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An Innovative Approa
h Based on a Tree-Sear
hing Al-gorithm for the Optimal Mat
hing of Independently Op-timum Sum and Di�eren
e Ex
itations
L. Mani
a, P. Ro

a, A. Martini, and A. Massa

Abstra
tAn innovative approa
h for the optimal mat
hing of independently optimum sumand di�eren
e patterns through sub-arrayed monopulse linear arrays is presented.By exploiting the relationship between the independently optimal sum and di�eren
eex
itations, the set of possible solutions is 
onsiderably redu
ed and the synthesisproblem is re
ast as the sear
h of the best solution in a non-
omplete binary tree.Towards this end, a fast resolution algorithm that exploits the presen
e of elementsmore suitable to 
hange sub-array membership is presented. The results of a set ofnumeri
al experiments are reported in order to validate the proposed approa
h point-ing out its e�e
tiveness also in 
omparison with state-of-the-art optimal mat
hingte
hniques.
Key words: Linear Arrays, Monopulse Antennas, Sum and Di�eren
e Pattern Synthesis,Tree-Sear
hing Algorithm. 2



1 Introdu
tionA tra
king radar system using the monopulse te
hnique [1℄ 
an be realized through anantenna array able to generate two di�erent patterns, namely the di�eren
e pattern andthe sum pattern. These patterns are required to satisfy some 
onstraints as narrowbeamwidth, low side lobe level (SLL) and high dire
tivity. In parti
ular, as far as the sumpattern is 
on
erned, there is the need of maximizing the gain. On the other hand, themore 
riti
al issues to be addressed dealing with di�eren
e patterns are 
on
erned withboth the �rst null beamwidth and the normalized di�eren
e slope on boresight dire
tion,sin
e they are strongly related to the sensitivity of the radar (i.e., to the angular error).The optimal ex
itation 
oe�
ients for the sum and the di�eren
e patterns 
an be indepen-dently 
omputed by using analyti
al methods as des
ribed in [2℄ and in [3℄, respe
tively.Nevertheless, the implementation of two independent feed networks is generally una
-
eptable be
ause of the 
osts, the o

upied physi
al spa
e, the 
ir
uit 
omplexity andthe arising interferen
es. Thus, it is ne
essary to �nd a suitable 
ompromise between thefeed network 
omplexity and the 
loseness of the synthesized sum and di�eren
e patternsto the optimal ones. Sin
e the sum pattern is used in both signal transmission and re-
eption, the most 
ommon way to solve the problem 
onsists in generating an optimalsum pattern and a sub-optimal di�eren
e pattern [4℄, the latter synthesized by applyinga sub-arraying te
hnique. A

ordingly, the synthesis is aimed at optimizing pre-spe
i�edsub-array layouts by sinthesizing sub-array and radiating element weights, but not thea
tual beamforming network.In su
h a framework, several approa
hes for de�ning how the elements 
ould be groupedand the sub-arrays weights 
omputed have been proposed. As far as linear arrays are
on
erned, M
Namara proposed in [4℄ the Ex
itation Mat
hing method (EMM) aimedat determining a best 
ompromise di�eren
e pattern 
lose as mu
h as possible to theoptimum in the Dolph-Chebyshev sense [5℄ (i.e., narrowest �rst null beamwidth and largestnormalized di�eren
e slope on the boresight for a spe
i�ed sidelobe level). Towards thisend, for ea
h possible grouping, the 
orresponding sub-arrays 
oe�
ients are iteratively
omputed through pseudo-inversion of an overdetermined system of linear equations. It3



is evident that sin
e the best sub-array 
on�guration is not a-priori known, the wholepro
ess is extremely time-expensive due to the exhaustive evaluations. Moreover, be
auseof the ill-
onditioning of the matrix system, large arrays 
annot be easily managed.In order to over
ome the ill-
onditioning and related issues, optimization approa
hes havebeen widely used [6℄[7℄[8℄[9℄[10℄. Although su
h te
hniques allows a signi�
ant advan
e-ment in the framework of sum-di�eren
e pattern synthesis, they are still time-
onsumingwhen dealing with large arrays. As a matter of fa
t, even though the solution spa
e issampled with e�
ient sear
hing 
riteria, the dimension of the solution spa
e is very large.In order to over
ome su
h drawba
ks allowing an e�e
tive 
hoi
e of the array elementsgrouping as well as a fast and simple solution pro
edure, this paper proposes an innovativeapproa
h that, likewise [4℄ and unlike [6℄[7℄[8℄[9℄[10℄, is aimed at obtaining a 
ompromisedi�eren
e pattern optimum in the Dolph-Chebyshev sense [5℄ starting from the observationthat the sub-arraying is not blind . As a matter of fa
t, it 
an be guided by 
onsideringsimilarity properties among the array elements, thus signi�
antly redu
ing the dimensionof the solution spa
e. Starting from su
h an idea and by representing ea
h solution bymeans of a path in a non-
omplete binary tree, the synthesis problem is then re
ast as thesear
hing of the minimal-
ost path from the root to the leafs of the solution tree. In graphtheory, a tree is a graph de�ned as a non-empty �nite set of verti
es or nodes in whi
h anytwo nodes are 
onne
ted by exa
tly one path. The nodes are labeled su
h that there is onlyone node 
alled the root of the tree, and the remaining nodes are partitioned in subtrees.In our 
ase, sin
e the tree is either empty or ea
h node has not more than two subtrees, itis a binary tree. A

