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The dynamics of consensus in group decision

making: investigating the pairwise interactions

between fuzzy preferences

Mario Fedrizzi, Michele Fedrizzi, R. A. Marques Pereira, and Matteo Brunelli

Abstract In this paper we present an overview of the soft consensus model in group

decision making and we investigate the dynamical patterns generated by the funda-

mental pairwise preference interactions on which the model is based.

The dynamical mechanism of the soft consensus model is driven by the minimiza-

tion of a cost function combining a collective measure of dissensus with an individ-

ual mechanism of opinion changing aversion. The dissensus measure plays a key

role in the model and induces a network of pairwise interactions between the indi-

vidual preferences.

The structure of fuzzy relations is present at both the individual and the collective

levels of description of the soft consensus model: pairwise preference intensities

between alternatives at the individual level, and pairwise interaction coefficients be-

tween decision makers at the collective level.

The collective measure of dissensus is based on non linear scaling functions of the

linguistic quantifier type and expresses the degree to which most of the decision

makers disagree with respect to their preferences regarding the most relevant alter-

natives. The graded notion of consensus underlying the dissensus measure is central

to the dynamical unfolding of the model.

The original formulation of the soft consensus model in terms of standard numerical

preferences has been recently extended in order to allow decision makers to express

their preferences by means of triangular fuzzy numbers. An appropriate notion of

distance between triangular fuzzy numbers has been chosen for the construction of

the collective dissensus measure.

In the extended formulation of the soft consensus model the extra degrees of free-

dom associated with the triangular fuzzy preferences, combined with non linear na-
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ture of the pairwise preference interactions, generate various interesting and sugges-

tive dynamical patterns. In the present paper we investigate these dynamical patterns

which are illustrated by means of a number of computer simulations.

1 Introduction

In the study of aggregational models of group decision making the central notions of

interaction and consensus have been the subject of a great deal of investigation. Fun-

damental contributions in this general area of research have been made by: Shapley

(1953) on cooperative game theory [65]; French (1956) and Harary (1959) on so-

cial power theory [31] [44]; DeGroot (1974), Chatterjee and Seneta (1977), Berger

(1981), Kelly (1981), and French (1981) on DeGroot’s consensus formation model

[16] [13] [7] [53] [32]; Sen (1982) on models of choice and welfare [64]; Wagner

(1978, 1982) and Lehrer and Wagner (1981) on the rational choice model [73] [55]

[74]; Anderson and Graesser (1976), Anderson (1981, 1991), and Graesser (1991)

on the information integration model [4] [2] [3] [42]; Davis (1973, 1996) on the so-

cial decision scheme model [14] [15]; and Friedkin (1990, 1991, 1993, 1998, 1999,

2001), Friedkin and Johnsen (1990, 1997, 1999), and Marsden and Friedkin (1993,

1994) on social influence network theory [33] [38] [34] [35] [59] [60] [39] [36] [37]

[40] [41].

In the classical literature stream indicated above the notion of consensus has con-

ventionally been understood in terms of strict and unanimous agreement. However,

since decision makers typically have different and conflicting opinions to a lesser

or greater extent, the traditional strict meaning of consensus is often unrealistic.

The human perception of consensus is typically ‘softer’, and people are generally

willing to accept that consensus has been reached when most actors agree on the

preferences associated to the most relevant alternatives.

In this different perspective, and in parallel with the traditional approach mostly for-

mulated on a probabilistic basis, Ragade (1976) and Bezdek, Spillman, and Spill-

man (1977, 1978, 1979, 1980) proposed to conceptualize consensus within the fuzzy

framework [63] [8] [9] [10] [66] [67] [68]. A few years later, combining the fuzzy

notion of consensus with the expressive power of linguistic quantifiers, Kacprzyk

and Fedrizzi (1986, 1988, 1989) and Kacprzyk, Fedrizzi, and Nurmi (1992, 1993,

1997) developed the so-called soft consensus measure in the context of fuzzy pref-

erence relations [47] [48] [49] [50] [19] [51] and considered various interesting im-

plications of the model in the context of decision support, see Fedrizzi, Kacprzyk,

and Zadrozny (1988) and Carlsson et al. (1992) [18] [12].

