
DISI - Via Sommarive, 14 - 38123 POVO, Trento - Italy
http://disi.unitn.it

A Novel Technique for Computing
Craig Interpolants in Satisfiabilility
Modulo the Theory of Integer Linear
Arithmetic

Thi Thieu Hoa Le

November 2010

Technical Report # DISI-10-056 Thieu Hoa

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Unitn-eprints Research

https://core.ac.uk/display/11830114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITÀ DEGLI STUDI DI TRENTO

Facoltà di Scienze Matematiche Fisiche e Naturali

Corso di Laurea Specialistica in Informatica

Tesi dal Titolo

A Novel Technique for Computing Craig

Interpolants in Satisfiabilility Modulo the

Theory of Integer Linear Arithmetic

Relatore: Correlatore:
Roberto Sebastiani Alberto Griggio

Laureando:
Le, Thi Thieu Hoa

Anno Accademico 2009/2010

Contents

1 Introduction 3

I BACKGROUND AND STATE-OF-THE-ART 5

2 Background 6
2.1 Satisfiability Modulo Theory - SMT 6
2.2 Interpolation definition . 7
2.3 Interpolation in SMT . 8
2.4 Interpolant-based model checking 11

II CONTRIBUTIONS 13

3 Interpolants for conjunctions of LA(Z)-literals 14
3.1 Objective . 14
3.2 Approach overview . 16
3.3 Division elimination . 16
3.4 Interpolant from an R′-proof of unsatisfiablity 18

3.4.1 Partially interpolating rules 18
3.4.2 Fully interpolating rules 19

3.5 Soundness of partially interpolating rules 19
3.6 Soundness of fully interpolating rules 20

3.6.1 1-CONN . 20
3.6.2 1-CONN* . 21
3.6.3 k-CONN . 22

3.7 Examples . 24
3.7.1 With one STRENGTHEN application 24
3.7.2 With two or more STRENGTHEN applications 25

4 Implementation and Empirical results 28

1

5 Conclusions 29
5.1 Conclusion and future work 29

Bibliography 30

2

Chapter 1

Introduction

Given two formulas A and B such that A∧B is unsatisfiable, a Craig inter-
polant is a formula I with the following properties: (i) A entails I (ii) I ∧B
is unsatisfiable (iii) all uninterpreted symbols of I occur in both A and B.
Ever since the seminal work of McMillan [11], interpolation has seen a vari-
ety of applications in formal verification. For instance, in interpolation-based
model-checking [11, 12] which is a counterexample-guided abstraction refine-
ment (CEGAR) framework, interpolants are used for finding sets of predi-
cates needed to rule out spurious counterexamples. The task of finding such
interpolants is carried out by an interpolating theorem prover. There have
been efficiently-interpolating provers available for various theories includ-
ing propositional logic [15, 13], linear arithmetic over the rationals (LA(Q))
[12, 6, 4, 16] with uninterpreted function (EUF) [20, 19, 6, 2]. Many appli-
cations in model checking and software verification, however, require vari-
able representation in the interger domain [14, 10]. As a result, many at-
tempts have been made on investigating interpolation for integer arithmetic,
specifically for fragments of integer linear arithmetic (LA(Z)) (such as The-
ory of Unit-Two-Variable-Per-Inequality (UT VPI(Z) [5] and linear equality
[9]) and for full quantifier-free Presburger arithmetic (QFPA) with uninter-
preted predicates [3].

Moving in the same direction of exploring interpolation for LA(Z), in
this thesis we present a solution to the interpolation problem of LA(Z)
based on interpolant generation for conjunctions of LA(Z) equalities and
weak inequalities. Although our approach was inspired by Brillout et al.’s
interpolating sequent calculus [3], it differs from the latter in that our interpo-
lation method is based on cutting-plane proofs of unsatisfiability rather than
sequent-calculus proofs and consists of interpolation rules built to reflect the
cutting plane rules. The proposed algorithm has been implemented within
MATHSAT SMT solver and tested for simple cases....

3

The thesis is organized as follows. In chapter 2, we present some back-
ground on interpolation in SMT. We then go into the details of our inter-
polation method for conjunctions of LA(Z) equalities and weak inequalities
in chapter 3. We also give several examples to illustrate our algorithm and
present some preliminary evaluation of our prototype tool on the RINGS
benchmark. Finally, we conclude and outline our future work in chapter 4.

4

Part I

BACKGROUND AND
STATE-OF-THE-ART

5

Chapter 2

Background

In this chapter we provide the necessary background knowledge on SMT,
interpolation generation in SMT and model checking based on interpolation.

2.1 Satisfiability Modulo Theory - SMT

The material of this section is taken from [6] to which we would refer the
readers for more details.

Our setting is standard first order logic. A 0-ary function symbol is
called a constant. A term is a first-order term built out of function symbols
and variables. A linear term is a linear combination c1x1 + ... + cnxn + c,
where c and ci are numeric constants and xi are variables. Linear terms
where all constants and variables are constrained to be integers are said to
be (purely) integer linear arithmetic or LA(Z)-terms, where Z is the set of
integers. If t1, ..., tn are terms and p is a predicate symbol, then p(t1, ..., tn)
is an atom. A literal is either an atom or its negation and a disjunction of
literals is called a clause. A formula φ is built in the usual way out of the
universal and existential quantifiers, Boolean connectives, and atoms. We call
a formula quantifier-free if it does not contain quantifiers, and ground if it
does not contain free variables. A formula is said to be in conjunctive normal
form (CNF) if it is a conjunction of clauses. Without loss of generality,
we assume that formulas are in CNF. We also assume the standard first-
order notions of interpretation, satisfiability, validity, logical consequence.
We denote formulas with φ, ψ,A,B,C, I, variables with x, y, z, and numeric
constants with a, b, c, d, i, j, k.

We call Satisfiability Modulo (the) Theory T , SMT(T), the problem of
deciding the satisfiability of quantifier-free formulas wrt. a background the-
ory T . Given a theory T , we write φ |=T ψ (or simply φ |= ψ) to denote

6

that the formula ψ is a logical consequence of φ in the theory T . We call T -
solver any procedure that decides the satisfiability of a conjunction of ground
atomic formulas and their negations in T . With φ � ψ we denote that all
uninterpreted (in T) symbols of φ appear in ψ. If C and B are clauses,
C ↓ B is the clause obtained by removing all the literals whose atoms do not
occur in B, and C\B that obtained by removing all the literals whose atoms
do occur in B.

A standard technique for solving the SMT(T) problem is to integrate a
DPLL-based SAT solver and a T -solver in a lazy manner (see, e.g., [17, 18] for
a detailed description). DPLL is used as an enumerator of truth assignments
for the propositional abstraction of the input formula. At each step, the set
of T -literals S corresponding to the current assignment is sent to the T -solver
to be checked for consistency in T . If S is inconsistent, the T -solver returns
a conflict set of T -literals η and the corresponding T -lemma ¬η is added as
a blocking clause in DPLL, and used to drive the backjump mechanism.