ordingly, ea
h node of a binary tree has either (I) no 
hildren, or (ii)one left/right 
hild (i.e., non-
omplete binary tree), or (iii) a left 
hild and a right 
hild(i.e., 
omplete binary tree), ea
h 
hild being the root of a binary tree 
alled a subtree[11℄[12℄. In order to solve the problem at hand, thus e�
iently exploring the solutiontree, suitable 
ost fun
tions or metri
s are de�ned and an innovative algorithm for theexploration of the solution spa
e is de�ned by exploiting the 
loseness (to a sub-array)property of some elements, 
alled border elements, of the array.The paper is organized as follows. In Se
tion 2, the problem is mathemati
ally formulated4



de�ning a set of metri
s aimed at quantifying the 
loseness of ea
h solution to the optimalone (Se
t. 2.1) as well as the tree stru
ture (Se
t. 2.2) and the algorithm for e�e
tivelyexploring the solution spa
e (Se
t. 2.3). In Se
tion 3, the results of sele
ted numeri
alexperiments are reported and 
ompared with those from state-of-the-art optimal mat
hingsolutions. Con
lusions and future possible trends are drawn in Se
tion 4.2 Mathemati
al FormulationLet us 
onsider a linear uniform array ofN = 2M elements {ξm; m = −M, ...,−1, 1, ...,M}.Following a sub-optimal strategy, the sum pattern is generated by means of the sym-metri
 set of the real optimal (1) ex
itations Aopt = {αm; m = 1, ...,M} [2℄[13℄, whilethe di�eren
e pattern is de�ned through an anti-symmetri
 real ex
itation set B =

{bm = −b−m; m = 1, ...,M} [5℄. Thanks to su
h symmetry properties, one half of theelements of the array S = {ξm; m = 1, ...,M} is des
riptive of the whole array.Grouping operation yields to a sub-array 
on�guration mathemati
ally des
ribed in termsof the grouping ve
tor C = {cm; m = 1, . . . ,M}, cm ∈ [1, Q] being the sub-array indexof the m-th element of the array [7℄. Su

essively, a weight 
oe�
ient wq is asso
iated toea
h sub-array, q = 1, ..., Q, and, as a 
onsequen
e, the sub-optimal di�eren
e ex
itationset is given by
B = {bm = wmqαm; m = 1, ...,M ; q = 1, ..., Q} (1)where wmq = δcmqwq (δcmq = 1 if cm = q, δcmq = 0 otherwise) is the weight asso
iated tothe m-th array element belonging to the q-th sub-array.A

ordingly, the original problem is re
ast as the de�nition of a sub-array 
on�guration

C and the 
orresponding set of weights W = {wq; q = 1, ..., Q} su
h that the sub-optimaldi�eren
e pattern B is as 
lose as possible to the optimal one, Bopt = {βm; m = 1, ...,M}.Towards this end, let us formally pro
eed as follows. Firstly, two di�erent metri
s arede�ned in order to quantify the 
loseness of the sub-optimal solution to the optimal one.Then, exploiting some properties of the sub-array 
on�gurations, a non-
omplete binary
(1) In the Dolph-Chebyshev sense [5℄, unless mentioned elsewhere.5



tree, where ea
h path 
odes a possible elements grouping, is built. Finally, a simplealgorithm for a fast sear
h of the lowest 
ost path in the binary tree is presented forde�ning the best sub-optimal solution of the problem in hand.2.1 De�nition of the Solution-Metri
In order to �nd the optimal solution, let us de�ne a suitable 
ost fun
tion or metri
 thatquanti�es the 
loseness of every 
andidate/trial solution Ct to the optimal one,
Ψ {Ct} =

M
∑

m=1

[vm − dm {Ct}]
2 , (2)where vm and dm are referen
e and estimated parameters, respe
tively. The estimatedparameters dm {Ct} are de�ned as the arithmeti
 mean of the referen
e parameters vmrelated to the array elements belonging to the same sub-array. As far as the referen
eparameters V = {vm; m = 1, ...,M} and the sub-arrays weights W = {wq; q = 1, ..., Q}are 
on
erned, they are de�ned a

ording to two di�erent strategies, namely the GainSorting (GS) algorithm and the Residual Error (RES) algorithm.Con
erning the GS te
hnique, the referen
e parameters v(GS)
m are set to the optimal gains

v(GS)
m =

βm
αm

, m = 1, . . . ,M, (3)while the sub-array weights are assumed to be equal to the 
omputed gains d(GS)
m

w(GS)
q = δcmqd

(GS)
m

{

C
(ess)
t

}

, q = 1, ..., Q, m = 1, . . . ,M. (4)Con
erning the RES algorithm, the referen
e parameters are equal to the the so-
alledoptimal residual errors v(RES)
m given by
v(RES)
m =

