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An Innovative Approach Based on a Tree-Searching Al-
gorithm for the Optimal Matching of Independently Op-

timum Sum and Difference Excitations

L. Manica, P. Rocca, A. Martini, and A. Massa

Abstract

An innovative approach for the optimal matching of independently optimum sum
and difference patterns through sub-arrayed monopulse linear arrays is presented.
By exploiting the relationship between the independently optimal sum and difference
excitations, the set of possible solutions is considerably reduced and the synthesis
problem is recast as the search of the best solution in a non-complete binary tree.
Towards this end, a fast resolution algorithm that exploits the presence of elements
more suitable to change sub-array membership is presented. The results of a set of
numerical experiments are reported in order to validate the proposed approach point-
ing out its effectiveness also in comparison with state-of-the-art optimal matching

techniques.

Key words: Linear Arrays, Monopulse Antennas, Sum and Difference Pattern Synthesis,

Tree-Searching Algorithm.



1 Introduction

A tracking radar system using the monopulse technique [1]| can be realized through an
antenna array able to generate two different patterns, namely the difference pattern and
the sum pattern. These patterns are required to satisfy some constraints as narrow
beamwidth, low side lobe level (SLL) and high directivity. In particular, as far as the sum
pattern is concerned, there is the need of maximizing the gain. On the other hand, the
more critical issues to be addressed dealing with difference patterns are concerned with
both the first null beamwidth and the normalized difference slope on boresight direction,
since they are strongly related to the sensitivity of the radar (i.e., to the angular error).
The optimal excitation coefficients for the sum and the difference patterns can be indepen-
dently computed by using analytical methods as described in [2| and in [3], respectively.
Nevertheless, the implementation of two independent feed networks is generally unac-
ceptable because of the costs, the occupied physical space, the circuit complexity and
the arising interferences. Thus, it is necessary to find a suitable compromise between the
feed network complexity and the closeness of the synthesized sum and difference patterns
to the optimal ones. Since the sum pattern is used in both signal transmission and re-
ception, the most common way to solve the problem consists in generating an optimal
sum pattern and a sub-optimal difference pattern |4|, the latter synthesized by applying
a sub-arraying technique. Accordingly, the synthesis is aimed at optimizing pre-specified
sub-array layouts by sinthesizing sub-array and radiating element weights, but not the
actual beamforming network.

In such a framework, several approaches for defining how the elements could be grouped
and the sub-arrays weights computed have been proposed. As far as linear arrays are
concerned, McNamara proposed in [4] the Ezcitation Matching method (EMM) aimed
at determining a best compromise difference pattern close as much as possible to the
optimum in the Dolph-Chebyshev sense |5] (i.e., narrowest first null beamwidth and largest
normalized difference slope on the boresight for a specified sidelobe level). Towards this
end, for each possible grouping, the corresponding sub-arrays coefficients are iteratively

computed through pseudo-inversion of an overdetermined system of linear equations. It



is evident that since the best sub-array configuration is not a-priori known, the whole
process is extremely time-expensive due to the exhaustive evaluations. Moreover, because
of the ill-conditioning of the matrix system, large arrays cannot be easily managed.

In order to overcome the ill-conditioning and related issues, optimization approaches have
been widely used [6][7][8][9][10]. Although such techniques allows a significant advance-
ment in the framework of sum-difference pattern synthesis, they are still time-consuming
when dealing with large arrays. As a matter of fact, even though the solution space is
sampled with efficient searching criteria, the dimension of the solution space is very large.
In order to overcome such drawbacks allowing an effective choice of the array elements
grouping as well as a fast and simple solution procedure, this paper proposes an innovative
approach that, likewise |4 and unlike |6]|7][8][9]]10], is aimed at obtaining a compromise
difference pattern optimum in the Dolph-Chebyshev sense [5] starting from the observation
that the sub-arraying is not blind. As a matter of fact, it can be guided by considering
similarity properties among the array elements, thus significantly reducing the dimension
of the solution space. Starting from such an idea and by representing each solution by
means of a path in a non-complete binary tree, the synthesis problem is then recast as the
searching of the minimal-cost path from the root to the leafs of the solution tree. In graph
theory, a tree is a graph defined as a non-empty finite set of vertices or nodes in which any
two nodes are connected by exactly one path. The nodes are labeled such that there is only
one node called the root of the tree, and the remaining nodes are partitioned in subtrees.
In our case, since the tree is either empty or each node has not more than two subtrees, it
is a binary tree. Accordingly, each node of a binary tree has either (I) no children, or (ii)
one left/right child (i.e., non-complete binary tree), or (ii7) a left child and a right child
(i.e., complete binary tree), each child being the root of a binary tree called a subtree
[11][12]. In order to solve the problem at hand, thus efficiently exploring the solution
tree, suitable cost functions or metrics are defined and an innovative algorithm for the
exploration of the solution space is defined by exploiting the closeness (to a sub-array)
property of some elements, called border elements, of the array.

