saving technique suitable for synthesizing very large arrays (N ≥

200) although without any guarantee of avoiding local minima solutions;

• theACO takes on one side the advantages of global optimization approaches in facing

non-convexity, while on the other and to the best of the authors’ knowledge, it is the most

suitable algorithm among state-of-the-art metaheuristics for path-searching in a graph-

represented solution space.
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FIGURE CAPTIONS

• Figure 1. Sketch of the sub-arrayed monopulse array antenna.

• Figure 2. Evolution of theBEM solution within theDAG whenM = 10 andQ = 3

(a) at the initialization (k = 0) and at iteration (b) k = 1 and (c) k = 2.

• Figure 3. Evolution of theACO solution within theDAG.

• Figure 4. ACO Calibration (N = 40, Q = 6) - Behavior of the average convergence cost

function value versus the pheromone update constant,H, and the pheromone evaporation

parameter,ρ.

• Figure 5. ACO Calibration (N = 40, Q = 6; H = 1, ρ = 0.05) - Behaviors of

the statistic values (mean value and standard deviation) ofthe average convergence cost

function value versus the ant colony dimension,C.

• Figure 6. ACO’s Hill Climbing Behavior (N = 20, Q = 3) - BEM power pattern at

different iterations of the iterative optimization (k = 0, ..., kend = 2).

• Figure 7. ACO’s Hill Climbing Behavior - Cost function values of the solutions coded

in the solutionDAG. The valuesiopt andiBEM indicate the solution index in correspon-

dence to the fitness of the best solution and the solution obtained through theBEM ,

respectively.

• Figure 8. ACO’s Hill Climbing Behavior - Optimal and compromise difference power

patterns obtained with theBEM and theACO when (a) N = 20, Q = 3 (Zolotarev [36],

SLL = −30 dB) and (b) N = 20, Q = 8 (Zolotarev [36],SLL = −40 dB).

• Figure 9. ACO’s Hill Climbing Behavior (N = 40, Q = 4) - Behavior of the cost

function valueΨ(k) during the iterative optimization process when applying the BEM

and theACO [best solution value,Ψ(k)
opt = minh=1,...,k

{

mini=1,...,I

[

Ψ
(

A
(h)
i

)]}

, and

average cost function value,Ψ
(k)
av = 1

I

∑I

i=1 Ψ
(

A
(k)
i

)

].

• Figure 10. Comparative Assessment (Zolotarev [36],SLL = −25 dB, Q = 8) - Behavior

of the average convergence cost function value versus the number of array elements,
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N , when applying theBEM and theACO with a colony ofC(ess) (ACO) andC
(ess)
1

(ACO∗) ants.

• Figure 11. Comparative Assessment (Zolotarev [36],SLL = −25 dB, Q = 8) - Behav-

iors of (a) theSLL and (b) theBW values of the synthesized compromise patterns versus

the number of array elements,N , when applying theBEM and theACO with a colony

of C(ess) (ACO) andC
(ess)
1 (ACO∗) ants.

TABLE CAPTIONS

• Table I. ACO’s Hill Climbing Behavior (N = 20, Q = 3) - Sub-array configurations and

weights determined by theBEM and theACO.

• Table II. ACO’s Hill Climbing Behavior - Pattern performances and computational in-

dexes.

• Table III. ACO’s Hill Climbing Behavior (N = 20, Q = 8) - Sub-array configurations

and weights computed with theBEM and theACO.

• Table IV. ACO’s Hill Climbing Behavior (N = 40, Q = 4) - Sub-array configurations

and weights synthesized by means of theBEM and theACO.
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Fig. 11 - P. Rocca et al., “An Improved Excitation Matching Method ...”
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M = 10 aBEM
m {1 1 2 2 3 3 3 3 2 1}

aACO
m {1 2 2 3 3 3 3 3 3 2}

Q = 3 wBEM
am

0.3827 0.9736 1.3363

wACO
am

0.1798 0.6602 1.2549

Tab. I - P. Rocca et al., “An Improved Excitation Matching Method ...”
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Approach Ψopt ∆ SLL [dB] BW [deg] kend Fend t [sec] T (ess)

N = 2M = 20 , Q = 3

BEM 1.08× 10−2 0.3199 −18.25 5.28 2 3 < 10−8 36

ACO 8.26× 10−3 0.2689 −18.75 5.12 2 10 < 10−8 36

N = 2M = 20 , Q = 8

BEM 2.49× 10−4 0.0545 −35.20 5.74 2 3 < 10−8 36

ACO 1.13× 10−5 0.0145 −37.50 5.68 2 10 < 10−8 36

N = 2M = 40 , Q = 4

BEM 5.60× 10−3 0.2886 −20.10 2.50 21 22 < 10−7 969

ACO 4.99× 10−3 0.2609 −22.85 2.50 34 340 4.5× 10−3 969
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M = 10 aBEM
m {1 2 3 5 7 8 6 4 2 1}

aACO
m {1 3 5 7 8 8 7 6 4 2}

Q = 8 wBEM
am

0.2146 0.6107 0.9221 0.9825 1.1582 1.1797 1.2818 1.2864

wACO
am

0.2049 0.2432 0.5937 0.7250 0.9221 0.9825 1.1650 1.2838
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M = 20 aBEM
m {1 1 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 3 3 2}

aACO
m {1 1 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 3 2}

Q = 4 wBEM
am

0.1779 0.5658 1.0257 1.3288

wACO
am

0.1779 0.5055 0.8989 1.2923

Tab. IV - P. Rocca et al., “An Improved Excitation Matching Method ...”
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