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Abstract - The application of a global optimization procedure to the detection of buried 

inhomogeneities is studied in the present paper. The object inhomogeneities are schematized as 

multilayer infinite dielectric cylinders with elliptic cross sections. An efficient recursive analytical 

procedure is used for the forward scattering computation. A functional is constructed in which the 

field is expressed in series solution of Mathieu functions. Starting by the input scattered data, the 

iterative minimization of the functional is performed by a new optimization method called memetic 

algorithm. 
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I. INTRODUCTION 

 

The detection of buried inhomogeneities is a challenging topic in several applications, 

including nondestructive evaluation and testing, civil engineering, medical imaging, and subsurface 

diagnostics [1]-[8]. Recent efforts have been concentrated on solving the inverse scattering 

problem, which is the basic formulation for the electromagnetic imaging at frequencies such that the 

linear dimensions of the inhomogeneities are of the same magnitude order of the wavelength.  

The detection of tunnels, pipes and other cylindrical structures has been recently addressed 

in [9][10] by using a schematic representation of these structures as infinite cylinders of cylindrical 

and elliptical cross sections and resorting to a numerical model in order to compute the forward 

scattering needed for the developed iterative procedure. In the present paper, we still consider the 

same elliptical geometry, but an efficient analytical solution is used for the forward scattering 

computation. Moreover, in order to take into account possible layered inhomogeneous structures, 

we let the elliptic cylinder to be multilayer and the retrieval of the dimensions and dielectric 

properties of the various layers is one of the aims of the proposed inverse procedure. 

 The other novelty of the paper concerns the applied optimization procedure. The inverse 

scattering problem is a highly nonlinear ill-posed problem [11]. Two approaches are usually 

followed to face this problem. The first one concerns the use of linearized procedures [12], which 

can allow for a quasi-real-time qualitative imaging, whereas the use of iterative procedures 

(computationally more heavy) allows the inspection of highly contrasted inhomogeneities. Among 

the iterative procedures, stochastic optimization algorithms are potentially able to obtain the global 

minimum of a given functional resulting from the formulation of the inverse scattering problem. 

The global solution coincides with the "true" solution, whose retrieval is of main importance in 

several areas (e.g., medical imaging). 

 Recently, evolutionary algorithms (in particular, the genetic algorithm [13]-[16]) have been 

widely proposed for solving optimization problems in inverse scattering [17]-[20]. Several different 

implementations of the genetic algorithm have been used, concerning both the coding of the 

unknown and the genetic operators. Actually, one of the main features of the genetic algorithm is 

the possibility of using specific implementations application-oriented. However, in the present 

paper we explore the use of a new version of an evolutionary algorithm, called memetic algorithm 

[21], which seems to be very suitable for the proposed application. In fact, the memetic algorithm, 

during the iterative evolution, considers only local minima of the cost function, so that a great 

speed-up is introduced in the search process. Moreover, since the algorithm population is composed 



by only local optima, the number of individuals involved in the evolution can be chosen very little, 

even equal to the number of unknowns. 

 In the following, the mathematical formulation of the approach is presented, together with 

some numerical examples, which provide a preliminary assessment of the capabilities of the 

approach. 

 

II. MATHEMATICAL FORMULATION 

 

The assumed problem geometry is shown in Figure 1. A layered infinite cylinder, composed 

by L confocal elliptical layers, is positioned in a cross-borehole configuration  [9]. The cylinder axis 

coincides with the z axis. A set of S electromagnetic sources, positioned at points (in the transverse 

plane) xs, s = 1,…,S, illuminates the objects. Each source generates an incident field, Einc
i (r), 

i=1,…,S. The total electric field, Etot
i (r), i=1,…,S, is measured by M sensors along a probing line in 

the transverse plane. Each layer of the cylinder is characterized by the dielectric permittivity εi and 

the semi-major axis ai. The half focal distance is indicated by d. Under the hypotheses of deep 

inclusions [9], the line-source field-scattered data can be computed in terms of Mathieu functions, 

which are the eigenfunctions of the elliptic cylinder. In particular, the z-component of the electric 

field in the external medium satisfies the following Helmholtz equation, written in a standard 

elliptic coordinate system (u,v,z) [22]: 
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The solution of this equation can be expressed as [22]: 
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where qL+1 is given, for i=L+1, by 

