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Abstract. Tunneling processes through black hole horizons have recently been investigated in the frame-

work of WKB theory discovering interesting interplay with the Hawking radiation. In this paper we

instead adopt the point of view proper of QFT in curved spacetime, namely, we shall use some scaling

limit techniques in order to obtain the leading order of the correlation functions related with tunneling

processess through a Killing horizon. The computation will be done with respect to a certain large class

of reference states for scalar fields. In the limit of sharp localization either on the external side or on op-

posite sides of the horizon, the quantum correlation functions are of thermal nature, where in both cases

the characteristic temperature is the Hawking one. Our approach is valid for every stationary charged

rotating non extremal black hole, however, since the computation is completely local, it covers the case

of a Killing horizon which just temporarily exist in some finite region too. These results give a strong

support to the idea that the Hawking radiation, which is detected at future infinity and needs some

global structures to be defined, is actually related to a local phenomenon which holds also for geometric

structures (local Killing horizons) existing just for a while.

1 Introduction

As is known, the Hawking radiation [Ha75] is detected at future null infinity of a spacetime
containing collapsing matter giving rise to a black hole. At least in case of spherical symmetry,
the existence and the features of that radiation is quite independent from the details of the
collapse, although the type of the short-distance behaviour of the two-point function of the
reference state employed to describe the modes of the radiation plays a relevant role [FH90]. In
recent years attention has been focused on local properties of models where the Hawking radiation
is manifest, here local means in a neighborhood of a point on the event horizon [PW00, ANVZ05].
In this second approach the radiation is related to some thermal effects shown by some tunneling
process through the horizon, namely the tunneling probability, computed in the framework of
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semiclassical WKB approach, has the characteristic thermal shape e−kE/TH , where TH is the
Hawking temperature and E the energy of the particle crossing the horizon. More precisely, the
exponential thermal factor arises when taking a limit towards the horizon for an endpoint of the
path of the classical particle.

This approach is interesting since it deals with local aspects only and, in this sense, is
more general than the standard framework. Actually it may be applied to pictures where some
geometric structure interpreted as the horizon exists “just for a while”, without extending into
a true global structure up to the future null infinity (where, traditionally, the Hawking radiation
is detected). Actually, in [DNVZZ07, HDVNZ09], even the case of a spherically symmetric black
hole in formation was analyzed, where no proper horizon structure exists, being replaced by a
dynamical horizon. Other interesting results, also considering the backreaction, can be found in
[KM07, MV05].

Within these new remarkable approaches it is however difficult to understand if the found
properties are state independent. This is essentially due to the fact that they are discussed at the
quantum-mechanical level rather than the quantum-field-theory level. Indeed, in the mentioned
papers it is assumed that there is some preferred notion of quantum particle whose wavefunction
satisfies the Klein-Gordon equation – treated however as a Schrödinger equation when dealing
with transition probabilities within the WKB framework. However, in curved spacetime there is
no natural definition of particle associated to a quantum field, unless fixing a preferred quasifree
reference state and building up the associated Fock-Hilbert space. Furthermore the procedure
exploited in [PW00, ANVZ05, DNVZZ07, HDVNZ09] needs a Feynman perscription to make
harmless a divergence that pops up when performing the above-mentioned limit toward the
horizon. As a matter of fact, that procedure turns the real-axis-computation into a complex-
plane-computation and the very imaginary part of the WKB amplitude, arising that way, leads
to the wanted factor e−kE/TH . The choice of that Feynman perscription does not seem to be
well motivated at quantum mechanical level, barring the fact that “a posteriori” it produces
the wanted remarkable result. It seems palusible that the choice of the Feynman regularization
procedure at quantum mechanical level is a remnant of the choice of a preferred reference state,
at quantum-field-theory level, whose two-point function has a short-distance divergence close to
that of Minkowski vacuum.

While sticking to the local aspects associated with states showing the Hawking radiation, dif-
ferently from the references quoted above, in this paper we shall deal with a definite framework
at the quantum-field-theory level. More precisely, we shall focus on the two-point correlation
function ω(Φ(x)Φ(y)) of a quantum field Φ settled in a (not necessarily quasifree) state ω whose
short-distance divergence is, essentially, of Hadamard type. This is one of the hypotheses ex-
ploited in [FH90] and actually encompasses a huge class of states, those that are supposed to
have a clear physical meaning [Wa94] especially in relation with the problem of the renormaliza-
tion of the stress-energy tensor and the computation of the quantum backreaction on the metric.
In the one-particle space ω(Φ(x)Φ(y)) corresponds, up to normalization, to a probability ampli-
tude and, in this sense, it measures the tunneling probability through the horizon when x and
y are kept at the opposite sides of the horizon.

From the geometric viewpoint we shall assume to work in a sufficiently small neighborhood O
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of a local Killing horizon structure H, also assuming that the surface gravity κ is nonvanishing
and constant along the horizon. We stress that, indifferently, the structure may be part the
future Killing event horizons of a stationary black hole, even charged and rotating in the full
Kerr-Newmann family (obtained by the collapse of matter) or it may be completely local and
ceasing to exists in the future of O in view of the general dynamics of the matter and the fields
in the considered spacetime. The requirement that the surface gravity is constant on the local
horizon means that, at least locally, a thermal equilibrium has been reached, since a constant
surface gravity corresponds to the validity of the zero-law of black-hole thermodynamics.

The existence of a timelike Killing vector K defining H provides the preferred notions of time
and energy we intend to consider. (In [DNVZZ07, HDVNZ09], dealing spherically-symmetric
black holes in formation, the notion energy was referred to the so called Kodama-Hayward vector
field that, in those backgrounds, extends the notion of Killing field.)