The paper is organized as follows. In Section 2, the problem is mathematically formulated



defining a set of metrics aimed at quantifying the closeness of each solution to the optimal
one (Sect. 2.1) as well as the tree structure (Sect. 2.2) and the algorithm for effectively
exploring the solution space (Sect. 2.3). In Section 3, the results of selected numerical
experiments are reported and compared with those from state-of-the-art optimal matching

solutions. Conclusions and future possible trends are drawn in Section 4.

2 Mathematical Formulation

Let us consider a linear uniform array of N = 2M elements {&,,; m = —M,...,—1,1,..., M }.
Following a sub-optimal strategy, the sum pattern is generated by means of the sym-
metric set of the real optimal M excitations A% = {a,; m =1,..., M} |2|[13|, while
the difference pattern is defined through an anti-symmetric real excitation set B =
{bm = —b_pm; m=1,..., M} |5]. Thanks to such symmetry properties, one half of the
elements of the array S = {{,,; m =1,..., M} is descriptive of the whole array.
Grouping operation yields to a sub-array configuration mathematically described in terms
of the grouping vector C = {¢,,; m=1,..., M}, ¢, € [1,Q)] being the sub-array index
of the m-th element of the array [7]. Successively, a weight coefficient w, is associated to
each sub-array, ¢ = 1,...,Q), and, as a consequence, the sub-optimal difference excitation
set is given by

B ={by =wneotm;m=1,...M;¢g=1,..,Q} (1)

where w,,, = 0, oWy (0c,,q = 1 if ¢, = ¢, d¢,,q = 0 otherwise) is the weight associated to
the m-th array element belonging to the ¢-th sub-array.

Accordingly, the original problem is recast as the definition of a sub-array configuration
C and the corresponding set of weights W = {w,; ¢ = 1, ..., @} such that the sub-optimal
difference pattern B is as close as possible to the optimal one, B?* = {3,,; m = 1,..., M'}.
Towards this end, let us formally proceed as follows. Firstly, two different metrics are
defined in order to quantify the closeness of the sub-optimal solution to the optimal one.

Then, exploiting some properties of the sub-array configurations, a non-complete binary

(1) In the Dolph-Chebyshev sense |5], unless mentioned elsewhere.



tree, where each path codes a possible elements grouping, is built. Finally, a simple
algorithm for a fast search of the lowest cost path in the binary tree is presented for

defining the best sub-optimal solution of the problem in hand.

2.1 Definition of the Solution-Metric

In order to find the optimal solution, let us define a suitable cost function or metric that

quantifies the closeness of every candidate/trial solution C, to the optimal one,

V{C} = 21 [Um — di, {Qt}]2 ) (2)

where v,, and d,, are reference and estimated parameters, respectively. The estimated
parameters d,, {C,} are defined as the arithmetic mean of the reference parameters v,
related to the array elements belonging to the same sub-array. As far as the reference
parameters V. = {v,,; m = 1,..., M} and the sub-arrays weights W = {w,; ¢ =1,...,Q}
are concerned, they are defined according to two different strategies, namely the Gain

Sorting (GS) algorithm and the Residual Error (RES) algorithm.