2.2 Interpolation definition

Definition 1 - Craig Interpolant. Given an ordered pair (A,B) such
that A ∧B |=T ⊥, a Craig interpolant (simply ”interpolant” hereafter) is a
formula I with the following properties:

(i) A |=T I

(ii) I ∧B |=T ⊥

(iii) I � A and I � B

Intuitively, I is an abstraction of A which summarizes and expresses in the
shared language (i.e. over the common variables of A and B) why A is in-
consistent with B.

Definition 2 - Resolution Proof. Given a set of clauses S
def
= {C1, ...,Cn}

and a clause C, we call a resolution proof of
∧

iCi |=T C a directed acyclic
graph G that satisfies properties (i)-(iii). Moreover, if C is the empty clause
(denoted with ⊥), then G is a resolution proof of unsatisfiability for

∧

iCi.

(i) C is the root of G

(ii) the leaves of G are either elements of S or T -lemmas

(iii) each non-leaf node C′ = φ1∨φ2 has two parents Cp1
and Cp2

such that
Cp1

= p ∨ φ1,Cp2
= ¬p ∨ φ2. The atom p is called the pivot of Cp1

and Cp2
.

7

An interpolant can be efficiently derived from such resolution proofs in many
theories of interest including propositional logic, LA(Q) and EUF , etc.

2.3 Interpolation in SMT

Interpolation has been introduced for proposinal logic [11], LA(Q) and EUF
[12]. The technique is based on earlier work by Pudlák [15] where two inter-
polation algorithms are described: one for computing interpolants for propo-
sitional formulas from resolution proofs of unsatisfiability, and one for gen-
erating interpolants for conjunctions of (weak) linear inequalities in LA(Q).
An interpolant for a pair (A,B) can be constructed from its resolution proof
of unsatisfiability as follows:

Algorithm 1 : Interpolant generation for SMT(T)

1: Generate a resolution proof of unsatisfiability G for A ∧B.
2: For every T -lemma ¬η occurring in G, generate an interpolant I¬η for

(η\B, η ↓ B).

3: For every input clause C in G, set IC
def
= C ↓ B if C ∈ A and IC

def
= ⊤

if C ∈ B
4: For every inner node C of G obtained by resolution from C1

def
= p ∨ φ1

and C2

def
= ¬p ∨ φ2, set IC

def
= IC1

∨ IC2
if p does not occur in B, and

IC
def
= IC1

∧ IC2
otherwise.

5: Output I⊥ as an interpolant for (A,B).

In Algorithm 1, step 2 is the only part which depends on the theory T ,
so the interpolation problem in SMT(T) is reduced to finding interpolants
for T -lemmas. To this extent, McMillan presents a set of rules for inter-
polation construction of T -lemmas in LA(Q), EUF and their combination
[12]. Moving in this direction, in order to deal with the interpolation prob-
lem in SMT(LA(Z)), we propose our set of rules to generate interpolants for
LA(Z)-lemmas of which the details is deferred until chapter 3. Here we give
an example to illustrate Algorithm 1.

Example 1: Consider the following two formulas in LA(Z):

A
def
= (p ∨ (−x1 + 3x2 − 1 6 0)) ∧ (−x1 − x2 6 0) ∧ (¬q ∨ ¬(−x1 − x2 6 0))

B
def
= (¬(−x3 + 2x1 + 3 6 0) ∨ (2x3 − 1 6 0)) ∧ (¬p ∨ q) ∧ (p ∨ (−x3 + 2x1 + 3 6 0))

Figure 2.1(a) shows a resolution proof of unsatisfiability for A∧B, in which
the clauses from A have been underlined. The proof contains the following

8

¬(−x1 + 3x2 − 1 6 0) ∨ ¬(−x1 − x2 6 0)∨

¬(−x3 + 2x1 + 3 6 0) ∨ ¬(2x3 − 1 6 0)

¬(−x1 + 3x2 − 1 6 0) ∨ ¬(−x1 − x2 6 0) ∨ p

p ∨ (−x1 + 3x2 − 1 6 0)

¬p ∨ q

¬(−x1 − x2 6 0) ∨ q

¬(−x1 − x2 6 0)(−x1 − x2 6 0)

⊥

¬(−x1 − x2 6 0) ∨ p

¬(−x3 + 2x1 + 3 6 0) ∨ (2x3 − 1 6 0)

¬(−x1 + 3x2 − 1 6 0) ∨ ¬(−x1 − x2 6 0)∨

¬q ∨ ¬(−x1 − x2 6 0)

¬(−x3 + 2x1 + 3 6 0) p ∨ (−x3 + 2x1 + 3 6 0)

(−4x1 − 1 6 0)

⊤

⊤

p ∨ (−4x1 − 1 6 0)

(p ∨ (−4x1 − 1 6 0)) ∧ ¬q⊥

(p ∨ (−4x1 − 1 6 0)) ∧ ¬q

p ∨ (−4x1 − 1 6 0)

⊤

(−4x1 − 1 6 0)

(−4x1 − 1 6 0)

¬q

p

(a) (b)

Figure 2.1: Resolution proof of unsatisfiability (a) and interpolant (b) for
the pair (A,B) of formulas of Example 1.

LA(Z)-lemma (displayed in boldface):

¬(−x1 + 3x2 − 1 6 0) ∨ ¬(−x1 − x2 6 0) ∨ ¬(−x3 + 2x1 + 3 6 0) ∨ ¬(2x3 − 1 6 0)

Figure 2.1(b) shows, for each clause Θi in the proof, the formula IΘi
generated

by Algorithm 1. As for the LA(Z)-lemma, it is easy to see that (−4x1−1 6 0)
is an interpolant for

(−x1 + 3x2 − 1 6 0) ∧ (−x1 − x2 6 0) ∧ (−x3 + 2x1 + 3 6 0) ∧ (2x3 − 1 6 0)

as required by Step 2 of Algorithm 1. (We will show how to obtain this in-

terpolant in Example 2). Therefore, I⊥
def
= (p ∨ (−4x1 − 1 6 0)) ∧ ¬q is an

interpolant for (A,B).

Step 1 of Algorithm 1 requires generating resolution proofs of unsatisfiability
which can be performed by a lazy SMT solver [17, 18]. The lazy approach
is based on the integration of a DPLL-based SAT solver and one (or more)
T -solvers, respectively handling the Boolean and the theory-specific com-
ponents of reasoning: the SAT solver enumerates truth assignments which
satisfy the Boolean abstraction of the input formula while the T -solvers

9

(a) Resolution proof (b) Boolean and T -reasoning
(without case split delegation)

(c) Case split delegated to
Boolean reasoning

checks the consistency in T of the set of literals corresponding to the assign-
ments enumerated. In addition, a T -solver may be based on case splitting
or splitting-on-demand [1] either because the solver is bound to resort to
some form of case splitting when deciding the T -consistency of a conjuction
of T -literals is NP-hard, or because of simplicity and convenience when the
T -consistency problem is polynomial.

