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Lightweight Parsing of Classifications

Aliaksandr Autayeu · Fausto Giunchiglia · Pierre Andrews

Abstract Understanding metadata written in natural langu-
age is a crucial requirement towards the successful auto-
mated integration of large scale, language-rich, classifica-
tions such as the ones used in digital libraries. In this arti-
cle we analyze natural language labels used in such classi-
fications by exploring their syntactic structure, and then we
show how this structure can be used to detect patterns of lan-
guage that can be processed by a lightweight parser whose
average accuracy is 96.82%. This allows for a deep under-
standing of natural language metadata semantics. In particu-
lar we show how we improve the accuracy of the automatic
translation of classifications into lightweight ontologies by
almost 18% with respect to the previously used approach.
The automatic translation is required by applications such
as semantic matching, search and classification algorithms.

1 Introduction

The development of information technologies transformed
the data drought into a data deluge, which seriously com-
plicated the data management and information integration
problems. This resulted in an increasing importance of meta-
data as a tool for allowing to manage data on a greater scale.
The amount of existing attempts to solve the semantic het-
erogeneity problem shows its importance and reveals the va-
riety of domains where it applies (see [7,6]). The state of
the art algorithms try to solve the problem at the schema
or metadata level [13] and their large-scale evaluations [16]
show two important directions for improvement: a) increas-
ing the background knowledge [14] and b) improving natu-
ral language understanding [28].

Digital library classifications extensively use natural lan-
guage, both in structured and unstructured form, in partic-
ular in the labels of the nodes of the classification. These
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labels use a specific Natural Language (NL), different in
structure from the normal textual domain of language, and
the current natural language processing (NLP) technologies
that are developed for the latter are not well suited for such
the classif Natural Language Metadata (NLM). Thus, they
require a domain adaptation to fit the specific constraints of
the NLM structure. Moreover, the size of the current datasets
[16], ranging from thousands to hundreds of thousands of la-
bels (see Table 1), poses additional requirements on process-
ing speed, as demonstrated by the LCSH and NALT align-
ment experiment from [15].

In general, the parsing of NLM has applications in many
areas, in particular: a) in the matching of tree-like struc-
tures (such as Digital Libraries classifications or schemas)
or lightweight ontologies [18], b) in the Semantic Classifi-
cation of items of information into hierarchical classifica-
tions [19], and in c) Semantic Search [12]. All these mo-
tivating applications require the same steps of natural to
formal language translation: a) recognize atomic (language-
independent) concepts by mapping natural language tokens
into senses from a controlled vocabulary, b) disambiguate
the senses drawn from the controlled vocabulary and c) build
complex concepts out of the atomic ones.

In this article we present the analysis of the natural lan-
guage used in six classifications, which illustrate the use
of NLM in classifications of information items in different
domains. We show that the natural language used in these
datasets is highly structured and can be accurately parsed
with lightweight grammars. By using parsers based on these
grammars, we allow for a deeper understanding of metadata
semantics and improve the accuracy of the language to logic
translation required by the semantic applications by almost
18% with respect to the previously used approach and with-
out sacrificing performance.

This article is structured as follows. We introduce the
classifications we study in Section 2. We follow with details
on the processing steps required to understand the NLM,
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such as tokenization in Section 3 and Part-Of-Speech tag-
ging in Section 4. We present the language structure analy-
sis, based on the results of previous sections, in Section 5.
Based on this analysis we have developed a set of grammars,
which we describe in Section 6. We provide the evaluation
of our approach in Section 7. We describe related work in
Section 8. We conclude the article in Section 9.

2 Classifications

We have chosen to study a variety of classifications, which,
we believe, illustrate well the use of natural language meta-
data. As a matter of fact, the classification we have cover dif-
ferent application domains, are created by paid profession-
als as well as unpaid contributors, and are of different size.
The common theme among these metadata datasets is their
use for classification, indexing and organization of items of
information (e.g. documents).

LCSH1 acronym stands for the “Library of Congress
Subject Headings”. It is a thesaurus of subject headings main-
tained by the U.S. Library of Congress for use in biblio-
graphic records.

NALT2 stands for “National Agricultural Library The-
saurus”. NALT is a hierarchical vocabulary of agricultural
and biological terms used extensively to aid indexing and
retrieval of information within and outside of U.S. Depart-
ment of Agriculture.

DMoz3 or “Open Directory Project” is a web directory,
collectively edited and maintained by a global community
of volunteer editors.

Yahoo! Directory4 is a “catalog of sites created by Ya-
hoo! editors who visit and evaluate websites and then orga-
nize them into subject-based categories and subcategories”.

eCl@ss5 is an “international standard for the classifica-
tion and description of products and services”.

UNSPSC6 stands for “United Nations Standard Prod-
ucts and Services Code”. It is a “globally used classification
hierarchy for products and services owned by the United
Nations Development Programme (UNDP) and managed by
GS1 US”.

In the presented analysis, we use the hierarchical repre-
sentation of all datasets where we select, for practical rea-
sons, a random subset that is manually tokenized and anno-
tated with part of speech tags using the PennTreeBank tag
set [24]. The annotation was performed by a single expert
annotator. Table 1 provides some key characteristics of our
classifications.

1 http://www.loc.gov/cds/lcsh.html
2 http://agclass.nal.usda.gov/
3 http://dmoz.org
4 http://dir.yahoo.com/
5 http://www.eclass-online.com/
6 http://www.unspsc.org/

The datasets we use contain subject headings, terms and
category names. Although called differently, all these items
are written in natural language and are used for classifica-
tion, search and indexing of items of information. Due to
the common purpose and the many shared characteristics,
we will use the word label to denote a single item of any of
these datasets, be it a heading, a term or a category name.