(GS)

W) are set to the optimal gains

Concerning the G S technique, the reference parameters v

U(Gs)zﬁ—m, m=1,..., M, (3)

m am

while the sub-array weights are assumed to be equal to the computed gains dﬁnGS)
w() = 6,,,dG9{CI), q=1,.,Q, m=1,... .M. (4)

Concerning the RES algorithm, the reference parameters are equal to the the so-called

optimal residual errors vFS) given by

a —
vﬁES):M, m=1,...,M. (5)
Brm
Accordingly, since %Z = WIRES), m = 1,..., M, the sub-array weights are expressed in



terms of the computed residual errors d\FFS) as follows

1
(RES) _
w = T g=1,...,Q, m=1,.... M. (6)
! 1+ 5cqu£5ES) {C’E )}

2.2 Definition of the Solution-Tree

In general, the total number of sub-array configurations is equal to 7' = QM since each of
them might be expressed as a sequence of M digits in a ()-based notation system. Without
any loss of information, such a number can be reduced by considering only the admissible
(or reliable) solutions, i.e., grouping where there are no empty sub-arrays. Moreover, let
us observe that if an equivalence relationship ® among sub-array configurations holds
true, it is convenient to consider just one sub-array configuration for each set (instead of
the whole set), therefore obtaining a set of non-redundant solutions.

Now, let us sort the known reference parameters {v,,; m =1,..., M} |[computed accord-
ing to either the GS (3) or the RES algorithm (5)] for obtaining a ordered list L =
{lm; m=1,.., M}, where [; < l;11,7 = 1,...,.M — 1, I} = min,, {v,}, and Iy =
max,, {v,m}. Since the cost function is minimized provided that elements belonging to
each sub-array are consecutive elements of the ordered list L (see Appendiz A for a
detailed proof), the solution space can be further reduced to the so-called essential solu-

tion space R(**) composed by allowed solutions. Consequently, the dimension T of the

M—1
solution space turns out to be reduced from T = QM up to T = (see

Q-1

Appendiz B for a detailed proof) and the essential solution space R(¢**) can be formally
represented by means of the non-complete binary tree depicted in Figure 1. In particular,
each complete path in the tree codes an allowed sub-array configuration Q,Eess) € Rless)
and the positive integer ¢ inside each node at the [,,-th level indicates that the array

element identified by [, is a member of the ¢-th sub-array. Thanks to this formulation,

(2) A sub-array configuration C; is equivalent to the configuration C; when it is possible to obtain
the one from the other just using a different numbering for the same ¢, coefficients. As an example, the
sub-array configuration C; = {1,2,3,3,2,3,2,1} is equivalent to C; = {2,3,1,1,3,1,3,2}.



the original minimization problem (i.e., C,,, = arg{min,—1 . r [V (C;)]}) is recast as that

of finding the optimal path in the solution tree.

2.3 Tree-Searching Procedure

Although the set of candidate solutions has been considerably reduced by limiting the
solution space to the essential space, its dimension 7**) becomes very large when M > Q
and an exhaustive searching would be computationally expensive. In order to overcome
such a drawback, let us observe that only some elements of the list L are candidate to
change their sub-array membership without violating the sorting condition of the allowed
sub-array configurations, {Q§“8>; t=1, ...,T(ess)} |[see Eq. (14) - Appendiz B|. These
elements, referred to as border elements, satisty the following property: an array element
related to [, is a border element if one of the elements whose list value is [,,,_1 or/and ;41

°$5) minimizing the

belongs to a different sub-array. Therefore, the aggregation C,,, € Rl
cost function W is found starting from an initial path randomly chosen among the set of
paths in the solution tree and iteratively updating the candidate solution just modifying

the membership of the border elements. More in detail, the iterative procedure (k being

the iteration index) consists of the following steps.

e Step 0 - Initialization. Initialize the iteration counter (k = 0) and the sequence
index (m = 0). Randomly generate a trial path in the solution tree corresponding
to a candidate sub-arrays configuration CO ¢ Ress) Set the optimal path to

(k) _ (0)
Q‘WJ k=0 s

e Step 1 - Cost Function FEwvaluation. Compute the cost function value of the
current candidate path C®) by means of (2), ¥®) = ¥ {Q(k)}. Compare the cost
of the aggregation C™ to the best cost function value attained at any iteration up

(k—1)

to the current one, W, " = min,—y,._ x1 (\If {Q(h)}) and update the optimal trial
solution C’g;,% =CcWif g {Q(k)} <V {C’g’;t_l)}.

e Step 2 - Convergence Check. If the termination criterion, based on a maxi-

mum number of iterations K or on a stationary condition for the fitness value (i.e.,