The soft consensus paradigm proposed by Kacprzyk and Fedrizzi was subsequently

reformulated by the Trento research group [20] [21] [22] [23] [25] [24] [26] [27]

[61] [28] [29] [30] . The linguistic quantifiers in the original soft consensus measure

were substituted by smooth scaling functions with an analogous role and a dynami-

cal model was obtained from the gradient descent optimization of a soft consensus

cost function, combining a soft measure of collective dissensus with an individual
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mechanism of opinion changing aversion. The resulting soft consensus dynamics

acts on the network of single preference structures by a combination of a collective

process of diffusion and an individual mechanism of inertia.

Introduced as an extension of the crisp model of consensus dynamics described in

[27], the fuzzy soft consensus model [29] substitutes the standard crisp preferences

by fuzzy triangular preferences. The fuzzy extension of the soft consensus model

is based on the use of a distance measure between triangular fuzzy numbers. In

analogy with the standard crisp model, the fuzzy dynamics of preference change

towards consensus derives from the gradient descent optimization of the new cost

function of the fuzzy soft consensus model.

In the meantime a number of different fuzzy approaches have been proposed. The

linguistic approach [79] is applicable when the information involved either at indi-

vidual level or at group level present qualitative aspects that cannot be effectively

represented by means of precise numerical values. Innovative approaches to the

modelling of consensus in fuzzy environments were developed under linguistic as-

sessments and the interested reader is referred, among others, to [45] [46] [5] [62]

[11] [77]. The typical problem addressed is that in which decision makers have dif-

ferent levels of knowledge about the alternatives and use linguistic term sets with

different cardinality to assess their preferences. This is the so-called group decision

making problem in a multigranular fuzzy linguistic context.

Another different approach to the analysis of consensus under fuzziness, based on a

distance from consensus, has been proposed in [69] using intuitionistic fuzzy pref-

erences. In that paper, taking into account Atanasov’s hesitation margin, the ap-

proach to consensus in [9] [10] and [68] has been extended to individual prefer-

ences represented by interval values. This approach has been further developed in

[70] introducing a similarity measure to compare the distances between intuitionis-

tic fuzzy relations. More recently, a new and more effective similarity measure has

been introduced and applied to consensus analysis in the context of interval-valued

intuitionistic fuzzy set theory [78].

The paper is organized as follows. In section 2 we briefly review the soft consensus

model proposed in [27] and we show how to derive the soft consensus dynamics

on the basis of a cost function W combining a soft measure of collective dissensus

with an individual mechanism of opinion changing aversion. In section 3, assum-

ing fuzzy triangular preferences as in [29], we describe the new distance measure

and introduce the cost function W of the fuzzy soft consensus model. In section

4 we derive the dynamical laws of the fuzzy soft consensus model as applied to

fuzzy triangular preferences. Section 5 contains the main contribution of the paper:

we present and discuss a number of computer simulations in order to illustrate the

complex and suggestive dynamical patterns generated by the dynamics of the fuzzy

soft consensus model. Finally, in section 6 we present some concluding remarks and

notes on future research.
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2 The soft dissensus measure and the consensus dynamics

In this section we present a brief review of the original soft consensus model intro-

duced in [27]. Our point of departure is a set of individual fuzzy preference rela-

tions. If A = {a1, . . . ,am} is a set of decisional alternatives and I = {1, . . . ,n} is a

set of individuals, then the fuzzy preference relation Ri of individual i is given by its

membership function Ri : A×A → [0,1] such that

Ri(ak,al) = 1 if ak is definitely preferred over al

Ri(ak,al) ∈ (0.5,1) if ak is preferred over al

Ri(ak,al) = 0.5 if ak is considered indifferent to al

Ri(ak,al) ∈ (0,0.5) if al is preferred over ak

Ri(ak,al) = 0 if al is definitely preferred over ak,

where i = 1, . . . ,n and k, l = 1, . . . ,m. Each individual fuzzy preference relation Ri

can be represented by a matrix [ri
kl ], ri

kl = Ri(ak,al) which is commonly assumed to

be reciprocal, that is ri
kl + ri

lk = 1. Clearly, this implies ri
kk = 0.5 for all i = 1, . . . ,n

and k = 1, . . . ,m.