αm − βm
βm

, m = 1, . . . ,M. (5)A

ordingly, sin
e βm

αm
= 1

1+v
(RES)
m

, m = 1, . . . ,M, the sub-array weights are expressed in6



terms of the 
omputed residual errors d(RES)
m as follows

w(RES)
q =

1

1 + δcmqd
(RES)
m

{

C
(ess)
t

} , q = 1, . . . , Q, m = 1, . . . ,M. (6)
2.2 De�nition of the Solution-TreeIn general, the total number of sub-array 
on�gurations is equal to T = QM sin
e ea
h ofthem might be expressed as a sequen
e ofM digits in a Q-based notation system. Withoutany loss of information, su
h a number 
an be redu
ed by 
onsidering only the admissible(or reliable) solutions, i.e., grouping where there are no empty sub-arrays. Moreover, letus observe that if an equivalen
e relationship (2) among sub-array 
on�gurations holdstrue, it is 
onvenient to 
onsider just one sub-array 
on�guration for ea
h set (instead ofthe whole set), therefore obtaining a set of non-redundant solutions.Now, let us sort the known referen
e parameters {vm; m = 1, ...,M} [
omputed a

ord-ing to either the GS (3) or the RES algorithm (5)℄ for obtaining a ordered list L =

{lm; m = 1, ...,M}, where li ≤ li+1, i = 1, ...,M − 1, l1 = minm {vm}, and lM =

maxm {vm}. Sin
e the 
ost fun
tion is minimized provided that elements belonging toea
h sub-array are 
onse
utive elements of the ordered list L (see Appendix A for adetailed proof), the solution spa
e 
an be further redu
ed to the so-
alled essential solu-tion spa
e ℜ(ess) 
omposed by allowed solutions. Consequently, the dimension T of thesolution spa
e turns out to be redu
ed from T = QM up to T (ess) =









M − 1

Q− 1









(seeAppendix B for a detailed proof) and the essential solution spa
e ℜ(ess) 
an be formallyrepresented by means of the non-
omplete binary tree depi
ted in Figure 1. In parti
ular,ea
h 
omplete path in the tree 
odes an allowed sub-array 
on�guration C(ess)
t ∈ ℜ(ess)and the positive integer q inside ea
h node at the lm-th level indi
ates that the arrayelement identi�ed by lm is a member of the q-th sub-array. Thanks to this formulation,

(2) A sub-array 
on�guration Ci is equivalent to the 
on�guration Cj when it is possible to obtainthe one from the other just using a di�erent numbering for the same cm 
oe�
ients. As an example, thesub-array 
on�guration Ci = {1, 2, 3, 3, 2, 3, 2, 1} is equivalent to Cj = {2, 3, 1, 1, 3, 1, 3, 2}.7



the original minimization problem (i.e., Copt = arg {mint=1,...,T [Ψ (Ct)]}) is re
ast as thatof �nding the optimal path in the solution tree.2.3 Tree-Sear
hing Pro
edureAlthough the set of 
andidate solutions has been 
onsiderably redu
ed by limiting thesolution spa
e to the essential spa
e, its dimension T (ess) be
omes very large whenM ≫ Qand an exhaustive sear
hing would be 
omputationally expensive. In order to over
omesu
h a drawba
k, let us observe that only some elements of the list L are 
andidate to
hange their sub-array membership without violating the sorting 
ondition of the allowedsub-array 
on�gurations, {

C
(ess)
t ; t = 1, ..., T (ess)

} [see Eq. (14) - Appendix B ℄. Theseelements, referred to as border elements, satisfy the following property: an array elementrelated to lm is a border element if one of the elements whose list value is lm−1 or/and lm+1belongs to a di�erent sub-array. Therefore, the aggregation Copt ∈ ℜ
(ess) minimizing the
ost fun
tion Ψ is found starting from an initial path randomly 
hosen among the set ofpaths in the solution tree and iteratively updating the 
andidate solution just modifyingthe membership of the border elements. More in detail, the iterative pro
edure (k beingthe iteration index) 
onsists of the following steps.

• Step 0 - Initialization . Initialize the iteration 
ounter (k = 0) and the sequen
eindex (m = 0). Randomly generate a trial path in the solution tree 
orrespondingto a 
andidate sub-arrays 
on�guration C(0) ∈ ℜ(ess). Set the optimal path to
C

(k)
opt

⌋

k=0
= C(0).

• Step 1 - Cost Fun
tion Evaluation . Compute the 
ost fun
tion value of the
urrent 
andidate path C(k) by means of (2), Ψ(k) = Ψ
{

C(k)
}. Compare the 
ostof the aggregation C(k) to the best 
ost fun
tion value attained at any iteration upto the 
urrent one, Ψ

(k−1)
opt = minh=1,...,k−1

(

Ψ
{

C(h)
}) and update the optimal trialsolution C(k)

opt = C(k) if Ψ
{

C(k)
}

< Ψ
{

C
(k−1)
opt

}.
• Step 2 - Convergen
e Che
k . If the termination 
riterion, based on a maxi-mum number of iterations K or on a stationary 
ondition for the �tness value (i.e.,8



∣

∣

∣
KwindowΨ

(k−1)
opt −

∑Kwindow
j=1

Ψ
(j)
opt

∣

∣

∣

Ψ
(k)
opt

≤ η, Kwindow and η being a �xed number of iterationsand a �xed numeri
al threshold, respe
tively), is satis�ed then set Copt = C
(k)
opt andstop the minimization pro
ess. Otherwise, go to Step 3.