We believe that these classifications are representative
samples of Natural Language Metadata because their char-
acteristics, such as topic coverage, editors and size, vary
greatly. LCSH, DMoz and Yahoo have the widest coverage
of all, eCl@ss and UNSPSC cover a wide variety of top-
ics related to business and services, while NALT focuses
on the agricultural domain. In addition, they differ in the
competence of their editors as LCSH, NALT, eCl@ss and
UNSPSC are edited by paid professionals, Yahoo is edited
by editors, although anybody can suggest a site for inclu-
sion, and DMoz is edited by a team of volunteers. More-
over, the datasets are of different size; Yahoo! directory is
the largest one with 828 081 labels, while DMoz and LCSH
follow being about two times smaller. NALT represents an
even lighter “weight” category and eCl@ss and UNSPSC,
by being about two times smaller, are the smallest ones as
summarised in Table 1.

3 Tokenization

The results of the translation of NLM are employed to rea-
son using concepts from a multilingual controlled vocabu-
lary. These concepts are expressed in natural language as
words. In most cases a concept expression in a language
consists of a single token, separated from others by spaces.
In other cases a concept might be expressed by several to-
kens, which might be separated by other punctuation signs,
such as comma.

Tokenization is a preliminary step in almost any lan-
guage processing; although a relatively simple task, in our
domain of natural language metadata, standard tools meet
several difficulties. These difficulties arise from various non-
standard use of such punctuation elements as commas, round
and square brackets, slashes, dashes, dots, ellipsis and semi-
colons: , () [] \ / : . . . -. In addition, in several datasets
we have noticed a non-standard use of punctuation, such as
missing conventional space after a comma.

Consider the example “Hand tools (maint.,service)” from
eCl@ss. This label uses a dot to abbreviate the word “main-
tenance” and is followed immediately by a comma with-
out a conventional space afterwards, all of which is sur-
rounded with round brackets. Such combinations are rare
in normal texts and therefore the performance of standard
tools, trained on such texts, degrades.
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Table 1 Classification datasets’ characteristics and example labels

Dataset Labels Sample Size Unique Levels Label Length, NL tokens Example Label
Labels (%) Max Avg

LCSH 335704 44490 100.00 21 24 4.0 Concentration camp escapes
NALT 43038 13624 100.00 13 8 1.6 animal science
DMOZ 494043 27975 40.48 12 12 1.8 Arts and Entertainment

YAHOO 829081 132350 16.70 15 18 2.0 Political Actions Committees (PACs)
ECL@SS 14431 3591 94.51 4 31 4.2 Hand tools (maint.,service)

UNSPSC 19779 5154 100.00 4 19 3.5 Industrial Cleaning Services

3.1 Experimental Setup

A random subset of each dataset (see Table 1) is manually
tokenized. We use the OpenNLP toolkit7 to automatically
annotate the full datasets. First, using the manually anno-
tated subset of each dataset, we test the performance of the
standard OpenNLP tokenization models, which are trained
on the Wall Street Journal and Brown corpus data [22], which
both contain long texts, mostly from newswire. Second, we
train our own tokenization models and analyse their perfor-
mance.

We performed a 10-fold cross-validation on each of our
annotated samples (see Table 1) with the OpenNLP “stan-
dard” model, and also tested a combined model trained on
the merged datasets. We report the results in the right part of
Table 2 using precision per label (PPL) measure. Namely,
we count the percentage of correctly tokenized labels. In
each column we report the performance of different tok-
enizer models on a particular dataset; in the rows we report
the performance of a model trained on a particular dataset,
on the other datasets. Figures on the diagonal and for the
combined model are obtained by a 10-fold cross validation.

3.2 Results and Analysis

The OpenNLP row reports the performance of the OpenNLP
standard model. The last row is a combined model trained on
a combination of the datasets available. Although in many
cases the performance improvement is marginal, there are
noticeable improvements in the cases of eCl@ss, Icon and
LCSH. One can also notice that the model trained only on
the LCSH dataset, which is particularly difficult, also out-
performs the standard OpenNLP model.

The analysis of errors made by the tokenizer unveils that
the main reason for this performance improvement is that
punctuation is used in some short labels more intensively
than in normal text. Therefore a retrained model grasps this
difference better than the standard one.

7 version 1.4.3, http://opennlp.sourceforge.net/

4 Part-Of-Speech Tagging

As discussed earlier, our main operational unit is a concept.
There are hundreds of thousands of concepts expressed as
words. Implementing a translation procedure based directly
on words and on underlying concepts would be a complex
task. A common approach is to use categories that words of
natural language can be split into and thus simplify the task,
achieving leverage over hundreds of thousands of words of
natural language.

The categories above are called parts of speech (that is,
Noun, Verb, etc.). In natural language processing it is com-
mon to assign a tag (part of speech tag) to each word, indi-
cating the word’s category. The translation routine then uses
part of speech tags to handle categories of words, which are
usually dozens, instead of words, which amount to hundreds
of thousands. Part of speech (POS) tags also provide a sig-
nificant amount of information about the language structure.
This is why POS tagging is a fundamental step in language
processing tasks such as parsing, clustering or classification.
We, therefore, start our analysis with a look at the POS tags
of our classifications.

4.1 Experimental Setup

As we did for the tokenization, a random subset of each
dataset (see Table 1) is manually annotated by an expert with
the PennTreeBank part-of-speech tag set [24]. We use the
OpenNLP toolkit8 to automatically annotate the full datasets.
First, using the manually annotated subset of each dataset,
we test the performance of the standard OpenNLP tokeniza-
tion and tagging models, which are trained on the Wall Street
Journal and Brown corpus data [22], which both contain
long texts, mostly from newswire. Second, we train our own
tokenization and tagging models and analyse their perfor-
mance. We use the best performing models for the analysis
of the full datasets presented in Sect. 5.