The general case A = {a1, . . . ,am} for the set of decisional alternatives is discussed

in [27] and [29]. Here, for the sake of simplicity, we assume that the alternatives

available are only two (m = 2), which means that each individual preference relation

Ri has only one degree of freedom, denoted by xi = ri
12.

In the framework of the soft consensus model, assuming m = 2, the degree of dis-

sensus between individuals i and j as to their preferences between the two alterna-

tives is measured by

V (i, j) = f ((xi − x j)
2) , (1)

where f is a scaling function defined as

f (x) = −
1

β
ln(1+ e−β (x−α)) . (2)

In the scaling function formula above, α ∈ (0,1) is a threshold parameter and β ∈
(0,∞) is a free parameter. The latter controls the polarization of the sigmoid function

f ′ : [0,1] → (0,1) given by

f ′(x) = 1/(1+ eβ (x−α)) . (3)

In the soft consensus model [27] each decision maker i = 1, . . . ,n is represented by

a pair of connected nodes, a primary node (dynamic) and a secondary node (static).

The n primary nodes form a fully connected subnetwork and each of them encodes

the individual opinion of a single decision maker. The n secondary nodes, on the

other hand, encode the individual opinions originally declared by the decision mak-

ers, denoted si ∈ [0,1], and each of them is connected only with the associated pri-

mary node.



Dynamics of consensus: the pairwise interactions between fuzzy preferences 5

The dynamical process of preference change corresponds to the gradient descent

optimization of a cost function W , depending on both the present and the original

network configurations. The value of W combines a measure V of the overall dis-

sensus in the present network configuration with a measure U of the overall change

from the original network configuration.

The various interactions involving node i are modulated by interaction coefficients

whose role is to quantify the strength of the interaction. The consensual interac-

tion between primary nodes i and j is modulated by the interaction coefficient

vi j ∈ (0,1), whereas the inertial interaction between primary node i and the asso-

ciated secondary node is modulated by the interaction coefficient ui ∈ (0,1). In the

soft consensus model the values of these interaction coefficients are given by the

derivative f ′ of the scaling function according to

vi j = f ′((xi − x j)
2), vi =

n

∑
j(6=i)=1

vi j/(n−1), ui = f ′((xi − si)
2) . (4)

The average preference x̄i is given by

x̄i =
n

∑
j(6=i)=1

vi jx j/
n

∑
j(6=i)=1

vi j (5)

and represents the average preference of the remaining decision makers as seen by

decision maker i = 1, ...,n.

The construction of the cost function W that drives the dynamics of the soft consen-

sus model is as follows. The individual dissensus cost V (i) is given by

V (i) =
n

∑
j(6=i)=1

V (i, j)/(n−1), V (i, j) = f ((xi − x j)
2) (6)

and the individual opinion changing cost U(i) is

U(i) = f ((xi − si)
2) . (7)

Summing over the various decision makers we obtain the collective dissensus cost

V and inertial cost U ,

V =
1

4

n

∑
i=1

V (i), U =
1

2

n

∑
i=1

U(i) (8)

with conventional multiplicative factors of 1/4 and 1/2. The full cost function W is

then W = (1−λ )V +λU with 0 ≤ λ ≤ 1.

The consensual network dynamics, which can be regarded as an unsupervised learn-

ing algorithm, acts on the individual opinion variables xi through the iterative pro-

cess
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xi Ã x′i = xi − γ
∂W

∂xi

. (9)

Analyzing the effect of the two dynamical components V and U separately we obtain

∂V

∂xi

= vi(xi − x̄i) (10)

where the coefficients vi were defined in (4) and the average preference x̄i was de-

fined in (5), and therefore

x′i = (1− γ vi)xi + γ vix̄i . (11)

On the other hand, we obtain

∂U

∂xi

= ui(xi − si) , (12)

where the coefficients ui were defined in (4), and therefore

x′i = (1− γ ui)xi + γ uisi . (13)

The full dynamics associated with the cost function W = (V +U)/2 acts iteratively

according to

x′i = (1− γ (vi +ui))xi ++γ vix̄i + γ uisi . (14)

and the decision maker i is in dynamical equilibrium, in the sense that x′i = xi, if the

following stability equation holds,

xi = (vix̄i +uisi)/(vi +ui) (15)

that is, if the present opinion xi coincides with an appropriate weighted average of

the original opinion si and the average opinion value x̄i.