Kuindow¥ ', V=3 Kwindow )

opt opt
(R)
\Ilopt

<1, Kyindow and 1 being a fixed number of iterations

(k)

and a fixed numerical threshold, respectively), is satisfied then set C,,, = C,,; and

stop the minimization process. Otherwise, go to Step 3.

e Step 3 - Iteration Updating. Update the iteration index (k < k + 1) and reset

the sequence index (m = 0).

e Step 4 - Sequence Updating. Update the sequence index (m <« m+1). If m > M

then go to Step 3 else go to Step 5.

o Step 5 - Aggregation Updating. If the array element related to I*) is a bor-
der element belonging to the g-th sub-array then define a new grouping C*™ by
aggregating such an element to the (¢ — 1)-th sub-array [if the array element cor-
responding to ()| is a member of the (¢ — 1)-th sub-array| or to the (¢ + 1)-th
sub-array [if the array element corresponding to l,(ﬁzrl is a member of the (¢ + 1)-th
sub-array|. If Pkm) — {Q(k’m)} < Vv {Q(k)} then set Q(k) = Q(k’m) and go to Step

1. Otherwise, go to Step 4.

3 Numerical Simulations and Results

In order to assess the effectiveness of the proposed method, an exhaustive set of numerical
experiments has been performed and some representative results will be shown in the
following.

For a quantitative evaluation, a set of beam pattern indexes has been defined and com-
puted. More in detail, (a) the pattern matching A that quantifies the distance between

the synthesized sub-optimal pattern and the optimal one

A _ SR @)~ [AF @)1 dv
IS IAF @)y

(7)

where ¢ = (2nd/\) sinf, 6 € [0,7/2], (A and d being the free-space wavelength and

the inter-element spacing, respectively), |AF ()| and |AF (¥)['° are the normalized



optimal and generated array patterns, respectively; (b) the main lobes beamwidth By, and

(¢) the power slope Py, that give some indications on the slope on the boresight direction

Paw =2 s (AP (0)],) i — [ 1AF (0], 0] ®
0

Ymae being the angular position of the maximum in the array pattern; (d) the sidelobes

power Py,

P = /¢ AF ()], de, (9)

where 1 is the angular position of the first null in the difference beam pattern.

The remaining of this section is organized as follows. Firstly, some experiments aimed at
showing the asymptotic behaviour of the proposed solution are presented (Sect. 3.1) and
a comparative study is carried out (Sect. 3.2). Furthermore, some experiments devoted
at showing the potentialities of the proposed solution in dealing with large arrays are

discussed in Sect. 3.3. Finally, the computational issues are analyzed (Sect. 3.4).

3.1 Asymptotic Behavior Analysis

In order to assess that increasing the number of sub-arrays () the synthesized difference
patterns get closer and closer to the optimal one, let us consider a linear array of N =
2 x M = 20 elements characterized by a d = % inter-element spacing. The optimal sum
pattern excitations, {a,,, m = 1,..., M}, have been fixed to that of the linear Villeneuve
pattern [13| with @ = 4 and 25dB sidelobe ratio (Fig. 2 - Villeneuve, 1984), while
the optimal difference weights {f3,,, m = 1,..., M}, have been chosen equal to those of a
Zolotarev difference pattern |5| with a sidelobe level SLL = —30dB (Fig. 24 - McNamara,
1993). Then, @ has been varied between 2 and M and both GS and RES techniques
have been applied. For sake of space, selected results concerned with ) = 3, () = 6, and
Q) =9 are reported in terms of difference excitations |Fig. 2(a) - GSS approach; Fig. 2(b)
- RES approach|. As expected, the coefficients obtained with both the GS and RES

converge to the optimal ones and, starting from () = 6, the differences between generated

and reference difference patterns turn out to be smaller and smaller.
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3.2 Comparative Assessment

For comparison purposes and in the framework of synthesis techniques aimed at deter-
mining the best compromise difference pattern as close as possible to the optimal one,
let us consider the EMM by McNamara [4] as reference ®). As far as the test cases are
concerned, the same benchmark investigated in [4] has been taken into account. The array
geometry and the optimal sum excitations was as in Sect. 3.1, while the optimal differ-
ence excitation vector B%" has been chosen for generating a modified Zolotarev difference
pattern with @ = 4, ¢ = 3 and a sidelobe ratio of 25dB |[3].