8 version 1.4.3, http://opennlp.sourceforge.net/
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Table 2 POS tagger and tokenizer performance, Precision Per Label, %

MODEL
POS Tagger Tokenizer

DMOZ ECL@SS LCSH NALT UNSPSC YAHOO DMOZ ECL@SS LCSH NALT UNSPSC YAHOO

DMOZ 93.98 14.12 27.54 75.37 49.69 91.87 99.95 55.22 78.11 98.97 100.00 98.67
ECL@SS 48.80 91.28 28.60 28.73 69.65 62.11 99.73 94.29 97.70 99.97 99.98 99.45

LCSH 81.98 48.79 91.38 81.91 68.14 88.16 99.93 87.41 99.79 99.87 100.00 99.85
NALT 46.97 23.61 28.82 96.42 13.21 34.05 98.82 69.17 85.55 100.00 100.00 98.48

UNSPSC 57.07 45.08 22.76 31.03 92.39 75.46 97.09 47.98 43.63 98.80 100.00 96.76
YAHOO 89.54 15.20 34.84 75.04 45.91 97.91 99.90 55.69 88.47 99.12 100.00 99.90

OPENNLP 49.89 19.02 27.26 40.55 33.20 47.44 99.86 79.39 95.57 99.96 100.00 99.77

ALL-EXCEPT 91.59 58.40 53.25 84.77 76.19 94.77

PATH-CV 96.64 93.34 92.64 96.29 92.72 98.35

COMBINED 99.10 99.69 99.24 99.74 99.40 99.68 99.95 94.26 99.51 100.00 100.00 99.90

4.2 Results and Analysis

We report the results of our experiments in the left part of
Table 2 where the columns report the dataset on which the
experiments are run and the rows report the training model
used. We report in bold the best performances. To indicate
the percentage of correctly processed labels we report the
precision per label. The figures on the diagonal and in the
“path-cv” row are obtained by a 10-fold cross-validation. As
a baseline, the “OpenNLP” row reports the performance of
the standard OpenNLP tagging model.

The “path-cv” row reports the performance of the model
where the labels appearing higher in the hierarchy were in-
cluded in the context for training. Comparing the figures in
bold with the figures in the “path-cv” row, we notice a per-
formance increase of maximum 2.6%, with an average of
1.2%.

The “all-except” row is of particular interest, because it
reports the performance of the model trained on all avail-
able datasets, except the one it will be tested on. For ex-
ample, the model to be tested on DMoz data will include
all datasets as training data, except DMoz itself. We can al-
ready notice a performance improvements compared to the
standard OpenNLP model. The performance improvements
are in a 25-47% range.

Finally, the “combined” row reports the performance of
the model trained on a combination of datasets. This row
demonstrates that the model we used to analyse the language
structure has a high performance, this making the results of
the analysis more reliable.

4.3 Observations and Discussion

We observe that NLM differs from the language used in
normal texts. To assess whether NLM could be considered
a separate language domain, we did cross-tests and took a
closer look at the “all-except” row, comparing it with the

“OpenNLP” one. In all the cases the performance is higher
by a margin of 25%-47%. At the same time, the differences
in model performance on different datasets are smaller than
between the models. This performance evaluation confirms
the difference between the NL used in metadata and in nor-
mal texts and it enables us to select the best applicable model
for tagging unknown NLM.

Among the major reasons for such differences in per-
formance, we see the lack of context in labels which is not
an issue in long texts (see average label length in Table 1),
the different capitalization rules between metadata and long
texts, and the different use of commas. In addition, the POS
tags distribution of labels is different from the one in nor-
mal texts as, for example, verbs are almost absent in NLM
with, on average, 3.5 verbs (VB) per dataset, ranging from
0.0001% to 0.15% of all tokens of the dataset (see Fig. 2).
Short labels mostly describe (sets of) objects and they do it
by using proper and, often modified by adjectives, common
nouns, more frequently than in normal text, where verbs
constitute a larger portion of the words.

Furthermore, we performed an incremental training to
evaluate whether our samples are large enough for the mod-
els to stabilize and found that the performances of our mod-
els stabilize around 96-98% precision per label on the size
of our training samples. This shows that a larger manually
annotated sample would not provide important accuracy im-
provements. Fig. 1 provide details for three larger datasets
(LCSH, Yahoo and DMoz) in its left part and for three smal-
ler datasets (eCl@ss, NALT and UNSPSC) in its right part.

5 Language Structure Analysis

To extract the meaning out of the labels, we should under-
stand the structure of the language used to write such labels.
We can then use the language structure for a more precise
extraction of semantics out of labels by using a parser that is
tuned to the specifics of their language.
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Fig. 1 POS tagger incremental training on LCSH, Yahoo and DMoz (left) and eCl@ss, NALT and UNSPSC (right)

The training of the part-of-speech (POS) tagger reported
in the previous section enabled us to study the language
structure of classification labels. We have analysed the la-
bels’ language structure by automatically POS tagging each
dataset with the best performing model. We have found in-
teresting repeating patterns, which we analyze and report
here.

A quantitative analysis reveals some simple initial char-
acteristics of the language used in natural language meta-
data. We use this and the additional data uncovered by quan-
titative analysis to perform a qualitative analysis. The qual-
itative analysis explores the use of commonly encountered
syntactic features and language structures of labels. It also
sheds some light on how syntactic features and language
structures can be used to extract semantics out of labels in
a more precise manner; in particular, by analysing POS tag
patterns, we can derive grammars to generalize the parsing
of the labels and simplify the translation to a formal lan-
guage (see Sect. 6). This study also allows, by revealing the
semantics of different pieces and elements of labels’ pattern,
to code “semantic actions” attached to appropriate grammar
nodes in our lightweight parser to specialize the translation
to the specific language constructions used in each dataset.

5.1 Quantitative Analysis

We studied such simple quantitative language characteristics
as label length and POS tag distribution.

Our analysis of the label lengths (see Fig. 2) shows that
the majority of labels is one to three tokens long. For exam-
ple, more than half (50.83%) of all the DMOZ labels con-
tain only one token. Two and three tokens labels represent
17.48% and 27.61%, respectively, while the longer labels
only occur in less than 5% of the dataset. In comparison, the
LCSH dataset tends to contain longer and more complex la-
bels, with only 8.39% of them containing one token, 20.16%
two tokens and about 10-14% for each of 3-, 4-, 5- and 6-
token labels; the remaining 11.45% of labels contain more
than 6 tokens. Differently to LCSH, almost all of the NALT
labels are one and two tokens long. The amount of labels

longer than 9 tokens in all datasets is less than 1% and we
omit it from the graph.