3 The fuzzy soft dissensus measure

Let us now assume that the decision makers preferences are expressed by means of

fuzzy numbers, see for instance [17] [80], in particular by means of triangular fuzzy

numbers. Then, in order to measure the differences between the decision makers

preferences, we need to compute the distances between the fuzzy numbers repre-

senting those preferences. Let

x = {εL,x,εR} y = {θL,y,θR} (16)

be two triangular fuzzy numbers, where x is the central value of the fuzzy number x

and εL, εR are its left and right spread, respectively. Analogously for the triangular

fuzzy number y.
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Various definitions of distance between fuzzy numbers are considered in the litera-

ture [43] [52] [71] [72]. Moreover, the question has been often indirectly addressed

in papers regarding the ranking of fuzzy numbers, see [75] [76] for a detailed re-

view. In our model we refer to a distance, indicated by D∗(x,y), which belongs to a

family of distances introduced in [43]. This distance is defined as follows.

For each α ∈ [0,1], the α–level sets of the two fuzzy numbers x and y are respec-

tively

[xL(α),xR(α)] = [x− εL + εLα , x+ εR − εRα] (17)

[yL(α),yR(α)] = [y−θL +θLα , y+θR −θRα] . (18)

The distance D∗(x,y) between x and y is defined by means of the differences be-

tween the left boundaries of (17), (18) and the differences between the right bound-

aries of (17), (18). More precisely, the left integral IL is defined as the integral, with

respect to α , of the squared difference between the left boundaries of (17) and (18),

IL =
∫ 1

0
(xL(α) − yL(α))2dα (19)

and the right integral IR is defined as the integral, with respect to α , of the squared

difference between the right boundaries of (17), (18),

IR =
∫ 1

0
(xR(α) − yR(α))2dα . (20)

Finally, the distance D∗(x,y) is defined as

D∗(x,y) =

(

1

2
(IL + IR)

)1/2

. (21)

The distance (21) is obtained by choosing p = 2 and q = 1/2 in the family of dis-

tances introduced in [43]. In order to avoid unnecessarily complex computations,

we skip the square root and we use, in our model, the simpler expression

D(x,y) = (D∗(x,y))2 =
1

2
(IL + IR) . (22)

Note that expression (22), except for the numerical factor 1/2, has been introduced,

independently from [43], also in [57]. It has been then pointed out in [1] that (22) is

not a distance, as it does not always satisfy the triangular inequality. Nevertheless, as

long as optimization is involved, expression (22) can be equivalently used in place

of the distance (21) [58]. In any case, for simplicity, in the following we shall use

the term distance when referring to (22). Developing (19) and (20), we obtain

D(x,y) = d2 +
1

6
δ 2

L +
1

6
δ 2

R +
d

2
(δR −δL), (23)

where d = x− y, δL = εL −θL and δR = εR −θR.
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As explained in the previous section, the preferences of the n decision makers are

expressed by pairwise comparing the alternatives a1,a2, ...,am. Given a pair of al-

ternatives, we assume that the preference of the first over the second alternative is

represented, for decision maker i, by a triangular fuzzy number indicated by

ri = {ε i
L,ri,ε i

R}, (24)

where, as in (16), ri is the central value of the fuzzy number ri, whereas ε i
L and

ε i
R are its left and right spreads respectively. Analogously, let r j be the triangular

fuzzy number of type (24) representing the preference of the first alternative over

the second given by decision maker j.

Following definition (22), the distance between the fuzzy preference of decision

maker i and the one of decision maker j becomes

D(ri,r j) = d 2 +
1

6
δ 2

L +
1

6
δ 2

R +
d

2
(δR −δL), (25)

where d = ri − r j, δL = ε i
L − ε

j
L and δR = ε i

R − ε
j

R.