Exploiting general technical achievements about Killing horizons established in [KW91] and
[RW92], we shall prove that, independently from the choice of the quantum state (in above-
mentioned class), when the supports of the test functions centered on the two arguments x, y of
ω(Φ(x)Φ(y)) become closer and closer to the horizon – in a precise mathematical sense we shall
specify later – the two-point function acquires a thermal spectrum with respect to the notion of
time and energy associated with the Killing field. More precisely, if both arguments stay on the
same side of the horizon, the Fourier transform of the two-point function presents the very Bose-
Einstein shape driven by the Hawking temperature. Conversely, whenever the two arguments
are kept at the opposite sides of the horizon, the resulting spectrum is different, it is however in
agreement with Boltzmann’s distribution at the Hawking temperature for high energies. In both
cases, in order to catch the leading contribution to the two-point function, we shall exploit a
suitable scaling limit procedure [Bu96, BV95] towards the horizon. Oparting this way, the local
thermal nature of the correlation functions becomes manifest as a state independent feature.

The paper is organized as follows. In the next section we shall present our geometric hy-
potheses also reminding some technical results established in [KW91] and [RW92]. We assume
the reader is familiar with the standard notions of differential geometry of spacetimes [Wa84]
(in the remaining part of the work “submanifold” means smooth embedded submanifold). In
the subsequent section we shall compute the two-point function ω(Φ(x)Φ(y)) and its limit for
x, y approaching the horizon. The last section presents a summary and some general remarks.

2 Spacetime Geometry

2.1. Local geometry. We start our discussion fixing the basic geometric setup that we
shall use in the present paper. We henceforth consider a 4-dimensional (smooth) time-oriented
spacetime (M, g). Furthermore, we shall require that the following local geometric properties
hold. (Notice that these are the same as in [RW92]).

Definition 2.1. Let O be an open set contained in M , the local general geometric hypothe-
ses hold if it exists a smooth vector field K on O such that:

(a) K is a Killing field for g in O.
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(b) O contains a connected 3-submanifold H, the local Killing horizon, that is invariant
under the group of local isometries generated by K and KaKa = 0 on H.

(c) The orbits of K in O are diffeomorphic to some open interval contained in R and H admits
a smooth 2-dimensional cross section which intersects each orbit of K exactly once.

(d) The surface gravity – i.e. the function κ : H → R such that, in view of (a) and (b)
∇a(KbK

b) = −2κKa – turns out to be strictly positive1 and constant on H.

As we said above the local Killing horizon H may denote a horizon which exists “just for a
while”, without extending into a true global structure reaching the future null infinity. How-
ever, our hypotheses are particularly valid [RW92] in a neighborhood of any point on a black
hole horizon, once that, after the collapse, the metric has settled down to its stationary (not
necessarily static) form of any non-extreme black hole in the charged Kerr-Neumann family. In
particular our hypotheses and our results are valid for the Kerr black hole. There K is the
Killing vector defining the natural notion of time in the external region of the black hole and H

is (part of) the event horizon.
With the hypotheses (a) and (b), the integral lines of K along H can be re-parametrized to
segments of null geodesics and that ∇a(KbK

b) = −2κKa on H where the surface gravity,
κ : H → R, is constant along each fixed geodesic [Wa84]. The requirement (d) is not as strong
as it may seem at first glance. Indeed, it is possible to prove that whenever a spacetime admit-
ting a Killing horizon satisfies Einstein equations and the dominant energy condition is verified,
the surface gravity must be constant on the horizon [Wa84]. However, independently form the
dominant energy condition, κ turns out to be constant on the Killing horizon of a stationary
black hole [Wa84]. At least in the case κ > 0 this is the zero-th law of black hole thermodynamics
[Wa84], taking into account that κ

2π amounts to the Hawking temperature of the black hole.

2.2. Killing and Bifurcate Killing horizons. We shall now discuss the relation of the
previously introduced local geometric hypothesis with the more rigid case of bifurcate Killing
horizon. A Killing field K determines a bifurcate Killing horizon [Bo69] when it vanishes
on a connected 2-dimensional acausal space-like submanifold B ⊂ M , called the bifurcation
surface and K is light-like on the two K-invariant 3-dimensional null submanifods H+,H− ⊂M
generated by the pairs of null geodesic orthogonally emanated by B. In particular H+∩H− = B

and the null geodesics forming H+∪H− are re-parametrised integral lines of K on (H+∩H−)\B.
By definition, on H+ the field K in the future of B is directed outgoing B. The simplest example
of a bifurcate Killing horizon is that realized by the Lorentz boost K in Minkowski spacetime.
Other more interesting cases are those shown in maximally extended black hole geometries like
the Kruskal extension of the Schwarzschild even including the non-extreme charged rotating
case.

For our purposes it is important to notice that, in the case of a bifurcate Killing horizon, any
neighborhood O of a point on H+ with empty intersection with the bifurcation B, satisfies the
local general hypotheses stated above. It is very remarkably for physical applications and for our
subsequent discussion in particular, that such a result can be partially reversed as established by

1What actually matters is κ 6= 0, since κ > 0 can always be obtained in that case by re-defining K → −K.
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Figure 1: The region painted in light gray correspond to the horizon H while the region in dark
gray is the open set O1

Racz and Wald [RW92, RW96]. Actually, if the local general geometric hypotheses are fulfilled
on H, shrinking O around H if necessary, the spacetime outside O can be smoothly deformed
preserving the geometry inside O and extending K and H to the whole bifurcate Killing horizon
in the deformed spacetime. Thus, when studying local properties, the bifurcation B can be
“added” also to those spacetimes without bifurcation as is the case for black holes formed by
stellar collapse. One can than take advantage of the various technical properties of the bifurcate
Killing horizon as we shall do in the rest of the paper.