Fig. 2 shows also the distribution of POS tags. We in-
cluded all the tags that occur in more than 1% of all the
tokens in any of the datasets analysed. Out of the 36 tags
existing in the PennTreeBank’s tagset [24], only 28 tags are
used in the NLM datasets that we analysed. For comparison,
we include POS tag distribution in normal text, represented
by the Brown corpus [21].

We observe that all the datasets, except Yahoo, use less
than 20 tags in total (see Table 3). Among the top ones
are proper nouns (NNP, NNPS) and common nouns (NN,
NNS), adjectives (JJ, JJR, JJS), conjunctions (CC), preposi-
tions (IN) and punctuations (“,” and “(”, “)”). Few verbs are
also present, used as modifiers in the past form (VBD, max
0.0002%) and in the gerund form (VBG, max 0.08%).

5.2 Qualitative Analysis

The quantitative analysis of the previous section allowed us
to discover several phenomena of the structure of natural
language metadata. In the following paragraphs, we discuss
the possible use of such structure in understanding the mean-
ing of the labels.

5.2.1 Patterns

In each dataset we found specific repetitive combinations
of POS tags, which we call “patterns” and illustrate in Ta-
ble 8. Table 3 shows some characteristics of the language
used in classifications with regard to these patterns. The col-
umn “90% coverage” shows the number of POS tag patterns
required to cover at least 90% of the dataset.

The quantitative analysis uncovered a quite active comma
use in LCSH. The comma is used in LCSH and also in
eCl@ss to structure labels. LCSH labels are chunks of noun
phrases, separated by commas, often in reverse order, such
as in the label “Dramatists, Belgian” with the respective pat-
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Table 3 Metadata language characteristics

Dataset Tags Patterns 90% Coverage Top Pattern

LCSH 20 13 342 1 007 NNP NN
NALT 16 275 10 NNP NNP
DMOZ 18 975 9 NN

YAHOO 25 2 021 15 NN
ECL@SS 20 1 496 360 NN NN

UNSPSC 18 1 356 182 NN NNS

tern [NNS, JJ]9 covering 4 437 or 1.32% of all labels. There
are also some naturally ordered examples, such as “Oro-
genic belts, Zambia” with the pattern [JJ NNS, NNP], which
can be simplified into two noun phrase (NP) chunks [NP, NP]
with independent structures. This pattern accounts for 1 500
or 0.45% of all labels.

A further examination of the LCSH patterns at the chunk
level reveals that they form 44 groups. Each group consists
of patterns where each piece has the same semantics. For
example, the pattern [NNP NNP, NN CC NN, CD] of the
label “United States, Politics and government, 1869-1877”,
when seen at the chunk level transforms into [geo, NP, time],
where “geo” stands for a geographical proper name, “NP”
stands for a noun phrase, and “time” stands for a time pe-
riod. We can use the semantics of such chunks during the

9 POS tags: NNS: plural noun, JJ: adjective, NNP: proper name, CD:
cardinal number

translation; For example, to leave out of the final translation
result the tokens used for the disambiguation of other tokens,
because once we have finished disambiguation they are no
longer needed. We have identified the following chunk types:

– common noun phrase (NP): “International cooperation”;
– event name (event): “Ashanti War”;
– toponym (geo): “Tokyo”;
– disambiguated toponym (geo-dis): “Tokyo (Japan)”;
– time period (time): “1918-1945”;
– noun phrase with disambiguation (NP-dis): “Contrac-

tions (Topology)”;
– domain (domain): “in literature”;
– personal name (name): “Constantine I”;
– “wildcard”: “Handbooks, manuals, etc.”;
– “reversed” noun phrase: “Sculpture, Gothic”.

Table 4 shows examples of five types of chunk pattern
with their POS tag pattern and a sample label.

5.2.2 Content Features

A more thorough analysis of the labels’ content reveals that,
labels are almost exclusively noun phrases. Besides, DMOZ
category names are clearly divided into the “proper” and
“common” categories, which was noted in [28]. However,
this is not the case for all datasets. We notice several inter-
esting10 groups of labels we have identified in DMoz:

10 from the point of view of translation into logics
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Table 4 5 LCSH Chunk Types with Examples

Chunk-Pattern POS Tag Pattern and Label Example

event,geo,time NNP NNP, NNP, NNP, CD
Dock Strike, Manchester, England, 1951

event,time NNP NNP, CD
Turco-Montenegrin Wars, 1711-1714

event,time,geo NNP NNP, CD, NNP
World War, 1939-1945, Poland

event,time,NP NNP NNP, CD, NNS
Sino-Japanese War, 1894-1895, Causes

event,time,NP,geo NNP NNP, CD, NNS, NNP
Crimean War, 1853-1856, Campaigns, Romania

– organization names, containing a proper name and a
noun, like “Union”, “College”, “Institute”: like “Art In-
stitute of Colorado”, “Art Academy of Cincinnati”, “Bap-
tist College of Florida’;

– patterns with commas, most of them personal names,
like “Vives, Juan Luis”, “Vries, Hugo de”;

– patterns with other punctuation, most of them movie or
game titles, like “Deception III – Dark Delusion”, “Cir-
cus Maximus – Chariot Wars”, “Ice Age – The Melt-
down”;

– structural patterns, or facet indicators, like “By Topic”,
“By Movement”, “By Source of Exposure”, “By Coun-
try of Service”;

– “Series” patterns, like “Tetsuo Series”, “Supercross Se-
ries”, “DrumMania Series”;

– person names and movie titles in reverse, like “Troup,
Bobby”, “Faculty, The”;

– “Based” labels, like “Browser Based”, “Fee Based”,
“Home Based”;

– organizations in reverse, like “Education, Faculty of”,
“Engineering, College of”;

– personalized organization names. These labels stand
somewhat in between proper “proper names” and “com-
mon names”, because on one hand they contain a proper
name, but on the other hand they contain quite a lot
of interpretable meaning, like in “Korea University of
Technology and Education”, or in “American Institute
of Business and Economics”;

Similar categories emerge in other datasets as well. Some
labels combine into groups that encode special meaning or
serve for structural purposes. We can use the POS tag pat-
terns to recognize these special kinds of labels. For example,
some structural labels resemble facet names or facet indica-
tors.