As assumed in the previous section, we consider a problem with m = 2 alterna-

tives and we define the dissensus measure between two decision makers by applying

the scaling function f to D(ri,r j),

V (i, j) = f (D(ri,r j)) . (26)

The dissensus measure of decision maker i with respect to the rest of the group is

given by the arithmetic mean of the various dissensus measures V (i, j),

V (i) =
n

∑
j(6=i)=1

V (i, j)/(n−1) . (27)

Finally, the global dissensus measure of the group is defined by

V =
1

4

n

∑
i=1

V (i) , (28)

thus obtaining

V =
1

4

n

∑
i=1

n

∑
j(6=i)=1

f (D(ri,r j))/(n−1) . (29)

Denoting by si = {θ i
L,si,θ i

R} the triangular fuzzy number describing the initial pref-

erence of decision maker i, the cost for changing the initial preference si into the

actual preference ri is given by

U(i) = f (D(ri,si)) . (30)

The global opinion changing aversion component U of the group is given by
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U =
1

2

n

∑
i=1

U(i) . (31)

As mentioned before, the global cost function W is defined as a convex combination

of the components V and U ,

W = (1−λ )V +λU, (32)

and the parameter λ ∈ [0,1] represents the relative importance of the inertial com-

ponent U with respect to the dissensus component V .

4 The dynamics of the fuzzy soft consensus model

In [29] the original consensus dynamics described in section 2 was extended to

the case in which preferences are expressed by means of triangular fuzzy numbers.

In the consensus dynamics, the global cost function W = W (ri) = W (ε i
L,ri,ε i

R) is

minimized through the gradient descent method. This implies that in every iteration

the new preference r ′ is obtained from the previous preference r in the following

way (we skip the index i for simplicity)

r → r ′ = r− γ ∇W . (33)

The consensus dynamics (33) will gradually update the three preference values

(εL,r,εR) according to

r → r ′ = r− γ
∂W

∂ r
, εL → εL

′ = εL − γ
∂W

∂εL

, εR → εR
′ = εR − γ

∂W

∂εR

(34)

We can consider separately the effect of the two components V and U of W , since

∇W is a convex combination of ∇V and ∇U ,

∇W = (1−λ )∇V +λ∇U . (35)

Let us first consider the component V . Taking again into account the index i, we

have

∂V

∂ ri
= vi

(

(

ri − r̄ i
)

+
1

4

(

ε i
R − ε̄ i

R − ε i
L + ε̄ i

L

)

)

(36)

where

vi=
n

∑
j(6=i)=1

vi j/(n−1) ; vi j = f ′(D(ri,r j)) (37)



10 M. Fedrizzi, M. Fedrizzi, R. A. Marques Pereira, and M. Brunelli

r̄ i =
∑n

j(6=i)=1 vi j r j

∑n
j(6=i)=1 vi j

, ε̄ i
L =

∑n
j(6=i)=1 vi j ε

j
L

∑n
j(6=i)=1 vi j

, ε̄ i
R =

∑n
j(6=i)=1 vi j ε

j
R

∑n
j(6=i)=1 vi j

, (38)

Analogously, we compute

∂V

∂ε i
L

= vi (
1

6
(ε i

L− ε̄ i
L)−

1

4
(ri− r̄ i)),

∂V

∂ε i
R

= vi (
1

6
(ε i

R− ε̄ i
R)+

1

4
(ri− r̄ i)) . (39)

Let us now consider the inertial component U . We obtain

∂U

∂ ri
= ui ((r

i − si)+
1

4
(ε i

R −θ i
R − ε i

L +θ i
L)) (40)

where

ui = f ′(D(ri,si)) , (41)

∂U

∂ε i
L

= ui (
1

6
(ε i

L −θ i
L)−

1

4
(ri − si)) (42)

and

∂U

∂ε i
R

= ui (
1

6
(ε i

R −θ i
R)+

1

4
(ri − s i)) . (43)

At this point we can summarize the effects of the two components obtaining

∂W

∂ ri
= ((1−λ )vi +λui)∆ri − (1−λ )vi∆ r̄ i −λui∆si (44)

where

∆ri = ri +
1

4
(ε i

R−ε i
L), ∆ r̄ i = r̄ i +

1

4
(ε̄ i

R− ε̄ i
L), ∆si = si +

1

4
(θ i

R−θ i
L) . (45)