2.3. Killing vector and geodesical distance in O. Let us focus on a relevant coordinate
patch [KW91] defined in a neighborhood of H+ for a bifurcate Killing horizon generated by a
Killing vector field K (a similar construction can be made for H−). Let U denote an affine
parameter along the null geodesics forming H+ fixing the origin at the bifurcation B, thus,
each point p ∈ H+ is determined by the pair (U, s), where s ∈ B denotes the point which is
intersected by the null geodesic generator through p.

We shall now extend those coordinate system on a neighborhood of H+. To this end, for
each point q ∈ B, let us indicate by n the unique future pointing null vector which is orthogonal
to B and has inner product −1/2 with ∂

∂U . We extend n on all of H+ by parallel transport
along the null generators of H+. Let V denote the affine parameter along the null geodesics
determined by n, with V= 0 on B. It is clear that (V,U, s) characterizes points in a sufficiently
small neighborhood of H+. We are thus in place of introducing the sought coordinate patch. If
(x3, x4) denote coordinates defined on a open neighborhood (in B) of a point in B, a coordinate
patch (V,U, x3, x4), we call adapted to H+, turns out to be defined in corresponding open
neighborhoods (in M) of points on H+. In these coordinates:

g�H+= −1

2
dU ⊗ dV − 1

2
dV ⊗ dU +

4∑
i,j=3

hij(x
3, x4)dxi ⊗ dxj , (1)
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where metric h is that induced by g on B, it is thus positive defined, and it does not depend on
V,U . We stress once more that, in view of Racz-Wald’s result, such a coordinate system always
exits provided the local geometric hypotheses hold for a sufficiently small set O.

In the rest of the paper, referring to this geometric structure in O, we shall employ the
following notation. We shall indicate by SV,U the cross section of O at V,U constant, moreover,
s(p) ∈ B will be the point with coordinates (x3, x4) when p ∈ O has coordinates (V,U, x3, x4).
The set Gδ(p, V

′, U ′) ⊂ SV ′,U ′ is defined as the set whose image s(Gδ(p, V
′, U ′)) ⊂ B under s

coincides with the open h-geodesical ball centered on s(p) with radius δ. Finally we shall denote
by σ(p, p′) the squared g-geodesic distance between points p, p′ ∈ O taken with sign between
any couple of points p, p′ contained some g-geodesically convex neighborhood and by `(s, s′)
the squared (signed) h-geodesic distance between points s, s′ in some h-geodesically convex
neighborhood contained in B . Making use of the preceding definitions and the introduced
notations, we are in place of presenting the following useful proposition, which is also based on
achievements in [KW91].

Proposition 2.1. Let O be a set on which the local general geometric hypotheses hold, and,
let O1 be another open set such that O1 ⊂ O is compact and it has vanishing intersection with
H. Suppose that O is covered by coordinates adapted to H+, so that p ∈ O has coordinates
(V,U, x3, x4) and p ∈ H iff V = 0. The following holds.

(a) In O, the decomposition K = K1 ∂
∂V +K2 ∂

∂U +K3 ∂
∂x3

+K4 ∂
∂x4

is valid and, if p ∈ O1:

K1(p) = −κV + V 2R1(p) , K2(p) = κU + V 2R2(p) , Ki(p) = V Ri(p) , i = 3, 4 , (2)

where R1, R2, Ri are bounded smooth functions defined on O1.

(b) If O1 is sufficiently small and included in a g-geodesically convex and if p, p′ ∈ H ∩ O1,
then σ(p, p′) = `(s(p), s(p′)).

(c) If O1 is as in (b), there exist δ > 0 such that for every fixed p ∈ O1, the smooth map
Gδ(p, V

′, U ′) 3 p′ 7→ σ(p, p′) has vanishing s-gradient in a unique point q(p, V ′, U ′) attain-
ing its minimum there. In particular s(q(p, V ′, U ′)) = s(p) if p ∈ H.

(d) For p and q = q(p, V ′, U ′) as in (c):

σ(p, q) = `(s(p), s(q))− (U − U ′)(V − V ′) +R(p, V ′, U ′) , (3)

where R(p, V ′, U ′) = AV 2 +BV ′2 +CV V ′, for some bounded smooth functions A,B,C of
p, V ′, U ′.

Proof. (a) ∇aKb +∇bKa = 0 and ∇a(KbK
b) = −2κKa on H imply that ∇KK = κK on H, so

that K�H= κU ∂
∂U because U is an affine parameter and K vanishes on B where U = 0. If xa is

any of x1 = V, x2 = U, x3, x4, exploiting the parallel transport used to define the coordinates:

Γa21�H= Γa12�H= Γa22�H= Γa11�H= Γ1
2a�H= Γ1

a2�H= Γ2
a1�H= Γ2

1a�H= 0 . (4)

(The fifth one is equivalent to g( ∂
∂U ,∇ ∂

∂U

∂
∂xa ) �H= 0 and it arises from g( ∂

∂U ,
∂
∂xa ) = −na

and ∇ ∂
∂U

∂
∂U = 0 on H, the seventh one arises similarly.). Next, taking the first-order Taylor
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expansion in V of both K1 and gab about V = 0, we have, for some smooth function V 2R1(p)
bounded in view of the compacteness of O1,

K1 = K1�H +V

(
g1b�H

∂Kb

∂V
�H +Kb�H

∂g1b

∂V
�H

)
+ V 2R1(p) . (5)

¿From ∂gab

∂xc = −gbdΓacd − gadΓbcd and and (4), exploiting (1) and K1 = 0 on H, the identity (5)

semplifies: The last derivative vanishes and K1 = −V ∂K2
∂V �H +V 2R1(p). On the other hand,

∇2K1 +∇1K2 = 0 evaluated on H and using (4) leads to ∂K2
∂V �H= −∂K1

∂U �H, so that:

K1 = −V ∂K1

∂U
�H +V 2R1(p) = V

(
g1a�H

∂Ka

∂U
�H +Ka�H

∂g1a
∂U
�H

)
+ V 2R1(p) .