• Step 3 - Iteration Updating . Update the iteration index (k ← k + 1) and resetthe sequen
e index (m = 0).
• Step 4 - Sequen
e Updating . Update the sequen
e index (m← m+1). If m > Mthen go to Step 3 else go to Step 5.
• Step 5 - Aggregation Updating . If the array element related to l(k)m is a bor-der element belonging to the q-th sub-array then de�ne a new grouping C(k,m) byaggregating su
h an element to the (q − 1)-th sub-array [if the array element 
or-responding to l(k)m−1 is a member of the (q − 1)-th sub-array℄ or to the (q + 1)-thsub-array [if the array element 
orresponding to l(k)m+1 is a member of the (q + 1)-thsub-array℄. If Ψ(k,m) = Ψ

{

C(k,m)
}

< Ψ
{

C(k)
} then set C(k) = C(k,m) and go to Step

1. Otherwise, go to Step 4.3 Numeri
al Simulations and ResultsIn order to assess the e�e
tiveness of the proposed method, an exhaustive set of numeri
alexperiments has been performed and some representative results will be shown in thefollowing.For a quantitative evaluation, a set of beam pattern indexes has been de�ned and 
om-puted. More in detail, (a) the pattern mat
hing ∆ that quanti�es the distan
e betweenthe synthesized sub-optimal pattern and the optimal one
∆ =

∫ π
0

∣

∣

∣|AF (ψ)|optn − |AF (ψ)|recn

∣

∣

∣ dψ
∫ π
0 |AF (ψ)|optn dψ

, (7)where ψ = (2πd/λ) sinθ, θ ∈ [0, π/2], (λ and d being the free-spa
e wavelength andthe inter-element spa
ing, respe
tively), |AF (ψ)|optn and |AF (ψ)|recn are the normalized9



optimal and generated array patterns, respe
tively; (b) the main lobes beamwidth BW and(
) the power slope Pslo that give some indi
ations on the slope on the boresight dire
tion
Pslo = 2×

[

max
ψ

(|AF (ψ)|n)× ψmax −
∫ ψmax

0
|AF (ψ)|n dψ

]

, (8)
ψmax being the angular position of the maximum in the array pattern; (d) the sidelobespower Psll

Psll =
∫ π

ψ1

|AF (ψ)|n dψ, (9)where ψ1 is the angular position of the �rst null in the di�eren
e beam pattern.The remaining of this se
tion is organized as follows. Firstly, some experiments aimed atshowing the asymptoti
 behaviour of the proposed solution are presented (Se
t. 3.1) anda 
omparative study is 
arried out (Se
t. 3.2). Furthermore, some experiments devotedat showing the potentialities of the proposed solution in dealing with large arrays aredis
ussed in Se
t. 3.3. Finally, the 
omputational issues are analyzed (Se
t. 3.4).3.1 Asymptoti
 Behavior AnalysisIn order to assess that in
reasing the number of sub-arrays Q the synthesized di�eren
epatterns get 
loser and 
loser to the optimal one, let us 
onsider a linear array of N =

2×M = 20 elements 
hara
terized by a d = λ
2
inter-element spa
ing. The optimal sumpattern ex
itations, {αm, m = 1, ...,M}, have been �xed to that of the linear Villeneuvepattern [13℄ with n = 4 and 25 dB sidelobe ratio (Fig. 2 - Villeneuve, 1984), whilethe optimal di�eren
e weights {βm, m = 1, ...,M}, have been 
hosen equal to those of aZolotarev di�eren
e pattern [5℄ with a sidelobe level SLL = −30 dB (Fig. 24 -M
Namara,1993). Then, Q has been varied between 2 and M and both GS and RES te
hniqueshave been applied. For sake of spa
e, sele
ted results 
on
erned with Q = 3, Q = 6, and

Q = 9 are reported in terms of di�eren
e ex
itations [Fig. 2(a) - GS approa
h; Fig. 2(b)- RES approa
h℄. As expe
ted, the 
oe�
ients obtained with both the GS and RES
onverge to the optimal ones and, starting from Q = 6, the di�eren
es between generatedand referen
e di�eren
e patterns turn out to be smaller and smaller.10