The derivative of W with respect to the left spread becomes

∂W

∂ε i
L

= ((1−λ )vi +λui)∆ε i
L − (1−λ )vi∆ε̄ i

L −λui∆θ i
L (46)

where

∆ε i
L =

1

6
ε i

L −
1

4
ri, ∆ε̄ i

L =
1

6
ε̄ i

L −
1

4
r̄ i, ∆θ i

L =
1

6
θ i

L −
1

4
si . (47)

The derivative of W with respect to the right spread becomes

∂W

∂ε i
R

= ((1−λ )vi +λui)∆ε i
R − (1−λ )vi∆ε̄ i

R −λui∆θ i
R (48)
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where

∆ε i
R =

1

6
ε i

R +
1

4
ri, ∆ε̄ i

R =
1

6
ε̄ i

R +
1

4
r̄ i, ∆θ i

R =
1

6
θ i

R +
1

4
si . (49)

Let us now present some numerical simulations in order to illustrate the dynamical

behaviour of the fuzzy soft consensus model in some interesting cases.

5 Computer simulations

In this section we present a number of computer simulations of the fuzzy soft con-

sensus dynamics as applied to a single pair of preferences represented by triangular

fuzzy numbers. Our goal is that of illustrating the various interesting dynamical

patterns generated by the non linear nature of the pairwise interactions between

preferences, given that these pairwise interactions are the fundamental elements of

the soft consensus model.

The first four figures associated with each computer simulation (except the first)

depict four successive configurations of the preference pair of triangular fuzzy num-

bers, corresponding to the following moments in time: the initial configuration t = 0,

two intermediate configurations t = 25 and t = 100, and the final (quasi-asymptotic)

configuration t = 1000. The two dots appearing in each of the four figures indicate

the positions of the centers as they vary in time according to the original crisp ver-

sion of the soft consensus model. The other three figures associated with each com-

puter simulation show the time plot of the preference centers plus that of the left and

right spreads.

In general we observe in the computer simulations two distinct dynamical phases,

clearly illustrated by the graphical plots of the preference changes over time: a short

phase with fast dynamics followed by a much longer phase with slow dynamics.

Interestingly, the preference changes over time in each of these two phases are not

always monotonic. Moreover, the computer simulations show that the dynamics of

the fuzzy soft consensus model is generally faster than that of the original crisp

model. The final (quasi-asymptotic) values of the preference centers in the fuzzy

model show moderate but significant differences with respect to the corresponding

final preference values in the original crisp model.

The distance D(x,y) between two fuzzy numbers x and y defined in (22) and

involved in the construction of the cost functions V,U,W plays a key role in the fuzzy

extension of the soft consensus model. In particular, the two distinct phases (fast and

slow) observed in the consensus dynamics of the model can be understood in terms

of the different magnitudes of the coefficients associated with the various terms

in the decomposition formula (23). The fact that the coefficient associated with the

distance between centers is three times larger than the coefficient associated with the

distance between spreads (left and right together) produces initially a fast consensus

dynamics of the centers, followed by a much slower adjustment dynamics of the
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spreads. Roughly speaking, the fast phase leads to an overlapping of the two fuzzy

triangular numbers, whose shape is then adjusted by the slow dynamical phase.

In all computer simulations (except partially the first) the parameter choices are

as follows: α = 0.3, β = 10, λ = 1/3, and γ = 0.01.

• These figures illustrate the dynamics of the original crisp soft consensus model

as applied to two crisp initial preferences 0.3 and 0.7, for three different choices

of the parameter λ . This parameter controls the relative strength of the mech-

anism of opinion changing aversion with respect to the consensual aggregation

mechanism. In the case λ = 0 the dynamics is purely consensual and thus, over

time, the two preferences converge exactly to a common final value.