Unfortunately, the restriction put on step 2 of Algorithm 1 (which requires
all atomic predicates occurring in ¬η to occur either in A or in B, see [12] for
more details) prevents us from splitting cases on atomic predicates neither
present inA nor B. In other words, we cannot make arbitrary cuts. However,
we can effectively split cases on any atomic predicate φ as long as φ �
A or φ � B. For instance, assuming that φ � A, we can add the T -
lemma φ ∨ ¬φ to A and send the lemma back to the DPLL engine. In
this way, we can introduce the predicate φ into the proof and split cases on
it while preserving the validity of any interpolant that we may obtain [12].
Moreover, the implementation benefits greatly from exploiting the DPLL
engine for the exploration of the branches introduced by splitting cases since
it can take advantage for free of all the advanced techniques (e.g. conflict-
driven backjumping, learning, etc.) for search-space pruning implemented in
modern DPLL engines. In this thesis, we advocate delegating these case splits
to the DPLL engines instead of performing them within the T -solver (or the
LA(Z)-solver in our case) itself. Figure 2.2(a) shows the resolution proof as
a whole while figure 2.2(b) and 2.2(c) depicts the proof as an integration of
Boolean and theory specific reasoning (T -reasoning) without and with the
case split delegation.

For rational and real linear arithmetic, there have been many approaches
to the interpolation problems. Rybalchenko and Sofronie-Stokkermans [16]
show how to compute interpolants in combined LA(Q), EUF and real lin-
ear arithmetic LA(R) by using linear programming solvers in a black-box

10

fashion. The method allows both weak and strict inequalities. Cimatti et
al. [6] show how to compute interpolants in for LA(Q), rational difference
logic fragment and EUF . By utilizing state-of-the-art SMT algorithms they
obtain significant improvements over existing interpolation tools for LA(Q)
and EUF . Yorsh and Musuvathi [20] present a Nelson-Oppen style method
for generating interpolants for combined theories by using the interpolation
procedures for individual theories. This technique is further improved in
[6, 4].

For integer linear arithmetic, the problem of interpolant generation still
remains open. In fact, there is no known and efficient algorithm for comput-
ing interpolants in LA(Z). Quantifier elimination is one known-interpolation
method, however, it has exponential complexity and does not immediately
yield efficient algorithms for computing interpolants. Brillout et al. [3] shows
how to compute interpolants for QFPA, i.e., linear arithmetic over the in-
tegers, using interpolating sequent calculus. This approach, however, does
not provide any guarantee on the size of an interpolating proof and its in-
terpolant. While they proposed to lift proofs of unsatisfiablity to interpolat-
ing proofs to avoid the well-known disadvantages of quantifier-elimination-
based interpolation, they risked increasing the size of the proofs and their
interpolants exponentially in general. So far, efficient interpolating solvers
have been reported only for fragments of LA(Z). Jain et al. [9] pro-
posed efficient interpolation algorithms for conjunctions of linear Diophantine
(dis)equations and for conjunction of linear modular equations. Moving in
the same track of Jain et al., Cimatti et al. [6] address effectively the in-
terpolation problem for UT VPI(Z) which is another important fragment of
LA(Z).

2.4 Interpolant-based model checking

One of the important applications of interpolation in Formal Verification is
interpolant-based model checking which is a combination of bounded model
checking and interpolation to produce an over-approximate image operator
that can be used in symbolic model checking. This application have been
discussed in literature, for example [11, 7]. For the sake of completeness,
we report here a brief summary of that application, referring the interested
readers to the cited papers for further details.

A transition systemM = (S, T) consists a finite set of states S and a tran-
sition relation T ⊆ S×S. A bounded model checking(BMC) problem consists
of a set of constraints: initial constraints(I), transition constraints(T) and fi-
nal constraints(F). These constraints are encoded in propositional logic and

11

translated to CNF. For instance, the propositional encoding of T ⊆ S × S is
T (x, x′) where x and x′ are vectors of propositional variables represing system
states. An instance of BMC is a formula A(x0, x1) ∧B(x1, ..., xk) where:

• A(x0, x1)
def
= I(x0) ∧ T (x0, x1)

• B(x1, ..., xk)
def
= T (x1, x2) ∧ ... ∧ T (xk−1, xk) ∧ (F (x1) ∨ ... ∨ F (xk))

The formula P (x1)
def
= ∃x0.A(x0, x1) encodes the forward image of I and using

P (x1) we can repeatedly compute images until we obtain a formula encoding
all reachable states from I. However, the formula P (x1) is quantified and
quantifier elimination is very expensive, so computing the set of reachable
states from I in this manner is not feasible.

Instead, using a SAT solver, we prove that A(x0, x1)∧B(x1, ..., xk) is un-
satisfiable (i.e., there are no counterexamples of length k). From the proof,
we derive an interpolant p for A(x0, x1)∧B(x1, ..., xk). By definition of inter-
polant, we have A(x0, x1) |= p meaning p is implied by the initial condition
and the first transition constraint, it follows that p is true in every state reach-
able from the initial state in one step. That is, p is an over-approximation
of the forward image of I. Further, p ∧ B(x1, ..., xk) |= ⊥ meaning that no
state satisfying p can reach a final state in k − 1 steps.

This over-approximation is useful in computing approximately reachable
states and may make us falsely conclude that F is reachable. However, by
increasing k, we must eventually find a true counterexample (a path from I
to F) or prove that F is not reachable.

12

Part II

CONTRIBUTIONS

13

Chapter 3

Interpolants for conjunctions of
LA(Z)-literals

We show in section 2.3 that the interpolation problem in SMT(LA(Z)) could
be reduced to finding interpolants for LA(Z)-lemmas. Moreover, we prefer
delegating the case split to the DPLL engine to handling it within the LA(Z)-
solver. Therefore, we have shrinked the problem of finding interpolants for
LA(Z)-lemmas to the possible smallest extent at which it is addressed fully
by our interpolation method presented in this chapter.

3.1 Objective

We first recall the algorithm of McMillan [12] for computing LA(Q)-interpolants
from unsatisfiable proofs for conjunctions of LA(Q)-equalities and weak in-
equalities.

• An LA(Q)-proof rule for such a conjunction is either an element of Γ

or it has the form
P

φ
where φ is an equality or a weak inequality and

P is a sequence of proof rules, called the premises of the rule.

• An LA(Q)-proof of unsatisfiablity for such a conjunction is simply a
rule in which φ ≡ (c 6 0) where c is a positive numerical constant.

Given an LA(Q)-proof of unsatisfiability for a conjunction Γ of equalities and
weak inequalities partitioned into (A,B), an interpolant I can be computed
simply by replacing every atom t 6 0 occurring in B (resp. t = 0) with 0 ≤ 0
(resp. 0 = 0) in each leaf sub-rule of the proof, and propagating the results.
The interpolant is then the single weak inequality t 6 0 at the proof root
[12].