 

( )22/dkq ii =       (3) 

 



(being ki the wavenumber of the i-th layer) and Mcm
(4), Msm

(4), cem and sem are the fourth-order 

radial and angular Mathieu functions, respectively. Moreover, in equation (2), em
L+1 and om

L+1 are 

unknown coefficients to be determined. Analogously, in the generic i-th layer, the total electric field 

satisfies a Helmholtz equation similar to equation (1), whose solution is given by 
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where Mcm
(1), Msm

(2), cem and sem are odd and even radial Mathieu functions and ei
m,1, ei

m,2, oi
m,1 and 

oi
m,2 denote the unknown coefficients. 

Finally, the known incident field can be expressed as: 
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where us and vs are the elliptic coordinates of the source. The corresponding magnetic field can be 

derived by the Maxwell equation in a straightforward way.  

The unknown coefficients can be determined by truncating the above series (the Mathieu 

functions in different layers are not linearly independent sets) and applying the boundary conditions 

on the tangential components of Etot(r) and Htot(r) at all the dielectric boundaries: 
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where u = ui is the boundary between the i-th and the (i+1)-th layers.  

However, an efficient and fast recursive procedure for the computation of the above 

coefficients (starting from the external and the innermost layers) has been proposed in [23] and is 

used in the present work for solving the forward problem. 

Furthermore, the inverse scattering problem is recast as an optimization problem by defining 

the following cost function: 
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where k indicates the iteration of the minimization algorithm and ξk is an array that contains the 

problem unknowns, which is given by 

 

( daayx LLk ,,...,,,...,,, 1100 )εεξ =                                                     (8) 

 

In order to minimize J(ξk) and find (possibly) the global minimum, a so-called memetic algorithm is 

exploited. 

It should be noticed that the above functional can be easily extended to multifrequency imaging. 

 

III. MEMETIC ALGORITHMS 

 

Memetic algorithms are optimization methods that belong to the family of evolutionary 

methods. In particular, they can be thought as hybrid genetic algorithms. The basic idea of the 

memetic algorithm is to emulate the idea transmission process. To this end, the new approach is 

based on the concept of meme [21]. A meme is a unit of information that can be transmitted when 

people exchange ideas. Memetic algorithms are population-based algorithms, in which every “idea” 



is an individual. Since people process any idea to obtain a personal optimum before propagating it, 

each individual is a point of local minima of the cost function. 

The evolution of the population is modeled by using the same operators of the genetic 

algorithm, i. e., selection, crossover and mutation. Since these operators are not generally able to 

produce local optima, an optimization procedure is needed. 

The general schema of a memetic algorithm is shown in Figure 2. Let us consider a generic 

individual denoted by xk: 

 

xk=( xk
1,…, xk

m)      (9) 

 

where xk
i belongs to ℜ (real number set). The population of the algorithm is composed by N 

individuals: 
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where the subscript “i” indicates the generation’s number. An initial population P0 is generated by 

randomly choosing N arrays in the search domain. Generally, these arrays are not points 

corresponding to local minima of the cost function; consequently, a local optimization procedure is 

applied to every vector xk in order to obtain a point of minimum xk
*. Such a procedure is denoted by 

O(xk) and is defined as: 

 
m

kk
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where ℜm is the search space. The new individuals, called x*
k, k=1,…,N, generated by the 

optimization process, represent the new initial population P*
0 of the algorithm. The algorithm core is 

composed by three operations, i.e., selection, reproduction and mutation, which are applied 

sequentially. 