The last derivative vanishes in view of (4), (1) and the know identity ∂gab
∂xc = gbdΓ

d
ca + gadΓ

d
cb.

Therefore the first identity in (2) holds in view of (1) and K�HR= κU ∂
∂U . The second one can

be proved with the same procedure noticing that the Killing identity ∇VK1 = 0, on H, becomes
∂K1
∂V �H= 0 in view of (4). The last identity in (2) is obvious.

(b) Since the geodesically convex neighborhoods form a base of the topology and the pro-
jection π : (V,U, s) 7→ (0, 0, s) is continuous, if O1 is chosen to be sufficiently small, we have
that O1 is contained in a geodesically convex neighborhood while, at the same time, π(O1) is
contained in a h-geodesically convex neighborhood in B. Without loosing generality, we can
further assume that the latter is included in a g-geodesically convex neighborhood of M . Thus
σ(p, p′), σ(s, s′) and `(s, s′) are simultaneously defined for p, p′ ∈ O1 ∩H for a sufficiently small
O1. We notice that, σ(p, p′) is invariant under the action of the Killing isometry. Hence, for
any p, p′ ∈ H ∩ O1 we get the identity σ(p, p′) = σ(s, s′) taking the limit towards B of the flow
generated by the Killing field K applied to p, p′. Finally σ(s, s′) = `(s, s′) because B is totally
geodesic as it can be proved by direct inspection.

(c) Let (V,U, s) ≡ p and (V ′, U ′, s′) ≡ p′. Whenever both points p and p′ are contained on the
horizon, namely V = V ′ = 0, the thesis holds in view of (b) and the fact that `(s, s′) is positive
defined, with positively-defined Hessian matrix in the coordinates x′3, x′4 of s′. Furthermore, in
this case s(q(p, 0, U ′)) = s(p). By continuity, that Hessian matrix remains positively defined if
p, p′ stay close to H, so that, any zero q(p, V ′, U ′) of the x′3, x′4-gradient of SV ′,U ′ 3 p′ 7→ σ(p, p′)
determines a minimum of σ(p, p′). Taking the Taylor expansion of ∇x′iσ(p, p′) (i = 3, 4) centered
on a point in H×H with respect to all the coordinates of p and p′, the equation for q(p, V ′, U ′)
can easily be handled by exploiting Banach’s fix point theorem, proving the existence and
the uniqueness of q(p, V ′, U ′) for p ∈ O1 sufficiently shrinked around H, and p′ varying in a
neighborhood Gδ(p, V

′, U ′) of (0, U ′, s) in SV ′,U ′ . We recall that Gδ(p, V
′, U ′) is the preimage

through SV ′,U ′ 3 p′ 7→ s(p′) of a geodesic ball on B centered on s(p). The compactness of O1

and a continuity argument assures that δ > 0 can be chosen uniformly in p.
(d) Keeping U,U ′, x3, x4 fixed, the expansion (3) is nothing but the first-order (V, V ′)-Taylor

expansion of σ(p, q(p, V ′, U ′)) at V = V ′ = 0, paying attention to the fact that the coordinates
x′1, x′2 of q(p, V ′, U ′) depend on V through the dependence of q(p, V ′, U ′) from p.
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3 Correlations accross the Killing horizon

3.1. General outset. We wish to compute the correlation functions of a real scalar quantum
field, Φ, for field observables localized in a region O containing a Killing field K and which
satisfies the local general geometric hypotheses. We suppose in particular that O can be covered
by coordinates adapted to H+ and that that U and V increase toward the future. All the
remaining cases can be treated similarly. Finally we restrict O to a subregion O1 as in (b) of
proposition 2.1 because we want to use the expression (3) for the geodesic distance. The region
O1 considered above – in coordinates (V,U, s) – can always be taken of the form (−a, a)×(b, c)×S,
where S ⊂ B is an open relatively compact subset. Shrinking O1 around the region of H ∩ O1

determined by (b, c)× S means taking a > 0 smaller and smaller.
In view of (a) in proposition 2.1, for a sufficiently small O1, the Killing vector K can be

assumed to be spacelike in Os ≡ {p ∈ O1 | V (p) > 0}, whereas is taken to be timelike in
Ot ≡ {p ∈ O1 | V (p) < 0}. Referring to stationary black holes, O1 can be interpreted as a
sufficiently small region around a point on the future horizon, the only horizon existing when the
black hole is produced by collapsing matter. There Os is part of the internal region, containing
the singularity, while Ot stays in the external region, stationary with respect to the Killing time
associated to K. In this way a notion of energy related to K can be defined in Ot at least and
we will take advantage of it shortly. Inspired by the ideas proper of the scaling-limit procedure
[BV95, Bu96], we are going to compute the limit:

lim
λ→0+

ω
(
Φ(fλ)Φ(f ′λ)