The first test case deals with a uniform sub-arraying over the antenna with ¢) = 5. The
values of the sub-arrays weights optimized with the G.S and the RES are W& = {0.2951,
0.8847, 1.1885, 1.3994, 1.4878} and WHF5 = {0.3411, 0.8915, 1.1193, 1.4016, 1.4881},
respectively. Moreover, the synthesized difference patterns are shown in Figure 3, while
the computed beam-pattern indexes are reported in Table I. The advantages on the use of
the tree-based approaches are evident, as confirmed by the values of both the SLL (almost
4 dB below the level achieved by the EM M, SLLFMM = —17.00dB vs. SLL% = —21.00

AEMM AEMM

and SLLPES = —20.50) and the pattern matching index (Spps ~ 1.4 and S ~ 1.5

- Tab. I). Moreover, it is worth noting that, thanks to the structure of the solution tree,
the dimension of the essential space reduces to T =1 (since [; and [y belong to the
first sub-array, I3 and Iy to the second one, and so on), thus allowing a significant saving
of computational resources. As a matter of fact, the EM M requires the solution of an
overdetermined system of linear equations in correspondence with any possible uniform
grouping [4], i.e., a number of 7" = 945 evaluations.

Second and third test cases consider non-uniform sub-arraying. The former configuration
is an example of the limited number of sub-arrays (@ = 3) that might be used with
a small monopulse antenna. The latter has the same number of sub-arrays as that of
the first configuration (@ = 5). The tree-based algorithms have been applied and the

following sub-array configurations have been determined. In particular the same grouping

() No comparison with optimization-based procedures (i.e., [6][7][8]|9][10]) have been reported since
they are aimed at minimizing a pattern parameter (e.g., the SLL) and not at better matching an optimal
difference pattern.

11



COS RES {1, 2,3, 3,4,5,5,5, 4, 3} has been synthesized when ¢ = 5, while cos =

~opt ~~opt

{1,1,2,2,3,3,3,3,3,2} and CI7° = {1,2,3,3,3,3,3, 3,3, 3} have been obtained
for ) = 3. The obtained beam patterns are shown in Fig. 4 and the corresponding
values of the pattern indexes are reported in Tab. II. As it can be noticed, the GS and
RES improve the performances of the EM M in matching the optimal difference pattern

AEMM

as pointed out by the behavior of the global matching index A (WJQ:;), = 1.33 and
AAER—]ZISWJQ:?) = 1.42; AAE—IGWSMJQ:5 = 1.63 and AAER—]ZISWJQ:5 = 1.68). Concerning the smaller
configuration, it is further confirmed (as already pointed out in Section 3.1) the flexibility
and reliability of the GS algorithm in dealing also with complex cases where a limited
number of sub-arrays is taken into account. As a matter of fact, for ) = 3 the G\S gives the
best performances getting the highest sidelobe ratio of SLL = 18.63 dB and synthesizing
a main lobe very close to the optimal one, i.e., B¢S = B = 0.3735 and P$> = 0.1800

slo

vs. PP' = (.1802.

slo

3.3 Large Arrays Analysis

This section is aimed at analyzing the performances of the proposed tree-based tech-
niques when dealing with large arrays. As far as the optimal setup is concerned, sum
{am, m=1,..., M} and difference {3,,, m = 1, ..., M} optimal excitations have been cho-
sen to generate a Dolph-Chebyshev pattern [15] with SLL = —25dB and a Zolotarev
pattern |5| with SLL = —30dB, respectively.

As a first experiment, a linear array of N = 200 elements with /2 spacing has been used
by considering various sub-arraying configurations. Figure 5 shows the optimal difference
pattern (i.e., the synthesis target) and the patterns obtained when Q = 4 and @ = 6
by using both GS and RES. For completeness, the values of the synthesized difference
excitations are displayed in Figure 6. It is worth noting that the GS algorithm outper-
forms the RES. As a matter of fact, although both approaches satisfactorily approximate
the optimal main lobe characteristics in terms of both By, and Py, the solutions com-

puted with the gain-based logic present higher sidelobe ratios (SLLGSJ = —21.90 and

SLLGSJQ = —25.13) with an enhancement of more than 10dB and 5dB with respect

12



to the RES approach (SLLRESJ = —10.10 and SLLRESJ = —19.95), respectively.