The selection mechanism is applied to the population to select the individuals to mate. The 

used selection is the tournament selection [13], where the individuals are selected by randomly 

choosing (with uniform probability density) a subset of the current population.  The reproduction 

mechanism adopted in this work is the proportional selection. Let x1 and x2 be two selected 

individuals. Reproduction generates a new individual x3 such that: 
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where a is a random variable uniformly chosen in the interval (0,1). The mutation operator is the 

standard uniform mutation [13]. Let x1 be the individual selected to mutate; the new individual x2 is 

generated according to the following rule: 
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where ν is an uniform random array chosen in the range of variation of the variables. The 

reproduction and mutation operators are executed with probabilities pr and pm, respectively. The 

applied recombination operators generate Nr and Nm new individuals, respectively, according to the 

reproduction and mutation probability. At the i-th iteration, a new population, called P'i , is 

generated by joining the old population Pi (that contains N individuals) and the Nr+Nm new 

individuals. Since P'i  contains more vectors than the N needed, it is necessary to reduce the 

population dimension. The individuals to propagate are chosen according to the following rule. The 

reproduced and mutated elements are always propagated. Moreover, if Nr+Nm is less than the 

population size N, the best individual and some randomly chosen arrays of the old generation are 

propagated. 

The obtained population, called Pi+1, is composed by arrays that are not local minima and 

the local search procedure O(xi) is applied again. As a result, the new population of the memetic 

algorithm P *
i+1 is generated. Since the population is composed by only local minima, the individuals 

evolve over the search domain by “jumping” from a minimum to another one and a great speed up 

in the optimization procedure is obtained. Moreover, since the population is only composed by local 

minima, a reduced number of elements can be considered (e.g., equal to the number of uknown), 

with a significant computational saving.  

 

IV. NUMERICAL RESULTS 

 

Some preliminary results are reported in this section. With reference to the problem geometry 

shown in Figure 1, we consider a three-layer cylinder. The semi major axes of the ellipses are 0.3λb, 

0.39λb, and 0.48λb, being λb the wavelength of the incident radiation in the background medium, 

which is characterized by εb = 12.0ε0 and μb = μ0. The semi-focal distance is equal to 0.024λb and 

the cross-section center is at point (0.3λb, -0.7λb). 



The cylinder is illuminated by a single line source located, in the transversal plane at xs = (0, 

-0.7λb). The total electric field is measured by a set of 21 sensors, uniformly distributed along a 

probing line in the borehole located at x = 0.6λb. The distance between two sensors is 0.06λb. 

First of all, a study of the cost function has been performed in order to evaluate the degree of 

nonlinearity. Results of this study are shown in Figure 3 and Figure 4. In particular, Figure 3 shows 

the behavior of the cost function when only the y coordinate of the cross-section center is changed, 

while Figure 4 shows the variations with respect to the permittivity value of the internal layer. As 

can be seen from these figures, the cost function exhibits some minima, both along the space 

direction related to the y coordinate of the cross-section center and along the one related to the 

dielectric permittivity. This behavior can justify the use of the proposed algorithm, which explores 

the search space only by jumping into the minima.  

As a first test, the reconstruction of the dielectric cylinder is considered. The original 

relative dielectric permittivities of the three layers are equal to 12.0, 48.0 and 30.0, respectively. 

The crossover and mutation probabilities are pr = 0.9 and pm = 0.3 and the dimension of the 

population is chosen equal to the number of unknowns, whereas the maximum numbers of 

reproduced and mutated individuals are calculated according to the following rule: 

 

⎣ ⎦
⎣ ⎦1)( +⋅−=

⋅=

mrm

rr

pNNN
pNN

     (14) 

 

where ⎣x⎦ indicates the biggest integer smaller than x. 

 The results are shown in Figures 5-7 and demonstrate that the algorithm reaches the correct 

solution after only 15 iterations. In particular, Figure 5 gives the reconstructed values of the 

dielectric permittivities of the various layers and Figure 6 shows the behavior of the fitness function 

versus the iteration number. As can be seen, the fitness function assumes only a limited set of 

values, corresponding to local minima. The proposed algorithm does not use the elitism [13]: this 

causes the presence of oscillations in the cost function, since the same minimum is repeatedly 

encountered. Finally, Figure 7 shows the reconstructed profile of the cylinder at some significant 

iterations. The above simulation has been performed starting from noiseless analytical data. The 

same computation has been repeated after corrupting the input data by adding random sequences 

corresponding to Gaussian noise with zero mean values and variances related to the fixed signal-to-

noise ratios (SNRs). In the case in which SNR = 20 dB, a rather accurate reconstruction has been 

obtained after 20 iterations. In particular, the dielectric properties have been retrieved with 

minimum, mean, and maximum square errors equal to 0.0025, 0.092, and 0.24. The quality of the 



data inversion becomes worst when the SNR is reduced to 10 dB. In this case, the same 

reconstruction errors are equal to 0.001, 0.12, and 0.36. 