14

Similarly to McMillan’rules, we use the following proof rules for a con-
junction of LA(Z)-equalities and weak inequalities: LEQEQ for deriving
inequalities from equalities, and COMB for performing linear combinations.
In this thesis, we assume that all inequalities have the form of

∑

i civi+c 6 0.

1. LEQEQ
t ◦ 0

t 6 0

where ◦ ∈ {=,6} and t =
∑

i civi + c (ci, vi denote integer constant
and variable)

2. COMB
t1 6 0 t2 6 0

c1t1 + c2t2 6 0
where c1, c2 > 0

Furthermore, the notion of an LA(Z)-proof of unsatisfiablity for such a con-
junction is similar to that of an LA(Q)-proof of unsatisfiablity except that
c must be an integer constant. However, relying solely on the above two
rules would make our proof system incomplete. Thus, we have augmented
our proof system with the cutting plane rules for integer inequalities [15].
Cutting plane proof systems were proved to be complete by Gomory [8]. In
particular, we make use of the following rule:

3. DIV

∑

i civi + c 6 0
∑

i

ci
d
vi + ⌈

c

d
⌉ 6 0

where d > 0 is the common divisor of ci

We call R the set of the above three LA(Z) rules. Given an LA(Z)-proof of
unsatisfiability P for a conjunction Γ of LA(Z)-equalitites and weak inequal-
ities partitioned into (A,B) built from R (called an R-proof hereafter), our
objective is to construct an interpolation algorithm for (A,B). Our algo-
rithm works exactly in the same way as McMillan’s interpolation algorithm
for proofs composed of only rule LEQEQ and rule COMB as can be demon-
strated in the example below. Moreover, our algorithm provides a mechanism
to compute an interpolant for proofs including also the cutting plane rules
(i.e. the DIV rule).

Example 2: Consider the following sets of LA(Z) atoms:

A
def
= {(−x1 + 3x2 + 1 6 0), (−x1 − x2 6 0)}

B
def
= {(−x3 + 2x1 + 3 6 0), (−1 + 2x3 6 0)}

An R-proof for A ∧B is the following:

−x1 + 3x2 + 1 6 0 3 ∗ (−x1 − x2 6 0)

−4x1 − 1 6 0

2x3 − 1 6 0 2 ∗ (−x3 + 2x1 + 3 6 0)

4x1 + 5 6 0
4 6 0

15

By replacing inequalities in B with 0 6 0, we obtain the interpolation proof:

−x1 + 3x2 + 1 6 0 3 ∗ (−x1 − x2 6 0)

−4x1 − 1 6 0

0 6 0 2 ∗ (0 6 0)

0 6 0
−4x1 − 1 6 0

Thus, the interpolant obtained is (−4x1 − 1 6 0).

3.2 Approach overview

In order to extract interpolants from proofs of unsatisfiable conjunctions
A ∧B, we will first need to annotate formulae introduced along the proof
with partial interpolants (PIs) that record the A-contribution to a formula
obtained jointly from A and B. Then, from those PIs we can construct
an interpolant for (A,B). Formulae introduced by LEQEQ and COMB

can always be annotated with a PI while those introduced by DIV can not.
For instance, an inequality 2x − 1 6 0[3x − y 6 0] could not derive the
corresponding PI for x 6 0 because 2 is not the common divisor of the
3x − y 6 0. As a solution, we will perform a multiplication by d right
after the division by d is done in the proof. In other words, we replace the
DIV rule with the STRENGTHEN rule combining both division by d and
multiplication by d into one single rule. The new set containing proof rules
1, 2 and 4 is called R′.

4. STRENGTHEN

∑

i civi + c 6 0
∑

i civi + d⌈
c

d
⌉ 6 0

where d is the common divisor of

ci

The approach to our aforementioned problem consists of two main steps:

• First, replace the DIV rule and rewrite P using the new set of proof
rules R′, the re-written proof is called an R′-proof of unsatisfiablity or
P ′.

• Second, extract an interpolant for (A,B) from P ′.

The first step is addressed in section 3.3 and the second step in section 3.4.

3.3 Division elimination

Theorem 1. For anyR-proof of unsatisfiablity P , there exists anR′-proof of
unsatisfiablity P ′ that proves the same property. In addition, if P is viewed

16

as a tree whose nodes are formulae and edges are annotated with integer
coefficients used in the rules, then P and P ′ have exactly the same number
of nodes and edges. The only difference between them is that formulae in P ′

are multiplications of formulae in P and some factor f .

PROOF. by induction on the depth k of the proof tree.

In order to easily identify which node is the result of which rule, we will
tag the initial letter of the rule on each node. That is an L/C/D/S-node
is a node introduced by rule LEQEQ/COMB/DIV/STRENGTHEN respec-
tively. C-nodes have two parental nodes and edges annotated with integer
coefficients while other nodes have only one parental node and annotated
edge.

• k = 1: If the root of P is either an L-node or a C-node, then P ′ ≡ P
and nodes in P ′ are multiplications of nodes in P and 1. If the root of
P is a D-node introduced by a division by d, then P ′ is obtained from
P by replacing the D-node with its multiplication by d. The root of
P ′ is actually an S-node with the gaining factor of d, meaning that the
P ′-root formula is a multiplication of d and the P -root formula.

• Now assume that the theorem is true for k = n. Then for an R-
proof tree P of depth n + 1, if its root is a C-node with two parental
edges annotated with cL and cR, we can always change its left and right
subtree intoR′-proof trees with gaining factor of fL and fR respectively.
To finish structuring P ′, we create aC-root and annotate the two edges
that connect it to the new left subtree with cL ∗fR and to the new right
subtree with cR ∗fL. The gaining factor of the new root is then fL ∗fR.
If P instead has a D-root, we similarly change its subtree into an R′-
proof tree with a gaining factor f and then create an S-root to connect
to it. The gaining factor at this new S-root is f ∗ d.

The induction steps show that we can always transform any R-proof P into
anR′-proof P ′ whose nodes are multiplications of nodes in P and some factor.
Particularly, the P ′-root formula is a multiplication of the P -root formula
which is ⊥. Therefore, this results in P ′ being also a proof of unsatisfiability
and completes the proof of the theorem.

17

3.4 Interpolant from an R′-proof of unsatisfi-

ablity

Generating interpolants for R′-proofs consists of two phases:

• Compute PIs for formulae introduced along the proof tree using rules
given in section 3.4.1.

• Derive the final interpolant from the PIs using rules given in section
3.4.2.