Moreover, the overall matching performances turn out significantly increased as further
confirmed by the values of A (AAR—fSJQ:4 ~ 3.77 and AAR—;;SJQ:G ~ 2.47).

The last test case (and second experiment dealing with large structures) is concerned with
a linear array of N = 2 x M = 500 elements (d = A/2). As a representative example,
the case of Q = 4 is reported and analyzed (Tab. III). The arising beam patterns allow
one to drawn similar conclusions to those from the previous scenario, since once again
the effectiveness of the GS technique in dealing with a limited number of sub-arrays is
pointed out. As a matter of fact, the ratio between the matching indexes turns out quite
large and equal to %JQZ4 ~ 4.1 (Tab. III). On the other hand, it is worth noting that
unlike tree-based procedures the EM M is not reliable in dealing with large arrays since it

requires the numerical processing of overdetermined linear systems, whose ill-conditioning

get worse when the ratio % grows.

3.4 Computational Issues

Now, let us analyze the computational costs of the tree-based approaches, providing
a comparison with the EMM, as well. Towards this end, let us firstly consider the
dependence of the dimension of the solution space on the number of elements of the array
M. As a representative case, let us analyze the behavior of 7' and T(***) when @ = 3
(K =100 and n = 1073) (Fig. 7). As it can be observed, the dimension of the solution
space T of the EM M grows exponentially with M, while, as expected [see Appendiz
A, T**) shows a polynomial behavior. Obviously, the same behavior holds true also for
different values of @ (Fig. 7).

On the other hand, the computational effectiveness of the Tree-Searching procedure in
sampling the solution space is further pointed out from the evaluation of the C'PU-time, t,
needed for reaching the convergence (Fig. 8). As a matter of fact, maxg {tg} = 70 [sec]
(kopt = 90) in correspondence with the largest array (M = 250), while mazqg {tg} =
12.8 [sec] (kopt = 8) and maxqg {to} = 2.3 [sec| (kopr = 4) when M = 100 and M = 50,

respectively.

13



4 Conclusions

In this paper, an innovative approach for the synthesis of sub-arrayed monopulse antennas
by matching independently-optimum sum and difference excitations has been proposed.
By exploiting some properties of the sub-array configurations, the problem of finding a
“best compromise” difference pattern by grouping array elements has been recast as the
search of the optimum, in terms of either the GS or the RES logic, path inside a non-
complete binary tree. Towards this purpose, a fast resolution algorithm has been defined
and assessed by means of several numerical experiments.

Concerning the methodological novelties of this work, the main contribution is concerned
with the following issues: (a) an appropriate definition of the solution space; (b) an
original and innovative formulation of the sum-difference problem in terms of a search in
a non-complete binary tree; (¢) a simple and fast solution procedure based on swapping
operations among border elements and cost function evaluations.

Moreover, the main features of the proposed tree-based techniques are the following: (i)
a reduction of the dimensionality T(**) of the synthesis problem, by exploiting the infor-
mation content of independently optimal sum and difference excitations; (ii) a significant
reduction of the computational burden, by applying a fast solution algorithm for explor-
ing the solution tree (i.e., sampling the solution space); (7ii) the capability to deal with
large-arrays synthesis in an effective and reliable way.

Because of the favorable trade-off between complexity/costs and effectiveness, the pro-
posed tree-based strategy seems a promising tool to be further analyzed and extended to
other geometries and synthesis problems. Towards this purpose, further methodological
studies will be oriented in two different directions: (I) improving the solution procedure by
developing a customized combinatorial approach, thus further reducing the computational
costs as well as improving the convergence rate; (II) re-formulating the sum/difference

optimization problem (dealt with in |6]|7|[8]) in terms of a binary-tree exploration.
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Appendix A

This appendix is aimed at proving that, given () sub-arrays, the value of the cost function
(2) is minimum provided that the elements belonging to each sub-array are consecutive
elements of the ordered list L = {l,,; m=1,...,M; I, <lny1}. With reference to a
set of elements V. = {v,,; m=1,...., M} be to be divided in @ sub-sets, the thesis to
be proved is that the partition minimizing the cost function (2) is a contiguous partition
(i.e., if two elements v; and v,, belong to the same class and v; < v; < v,, then element
v; is assigned to the same subset of elements). Towards this end, the proof follows the
guidelines reported in [16].