3.2 Comparative AssessmentFor 
omparison purposes and in the framework of synthesis te
hniques aimed at deter-mining the best 
ompromise di�eren
e pattern as 
lose as possible to the optimal one,let us 
onsider the EMM by M
Namara [4℄ as referen
e (3) . As far as the test 
ases are
on
erned, the same ben
hmark investigated in [4℄ has been taken into a

ount. The arraygeometry and the optimal sum ex
itations was as in Se
t. 3.1, while the optimal di�er-en
e ex
itation ve
tor Bopt has been 
hosen for generating a modi�ed Zolotarev di�eren
epattern with n = 4, ε = 3 and a sidelobe ratio of 25 dB [3℄.The �rst test 
ase deals with a uniform sub-arraying over the antenna with Q = 5. Thevalues of the sub-arrays weights optimized with the GS and the RES areWGS = {0.2951 ,
0.8847, 1.1885, 1.3994, 1.4878} and WRES = {0.3411 , 0.8915, 1.1193, 1.4016, 1.4881},respe
tively. Moreover, the synthesized di�eren
e patterns are shown in Figure 3, whilethe 
omputed beam-pattern indexes are reported in Table I. The advantages on the use ofthe tree-based approa
hes are evident, as 
on�rmed by the values of both the SLL (almost
4 dB below the level a
hieved by the EMM , SLLEMM = −17.00 dB vs. SLLGS = −21.00and SLLRES = −20.50) and the pattern mat
hing index (∆EMM

∆RES ≃ 1.4 and ∆EMM

∆GS ≃ 1.5- Tab. I). Moreover, it is worth noting that, thanks to the stru
ture of the solution tree,the dimension of the essential spa
e redu
es to T (ess) = 1 (sin
e l1 and l2 belong to the�rst sub-array, l3 and l4 to the se
ond one, and so on), thus allowing a signi�
ant savingof 
omputational resour
es. As a matter of fa
t, the EMM requires the solution of anoverdetermined system of linear equations in 
orresponden
e with any possible uniformgrouping [4℄, i.e., a number of T = 945 evaluations.Se
ond and third test 
ases 
onsider non-uniform sub-arraying. The former 
on�gurationis an example of the limited number of sub-arrays (Q = 3) that might be used witha small monopulse antenna. The latter has the same number of sub-arrays as that ofthe �rst 
on�guration (Q = 5). The tree-based algorithms have been applied and thefollowing sub-array 
on�gurations have been determined. In parti
ular the same grouping
(3) No 
omparison with optimization-based pro
edures (i.e., [6℄[7℄[8℄[9℄[10℄) have been reported sin
ethey are aimed at minimizing a pattern parameter (e.g., the SLL) and not at better mat
hing an optimaldi�eren
e pattern. 11



CGS,RES
opt = {1, 2, 3, 3, 4, 5, 5, 5, 4, 3} has been synthesized when Q = 5, while CGS

opt =

{1, 1, 2, 2, 3, 3, 3, 3, 3, 2} and CRES
opt = {1, 2, 3, 3, 3, 3, 3, 3, 3, 3} have been obtainedfor Q = 3. The obtained beam patterns are shown in Fig. 4 and the 
orrespondingvalues of the pattern indexes are reported in Tab. II. As it 
an be noti
ed, the GS and

RES improve the performan
es of the EMM in mat
hing the optimal di�eren
e patternas pointed out by the behavior of the global mat
hing index ∆ ( ∆EMM

∆GS

⌋

Q=3
= 1.33 and

∆EMM

∆RES

⌋

Q=3
= 1.42; ∆EMM

∆GS

⌋

Q=5
= 1.63 and ∆EMM

∆RES

⌋

Q=5
= 1.68). Con
erning the smaller
on�guration, it is further 
on�rmed (as already pointed out in Se
tion 3.1) the �exibilityand reliability of the GS algorithm in dealing also with 
omplex 
ases where a limitednumber of sub-arrays is taken into a

ount. As a matter of fa
t, forQ = 3 the GS gives thebest performan
es getting the highest sidelobe ratio ofSLL = 18.63 dB and synthesizinga main lobe very 
lose to the optimal one, i.e., BGS

w = Bopt
w = 0.3735 and PGS

slo = 0.1800vs. P opt
slo = 0.1802.3.3 Large Arrays AnalysisThis se
tion is aimed at analyzing the performan
es of the proposed tree-based te
h-niques when dealing with large arrays. As far as the optimal setup is 
on
erned, sum

{αm, m = 1, ...,M} and di�eren
e {βm, m = 1, ...,M} optimal ex
itations have been 
ho-sen to generate a Dolph-Chebyshev pattern [15℄ with SLL = −25 dB and a Zolotarevpattern [5℄ with SLL = −30 dB, respe
tively.As a �rst experiment, a linear array of N = 200 elements with λ/2 spa
ing has been usedby 
onsidering various sub-arraying 
on�gurations. Figure 5 shows the optimal di�eren
epattern (i.e., the synthesis target) and the patterns obtained when Q = 4 and Q = 6by using both GS and RES. For 
ompleteness, the values of the synthesized di�eren
eex
itations are displayed in Figure 6. It is worth noting that the GS algorithm outper-forms the RES. As a matter of fa
t, although both approa
hes satisfa
torily approximatethe optimal main lobe 
hara
teristi
s in terms of both BW and Pslo, the solutions 
om-puted with the gain-based logi
 present higher sidelobe ratios (SLLGS⌋