3.4.1 Partially interpolating rules

Definition 3 - Partial Interpolant. A partial interpolant (PI) [3] is a
formula θpi that record the A-contribution to a formula θ obtained jointly
from A and B such that: (i) A ⊢ θpi (ii) B ∧ θpi ⊢ θ

To derive PIs for formulae obtained from rules in R′, we use the following
partially interpolating rules:

1. LEQEQL

t ◦ 0

t 6 0[t 6 0]
t ◦ 0 ∈ A

2. LEQEQR

t ◦ 0

t 6 0[0 6 0]
t ◦ 0 ∈ B

3. COMB
t1 6 0[tpi1 6 0] t2 6 0[tpi2 6 0]

c1t1 + c2t2 6 0[c1tpi1 + c2tpi2 6 0]
where c1, c2 > 0

4. STRENGTHEN

∑

i civi + c 6 0[tpi 6 0]
∑

i civi + d⌈
c

d
⌉ 6 0[tpi + j 6 0]

where
d is the common divisor of ci

0 6 j 6 d⌈
c

d
⌉ − c

In the last rule, the derived PI formula (tpi+j 6 0) records theA′-contribution
to a formula obtained jointly from A′ and B′ where A′ = A ∪ {tpi + j 6 0}

and B′ = B ∪ {
∑

i civi + d⌈
c

d
⌉ − (tpi + j) 6 0}. With this rule, we are

branching on j, fixing it to a different constant value between
[

0, k
]

in each

branch where k = d⌈
c

d
⌉ − c. At the end, we will have k interpolants from k

branches which are then combined together to produce the real interpolant
for (A,B).

18

3.4.2 Fully interpolating rules

It is noticeable that in R′, only rule STRENGTHEN introduces additional
premises. As a result, we might end up obtaining (A′,B′) ⊢ ⊥[tpi 6 0] where
A′/B′ is the union of all formulae originally in A/B and additional premises
added along the unsatisfiability proof. Therefore, tpi 6 0 serves as the inter-
polant for (A′,B′) and not for (A,B).

Let A∗/B∗ denote the sets of premises before applying rule STRENGTHEN,
Aj

k/B
j

k denote the union of A∗/B∗ and additional premises added by rule
STRENGTHEN, t 6 0 denote the premise used in rule STRENGTHEN, k

denote d⌈
c

d
⌉ − c. In order to derive the interpolant for (A∗,B∗), we need a

rule to connect the interpolants of (Aj

k,B
j

k) and (A∗,B∗) as follows:

k-CONN

(A∗,B∗) ⊢ t 6 0[tpi 6 0]
(A0

k,B
0
k) ⊢ ⊥[I0k]
...

(Ak
k,B

k
k) ⊢ ⊥[Ikk]

(A∗,B∗) ⊢ ⊥[
∨

06j<k

(

Ijk ∧ Ej

k

)

∨ Ikk]

where

Ej

k = {tpi + j = 0};

Aj

k = {A∗, tpi + j 6 0};

Bj

k = {B∗, t+ k − (tpi + j) 6 0}

Note that tpi + j = 0 can still contain local symbols that occur only in A∗.
And when the formula does contain such symbols, it is neccessary to intro-
duce existential quantifiers to quantify A∗-local symbols before combining
the formula with other PIs. From now on, let’s assume that tpi + j = 0 does
not contain A∗-local symbols, for the sake of brevity.

3.5 Soundness of partially interpolating rules

The soundness of rule LEQEQL, LEQEQR and COMB has been proved by
[McMillan 2005]. To conclude the soundness of our partially interpolating
rules, we only need to prove that rule STRENGTHEN is also sound.

In the STRENGTHEN rule, we have expanded A to include the assump-
tion of tpi+ j 6 0 and B to include t+k− (tpi+ j) 6 0 where t =

∑

i civi+ c,
therefore tpi + j 6 0 is obviously a partial interpolant for t + k 6 0 which is
obtained jointly from the newly-expanded sets of premises.

19

3.6 Soundness of fully interpolating rules

3.6.1 1-CONN

Rule 1-CONN is the simplest instance of rule k-CONN when k = 1.

1-CONN

(A∗,B∗) ⊢ t 6 0[tpi 6 0]
(A0

1,B
0
1) ⊢ ⊥[I01]

(A1
1,B

1
1) ⊢ ⊥[I11]

(A∗,B∗) ⊢ ⊥[(I01 ∧ E0
1) ∨ I11]

where

E0
1 = {tpi = 0};

Aj
1 = {A∗, tpi + j 6 0};

Bj
1 = {B∗, t+ 1− (tpi + j) 6 0}

We have (Ae,Be) ⊢ ⊥[E0
1] where Ae = {A∗, tpi = 0} and Be = {B∗, t− tpi =

0} because:

(i) Ae ⊢ E0
1

(ii) Combining E0
1 and t − tpi = 0 (from Be), we obtain t = 0 which is

unsatisfiable as it is the premise of rule STRENGTHEN where k = 1.
Hence, Be,E

0
1 ⊢ ⊥

Then A∗ ⊢ I01 ∧ E0
1, I

1
1 is valid because A∗ ⊢ E0

1, I
1
1 is valid:

Ae ⊢ E0
1

Ae ⊢ E0
1, I

1
1

A1
1 ⊢ I11

A1
1 ⊢ E0

1, I
1
1

Ae ∨A1
1 ⊢ E0

1, I
1
1

{A∗, tpi = 0} ∨ {A∗, tpi + 1 6 0} ⊢ E0
1, I

1
1

A∗, tpi 6 0 ⊢ E0
1, I

1
1

A∗ ⊢ tpi 6 0

A∗ ⊢ tpi 6 0,E0
1, I

1
1

A∗ ⊢ E0
1, I

1
1

and A∗ ⊢ I01, I
1
1 is valid:

A0
1 ⊢ I01

A∗, tpi 6 0 ⊢ I01

A∗ ⊢ tpi 6 0

A∗ ⊢ tpi 6 0, I01
A∗ ⊢ I01

A∗ ⊢ I01, I
1
1

20

Similarly B∗, (I01 ∧ E0
1) ∨ I11 ⊢ ⊥ is valid because B∗,E0

1, I
0
1 ⊢ ⊥ is valid:

Be,E
0
1 ⊢ ⊥

Be,E0
1, I

0
1 ⊢ ⊥

B0
1, I

0
1 ⊢ ⊥

B0
1,E

0
1, I

0
1 ⊢ ⊥

Be ∨B0
1,E

0
1, I

0
1 ⊢ ⊥

{B∗, t− tpi = 0} ∨ {B∗, t+ 1− tpi 6 0},E0
1, I

0
1 ⊢ ⊥

B∗, t− tpi 6 0,E0
1, I

0
1 ⊢ ⊥

B∗ ⊢ t− tpi 6 0

B∗,E0
1, I

0
1 ⊢ t− tpi 6 0

B∗,E0
1, I

0
1 ⊢ ⊥

And B∗, I11 ⊢ ⊥ is valid:

B1
1, I

1
1 ⊢ ⊥

{B∗, t− tpi 6 0}, I11 ⊢ ⊥

B∗ ⊢ t− tpi 6 0

B∗ ⊢ t− tpi 6 0,⊥

B∗, I11 ⊢ ⊥

As a result, we can affirm the soundness of rule 1-CONN.

3.6.2 1-CONN*

From the premise (A0
1,B

0
1) ⊢ ⊥[I01] used in rule 1-CONN, we can infer:

〈{A0
1, tpi = 0}{B0

1}〉 ⊢ ⊥[I01]

Replacing the original premise with this slightly modified premise, we obtain
rule 1-CONN* which produces the same conclusion. This rule is introduced
for later use in proving the soundness of the k-CONN rule in the next section.