Let us consider a non-contiguous partition Py = {Vy; ¢ =1,...,Q} of the set 1 and three
elements v;, vj, v, such that v; < v; <wv,. Let elements v; and v,, belong to a subset with
mean value d, and let v; belong to a different subset having mean value d;. Whatever the

values of d, and d,, at least one the following statements holds true

|Uj - ds| > |'Uj _dr| > 07
|v; — d,| > |v; — ds| > 0, (10)

|v, — dy| > |v, — ds| > 0.

Let us denote with v; the element satisfying (10) and its own subset as V, = {vg; k= 1,..., Ni }.
Moreover, let us refer to the other subset as V;, = {vy; h =1,..., Ny }. Accordingly, the

cost function (2) associated to the partition P, may be written as:

M Q
U=> v —Np-dy—Ny-dj— > N,-d (11)

m=1 q=1;q#h.k
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N, and d; being the number of elements and the mean value of the g-th sub-array, re-
spectively.
Now, let us consider a new partition Bg) obtained by moving the element v, from the

subset V. to the subset V. We obtain two new subsets K,(ﬁl) =V, \ {v} and K;ll) =

V, U {v;} @ with mean values equal to d\” = % and 'V = %, respectively.

(1)
Q

Accordingly, the cost function associated to the partition P,’ can be written as:

_ ) (Nadn — )" ZQ: Nyd2. (12)

2
" Ny —1 Np —1 q=1;q#hk

Now, by subtracting (12) from (11), after some manipulations, it turns out that

N
N —1

Np

U IO
Ny, +1

('Ut — dk)z — ('Ut — dh)2 . (13)

According to (10), ¥ > ¥® and it can be concluded that for every non-contiguous
partition we can find another one with the same number of subsets, but with a smaller

cost. Hence, the partition minimizing the cost function (2) is a contiguous partition.

Appendix B

This section is devoted at quantifying the dimension T(*%) of the essential solution space
Joless) = {Q§“8>; t=1,.., T(ess)}, thus pointing out the computational saving allowed by
the proposed approach compared to exhaustive or global sampling solution procedures.
More in detail, the aim is that of determining the number 7% of candidate solutions
or, in an equivalent fashion, the number of allowed paths in the solution tree.

Generally speaking, since a sub-array configuration C' can be mathematically described
by a sequence of M digits of a (Q-symbols alphabet, the whole number of aggregations is

equal to T = Q™. Thanks to the equivalence relationship, the set of candidate solutions

can be limited to the number of paths in a complete binary tree of depth M, thus the

1) We explicitly note that the new partition B(Ql) has the same number of subsets as Pg. As a
matter of fact, according to (10), the element v; cannot be equal to the mean value dj, and thus, V. has

cardinality greater than one. It follows that the sub-set K,(Cl) has at least one element.

16



number of non-redundant solutions results T = 2M~1. Moreover, by taking into account
only admissible (i.e., grouping where there is at least one element in each sub-array) and
allowed (i.e., sorted aggregations) complete sequences, the set of solution can be further
reduced. With reference to the ordered list L = {l,,; m=1,...,M; I, <ly,41}, the

allowed paths are mathematically described as

) ={ds ) <dot, dT =145 =@}, t=1,.,T",  (14)
where c(¢*) denotes the sub-array number to which the m-th element [, of the ordered

list L belongs.
In order to determine the essential dimension 7(°**) = T¢5)(Q, M) of the solution space,
let us consider the “recursive” nature of the binary solution tree and, as a reference ex-
ample, the case () = 2. In such a situation, the grouping vector Qgess) is a sequence of
M symbols from the set {1,2} that satisfies the following constraints: (a) c(ess) =1, (b)
c(e]f/[s) =2, and (c¢) if c(ess) = 2 then cﬁeﬂl = cﬁe]f/[s) = 2. Thus, each possible solution C***
is made up of a sub-sequence of consecutive symbols 1 followed by a sub-sequence of sym-
bols 2. Accordingly, the trial solutions C\**¥, ¢ = 1, ..., T(¢s9)  are obtained by moving the
starting point of the sub-sequence of symbols 2 from m = 2 (being ¢; = 1) up to m = M,
T (Q,M)| = M= (15)
Q=2 1
As far as the case () = 3 is concerned, similar considerations hold true. In particular, each
allowed trial solution Qﬁe“) ends with a sub-sequence of successive symbols 3. The number
of elements of such a sub-sequence ranges from 1 to M — 2, leading to a complementary

sub-sequence of symbols 1 and 2 of length M — ¢. Accordingly,

(ess (Q M J ]V[ZQ T(685 Q M — Z)J (16)