)
where ω denotes the reference state and fλ and f ′λ are smooth functions supported in O1 whose
supports become closer and closer to the horizon as long as λ→ 0+. Since only the short distance
behavior of the two-point function of the reference state is relevant for our computation, it is
not necessary to specify the equation of motion satisfied by the quantum field Φ. Conversely,
we assume that the two-point function of ω is a distribution of D′(M ×M) defined as

ω
(
Φ(f)Φ(f ′)

)
= lim

ε→0+

∫
M×M

ωε(x, x
′)f(x)f ′(x′)dxdx′

where the integral kernels ωε have the following from

ωε(x, x
′) =

∆(x, x′)1/2

4π2σε(x, x′)
+ wε(x, x

′) , (6)

whenever the test functions are supported in a fixed, relatively compact, geodesically convex
neighborhood. Furthermore, in the previous expression, σε(x, x

′) = σ(x, x′)+2iε(T (x)−T (x′))+
ε2 and T is any fixed time function, the smooth strictly-positive function ∆ is the so-called Van
Vleck-Morette determinant [Wa94, KW91]. We shall also assume that wε leads to a less singular
distribution in the ε → 0 limit, namely wε are required to be bounded uniformly in ε by an
M2-integrable function whose limit toward H exists and gives an H2-integrable function there.
For example (however there are further different possibilities):

wε(x, x
′) = v(x, x′) lnσε(x, x

′) + w(x, x′) (7)
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with v and w any fixed pair of smooth functions. That ultraviolet behaviour is a straightforward
generalization of the short distance structure of the two-point function of Minkowski vacuum and
it is fulfilled by all the (quasifree) states of Hadamard type [Wa94] defined by the requirements
(6)-(7) together with further requirements on v. Those states are supposed to be the most
significant states in QFT in curved spacetime [Wa94] and are very often employed in the rigorous
description of thermal properties of quantum fields in the presence of black holes [KW91, FH90,
DMP09].

We recall that, in the GNS representation of a state ω, the expectation value of the product
of two fields ω (Φ(f)Φ(f ′)) is equal to 〈Φ̂(f)Ψω|Φ̂(f ′)Ψω〉, where Ψω is the cyclic vector of
the GNS triple and where Φ̂(f) is the Hermitean field operator. Hence, up to normalization,
|ω (Φ(f)Φ(f ′)) |2 can be interpreted as a transition probability between the states Φ̂(f)Ψω and
Φ̂(f ′)Ψω for a particle associated to the field. Whenever f and f ′ are localized on the opposite
sides of the horizon – the regions Os and Ot – the correlation function ω (Φ(f)Φ(f ′)) provides a
measures of the transition probability through the horizon.

In order to obtain the leading order to that probability we shall consider some sequences of
smearing functions fλ and f ′λ whose support become closer and closer to the horizon H in the
limit λ→ 0+. We build this sequences as follows. Let f and f ′ be some smooth functions with
compact support contained respectively in the regions Os and Ot, then the functions fλ, f

′
λ are

defined as follows,

fλ(V,U, x3, x4) :=
1

λ
f

(
V

λ
,U, x3, x4

)
, f ′λ(V,U, x3, x4) :=

1

λ
f ′
(
V

λ
,U, x3, x4

)
, λ > 0 , (8)

where the pre factor λ−1 is introduced in order to keep the result finite. In order to avoid
divergences due to zero-modes2 in the limit λ→ 0+, as those modes are invariant under rescaling
of the coordinate V , we assume that f, f ′ are of the form:

f =
∂F

∂V
, f ′ =

∂F ′

∂V
, for fixed F, F ′ ∈ C∞0 (O1). (9)

Alternatively, sticking to general smooth compactly supported f, f ′, the divergent contribution
of zero-modes has to be subtracted at the end of the computations. The λ → 0+ limit of
ω (Φ(fλ)Φ(f ′λ)) is precisely our notion of scaling limit of ω (∂V Φ(x)∂V Φ(y)) towards the horizon.
It computes the first contribution to the sought transition probability in an ideal asymptotic
expansion for small λ.

3.2. Computation. We shall now present the most important result of this paper. Notice
that in the proof of the following theorem we shall make use of techniques similar to those
employed in the Appendix B of [KW91], however, our result differs from those presented there
because we are interested in computing the scaling limit toward the whole horizon and not just
one of its spatial sections. Furthermore, we are not interested in obtaining the restriction of the

2Indeed, given f ∈ C∞0 (O1), an F ∈ C∞0 (O1) with f = ∂F
∂V

exists if and only if
∫
R f(V,U, x3, x4)dV = 0 on O1,

namely, if and only if f(·, U, x3, x4) has no zero modes referring to the V -Fourier transform.
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states on the horizon but we would like to compute the scaling limit of the whole state. Actually
the relevant part for our computation is somehow the contribution of the state orthogonal to
those that survive after projecting the wavefunctions on the horizon. In this respect there are
some partial similarities also to the analysis performed in [FH90] although here we do not restrict
ourself to the spherically symmetric case.