In another test, only the center of the cylinder is changed. The values of the relative 

dielectric permittivities used for this test are 24.0, 30.0 and 36.0, respectively. The other parameters 

are left unchanged. The obtained results are shown in Figures 8 and 9. In particular, Figure 8 shows 

the behavior of the retrieved cross-section center (x and y coordinates) versus the iteration number. 

Moreover, Figure 9 shows the cost function versus the iteration number. As can be seen from these 

figures, the convergence is reached in only three iterations, and after one iteration the candidate 

solution is already very close to the correct solution, even if the initial guess is very far from it. 

Although the number of unknowns is small, a deterministic algorithm is not able to reach the 

exact solution as can be deduced from the results reported in Figures 10 and 11, which have been 

obtained by using a conjugate gradient (CG) procedure for comparison purposes. In particular, 

Figure 10 gives the plots of the functional J (equation (7)), calculated as follows: 

 

( )( ) 5.15.0     )( ≤≤−−+= ttJtJ kfk ξξξ  k = 0, 1, 2, ...   (15) 

 

where ξk  denotes the current solution of the CG procedure and the starting point ξ0  is assumed to 

be equal to the best starting point of the memetic algorithm; ξf  indicates the point where the global 

minimum is located. It is evident that the deterministic procedure falls in a local minimum after 

only a few iterations. On the contrary, the MA-based inversion procedure is able to reach the exact 

solution as shown in Figure 11, where the same quantity is provided for different iteration values of 

the stochastic algorithm. 

 

V. CONCLUSIONS 

 

A new optimization method has been applied to the detection of multilayer infinite cylinders 

describing buried inhomogeneities. The optimization process is performed by a memetic algorithm, 

in which a series of local searches precede the global search performed by a genetic algorithm. At 

any iteration, the population is constituted by local minima. The approach has been found to be 

effective in dealing with the functional derived from the line-source inverse scattering problem for 

multilayer elliptic cylinders (which exhibits a number of local minima in all the directions of the 

search space).  The obtained results, although preliminary, are rather interesting and indicate that a 

limited number of iterations is sufficient to obtain a correct localization of the multilayer elliptic 



cylinder, for which the forward problem, at the various iterations, has been analytically solved by an 

efficient recursive procedure. 
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FIGURE CAPTIONS 

 

Figure 1 – Geometrical configuration. 

Figure 2 – Memetic algorithm flow chart. 

Figure 3 – Fitness function versus y coordinate of the cross-section center. 

Figure 4 – Fitness function versus the dielectric permittivity of the first layer (normalized to the 

background permittivity). 

Figure 5 – Values of the normalized dielectric permittivities in the three layers of the  elliptic 

cylinder versus the iteration number. 

Figure 6 – Fitness function versus the iteration number. 

Figure 7 – Reconstructed normalized dielectric permittivities (ε/εb) in the three layers of the elliptic 

cylinder (y = – 0.7λb). 

Figure 8 – Localization of the cross-section center (x and y coordinates) versus the iteration number 

Figure 9 – Fitness function versus the iteration number. 

Figure 10 - Behavior of the fitness function (equation (15)) plotted along a straight line connecting 

the current solution (at the kCG-th iteration) and the exact solution, for different values of the 

iteration number of the conjugate gradient procedure. 

Figure 11 - Behavior of the fitness function (equation (15)) plotted along a straight line connecting 

the current solution (at the kMA-th iteration) and the exact solution, for different values of the 

iteration number of the memetic algorithm. 
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