The use of acronyms is another feature of labels we can
notice. Although round brackets is a commonly used tool
to introduce acronyms, this is different in natural language
metadata. We illustrate such cases on the examples from

UNSPSC, where many labels contain acronyms without any
syntactic markers being used to indicate them. Such cases
should be recognized and handled properly:

– an acronym follows tokens and their initial letters: “Light
emitting diodes LEDs”, “Central processing unit CPU
processors”;

– an acronym contains initial letters of word compo-
nents: “Infrared IR sensors”, “Polyvinyl Chloride PVC”,
“Polyethersulfone PES”;

– an acronym follows later, not immediately after the ab-
breviated tokens: “Light rail vehicle transport LRV ser-
vices”;

– an acronym does not correspond to the letters or word
components: “Acrylonitrile butadiene NBR”;

– an acronym precedes abbreviated tokens: “VPN virtual
private network managed network services”.

These cases of acronym introduction should be distinguished
from the cases where the acronym is simply used, like in
“Programming for HTML” or “ERP or database applications
programming services”.

5.2.3 Syntax Tools

The quantitative analysis unveils a noticeable presence of
punctuation and in particular of round brackets. This can be
explained by their use as a disambiguation and specification
tool, as illustrated by example labels “Watchung Mountains
(N.J.)” and “aquariums (public)”. Such a use of round brack-
ets, if treated properly, helps in the formal language transla-
tion procedure. We illustrate the details of the use of punctu-
ation by the examples of groups of labels from eCl@ss. We
identify the following types of round brackets use:

– specification: “Laboratory app. (repair)”, “epoxy resin
(transparent)”, “lithography (19th century)”, “reducing
flange (steel, alloyed)”, “Screw (with head)”;

– parts of chemical slang: “(E,E)-Potassium sorbate”,
“(S)-Malic acid”. We note that chemical slang is regu-
lar and has precise semantics which can be parsed by a
special grammar, however, exploiting this requires rec-
ognizing that these labels are indeed chemical and dif-
ferentiating them from other labels;

– repetition of the broader topic from the above levels:
“Seal, sealing material (packing material)”, “Box (pack-
ing material)”;

– specification and repetition: “Capsule (gelatine, pack-
ing material)”, “Beaker (plastic, packing material)”.

Often bracketed tokens repeat the label from the level
above, but even in these cases the use is not consistent, al-
though examples of the first of the following two kinds pre-
vail. Compare:

– Sub-topic (topic): “documentation (industrial compact
computer)”, “software (industrial compact computer)”;
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– Topic (sub-topic): “industrial compact computer (acces-
sories)”, “industrial compact computer (other)”

In the majority of cases, round brackets are to be found
at the end of label. However, there are a few exceptions, such
as: “Bottle (aluminum) larger than 1000 ml”, “Can (coex) up
to 1000 ml”, “Cobalt (II) carbonate”, “Diethyl (trimethylsi-
lyl) phosphite”, “Rhenium (IV) oxide”.

There are many cases were round brackets are repeated.
Among these cases the following categories could be iden-
tified, with the first category prevailing:

– specification: “Reducing piece (high pressure) (non-fer-
rous metal)”, “T-piece (ready) (plast.)”, “Pipe (round)
(non-ferrous metal)”, “Reducer (other) (glass)”;

– specification and repetition: “cutting grinder (electri-
cal) (household appliance)”.

eCl@ss POS tag patterns containing commas constitute
a significant (53.81%) portion of patterns. More than two
thirds (68.07%) of patterns with commas contain commas
present between tokens surrounded by brackets. We identify
the following semantics of the pieces separated by commas
within brackets:

– modifiers, specifying different kinds of topic outside
brackets: “Threaded flange (iron, steel)”, “cross union
(steel, alloyed)”;

– modifier and repetition: “Box (aluminum, packing ma-
terial)”, “Carrier bag (paper, packing material)”, “Gun
(steam, parts)”, “fork arm (industrial truck, parts)”;

Commas, used to separate pieces outside of round brack-
ets, differ in their semantics too. We identify the following
groups here, with the first group representing most of the
cases:

– comma for enumeration of largely independent pieces:
“Sound damper, pulsation damper”, “Machine, appara-
tus”, “Training, schooling”, “Cleansing material, clean-
ing material”;

– comma between modifiers of a head noun: “copying,
printing line”, “Sparkling, dessert wine”;

– comma between head noun and modifiers: “Refrigera-
tion, equipment”, “moistener, Finger Tip”, “Package in-
sert, paper”, “window opener, electric”.

A few patterns (1.93%) also use a dash or a backward
slash as a syntax tool, mostly to separate alternatives. How-
ever, while in some cases a dash or a slash indicate alter-
native, in others they separate a modifier or specifier. For
example:

– alternative: “master clock / signal clock”, “account book
/ journal”, “Dewatering Machine - Expander/Expeller”,
“softstarter/ AC-regulator”, “controller / card (PC)”;

– modifier or specifier: “Filter - Activated Carbon”, “Heat
exchangers - reboiler”, “Sterilizer - Compression Still”.

6 Lightweight Parsing

From the analysis presented in the previous sections, we
conclude that the parsing of labels in higher level struc-
tures can provide a better understanding of their semantics
and thus to process them in a more meaningful notation for
the computer. Following the motivating application a) from
Sect. 1, we want to use the S-Match11 [17] as implemented
in [11] to align different classifications, such as in the ex-
periment described in [15] and thus need a translation in a
lightweight ontology, which would allow, for example, for
the automatic integration of existing heterogeneous classifi-
cations.