Theorem 3.1. Assuming the general local geometric hypotheses on O (covered by coordinates
adapted to H+), suppose that O1 ⊂ O is a sufficiently small open neighborhood of a point on H

with O1 ⊂ O compact. If the state ω has two-point function given by a distribution satisfying
(6)-(7), f, f ′ are taken as in (8)-(9) and µ is the measure associated to the 2-metric on the
bifurcation B:

lim
λ→0+

ω
(
Φ(fλ)Φ(f ′λ)

)
= lim

ε→0+
− 1

16π

∫
R4×B

F (V,U, s)F ′(V ′, U ′, s)

(V − V ′ − iε)2
dUdV dU ′dV ′dµ(s) . (10)

Proof. Since ωε is of the form (6)-(7), it is sufficient to consider the contribution (where dp is a
shortcut for the measure induced by the metric):

lim
λ→0+

lim
ε→0+

∫
O1×O1

∆1/2(p, p′)fλ(p)f ′λ(p′)

4π2σε(p, p′)
dpdp′ (11)

because the contribution due to wε vanishes for small λ as it can easily be veryfied following
the same procedure we are empoying in the rest of the proof. Fixing δ > 0 and p, V ′, U ′,
consider the neighborhood Gδ(p, V

′, U ′) ⊂ SV ′,U ′ as in (c) of proposition 2.1, and define a
smooth map B 3 s 7→ χδ(s, V

′, U ′, p) ≥ 0 with support completely included in Gδ(p, V
′, U ′)

and χδ(s
′, V ′, U ′, p) = 1 for 0 ≤

√
λ(s(p), s′) ≤ δ

2 + 1
2

√
λ(s(p), s(q(p, V ′, U ′))). In view of the

smoothness of all considered functions it is possible to arrange these functions in order that
(s′, V ′, U ′, p)→ χδ(s

′, V ′, U ′, p) is jointly smooth. Finally decompose the integral in (11) as:∫
O1

dp

(∫
O1

∆1/2(p, p′)fλ(p)f ′λ(p′)

4π2σε(p, p′)
χδ(s

′, V ′, U ′, p)
√
|det g(p′)|dV ′dU ′ds′

)

+

∫
O1

dp

(∫
O1

∆1/2(p, p′)fλ(p)f ′λ(p′)

4π2σε(p, p′)
(1− χδ(s′, V ′, U ′, p))

√
|det g(p′)|dV ′dU ′ds′

)
, (12)

where ds′ = dx′3dx′4. Let us focus on the second integral. It is simply proven that, for a
fixed η > 0, it is possible to shrink O1 in order that

√
σ(p, p′) ≥ η/2 if

√
`(s(p), s(p′)) > η for

p, p′ ∈ O1, as consequence of the compactness of O1 the continuity of σ and (b) in proposition 2.1
(notice that the limit in λ→ 0+ in (11) allows us to take O1 as small as we need). By definition
of Gδ(p, V

′, U ′), the integrand second integral in (12) is jointly smooth in all variables including
ε, even for ε = 0, since σε=0(p, p

′) ≥ δ2/16 when 1 − χδ 6= 0. Then, in view of Lebesgue’s
dominated convergence theorem, the limit in ε can be computed simply taking ε = 0 in the
integrand of that integral and the subsequent limit as λ → 0+ converges to 0 because, at fixed
U, s, the function V 7→ fλ(V,U, s) weakly tends to δ(V )

∫
dx∂xF (x, U, s) = 0 in the limit as

10



λ → 0+ and the same happens for f ′λ. We conclude that only the former integral in (12) may
survive the limits in (11). Let us focus on that integral. Making use of (c) in proposition 2.1, in
each set Gδ(p, V

′, U ′) ⊂ SV ′,U ′ we define the fuction ρ(p′) ≥ 0 such that:

σ(p, p′) = ρ(p′)2 + σ(p, q(p, V ′, U ′)) .

In view of (c) in proposition 2.1, the pair ρ, θ, where θ ∈ (−π, π) is the standard polar angle
in geodesic polar coordinates centered on q(p, V ′, U ′), determines an allowable local chart to
determine p′ ∈ Gδ(p, V ′, U ′) (see also the appendix B of [KW91]), that is smooth barring the
usual conical singularity for ρ = 0. Notice that, due to the last statement in (c) of proposition
2.1, when p ∈ H and V ′ = 0, ρ coincides to the standard geodesic radial coordinate centered
on s(p) ∈ B. In the following we shall employ that coordinate system in each Gδ(p, V

′, U ′).
Making finally use of (d) in proposition 2.1, choosing T = (U + V )/2 we can re-arrange the
former integral in (12) so that:

lim
λ→0+

ω
(
Φ(fλ)Φ(f ′λ)

)
= lim

λ→0
lim
ε→0+

∫
∆′1/2(p, p′)fλ(p)f ′λ(p′)

ρ2 − (V − V ′ − iε)(U − U ′ − iε) +R(p, V ′, U ′)

dp′dp

4π2
, (13)

where, ∆′1/2(p, p′) := ∆1/2(p, p′)χδ(p, p
′) and it is from now on understood that the integral in

p′ is performed before that in p. Using this coordinate system the integral in the right-hand side
of (13) can be rewritten3 as∫

∆′1/2(p, p′)fλ(p)f ′λ(p′)
∂

∂ρ
ln
(
ρ2 + σ(p, q(p, V ′, U ′))

) √| det g|
8π2ρ

dρdθdU ′dV ′dp

where det g is the determinant of the metric of the coordinates ρ, θ, V ′, U ′, parametrically de-
pending on p. Notice that, the domain of integration in ρ is bounded by the support of the
function χδ(p, p

′) embodied in ∆′. For V = V ′ = 0, the metric takes the form (1) on B which
does not depend on U,U ′, V, V ′ anymore while R vanishes. By direct inspection one sees that√
| det g|
ρ is continuous (tends to 1/2 when p, p′ ∈ H and p′ → p) and its ρ-derivative is continuous

for ρ 6= 0 it being however bounded there. If ∆′λ, Rλ, det gλ, dpλ are respectively defined as
∆′, R, det g and dp with V and V ′ rescaled by λ, changing coordinates (V, V ′)→ (λV, λV ′) the
integral in the right-hand side of (13) can be rearranged as∫

∂V F (p)∂V ′F
′(p′)∆

′1/2
λ (p, p′)

∂

∂ρ
ln
[
ρ2 − (λV − λV ′ − iε)(U − U ′ − iε) +Rλ(p, V ′, U ′)

]
√
| det gλ|
8π2ρ

dρdθdU ′dV ′dpλ .