Q=2

Generalizing, since the smallest and largest number of occurrences of the symbol () in a

sequence is 1 and M — (@) — 1), respectively, the essential dimension of the solution space

17



when a M elements array is partitioned into () sub-arrays is equal to

M—(Q-1) M—-1
T (ess) (Q, M) _ Z T (ess) (Q -1, M - Z) = . (17)
i=1 Q-1
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FIGURE CAPTIONS

e Figure 1. Solution-Tree structure representing the essential solution space R(¢5%).

e Figure 2. Asymptotic Behavior (M = 10, d = %) - Sum {ay,;; m=1,..., M} and
difference {f,,; m =1,..., M} optimal excitations. Compromise difference coeffi-
cients {b,,; m =1, ..., M} for different values of Q when (a) the GS algorithm and
(b) the RES algorithm are applied.

e Figure 3. - Uniform sub-arraying (M = 10, d = %, () = 5) - Reference optimum
and normalized difference patterns obtained by means of the EMM, the GS, and

the RES approaches.

e Figure 4. Non-uniform sub-arraying (M = 10, d = %) - Reference optimum and
normalized difference patterns obtained by means of the EM M, the GS, and the

RES approaches when (a) @ =3 and (b) Q = 5.

e Figure 5. Large Arrays (M = 100, d = %) - Reference optimum and normalized
difference patterns obtained by means of the GS and RES techniques when Q = 4

and @) = 6.

e Figure 6. Large Arrays (M = 100, d = %) - Difference excitations determined by
the tree-based techniques when QQ =4 (a) and Q =6 (b).

e Figure 7. Computational Analysis - Computational Analysis - Behavior of T' versus

M when the tree-based searching is applied [T = T(¢)].

e Figure 8. Computational Analysis - Behavior of ¢ versus M for different values of

Q (GS Approach).
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TABLE CAPTIONS

e Table I. Uniform sub-arraying (M = 10, d = %, () = 5) - Beam pattern indexes.

e Table II. Non-uniform sub-arraying (M = 10, d = %, Q) = 3, 5) - Beam pattern

indexes.

e Table III. Large Arrays (M = 250, d = %, Q

4) - Beam pattern indexes.
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Approach | Py, Bw Py |max{SLL}| A
EMM [4] |0.1970 | 0.3610 | 0.1038 —17.00 0.4015
GS 0.1811 ] 0.3784 | 0.1082 —21.10 0.2633
RES 0.1805 | 0.3735 | 0.1160 —20.50 0.2831

Optimal [3] ] 0.1802 | 0.3735 | 0.0598 —25.00 —




1€

=+ uo paseq yoeorddy aaryesouu] uy,, ‘jp 39 edIURIA T - [T ‘qelL

11

Q=3 Q=5
EMM (4| GS | RES |EMM [4]| GS | RES | Optimal |5|
Py, 0.2117 | 0.1800 | 0.1822 | 0.2000 | 0.1806 | 0.1805 0.1802
By 0.3745 | 0.3735 | 0.3930 | 0.3854 | 0.3735 | 0.3735 0.3735
Py 0.1798 | 0.1054 | 0.1365 | 0.0950 | 0.0823 | 0.0827 0.0598
mazr {SLL}| —14.70 | —18.63| —17.00| —23.40 | —23.00| —23.00 —25.00
A 0.5438 | 0.4073 | 0.3829 | 0.2562 | 0.1571 | 0.1517 —




GS | RES |Optimal Dif ference [5]
Py, 0.0066 | 0.0064 0.0066
By 0.0148 | 0.0158 0.0151
Py 0.0868 | 0.1797 0.0824
maz {SLLY | —18.00 | —10.05 ~30.00
A 0.2921 | 1.1934 —

Tab. III - L. Manica et al., “An Innovative Approach Based on ...”
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