Rule-based parsers use manually created linguistic rules
to encode the syntactic structure of the language. These rules
are then applied to the input text to produce parse trees. In
long texts parsing, these have been disregarded because of
two main disadvantages: they require a lot of manual work to
produce linguistic rules and they have difficulties achieving
a “broad coverage” and robustness to unseen data. To tackle
these problems, state of the art statistical parsers, such as
[2], infer grammar from an annotated corpus of text. How-
ever, this approach requires a large annotated corpus of text
and a complicated process for tuning the model parameters.
Moreover, producing a corpus annotated with parse trees is a
much more costly and difficult operation than doing a basic
annotation, such as POS tagging.

However, as we have seen in the previous section, in
NLM, the language used is limited to (a combinations of)
noun phrases. Hence, we need a limited coverage, which
simplifies the construction of the rules. Therefore we use
a simpler approach and manually construct a grammar for
parsing. This requires having only an accurate POS tagging
and some structural information of the language, which are
provided by the analysis we described in the previous sec-
tions. We use a basic noun phrase grammar as a starting
point for our grammars. Analyzing the POS tag patterns we
modify this grammar to include the peculiarities of noun
phrases as they are used in NLM, such as the use of commas
and round brackets for disambiguation and specification (see
examples in Sect. 5).

6.1 Grammars

We have developed a set of lightweight grammars for the
datasets discussed in this paper. The grammars we created
can be divided into two categories: “simple” ones with nine
and ten rules (DMoz, eCl@ss and UNSPSC) and a “com-
plex” ones with 15 and 17 rules (Yahoo, NALT and LCSH).

Fig. 3 shows two examples of the grammars we pro-
duced for the LCSH and UNSPSC datasets. For represent-

11 see http://semanticmatching.org
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Table 5 Grammar characteristics

Grammar Rules Coverage (%) Parsing Mistakes (%)

Patterns Labels POS Tagger Grammar

LCSH 17 92.96 99.45 49.59 47.94
NALT 15 59.27 99.05 80.35 13.30
DMOZ 9 90.95 99.81 85.98 11.01

YAHOO 15 65.31 99.46 70.90 20.50
ECL@SS 9 67.45 92.70 44.17 47.93

UNSPSC 10 70.58 90.42 25.01 65.70

ing the grammar rules we use the Backus-Naur Form (BNF).
The LCSH one starts with a top production rule Heading,
which encodes the fact that LCSH headings are made of
chunks of noun phrases, which we call FwdPhrase. In turn,
a FwdPhrase may contain two phrases DisPhrase with dis-
ambiguation elements as in the example above. The disam-
biguation element may be a proper noun phrase (ProperDis)
or a common noun phrase (NounDis), surrounded by round
brackets. NounDis is usually a period of time or a type of
object, like “Fictitious character” in “Rumplemayer, Fen-
ton (Fictitious character)” while ProperDis is usually a se-
quence of geographical named entities, like “Philadelphia,
Pa.” in “Whitemarsh Hall (Philadelphia, Pa.)”. Fig. 5 con-
tains the parse tree of this label, while Fig. 6 shows the parse
tree of the example label from UNSPSC.

The core of the grammar is the Phrase rule, correspond-
ing to the variations of noun phrases encountered in this
dataset. It follows a normal noun phrase sequence of: a de-
terminer followed by adjectives, then by nouns. Otherwise,
it could be a noun(s) modified by a proper noun, or a se-
quence of foreign words.

6.2 Analysis and Discussion

A comparative analysis of the grammars of different classi-
fications shows that they all share the nine base rules with
some minor variations. Compare the rules 4-12 of LCSH
with the rules 2-10 of UNSPSC in Fig. 3. These nine rules
encode the basic noun phrase. Building on top of that, the
grammars encode different syntactic tools used in different
classifications for disambiguation and structural purposes.
For example, in LCSH, a proper noun in a disambiguation
element is often also disambiguated with its type, as “Moun-
tain” in: “Nittany Mountain (Pa. : Mountain)”.

A quantitative analysis shows the grammar coverage of
the language, summarized in Table 5.

One can note that in all cases we have a high coverage of
the dataset labels, more than 90% in all cases and more than
99% in four cases. If we look at the pattern coverage we no-
tice a slightly different picture. For NALT, Yahoo, eCl@ss
and UNSPSC, we have only 60% to 70% coverage of the
patterns. This can be explained by Table 3 where, for in-

stance, only around 1% of the patterns already cover 90% of
the labels in NALT. This shows how a small amount of the
labels uses a large variety of language construction while the
majority of the NLM uses highly repetitive constructs.

Our analysis shows that the main reason for the lower
coverage is a less regular use of language in these four clas-
sifications as compared to the other two classifications. We
have analysed the mistakes done by the parser and found
that they mostly fall into two major categories: POS tag-
ger errors and linguistic rules limitations (see Table 5). This
can be explained by the rule-based nature of our parser that
makes it particularly sensitive to POS tagger errors. Other
parser mistakes are due to the inconsistent (ungrammatical)
or unusually complex labels, which could be seen as “out-
liers”. For example, the “English language, Study and teach-
ing (Elementary), Spanish, [German, etc.] speakers” label
from LCSH contains both a disambiguation element “(Ele-
mentary)” and a “wildcard” construction “[German, etc.]”.

Although very similar to one another, there are a few ob-
stacles that need to be addressed before these grammars can
be united into a single one. One of the most difficult of these
obstacles is the semantically different use of round brackets:
in most cases round brackets are used as a disambiguation
tool, as illustrated by the examples mentioned above; how-
ever, we also found some examples where round brackets
are used as a specification tool, as for instance in the label
from eCl@ss: “epoxy resin (transparent)”.