Leaving unchanged the remaining integrations, we can first integrate by parts in the polar
coordinate ρ. We obtain two boundary terms (integrals in the remaining variables) evaluated at
ρ = 0 and ρ = ρ0 > 0 sufficiently large respectively, and an integral in all the variable including

3We henceforth assume that the cut Rez < 0 in the complex plane to define the function ln z.
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ρ. When taking the limits as ε→ 0+ and λ→ 0+, concerning the boundary term at ρ = ρ0 > 0
and the integral, we can pass both limits under the sign of the integration by straightforward
application of Lebesgue’s dominated convergence theorem. The result is that, in the integrand,
only ∂V F and ∂V ′F

′ depend on V, V ′ coordinates, hence, performing the integrations in V and
V ′ both integrals vanish because F and F ′ are compactly supported. The remaining boundary
term leads to the limit (the factor 2π arises by the integration in θ at ρ = 0 and we have safely
replaced ε with λε in the integral in view of the order of the limits):

lim
λ→0+

lim
ε→0+

−2π

∫
∆′1/2(λV,U, s, λV ′, U ′, s)∂V F (V,U, s)∂V ′F

′(V ′, U ′, s)(
ln

(
−(V − V ′ − iε)(U − U ′ − iλε) +

Rλ(p, V ′, U ′)

λ

)
+ lnλ

) √
|det gλ|
8π2ρ

∣∣∣∣∣
ρ=0

dU ′dV ′dpλ .

Notice that |λ−1Rλ(p, V ′, U ′)| < Cλ for some constant C, when p, p′ ∈ O1 and λ ∈ [0, λ0) in
view of (d) of proposition 2.1. The term log(λ) can be dropped as it gives no contribution to the
final result since g0, ∆0 do not depend on V and dpλ = 1

2(1 +λV z)dUdV dµ(s) for some smooth
function z = z(V,U, s) in view of the form (1) of the metric on H, where dµ is the measure
associated to the 2-metric h on B. The limits can be computed, in the given order, exploiting
Lebesgue’s theorem and eventually obtaining:

− 1

16π

∫
∂V F∂V ′F

′ (iπχE+χA+ − iπχE+χA− + ln |V − V ′||U − U ′|
)
dUdV dU ′dV ′dµ(s) , (14)

where E± is the subset of O1 with, respectively, (V − V ′)(U − U ′) ≷ 0 and A± is the analog
with, respectively, U − U ′ ≷ 0, and χS is the characteristic function of the set S. We have also
used the fact that dpλ becomes 1

2dUdV dµ(s) for λ = 0 in view of the form (1) of the metric
on H and that ∆′ = ∆ = 1 when s = s′ and V = V ′ = 0 (it follows from ∆(p, p) = 1 and,
since ∆ is invariant under isometries, using an argument similar to that employed to prove (b)

of proposition 2.1). For the same reason, in view of the meaning ρ,

√
det |gλ|
ρ → 1/2 for ρ → 0

when λ = 0, when working in coordinates ρ, θ, V, U . The integral in (14) can equivalently be
re-written introducing another ε-perscription as:

lim
ε→0+

− 1

16π

∫
∂V F∂V ′F

′ ln(−(V − V ′ − iε)(U − U ′))dUdV dU ′dV ′dµ(s) .

Summing up and integrating by parts, we have found that:

lim
λ→0

lim
λ→0

ω
(
Φ(fλ)Φ(f ′λ)

)
= lim

ε→0+
− 1

16π

∫
R4×B

F (V,U, s)F ′(V ′, U ′, s)

(V − V ′ − iε)2
dUdV dU ′dV ′dµ(s) . (15)

3.3. The correlation functions and their thermal spectrum. As is known (e.g., see
[Wa84]) a timelike Killing vector field on a hand provides a natural notion of time, which is
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nothing but the parameter of the integral lines of the field, moreover it gives a natural notion
of conserved energy for fields and matter propagating in the region where the Killing vector
is present. We are interested in computing the energy spectrum of the correlation functions
ω(Φ(fλ)Φ(f ′λ)) (in the limit λ→ 0+) seen by an observer that moves along the curves generated
by the Killing field K and computed with respect to the associated Killing time. More precisely,
explointing Theorem 3.1 we intend to compute that energy spectrum in the limit of test functions
squizeed on the local Killing horizon. As the supports of the test functions are infinitesimally
close to the horizon, we have to focus on what happens for V ∼ 0. Therefore we truncate every
component of the formula (2) for the Killing vector at the dominant order in powers of V and
we make use of the right-hand side of (10) as definition of correlation two-point function. If
τ is the Killing time, namely the integral parameter of the curves tangent to K, in the said
approximation, in the first identity in the right-hand side of (2) implies:

V (τ) = −e−κτ for V < 0 (that is in Ot) and V (τ) = e−κτ for V > 0 (that is in Os), (16)

up to an additive constant in the definition of τ which in principle could depending on the integral
curve. Our choice is coherent with the standard definitions of τ in Minkowski or Schwarzschild
spacetime where τ is the Killing time in the external region. Notice that we reduce to that case
in the limit where the τ -constant 2-surfaces are close to the Killing horizon. We now examine
two cases.