Q=4
= −21.90 and

SLLGS
⌋

Q=6
= −25.13) with an enhan
ement of more than 10 dB and 5 dB with respe
t12



to the RES approa
h (SLLRES⌋

Q=4
= −10.10 and SLLRES⌋

Q=6
= −19.95), respe
tively.Moreover, the overall mat
hing performan
es turn out signi�
antly in
reased as further
on�rmed by the values of ∆ ( ∆RES

∆GS

⌋

Q=4
≃ 3.77 and ∆RES

∆GS

⌋

Q=6
≃ 2.47).The last test 
ase (and se
ond experiment dealing with large stru
tures) is 
on
erned witha linear array of N = 2 ×M = 500 elements (d = λ/2). As a representative example,the 
ase of Q = 4 is reported and analyzed (Tab. III). The arising beam patterns allowone to drawn similar 
on
lusions to those from the previous s
enario, sin
e on
e againthe e�e
tiveness of the GS te
hnique in dealing with a limited number of sub-arrays ispointed out. As a matter of fa
t, the ratio between the mat
hing indexes turns out quitelarge and equal to ∆RES

∆GS

⌋

Q=4
≃ 4.1 (Tab. III). On the other hand, it is worth noting thatunlike tree-based pro
edures the EMM is not reliable in dealing with large arrays sin
e itrequires the numeri
al pro
essing of overdetermined linear systems, whose ill-
onditioningget worse when the ratio M

Q
grows.3.4 Computational IssuesNow, let us analyze the 
omputational 
osts of the tree-based approa
hes, providinga 
omparison with the EMM , as well. Towards this end, let us �rstly 
onsider thedependen
e of the dimension of the solution spa
e on the number of elements of the array

M . As a representative 
ase, let us analyze the behavior of T and T (ess) when Q = 3(K = 100 and η = 10−3) (Fig. 7). As it 
an be observed, the dimension of the solutionspa
e T of the EMM grows exponentially with M , while, as expe
ted [see AppendixA℄, T (ess) shows a polynomial behavior. Obviously, the same behavior holds true also fordi�erent values of Q (Fig. 7).On the other hand, the 
omputational e�e
tiveness of the Tree-Sear
hing pro
edure insampling the solution spa
e is further pointed out from the evaluation of the CPU-time, t,needed for rea
hing the 
onvergen
e (Fig. 8). As a matter of fa
t, maxQ {tQ} = 70 [sec](kopt = 90) in 
orresponden
e with the largest array (M = 250), while maxQ {tQ} =

12.8 [sec] (kopt = 8) and maxQ {tQ} = 2.3 [sec] (kopt = 4) when M = 100 and M = 50,respe
tively. 13



4 Con
lusionsIn this paper, an innovative approa
h for the synthesis of sub-arrayed monopulse antennasby mat
hing independently-optimum sum and di�eren
e ex
itations has been proposed.By exploiting some properties of the sub-array 
on�gurations, the problem of �nding a�best 
ompromise� di�eren
e pattern by grouping array elements has been re
ast as thesear
h of the optimum, in terms of either the GS or the RES logi
, path inside a non-
omplete binary tree. Towards this purpose, a fast resolution algorithm has been de�nedand assessed by means of several numeri
al experiments.Con
erning the methodologi
al novelties of this work, the main 
ontribution is 
on
ernedwith the following issues: (a) an appropriate de�nition of the solution spa
e; (b) anoriginal and innovative formulation of the sum-di�eren
e problem in terms of a sear
h ina non-
omplete binary tree; (
) a simple and fast solution pro
edure based on swappingoperations among border elements and 
ost fun
tion evaluations.Moreover, the main features of the proposed tree-based te
hniques are the following: (i)a redu
tion of the dimensionality T (ess) of the synthesis problem, by exploiting the infor-mation 
ontent of independently optimal sum and di�eren
e ex
itations; (ii) a signi�
antredu
tion of the 
omputational burden, by applying a fast solution algorithm for explor-ing the solution tree (i.e., sampling the solution spa
e); (iii) the 
apability to deal withlarge-arrays synthesis in an e�e
tive and reliable way.Be
ause of the favorable trade-o� between 
omplexity/
osts and e�e
tiveness, the pro-posed tree-based strategy seems a promising tool to be further analyzed and extended toother geometries and synthesis problems. Towards this purpose, further methodologi
alstudies will be oriented in two di�erent dire
tions: (I ) improving the solution pro
edure bydeveloping a 
ustomized 
ombinatorial approa
h, thus further redu
ing the 
omputational
osts as well as improving the 
onvergen
e rate; (II ) re-formulating the sum/di�eren
eoptimization problem (dealt with in [6℄[7℄[8℄) in terms of a binary-tree exploration.
14
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t COFIN 2005099984.Appendix AThis appendix is aimed at proving that, given Q sub-arrays, the value of the 
ost fun
tion(2) is minimum provided that the elements belonging to ea
h sub-array are 
onse
utiveelements of the ordered list L = {lm; m = 1, . . . ,M ; lm ≤ lm+1}. With referen
e to aset of elements V = {vm; m = 1, ...,M} be to be divided in Q sub-sets, the thesis tobe proved is that the partition minimizing the 
ost fun
tion (2) is a 
ontiguous partition(i.e., if two elements vi and vn belong to the same 
lass and vi < vj < vn, then element
vj is assigned to the same subset of elements). Towards this end, the proof follows theguidelines reported in [16℄.Let us 
onsider a non-
ontiguous partition PQ = {Vq; q = 1, ..., Q} of the set V and threeelements vi, vj , vn su
h that vi < vj < vn. Let elements vi and vn belong to a subset withmean value dr and let vj belong to a di�erent subset having mean value ds. Whatever thevalues of dr and ds, at least one the following statements holds true