1-CONN*

(A∗,B∗) ⊢ t 6 0[tpi 6 0]
〈{A0

1, tpi = 0}, {B0
1}〉 ⊢ ⊥[I01]

(A1
1,B

1
1) ⊢ ⊥[I11]

(A∗,B∗) ⊢ ⊥[(I01 ∧E0
1) ∨ I11]

where

E0
1 = {tpi = 0};

Aj
1 = {A∗, tpi + j 6 0};

Bj
1 = {B∗, t+ 1− (tpi + j) 6 0}

The proof for the soundness of this rule follows the same line of that for rule
1-CONN in section 3.6.1.

21

3.6.3 k-CONN

In order to prove the soundness of rule k-CONN, we first prove the validity
of the following induction:

(Cj
n,D

j
n) ⊢ ⊥[Ijk ∧ (n = 0 ∨ Ej

k)]

This induction then enables us to prove the second induction:

(Fj
n,G

j
n) ⊢ ⊥[

∨

06q<n(I
q+j

k ∧Eq+j

k) ∨ In+j

k]

which finally allows us to conclude the soundness of rule k-CONN.

a) First induction: (Cj
n,D

j
n) ⊢ ⊥[Ijk ∧ (n = 0 ∨Ej

k)]

Where:

Cj
n = {A∗, tpi + j 6 0, tpi + j = 0};

Dj
n =

B∗,
t + k − n− (tpi + j) 6 0,
...,
t− (tpi + j) 6 0

For all n s.t. 0 6 n 6 k, we prove the induction is valid for all j.
Base case: since (Aj

k,B
j

k) ⊢ ⊥[Ijk] (which is a premise of k-CONN) we can
infer:

{Aj

k, tpi + j = 0}, {Bj

k, t+ k − (tpi + j) 6 0, ..., t− (tpi + j) 6 0} ⊢ ⊥[Ijk] or

{A∗, tpi+j 6 0, tpi+j = 0}, {Bj

k, t+k−(tpi+j) 6 0..., t−(tpi+j) 6 0} ⊢ ⊥[Ijk]

which is (Cj
0,D

j
0) ⊢ ⊥[Ijk]

Step case: assuming that the induction is valid up to n < k, we apply the
1-CONN rule to prove the induction is also valid for n + 1.

1-CONN

(Cj
n+1,D

j
n+1) ⊢ t+ k − n− 1 6 0[tpi + j 6 0]

(Cj0
n1,D

j0
n1) ⊢ ⊥[Ij0n1]

(Cj1
n1,D

j1
n1) ⊢ ⊥[Ij1n1]

(Cj
n+1,D

j
n+1) ⊢ ⊥[(Ij0n1 ∧ Ej0

n1) ∨ Ij1n1]

where

Ej0
n1 = {tpi + j = 0};

Cjh
n1 = {Cj

n+1, tpi + j + h 6 0}, (0 6 h 6 1);

Djh
n1 = {Dj

n+1, t+ k − n− (tpi + j + h) 6 0}

Notice that Ej0
n0

≡ Ej

k ≡ (tpi + j = 0). In addition Ij0n1 ≡
(

Ijk ∧ (n = 0∨Ej

k)
)

because the inductive step n has been proved valid and:

22

• Cj0
n1 ≡ {Cj

n+1, tpi + j 6 0} ≡ Cj
n

• Dj0
n1 = {Dj

n+1, t+ k − n− (tpi + j) 6 0} ≡ Dj
n

Also Ij1n1 ≡ ⊥ because Cj1
n1 contains tpi + j = 0 and tpi + j + 1 6 0 which is

a contradiction. Since n > 0 in this inductive step:

(Ij0n1 ∧ Ej0
n1) ∨ Ij1n1 =

[

Ijk ∧
(

(n = 0) ∨Ej

k

)]

∧ Ej

k

= Ijk ∧Ej

k

= Ijk ∧
(

(n+ 1) = 0 ∨ Ej

k

)

b) Second induction: (Fj
n,G

j
n) ⊢ ⊥[

∨

06q<n(I
q+j

k ∧ Eq+j

k) ∨ In+j

k]

Where:

Fj
n = {A∗, tpi + j 6 0};

Gj
n =

B∗,
t + k − n− (tpi + j) 6 0,
...,
t− (tpi + j) 6 0

For all n s.t. 0 6 n 6 k, we prove the induction is valid for all j.
Base case: since (Aj

k,B
j

k) ⊢ ⊥[Ijk] (which is a premise of k-CONN) we can
infer:

{Aj

k}, {B
j

k, t+ k − (tpi + j) 6 0, ..., t− (tpi + j) 6 0} ⊢ ⊥[Ijk] or

{A∗, tpi + j 6 0}, {Bj

k, t+ k − (tpi + j) 6 0, ..., t− (tpi + j) 6 0} ⊢ ⊥[Ijk] or

(Fj
0,G

j
0) ⊢ ⊥[Ijk]

Step case: assuming that the induction is valid up to n < k, we apply the
1-CONN* rule to prove the induction is also valid for n+ 1.

1-CONN*

(Fj
n+1,G

j
n+1) ⊢ t+ k − (n+ 1) 6 0[tpi + j 6 0]

〈{Fj0
n1, tpi + j = 0}, {Gj0

n1}〉 ⊢ ⊥[Ij0n1]

(Fj1
n1,G

j1
n1) ⊢ ⊥[Ij1n1]

(Fj
n+1,G

j
n+1) ⊢ ⊥[(Ij0n1 ∧Ej0

n1) ∨ Ij1n1]

where

Ej0
n1 = {tpi + j = 0};

Fjh
n1 = {Fj

n+1, tpi + j + h 6 0}, (0 6 h 6 1);

Gjh
n1 = {Gj

n+1, t+ k − n− (tpi + j + h) 6 0}

Notice that Ej0
n1 ≡ Ej

k ≡ (tpi + j = 0). In addition Ij0n1 ≡ [Ijk ∧ (n = 0 ∨ Ej

k)]
because of the first induction proved previously and:

23

• {Fj0
n1, tpi + j = 0} ≡ {Fj

n+1, tpi + j 6 0, tpi + j = 0} ≡ Cj
n

• Gj0
n1 = {Gj

n+1, t+ k − n− (tpi + j) 6 0} ≡ Dj
n

Also Ij1n1 ≡ [
∨

06q<n(I
q+j+1

k ∧ Eq+j+1

k) ∨ In+j+1

k] because the inductive step n
has been proved valid for all j′ which in this particular case is j + 1:

• Fj1
n1 = {Fj

n+1, tpi + j +1 6 0} ≡ {Fj+1
n , tpi + j 6 0} ≡ {Fj′

n, tpi + j 6 0}

• Gj1
n1 = {Gj

n+1, t+ k − n− (tpi + j + 1) 6 0} ≡ Gj+1
n ≡ Gj′

n

Since n > 0 in this inductive step:

(Ij0n1 ∧ Ej0
n1
) ∨ Ij1n1 =

[

Ijk ∧
(

(n = 0) ∨Ej

k)
)

∧Ej

k

]

∨ Ij1n1

=
(

Ijk ∧ Ej

k

)

∨
∨

06q<n

(Iq+j+1

k ∧Eq+j+1

k) ∨ In+j+1

k

=
∨

06q<n+1

(Iq+j

k ∧ Eq+j

k) ∨ I
(n+1)+j

k

The soundness of rule k-CONN is proved when applying the second induction
for n = k and j = 0:

(F0
k,G

0
k) ⊢ ⊥[

∨

06q<k(I
q

k ∧ Eq

k) ∨ Ikk] where F0
k ≡ A∗,G0

k ≡ B∗

3.7 Examples

3.7.1 With one STRENGTHEN application

Consider the following sets of LA(Z) atoms:

A = {−y − 4x− 1 6 0, y + 4x 6 0}

B = {y + 4z − 2 6 0,−y − 4z + 1 6 0}

An R′-proof of unsatisfiability P for A ∧B is the following:

−y − 4x− 1 6 0

−y − 4x− 1 6 0
(1)

y + 4z − 2 6 0

y + 4z − 2 6 0
(2)

4z − 4x− 3 6 0
(3)

4z − 4x 6 0
(4)

y + 4x 6 0

y + 4x 6 0
(1)

−y − 4z + 1 6 0

−y − 4z + 1 6 0
(2)

4x− 4z + 1 6 0
(3)

1 6 0
(3)

The numbers in brackets denote R′-rules (i.e. (1) for LEQEQL, (2) for

24

LEQEQR, etc.). In the above proof, we use a STRENGTHEN rule with
k = 3 so the corresponding PIs-tree is as follows:

−y − 4x− 1 6 0
(1)

0 6 0
(2)

−y − 4x− 1 6 0
(3)

−y − 4x− 1 + j 6 0
(4)

y + 4x 6 0
(1)

0 6 0
(2)

y + 4x 6 0
(3)

j − 1 6 0
(3)

Because we were branching on j, Ej

k = −y − 4x− 1 + j and the interpolant

obtained in each branch is Ijk = {j−1 6 0}. The final interpolant for (A,B)
is:

∨

06j<k

(

Ijk ∧Ej

k

)

∨ Ikk = (I03 ∧E0
3) ∨ (I13 ∧ E1

3) ∨ (I23 ∧ E2
3) ∨ I33

= (⊤ ∧E0
3) ∨ (⊤ ∧ E1

3) ∨ (⊥ ∧ E2
3) ∨ ⊥ = E0

3 ∨ E1
3

= (−y − 4x− 1 = 0) ∨ (−y − 4x− 1 + 1 = 0)

= (y + 1 = −4x) ∨ (y = −4x)

=
∨

06j61

4|(y + j)

3.7.2 With two or more STRENGTHEN applications

Consider the following sets of LA(Z) atoms:

A = {−y − 4x− 1 6 0, y + 4x+ 1 6 0}

B = {y + 4z − 2 6 0,−y − 4z + 1 6 0}

An R′-proof of unsatisfiability P for A ∧B is the following:

−y − 4x− 1 6 0

−y − 4x− 1 6 0
(1)

y + 4z − 2 6 0

y + 4z − 2 6 0
(2)

4z − 4x− 3 6 0
(3)

4z − 4x 6 0
(4)

y + 4x+ 1 6 0

y + 4x+ 1 6 0
(1)

−y − 4z + 1 6 0

−y − 4z + 1 6 0
(2)

4x− 4z + 2 6 0
(3)

4x− 4z + 4 6 0
(4)

1 6 0
(3)

In the above proof, we use two STRENGTHEN applications with k = 3 and
k′ = 2 so the corresponding PIs-tree is as follows:

−y − 4x− 1 6 0
(1)

0 6 0
(2)

−y − 4x− 1 6 0
(3)

−y − 4x− 1 + j 6 0
(4)

y + 4x+ 1 6 0
(1)

0 6 0
(2)

y + 4x+ 1 6 0
(3)

y + 4x+ 1 + j′ 6 0
(4)

j + j′ 6 0
(3)

25

Assuming that we were branching on j first and then on j′, the interpolant
obtained in every combined branch is Ijj

′

kk′ = {j + j′ 6 0}. We write jj′ to
denote the order of applying STRENGTHEN rules on different nodes or the
branching order on auxiliary variables j, j′. Moreover, Ej

k = −y− 4x− 1+ j

and Ejj′

kk′ = y+4x+1+j′. We will first combine k′ interpolants (Ij0kk′, ..., I
jk′

kk′)
obtained in every j-branch and then combine k interpolants (I0k, ..., I

k
k) from

the j-branches to produce the final interpolant for (A,B). Let (Aj

k,B
j

k) be

the set of premises after branching on j, then the interpolant for (Aj

k,B
j

k) is:

Ijk =
∨

06j′<k′

(

Ijj
′

kk′ ∧ Ejj′

kk′

)

∨ Ijk
′

kk′

=
[

(j 6 0 ∧ y + 4x+ 1 = 0) ∨ (j + 1 6 0 ∧ y + 4x+ 2 = 0) ∨ (j + 2 6 0)
]

Combining all Ijk, we obtain the interpolant for (A,B):

∨

06j<k

(

Ijk ∧Ej

k

)

∨ Ikk = (I03 ∧E0
3) ∨ (I13 ∧ E1

3) ∨ (I23 ∧ E2
3) ∨ I33

= (y + 4x+ 1 = 0 ∧E0
3) ∨ (⊥ ∧E1

3) ∨ (⊥ ∧ E2
3) ∨ ⊥

= (y + 4x+ 1 = 0) ∧ (−y − 4x− 1 = 0)

= (y + 1 = −4x)

= 4|(y + 1)

In general, assuming that we use n STRENGTHEN applications in our proof.
Then our interpolant obtained in each branch is Ij1...jnk1...kn

. To compute the in-
terpolant for (A,B), we could follow the same procedure as described above.