Due to these different semantics, these cases will al-
most certainly require different processing for a target ap-
plication. For example, in translating metadata for semantic
matching purposes [18], we need to translate the labels of
a classification into a Description Logic formula to build
up a lightweight ontology. In this application, the disam-
biguation element “(Pa. : Mountain)” of the label “Nittany
Mountain (Pa. : Mountain)” can be used to choose a precise
concept “Nittany Mountain” and the element itself is not in-
cluded in the final formula, while in the specification case of
“epoxy resin (transparent)”, the specifier concept “transpar-
ent” should be included in the formula in a conjunction with
the concept “epoxy resin” that is being specified.

Another obstacle is the different semantics of commas.
Sometimes, a comma is used to sequence phrases. However,
there are cases where the comma separates a modifier in a
phrase, written in a “backward” manner, such as illustrated
above with a label “Dramatists, Belgian”. In long texts, these
differences can be disambiguated by the context, which is
almost always missing for NLM.

Despite these differences, our results show that simple
and easily customizable grammars can be used to parse ac-
curately most of the patterns found in the state of the art
classifications, thus providing extra understanding of the NL
without a loss in performance.
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1 Heading := FwdPhrase {"," FwdPhrase}

2 FwdPhrase := DisPhrase {Conn} DisPhrase

3 DisPhrase := Phrase {"("ProperDis | NounDis")"}

4 Phrase := [DT] Adjs [Nouns] | [Proper] Nouns

| Foreigns

5 Adjs := Adj {[CC] Adj}

6 Nouns := Noun {Noun}

7 Conn := ConjConn | PrepConn

8 Noun := NN [POS] | NNS [POS] | Period

9 Adj := JJ | JJR

10 ConjConn := CC

11 PrepConn := IN | TO

12 Proper := NNP {NNP}

13 NounDis := CD | Phrase [":" Proper]

14 ProperDis := ProperSeq ":" Phrase

| ProperSeq CC ProperSeq

15 Period := [TO] CD

16 ProperSeq := Proper ["," Proper]

17 Foreigns := FW {FW}

1 Label := Phrase {Conn (Phrase | PP$ Label)}

2 Phrase := Adjs [Nouns] | Nouns

3 Adjs := Adj {Adj}

4 Nouns := Noun {Noun}

5 Conn := ConjConn | PrepConn

6 Noun := NN [POS] | NNS [POS] | DT RB JJ

| Proper

7 Adj := JJ | JJR | CD | VBG

8 ConjConn := CC | ,

9 PrepConn := IN | TO

10 Proper := NNP {NNP}

Fig. 3 LCSH (left) and UNSPSC (right) BNF production rules

Table 6 Example Label with Annotation

Annotation Data

tokens Acupuncture and Chinese Medicine
POS tags NN CC JJ NN

senses n#699073 N/A a#3048539 n#5964779

formula n#699073 | a#3048539 & n#5964779

7 Evaluation

7.1 Setup and Methodology

We have evaluated the proposed solution using a synthetic
approach. We have taken the large dataset used for evalua-
tion of semantic matching [16], which is a technique used to
identify semantically related information by establishing a
set of correspondences, usually between two tree-like struc-
tures which are often denoted as “source” and “target”. This
dataset is a composition of three web directories: Google,
Yahoo! and Looksmart. The “source” part contains 2 854 la-
bels, while the “target” part contains 6 628 labels. We keep
the dataset in two parts: “source”, combined from Google
and Looksmart directories, and “target”, coming from Ya-
hoo! directory, because these parts originate from different
datasets, and this allows us to evaluate the performance on
slightly different data. While containing parts of the Yahoo!
directory and being from the same domain of natural lan-
guage metadata, this dataset does not intersect with the ones
we have used in our analysis discussed in Sect. 5 and for the
training discussed in Sect. 4. Therefore it is appropriate to
use it for evaluation purposes as it represents unseen data.

Table 7 Evaluation Results Summary

Dataset Labels Accuracy Previously Improvement
(%) (%) (%)

source 2 854 83.43 67.73 +15.70
target 6 628 81.05 65.89 +15.16

We have manually annotated this dataset with tokens,
POS tags, assigned correct senses from WordNet [8] and,
finally, created correct logical formula for every label. For
example, for the label “Acupuncture and Chinese Medicine”
we have the annotation displayed in Table 6.

Thus we have created a golden standard, which enables
us to evaluate our approach. This dataset contains 47.86%
of 1-token labels, 33.14%, 15.64% and 2.34% of 2-, 3- and
4-token labels, respectively. Longer labels constitute the re-
maining 1.02%. The average label length is 1.76 tokens,
with the longest label being 8 tokens long. The most fre-
quent POS tags are singular nouns (NN, 31.03%), plural
nouns (NNS, 28.20%), proper nouns (NNP, 21.17%) and ad-
jectives (JJ, 10.08%). An important POS, the coordinating
conjunctions (CC) – which occupy a notable 6.58% – can
introduce ambiguity in a label, which, in turn, might be car-
ried into a formula. In total, 26 parts of speech are present,
and except the ones already mentioned, other 21 parts of
speech occupy the remaining 2.91%.

7.2 Results and Analysis

We summarize the evaluation results in Table 7. The column
“Accuracy” contains the percentage of labels, for which our
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approach created correct formulas while the column “Previ-
ously” contains the accuracy of a previously used approach
[17]. One can see that we have obtained a substantial im-
provement of approximately 15% over the previous results.

In Figure 4, we report the accuracy of the translation to
description logic formulas, in comparison to the POS tagger
performances. We report two different POS tagging models
(see Sect. 4) on the combined “source+target” dataset:

– No Context that is the best combined model, and
– With Context that is the best combined model trained

with contexts coming from classification paths of labels.

The best combined model reached 89.11% PPL on the com-
bined “source+target” dataset. It compares well with the fig-
ures in the “all-except” row of Table 2 and shows that the
model performs quite well on unseen data. We also tested
the combined model trained with the context, and it reached
95.71% PPL. It compares well with the figures from the
“path-cv” row of Table 2, also confirming that the model
performs well on unseen data.