|vj − ds| ≥ |vj − dr| > 0,

|vi − dr| ≥ |vi − ds| > 0,

|vn − dr| ≥ |vn − ds| > 0.

(10)
Let us denote with vt the element satisfying (10) and its own subset as V k = {vk; k = 1, ..., Nk}.Moreover, let us refer to the other subset as V h = {vh; h = 1, ..., Nh}. A

ordingly, the
ost fun
tion (2) asso
iated to the partition PQ may be written as:

Ψ =
M
∑

m=1

v2
m −Nk · d

2
k −Nh · d

2
h −

Q
∑

q=1; q 6=h,k

Nq · d
2
q (11)15



Nq and dq being the number of elements and the mean value of the q-th sub-array, re-spe
tively.Now, let us 
onsider a new partition P (1)
Q obtained by moving the element vt from thesubset V k to the subset V h. We obtain two new subsets V (1)

k = V k \ {vt} and V
(1)
h =

V k ∪ {vt}
(4) with mean values equal to d(1)

k = Nkdk−vt

Nk−1
and d(1)

h = Nhdh+vt

Nh+1
, respe
tively.A

ordingly, the 
ost fun
tion asso
iated to the partition P (1)

Q 
an be written as:
Ψ(1) =

M
∑

m=1

v2
m −

(Nkdk − vt)
2

Nk − 1
−

(Nhdh − vt)
2

Nh − 1
−

Q
∑

q=1; q 6=h,k

Nqd
2
q . (12)Now, by subtra
ting (12) from (11), after some manipulations, it turns out that

Ψ−Ψ(1) =
Nk

Nk − 1
(vt − dk)

2 −
Nh

Nh + 1
(vt − dh)

2 . (13)A

ording to (10), Ψ > Ψ(1) and it 
an be 
on
luded that for every non-
ontiguouspartition we 
an �nd another one with the same number of subsets, but with a smaller
ost. Hen
e, the partition minimizing the 
ost fun
tion (2) is a 
ontiguous partition.Appendix BThis se
tion is devoted at quantifying the dimension T (ess) of the essential solution spa
e
ℜ(ess) =

{

C
(ess)
t ; t = 1, ..., T (ess)

}, thus pointing out the 
omputational saving allowed bythe proposed approa
h 
ompared to exhaustive or global sampling solution pro
edures.More in detail, the aim is that of determining the number T (ess) of 
andidate solutionsor, in an equivalent fashion, the number of allowed paths in the solution tree.Generally speaking, sin
e a sub-array 
on�guration C 
an be mathemati
ally des
ribedby a sequen
e of M digits of a Q-symbols alphabet, the whole number of aggregations isequal to T = QM . Thanks to the equivalen
e relationship, the set of 
andidate solutions
an be limited to the number of paths in a 
omplete binary tree of depth M , thus the
(4) We expli
itly note that the new partition P

(1)
Q has the same number of subsets as PQ. As amatter of fa
t, a

ording to (10), the element vt 
annot be equal to the mean value dk and thus, V k has
ardinality greater than one. It follows that the sub-set V

(1)
k has at least one element.16



number of non-redundant solutions results T = 2M−1. Moreover, by taking into a

ountonly admissible (i.e., grouping where there is at least one element in ea
h sub-array) andallowed (i.e., sorted aggregations) 
omplete sequen
es, the set of solution 
an be furtherredu
ed. With referen
e to the ordered list L = {lm; m = 1, . . . ,M ; lm ≤ lm+1}, theallowed paths are mathemati
ally des
ribed as
C

(ess)
t =

{

c
(ess)
t,m

∣

∣

∣ c
(ess)
t,m ≤ c

(ess)
t,m+1, c

(ess)
t,1 = 1, c

(ess)
t,M = Q

}

, t = 1, ..., T (ess), (14)where c(ess)m denotes the sub-array number to whi
h the m-th element lm of the orderedlist L belongs.In order to determine the essential dimension T (ess) = T (ess)(Q,M) of the solution spa
e,let us 
onsider the �re
ursive� nature of the binary solution tree and, as a referen
e ex-ample, the 
ase Q = 2. In su
h a situation, the grouping ve
tor C(ess)
t is a sequen
e of

M symbols from the set {1, 2} that satis�es the following 
onstraints: (a) c(ess)t,1 = 1, (b)
c
(ess)
t,M = 2, and (
) if c(ess)t,m = 2 then c(ess)t,m+1 = c