(a) Both the supports of fλ and f ′λ stay in Ot.
In that case, thinking of the functions F, F ′ as functions of τ, τ ′ instead of V, V ′ in view of (16),
we can re-arrange the found expression for the correlation function as

lim
λ→0

ω(Φ(fλ)Φ(f ′λ)) = lim
ε→0+

− κ2

64π

∫
F (τ, U, x)F ′(τ ′, U ′, x)

(sinh(κ2 (τ − τ ′)) + iε)2
dτdUdτ ′dU ′dµ(x) . (17)

where we have used the fact that the functions F and F ′ are compactly supported by construction
even adopting the new coordinate frame. It is known that in the sense of the Fourier transform
of the distribution (e.g., see the appendix of [DMP09])

∫
R

dτ√
2π

e−iEτ

(sinh( τ
2
)+i0+)2

= −
√

2π EeπE

eπE−e−πE .

That identity and the convolution theorem lead to

lim
λ→0

ω(Φ(fλ)Φ(f ′λ)) =
1

32

∫
R2×B

(∫ ∞
−∞

F̂ (E,U, x)F̂ ′(E,U ′, x)

1− e−βHE
EdE

)
dUdU ′dµ(x) ,

where βH = 2π/κ is the inverse Hawking temperature and we have defined:

F̂ (E,U, x) :=

∫
R

dτ√
2π
e−iEτF (τ, U, x) . (18)

The thermal content of the found correlation function is manifest in view of the Bose factor
(1− e−βHE)−1 where the Hawking temperature takes place.
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(b) The support of fλ stays in Os while that of f ′λ stays in Ot: Tunneling processes.
As previously remarked, up to normalization, |ω(Φ(fλ)Φ(f ′λ))|2, can now be intepreted as a
tunneling probability trough the horizon. Employing (16) once more, we end up with:

lim
λ→0

ω(Φ(fλ)Φ(f ′λ)) = lim
ε→0+

κ2

64π

∫
F (τ, U, x)F ′(τ ′, U ′, x′)

cosh(κ2 (τ − τ ′) + iε)2
dτdUdτ ′dU ′dµ(x) . (19)

As expected from the fact that, in this case, the support of fλ is always disjoint from the support
of f ′λ, we can directly pass the limit ε→ 0+ under the sign of integration simply dropping iε in
the denominator. Taking advantage of the convolution theorem, the final result reads:

lim
λ→0

ω(Φ(fλ)Φ(f ′λ)) =
1

16

∫
R2×B

(∫ ∞
−∞

F̂ (E,U, x)F̂ ′(E,U ′, x)

sinh(βHE/2)
EdE

)
dUdU ′dµ(x) . (20)

(If the arbitrary additive constant defining τ in Ot were different from that in Os a further
exponential exp (icE) would take place in the numerator for some real constant c.) In this case
the energy spectrum does not agree with the Bose law, however considering packets concentrated
around to a high value of the energy E0, (20) leads to the estimate for the tunneling probability:

lim
λ→0
|ω(Φ(fλ)Φ(f ′λ))|2 ∼ const. E2

0 e
−βHE0 ,

in agreement with the ideas in [PW00, ANVZ05]. It is nevertheless worth remarking that the
interpretation of E as an energy is questionable for the packet in the internal region Ot since
the Killing vector K is spacelike therein.

4 Conclusions

In this paper we have computed the correlation functions – and the tunneling amplitude trough
a Killing horizon in particular – for scalar Klein-Gordon particle states defined with respect to
a certain, physically relevant, class of reference states that includes those of Hadamard type,
and in the limit of test functions squeezed on the Killing horizon. The considered local Killing
horizon with positive constant surface gravity may be a part of the complete horizon of a black
hole – including non static black holes as the non extremal charged rotating one – or may just
temporarily exist in a finite region and all computations have a completely local nature since
they are performed in a sufficiently small neighborhood of the horizon. Moreover the considered
states are generally not required to be invariant with respect to the isometry group generated by
the Killing field. We have established that in the limit of wavefunctions sharply localized on the
opposite sides of the horizon the correlation functions have a thermal nature, namely they have
a spectrum which decays exponentially as exp{−βHawkingE} for high energies. The energy E is
defined with respect to the Killing field generating the horizon. This achievement is in agreement
with the result obtained in other recent papers, although here it is obtained in the framework
of the rigorous formulation of quantum field theory on curved spacetime. Furthermore, we have
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also established that, when both wavefunctions are localized in the external side of the horizon,
a full Bose spectrum at the Hawking temperature arises in the expression of the correlation
functions, when taking the considered limit. In both cases the computation is completely local,
i.e. the nature of the geometry at infinity does not matter and the results do not depend on
the employed states provided they belong to the mentioned class. These results give a strong
support to the idea that the Hawking radiation, that it is usually presented as a radiation
detected at future (lightlike) infinity and needs the global struture of a black hole Killing horizon,
can also be described as a local phenomenon for geometric structures (local Killing horizons)
existing just “for a while”. A fundamental ingredient in our computation was the constance of
the nonvanishing surface gravity on the Killing horizon that enabled us to exploit the result in
[RW92] and, in turn, some technical constructions of [KW91]. Even if this requirement can easily
be physically intepreted as the geometrical description of the thermodynamical equilibrium, it
would be interesting to consider from our viewpoint the case of a black hole in formation, where
there are no Killing horizons at all. The latter situation has already been investigated, at least
in the presence of spherical symmetry, as in [DNVZZ07, HDVNZ09]. In those paper it is used
the WKB approach as well as the theory of Kodama-Hayward and the associated notion of
dynamical horizon. As a preliminary rigorous result, we notice that the computation of the
scaling limit towards the Horizon does not strongly requires the presence of some Killing fields,
which could be substituted by some more generic null hypersurface.
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