0 200 400 600 800 1000
time0.3

0.4

0.5

0.6

0.7

value

(a) λ = 0

0 200 400 600 800 1000
time0.3

0.4

0.5

0.6

0.7
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(b) λ = 1/3

0 200 400 600 800 1000
time0.3

0.4

0.5

0.6

0.7
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(c) λ = 2/3

Fig. 1 Crisp dynamics acting on two crisp preferences, for different values of λ
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• These figures illustrate the dynamics of the fuzzy soft consensus model as ap-

plied to the same two crisp initial preferences 0.3 and 0.7 as before. Notice the

two dynamical phases, initially fast and then slow, and the suggestive non mono-

tonic behaviour of the internal spreads. Initially, in the fast phase, the centers ap-

proach rapidly and the internal spreads increase significantly whereas the exter-

nal spreads remain essentially null, a sort of cooperative opening to the opposing

preference. Then, in the slow phase, the centers keep on approaching very slowly

while the internal spreads gradually decrease and the external spreads increase

slightly, converging towards a nearly common final value. In the final configura-

tion the spreads are once again very small (they were initially null) even though

they reach much larger values during the transient ”negotiation” process. This a

suggestive reality effect of the non linear dynamics of the fuzzy soft consensus

model.
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(c) time = 100
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(d) time = 1000

Fig. 2 Fuzzy dynamics acting on two crisp preferences
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Fig. 3 Corresponding time plots of centers and spreads
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• These figures illustrate the dynamics of the fuzzy soft consensus model as ap-

plied to two fuzzy initial preferences (isosceles triangles) centered at the usual

values 0.3 and 0.7. Once again, notice the two dynamical phases, initially fast

and then slow, and the suggestive non monotonic behaviour of the internal and

external spreads. Initially, in the fast phase, the centers approach rapidly while

the internal (resp. external) spreads increase (resp. decrease) significantly, again

a sort of cooperative opening to the opposing preference. Then, in the slow phase,

the centers keep on approaching very slowly while the internal (resp. external)

spreads gradually decrease (resp. increase), converging towards a nearly common

final value.
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Fig. 4 Fuzzy dynamics acting on two isosceles triangles
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Fig. 5 Corresponding time plots of centers and spreads
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• These figures illustrate the dynamics of the fuzzy soft consensus model as ap-

plied to two fuzzy initial preferences (right triangles facing each other) centered

at the usual values 0.3 and 0.7. Once again, notice the two dynamical phases,

initially fast and then slow, and the suggestive non monotonic behaviour of the

internal spreads. Initially, in the fast phase, the centers approach rapidly and the

internal spreads increase slightly whereas the external spreads remain essentially

null, again a sort of cooperative opening to the opposing preference. Then, in

the slow phase, the centers keep on approaching very slowly while the internal

(resp. external) spreads gradually decrease (resp. increase), converging towards

a nearly common final value.
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Fig. 6 Fuzzy dynamics acting on two right triangles facing each other
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Fig. 7 Corresponding time plots of centers and spreads
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• These figures illustrate the dynamics of the fuzzy soft consensus model as applied

to two fuzzy initial preferences (right triangles facing opposite to each other)

centered at the usual values 0.3 and 0.7. Once again, notice the two dynamical

phases, initially fast and then slow, and the suggestive non monotonic behaviour

of the centers. Initially, in the fast phase, the centers approach rapidly (almost

crossing) and the internal (resp. external) spreads increase (resp. decrease), again

a sort of cooperative opening to the opposing preference. Then, in the slow phase,

the centers adjust by moving away very slowly while the internal (resp. external)

spreads keep on gradually increasing (resp. decreasing), converging towards a

nearly common final value.
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Fig. 8 Fuzzy dynamics acting on two right triangles facing opposite to each other
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Fig. 9 Corresponding time plots of centers and spreads
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• These figures illustrate the dynamics of the fuzzy soft consensus model as applied

to two fuzzy initial preferences (different isosceles triangles) centered at the usual

values 0.3 and 0.7. Once again, notice the two dynamical phases, initially fast

and then slow, and the suggestive non monotonic behaviour of the internal and

external spreads. Initially, in the fast phase, the centers approach rapidly and the

internal (resp. external) spreads increase (resp. decrease) slightly on the right and

significantly on the left. Then, in the slow phase, the centers keep on approaching

very slowly while the internal (resp. external) spreads gradually decrease (resp.