(ess)
t,M = 2. Thus, ea
h possible solution C(ess)

tis made up of a sub-sequen
e of 
onse
utive symbols 1 followed by a sub-sequen
e of sym-bols 2. A

ordingly, the trial solutions C(ess)
t , t = 1, ..., T (ess), are obtained by moving thestarting point of the sub-sequen
e of symbols 2 from m = 2 (being c1 = 1) up to m = M ,

T (ess) (Q,M)
⌋

Q=2
=









M − 1

1









= M − 1. (15)As far as the 
ase Q = 3 is 
on
erned, similar 
onsiderations hold true. In parti
ular, ea
hallowed trial solution C(ess)
t ends with a sub-sequen
e of su

essive symbols 3. The numberof elements of su
h a sub-sequen
e ranges from 1 to M − 2, leading to a 
omplementarysub-sequen
e of symbols 1 and 2 of length M − i. A

ordingly,

T (ess) (Q,M)
⌋

Q=3
=

M−2
∑

i=1

T (ess) (Q,M − i)
⌋

Q=2
(16)Generalizing, sin
e the smallest and largest number of o

urren
es of the symbol Q in asequen
e is 1 and M − (Q− 1), respe
tively, the essential dimension of the solution spa
e17



when a M elements array is partitioned into Q sub-arrays is equal to
T (ess) (Q,M) =

M−(Q−1)
∑

i=1

T (ess) (Q− 1,M − i) =









M − 1

Q− 1









. (17)
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FIGURE CAPTIONS
• Figure 1. Solution-Tree stru
ture representing the essential solution spa
e ℜ(ess).
• Figure 2. Asymptoti
 Behavior (M = 10, d = λ

2
) - Sum {αm; m = 1, ...,M} anddi�eren
e {βm; m = 1, ...,M} optimal ex
itations. Compromise di�eren
e 
oe�-
ients {bm; m = 1, ...,M} for di�erent values of Q when (a) the GS algorithm and(b) the RES algorithm are applied.

• Figure 3. - Uniform sub-arraying (M = 10, d = λ
2
, Q = 5) - Referen
e optimumand normalized di�eren
e patterns obtained by means of the EMM , the GS, andthe RES approa
hes.

• Figure 4. Non-uniform sub-arraying (M = 10, d = λ
2
) - Referen
e optimum andnormalized di�eren
e patterns obtained by means of the EMM , the GS, and the

RES approa
hes when (a) Q = 3 and (b) Q = 5.
• Figure 5. Large Arrays (M = 100, d = λ

2
) - Referen
e optimum and normalizeddi�eren
e patterns obtained by means of the GS and RES te
hniques when Q = 4and Q = 6.

• Figure 6. Large Arrays (M = 100, d = λ
2
) - Di�eren
e ex
itations determined bythe tree-based te
hniques when Q = 4 (a) and Q = 6 (b).

• Figure 7. Computational Analysis - Computational Analysis - Behavior of T versus
M when the tree-based sear
hing is applied [T = T (ess)℄.
• Figure 8. Computational Analysis - Behavior of t versus M for di�erent values of
Q (GS Approa
h).
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TABLE CAPTIONS
• Table I. Uniform sub-arraying (M = 10, d = λ

2
, Q = 5) - Beam pattern indexes.

• Table II. Non-uniform sub-arraying (M = 10, d = λ
2
, Q = 3, 5) - Beam patternindexes.

• Table III. Large Arrays (M = 250, d = λ
2
, Q = 4) - Beam pattern indexes.
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Approach Pslo BW Psll max {SLL} ∆

EMM [4℄ 0.1970 0.3610 0.1038 −17.00 0.4015

GS 0.1811 0.3784 0.1082 −21.10 0.2633

RES 0.1805 0.3735 0.1160 −20.50 0.2831

Optimal [3℄ 0.1802 0.3735 0.0598 −25.00 −

Tab.I-L.Mani
aetal.,�AnInnovativeApproa
hBasedon...�
30



Q = 3 Q = 5

EMM [4℄ GS RES EMM [4℄ GS RES Optimal [5℄

Pslo 0.2117 0.1800 0.1822 0.2000 0.1806 0.1805 0.1802

BW 0.3745 0.3735 0.3930 0.3854 0.3735 0.3735 0.3735

Psll 0.1798 0.1054 0.1365 0.0950 0.0823 0.0827 0.0598

max {SLL} −14.70 −18.63 −17.00 −23.40 −23.00 −23.00 −25.00

∆ 0.5438 0.4073 0.3829 0.2562 0.1571 0.1517 −

Tab.II-L.Mani
aetal.,�AnInnovativeApproa
hBasedon...�
31



GS RES Optimal Difference [5℄
Pslo 0.0066 0.0064 0.0066

BW 0.0148 0.0158 0.0151

Psll 0.0868 0.1797 0.0824

max {SLL} −18.00 −10.05 −30.00

∆ 0.2921 1.1934 −

Tab. III - L. Mani
a et al., �An Innovative Approa
h Based on ...�32