We can first observe an improvement of 6.6% in the
POS tagging accuracy when using context, which stresses
the importance of having a context. However, this only im-
proves the translation accuracy by 2.62%. The improvement
in POS tagging does not translate directly into a translation
improvement, because of the other modules of a complete
translation algorithm, such as the word sense disambigua-
tion module, whose performance also influences the overall
translation accuracy. Indeed, if we evaluate the translation
with the manual POS tagging (Manual point in Figure 4),
we observe that even with a “perfect” tagging, the transla-
tion accuracy does not improve much more. In comparison,
a “perfect” tokenization (with a contextless POS tagging),
improves the translation accuracy only by 0.02%.

To evaluate the influence of the tokenization and POS
tagging preprocessing steps on the performance of the parser,
we supplied the parser with correctly tokenized labels and it
reached 81.79% precision. These 0.02% can give an esti-
mation of the tokenizer contribution. Then we supplied the

parser with the correct tags and it reached 87.16% preci-
sion. These 5.37% can give an estimation of the POS tagger
contribution. Out of this experiment we see that improving
the POS tagger can give us a 5.35% improvement, while
the remaining 18.23% should be reached by improving other
translation algorithm modules.

The analysis of mistakes showed that 19.87% (source)
and 26.01% (target) of labels contained incorrectly recog-
nized atomic concepts. For example, in the label “Diesel,
Vin” two concepts “Diesel” and “Vin” were recognized, in-
stead of the correct proper name: “Vin Diesel”. As another
example consider the label “Early 20th Century”, where the
“previous” approach missed the concept “20th” because of
too aggressive stopwords heuristics, while the proposed one
recognized it. Vice versa, in the label “Review Hubs”, in-
stead of two concepts “Review” and “Hubs”, only one wrong
concept “Review Hubs” was recognized. The cause of these
mistakes is the POS tagger error because of the lack of con-
text. Namely, the frequent misclassification which occurs
between proper and common nouns. For these cases, fur-
ther analysis of the erroneous formula does not make sense,
because the atomic concepts are the basic building blocks
of the formula, which should be recognized properly for the
formula to be correct. For the rest, that is for the labels with
correctly recognized atomic concepts, we found out that, in
49.54% (source) and 52.28% (target) of cases, the formula
structure (that is, logical connectors or “bracketing”) was
recognized incorrectly. For example, in the label “Best &
Worst Sites” the “&” sign is used as a conjunction, but was
not recognized and this resulted in a wrong formula struc-
ture. The remaining half of the mistakes are word sense dis-
ambiguation mistakes of different kinds.

The approach we propose here, with more accurate NLP
models and the parser based on the results of the language
structure analysis, achieves the accuracy of 84.39% in the
translation task. This is a 17.95% improvement over the state
of the art translation approach [17] that reaches a 66.44%
precision.

8 Related Work

The work available in the Semantic Web and Digital Li-
braries fields is often based on reasoning in a formal lan-
guage (FL). However, users are accustomed to a NL and it
is difficult for them to use a formal one. A number of ap-
proaches have been proposed to bridge the gap between for-
mal languages and NL classifications.

Controlled languages (CLs), such as Attempto [9], have
been proposed as an interface between NL and first-order
logic. This, as well as a number of other proposals based on
a CL approach [26,5], require the users to learn the rules and
the semantics of a subset of English. Moreover, the users
need to have some basic understanding of the first order
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logic to provide a meaningful input. The difficulty of writing
in a CL can be illustrated by the existence of editors, such
as ECOLE [25], aiding the user in CL editing.

CLs are also used as an interface for ontology author-
ing [5,1,3]. The approach of [1] uses a small static grammar,
dynamically extended with the elements of the ontology be-
ing edited or queried. Constraining the user even more, the
approach of [3] enforces a one-to-one correspondence be-
tween the CL and FL. The authors in [5], following a prac-
tical experience, tailored their CL to the specific constructs
and the errors of their users. Some of these and other CLs
have been criticised [23] due to their domain dependance
and genre limitations.

For querying purposes, [27] proposes an NL interface
to ontologies by translating NL into SPARQL queries for a
selected ontology. This approach is limited by the extent of
the ontology with which the user interacts. In [4], the au-
thors tackle limitations similar to the ones mentioned above
and present the FREyA system, where they combine query-
ing the underlying ontology with syntactic parsing. An in-
teresting additional element of this approach is that authors
involve a user by presenting clarification dialogs and using
responses for training the system.

Another way to bridge the gap between formal languages
and NLs is described in [10], where the authors propose to
manually annotate web pages, rightfully admitting that their
proposal introduces a “chicken and egg” problem. The ap-
proach described by [20] for automatically translating hier-
archical classifications into OWL ontologies is more inter-
esting, however, by considering the domain of products and
services on the examples of eCl@ss and UNSPSC, the au-
thors make some simplifying domain-specific assumptions,
which makes it hard to generalise.

Differently from the approaches mentioned above, our
work does not impose the requirement of having an ontol-
ogy, the user is not required to learn a CL syntax, and we
do not restrict our considerations to a specific domain. This
article develops the theme of [28], improving it in several
ways, such as extending the analysis to a wider sample of
metadata and introducing a lightweight parser.

9 Conclusions

We have explored and analysed the natural language meta-
data represented in several large classifications. Our analy-
sis shows that the natural language used in classifications
is different from the one used in normal text and that lan-
guage processing tools need an adaptation to perform well.
We have shown that a standard part-of-speech (POS) tagger
could be accurately trained on the specific language of the
metadata and that we improve greatly its accuracy compared
to the standard long texts models for tagging.

A large scale analysis of the use of POS tags showed
that the metadata language is structured in a limited set of
patterns that can be used to develop accurate (up to 99.81%)
lightweight Backus-Naur form grammars. We can then use
parsers based on these grammars to allow a deeper under-
standing of the metadata semantics. We also show that, for
such tasks as translating classifications into lightweight on-
tologies for use in semantic matching it improves the accu-
racy of the translation by almost 18%.
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