increase). In this case the dynamical pattern is more complex for the left spreads,

with two crossings during the slow phase.
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Fig. 10 Fuzzy dynamics acting on two different isosceles triangles
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Fig. 11 Corresponding time plots of centers and spreads
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• These figures illustrate the dynamics of the fuzzy soft consensus model as ap-

plied to one crisp and one fuzzy initial preferences (isosceles triangle the latter)

centered at the usual values 0.3 and 0.7. Once again, notice the two dynamical

phases, initially fast and then slow, and the suggestive non monotonic behaviour

of the internal and external spreads. Initially, in the fast phase, the centers ap-

proach rapidly and the internal (resp. external) spreads increase (resp. stay null

or decrease) slightly on the right and significantly on the left. Then, in the slow

phase, the centers keep on approaching very slowly while the internal (resp. ex-

ternal) spreads gradually decrease (resp. increase). In this case the dynamical

pattern is more complex for the left spreads, with one crossing between the two

phases and another one during the slow phase.
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Fig. 12 Fuzzy dynamics acting on one crisp preference and one isosceles triangle
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Fig. 13 Corresponding time plots of centers and spreads
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• These figures illustrate the dynamics of the fuzzy soft consensus model as ap-

plied to one crisp and one fuzzy initial preferences (right triangle facing inward

the latter) centered at the usual values 0.3 and 0.7. Once again, notice the two

dynamical phases, initially fast and then slow, and the suggestive non monotonic

behaviour of the internal and external spreads. Initially, in the fast phase, the cen-

ters approach rapidly and the internal (resp. external) spreads increase (resp. stay

null) slightly on the right and significantly on the left. Then, in the slow phase,

the centers keep on approaching very slowly while the internal (resp. external)

spreads gradually decrease (resp. increase).
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Fig. 14 Fuzzy dynamics acting on one crisp preference and one right triangle facing inward
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• These figures illustrate the dynamics of the fuzzy soft consensus model as ap-

plied to one crisp and one fuzzy initial preferences (right triangle facing outward

the latter) centered at the usual values 0.3 and 0.7. Once again, notice the two

dynamical phases, initially fast and then slow, and the suggestive non monotonic

behaviour of the internal and external spreads. Initially, in the fast phase, the cen-

ters approach rapidly and the internal (resp. external) spreads increase (resp. stay

null or decrease) significantly on both sides. Then, in the slow phase, the cen-

ters keep on approaching very slowly while the internal (resp. external) spreads

gradually decrease (resp. increase). In this case the dynamical pattern is more

complex for the left spreads, with one crossing between the two phases and an-

other one during the slow phase.
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Fig. 16 Fuzzy dynamics acting on one crisp preference and one right triangle facing outward
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• These figures illustrate the dynamics of the fuzzy soft consensus model as ap-

plied to the special case of two fuzzy initial preferences (right triangles facing

opposite to each other) centered at 0.5 and 0.6. Once again, notice the two dy-

namical phases, initially fast and then slow, and the suggestive non monotonic

behaviour of the centers. Initially, in the fast phase, the centers move rapidly to-

wards each other, crossing and then moving away from each other. Then, in the

slow phase, the centers adjust by slowly re-approaching, converging towards a

nearly common final value. This is another interesting effect of the non linear

dynamics of the fuzzy soft consensus model, due to the combined effect of the

two mechanisms of consensus reaching and opinion changing aversion as they

act on centers and spreads of the fuzzy triangular preferences.
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Fig. 18 Fuzzy dynamics acting on two right triangles facing opposite to each other
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6 Concluding remarks

We have illustrated by means of numerical simulations the dynamical behaviour of

the fuzzy soft consensus model, in which the individual preferences are represented

by triangular fuzzy numbers. A selection of these simulations is presented in section

5. The computer simulations provide clear evidence that the fuzzy soft consensus

model exhibits interesting non standard opinion changing behaviour in relation to

the original crisp version of the model. Future research should explore the particular

features of the fuzzy soft consensus model and demonstrate the potential of the

methodology as an effective support for the modelling of consensus reaching in

multicriteria and multiagent decision making.
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