That is, we combine ki (where 1 6 i 6 n) interpolants Ij1...0k1...ki
, ..., I

j1...(ki−1)
k1...ki

together to obtain I
j1...ji−1

k1...ki−1
:

I
j1...ji−1

k1...ki−1
=

∨

06ji<ki

(Ij1...jik1...ki
∧Ej1...ji

k1...ki
) ∨ Ij1...ki

k1...ki

In the end, the interpolant for (A,B) is
∨

06j<k

(

Ijk∧E
j

k

)

∨Ikk. However, if one

wants to generate the interpolant directly by using Ij1...jnk1...kn
, there is another

way as well which does not require indirect interpolation computation as
above. We notice that:

I
j1...ji−1

k1...ki−1
∧ E

j1...ji−1

k1...ki−1
=

[

∨

06ji<ki

(Ij1...jik1...ki
∧ Ej1...ji

k1...ki
) ∨ Ij1...ki

k1...ki

]

∧ E
j1...ji−1

k1...ki−1

=
∨

06ji<ki

(Ij1...jik1...ki
∧ E

j1...ji−1

k1...ki−1
∧ Ej1...ji

k1...ki
) ∨ (Ij1...ki

k1...ki
∧ E

j1...ji−1

k1...ki−1
)

26

Hence:

I
j1...ji−2

k1...ki−2
=

∨

06ji−1<ki−1

[

∨

06ji<ki

(Ij1...jik1...ki
∧ E

j1...ji−1

k1...ki−1
∧ Ej1...ji

k1...ki
) ∨ (Ij1...ki

k1...ki
∧E

j1...ji−1

k1...ki−1
)
]

∨ I
j1...ki−1

k1...ki−1

=
∨

06ji−1<ki−1

[

∨

06ji<ki

(Ij1...jik1...ki
∧ E

j1...ji−1

k1...ki−1
∧ Ej1...ji

k1...ki
) ∨ (Ij1...ki

k1...ki
∧E

j1...ji−1

k1...ki−1
)
]

∨

∨

06ji<ki

(I
j1...ki−1ji
k1...ki−1ki

∧E
j1...ki−1ji
k1...ki−1ki

) ∨ I
j1...ki−1ki

k1...ki−1ki

The above formula is a disjunction of many conjunctions. Each conjunction
is characterized by a set of values for (j1, ..., ji). We notice that Ej1...ji

k1...ki
does

not appear in conjunctions where ji = ki. Similarly, E
j1...ji−1

k1...ki−1
does not appear

in conjunctions where ji−1 = ki−1. Therefore, as we goes on, we will see that

neither does E
j1...ji−2

k1...ki−2
appear in conjunctions where ji−2 = ki−2. Generalizing

this fact, we would obtain the interpolant for (A,B) as follows:

I =
∨

06j16k1
...

06jn6kn

[

Ij1...jnk1...kn

∧

16i6n

(

not appear(j1, ..., ji) ∨ Ej1...ji
k1...ki

)]

where:

• Ij1...jnk1...kn
is the interpolant obtained in each branch

• Ej1...ji
k1...ki

is the PI equality of the conclusion of rule STRENGTHEN

• not appear(j1, ..., ji) =

{

⊤ if ji = ki
⊥ if ji < ki

27

Chapter 4

Implementation and Empirical
results

In this chapter, we describe our approach in computing interpolants for con-
junctions of LA(Z)-equalities and weak inequalities. We then give several
examples to illustrate our interpolation algorithm. At the end of this chap-
ter, we present some preliminary results of our prototype tool on the RINGS
benchmark.

28

Chapter 5

Conclusions

5.1 Conclusion and future work

29

Bibliography

[1] Clark Barrett, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.
Splitting on demand in sat modulo theories. In Miki Hermann and An-
drei Voronkov, editors, Proceedings of the 13th International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR
’06), volume 4246 of Lecture Notes in Computer Science, pages 512–526.
Springer-Verlag, nov 2006. Phnom Penh, Cambodia.

[2] Dirk Beyer, Damien Zufferey, and Rupak Majumdar. Csisat: Interpola-
tion for la+euf. In Aarti Gupta and Sharad Malik, editors, CAV, volume
5123 of Lecture Notes in Computer Science, pages 304–308. Springer,
2008.

[3] Angelo Brillout, Daniel Kroening, Philipp Rümmer, and Thomas Wahl.
An interpolating sequent calculus for quantifier-free presburger arith-
metic. In Jürgen Giesl and Reiner Hähnle, editors, Proceedings, Inter-
national Joint Conference on Automated Reasoning (IJCAR), lncs. spv,
2010. To appear.

[4] Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Efficient
interpolant generation in satisfiability modulo theories. In Orna Grum-
berg and Michael Huth, editors, TACAS, volume 4963 of Lecture Notes
in Computer Science, pages 397–412. Springer, 2008.

[5] Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Inter-
polant generation for utvpi. In Renate A. Schmidt, editor, CADE,
volume 5663 of Lecture Notes in Computer Science, pages 167–182.
Springer, 2009.

[6] Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Efficient
generation of craig interpolants in satisfiability modulo theories. ACM
Transactions on Computational Logic (TOCL), To Appear.

[7] Vijay D’Silva, Daniel Kroening, Mitra Purandare, and Georg Weis-
senbacher. Interpolant strength. In Gilles Barthe and Manuel V.

30

Hermenegildo, editors, VMCAI, volume 5944 of Lecture Notes in Com-
puter Science, pages 129–145. Springer, 2010.

[8] R.E. Gomory. An algorithm for integer solutions of linear programs.
Recent Advances in Mathematical Programming, pages 269–302, 1963.

[9] Himanshu Jain, Edmund M. Clarke, and Orna Grumberg. Efficient craig
interpolation for linear diophantine (dis)equations and linear modular
equations. Formal Methods in System Design, 35(1):6–39, 2009.

[10] Lahiri and Bryant. Deductive verification of advanced out-of-order mi-
croprocessors. In CAV: International Conference on Computer Aided
Verification, 2003.

[11] McMillan. Interpolation and sat-based model checking. In CAV: Inter-
national Conference on Computer Aided Verification, 2003.

[12] McMillan. An interpolating theorem prover. TCS: Theoretical Computer
Science, 345, 2005.

[13] Kenneth L. McMillan. Applications of craig interpolants in model check-
ing. In Nicolas Halbwachs and Lenore D. Zuck, editors, TACAS, volume
3440 of Lecture Notes in Computer Science, pages 1–12. Springer, 2005.

[14] G. Nelson. Extended static checking for java. Lecture Notes in Computer
Science, 3125:1, 2004.

[15] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and
monotone computations. Journal of Symbolic Logic, 62(3):981–998, sep
1997.

[16] Andrey Rybalchenko and Viorica Sofronie-Stokkermans. Constraint
solving for interpolation. In Byron Cook and Andreas Podelski, edi-
tors, VMCAI, volume 4349 of Lecture Notes in Computer Science, pages
346–362. Springer, 2007.

[17] Roberto Sebastiani. Lazy satisability modulo theories. JSAT, 3(3-
4):141–224, 2007.

[18] Roberto Sebastiani and Armando Tacchella. Sat techniques for modal
and description logics. In Armin Biere, Marijn Heule, Hans van Maaren,
and Toby Walsh, editors, Handbook of Satisfiability, volume 185, chapter
Frontiers in Artificial Intelligence and Applications, pages 781–824. IOS
Press, 2009.

31

[19] Viorica Sofronie-Stokkermans. Interpolation in local theory extensions.
In Ulrich Furbach and Natarajan Shankar, editors, IJCAR, volume 4130
of Lecture Notes in Computer Science, pages 235–250. Springer, 2006.

[20] Greta Yorsh and Madanlal Musuvathi. A combination method for gener-
ating interpolants. In Robert Nieuwenhuis, editor, CADE, volume 3632
of Lecture Notes in Computer Science, pages 353–368. Springer, 2005.

32

