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Lightweight Parsing of Classifications
into Lightweight Ontologies

Aliaksandr Autayeu, Fausto Giunchiglia, and Pierre Andrews

DISI, University of Trento, Italy

Abstract. Understanding metadata written in natural language is a
premise to successful automated integration of large scale, language-rich,
classifications such as the ones used in digital libraries. We analyze the
natural language labels within classification by exploring their syntactic
structure, we then show how this structure can be used to detect pat-
terns of language that can be processed by a lightweight parser with an
average accuracy of 96.82%. This allows for a deeper understanding of
natural language metadata semantics, which we show can improve by
almost 18% the accuracy of the automatic translation of classifications
into lightweight ontologies required by semantic matching, search and
classification algorithms.

1 Introduction

The development of information technologies turned the data drought into a
data deluge, which seriously complicates data management and information in-
tegration problems. This leads to an increasing importance of metadata as a
tool allowing the management of data on a greater scale. The amount of existing
attempts to solve the semantic heterogeneity problem shows its importance and
reveals the variety of domains where it applies (see [1, 2]). The state of the art
algorithms try to solve the problem at the schema or metadata level [3] and
their large-scale evaluations [4] show two important directions for improvement:
a) increasing the background knowledge [5] and b) improving natural language
understanding [6].

Digital library classifications extensively use natural language, both in struc-
tured and unstructured form. Natural language metadata (NLM) uses a specific
Natural Language (NL), different in its structure from the normal textual do-
main of language, and the current NL processing (NLP) technologies that are
developed for the latter are not well suited for NLM. Thus, they require a do-
main adaptation to fit the specific constraints of the NLM structure. Moreover,
the size of the current datasets [4], ranging from thousands to hundreds of thou-
sands of labels (see Table 1), poses additional requirements on processing speed,
as demonstrated by the LCSH and NALT alignment experiment from [7].

In general, the parsing of NLM has applications in many areas, in particular:
a) in the matching of tree-like structures (such as Digital Libraries classifica-
tions or schemas) or lightweight ontologies [8], b) in the Semantic Classification



Table 1. Classification datasets’ characteristics

Dataset Labels Sample Size
Unique

Levels
Label Length, NL tokens

Labels (%) Max Avg

LCSH 335 704 44 490 100.00 21 24 4.0
NALT 43 038 13 624 100.00 13 8 1.6
DMoz 494 043 27 975 40.48 12 12 1.8
Yahoo 829 081 132 350 16.70 15 18 2.0
eCl@ss 14 431 3 591 94.51 4 31 4.2

UNSPSC 19 779 5 154 100.00 4 19 3.5

of items of information into hierarchical classifications [9], and in c) Semantic
Search [10]. All these motivating applications require the same steps of natu-
ral to formal language translation: a) recognize atomic (language-independent)
concepts by mapping NL tokens into senses from a controlled vocabulary, b) dis-
ambiguate the senses drawn from the controlled vocabulary and c) build complex
concepts out of the atomic ones.

We present the analysis of the NL used in six classifications: LCSH 1 (for
“Library of Congress Subject Headings”), NALT 2 (for “National Agricultural
Library Thesaurus”), DMoz 3 (for Open Directory Project), Yahoo! Direc-
tory 4 (a “catalog of sites created by Yahoo! editors”), eCl@ss 5 (a classification
of products and services), UNSPSC 6 (for “United Nations Standard Products
and Services Code”), which all illustrate the use of NLM in classifications of
information items in different domains. Note that, these datasets contain subject
headings, terms and category names, which are all written in NL and which we
hereafter refer to as label(s). Table 1 provides some key characteristics of our
classifications. We show that the NL used in these datasets is highly structured
(see Sections 3 and 4) and can be accurately parsed with lightweight grammars
(see Sect. 5). By using parsers based on these grammars, we allow for a deeper
understanding of metadata semantics and improve the accuracy of the language
to logic translation required by the semantic applications by almost 18% (see
Sect. 6) without sacrificing performance.

2 State of the Art

The work available in the semantic web and Digital Libraries is often based on
reasoning in a formal language (FL). However, users are accustomed to a NL

1 http://www.loc.gov/cds/lcsh.html
2 http://agclass.nal.usda.gov/
3 http://dmoz.org
4 http://dir.yahoo.com/
5 http://www.eclass-online.com/
6 http://www.unspsc.org/



and it is difficult for them to use a formal one. A number of approaches has been
proposed to bridge the gap between formal languages and NL classifications.

Controlled languages (CLs), such as Attempto [11], have been proposed as
an interface between NL and first-order logic. This, as well as a number of other
proposals based on a CL approach [12, 13], require users to learn the rules and
the semantics of a subset of English. Moreover, users need to have some basic
understanding of the first order logic to provide a meaningful input. The difficulty
of writing in a CL can be illustrated by the existence of editors, such as ECOLE
[14], aiding the user in CL editing.

CLs are also used as an interface for ontology authoring [13, 15, 16]. The
approach of [15] uses a small static grammar, dynamically extended with the
elements of the ontology being edited or queried. Constraining the user even
more, the approach of [16] enforces a one-to-one correspondence between the CL
and FL. The authors in [13], following a practical experience, tailored their CL
to the specific constructs and the errors of their users. Some of these and other
CLs have been critiqued [17] due to their domain and genre limitations.

For querying purposes, [18] proposes an NL interface to the ontologies by
translating NL into SPARQL queries for a selected ontology. This approach is
limited by the extent of the ontology with which the user interacts. Another way
to bridge the gap between formal languages and NLs is described in [19], where
the authors propose to manually annotate web pages, rightfully admitting that
their proposal introduces a “chicken and egg” problem. The approach described
by [20] for automatically translating hierarchical classifications into OWL on-
tologies is more interesting, however, by considering the domain of products
and services on the examples of eCl@ss and UNSPSC, the authors make some
simplifying domain-specific assumptions, which makes it hard to generalise.

Differently from the approaches mentioned above, our work does not impose
the requirement of having an ontology, the user is not required to learn a CL
syntax, and we do not restrict our considerations to a specific domain. This
article develops the theme of [6], improving it in several ways, such as extending
the analysis to a wider sample of metadata and introducing a lightweight parser.

3 Part-Of-Speech Tagging

Parts of speech (POS) tags provide a significant amount of information about
the language structure. The POS tagging is a fundamental step in language
processing tasks such as parsing, clustering or classification. This is why we
start our analysis with a look at the POS tags of our classifications.

A random subset of each dataset (see Table 1) is manually tokenized and an-
notated by an expert with the PennTreeBank part-of-speech tag set [21]. We use
the OpenNLP toolkit7 to automatically annotate the full datasets. First, using
the manually annotated subset of each dataset, we test the performance of the
standard OpenNLP tokenization and tagging models, which are trained on the

7 http://opennlp.sourceforge.net/



Table 2. POS tagger performance, Precision Per Label, %

Model DMoz eCl@ss LCSH NALT UNSPSC Yahoo

DMoz 93.98 14.12 27.54 75.37 49.69 91.87
eCl@ss 48.80 91.28 28.60 28.73 69.65 62.11
LCSH 81.98 48.79 91.38 81.91 68.14 88.16
NALT 46.97 23.61 28.82 96.42 13.21 34.05

UNSPSC 57.07 45.08 22.76 31.03 92.39 75.46
Yahoo 89.54 15.20 34.84 75.04 45.91 97.91

OpenNLP 49.89 19.02 27.26 40.55 33.20 47.44

all-except 91.59 58.40 53.25 84.77 76.19 94.77

path-cv 96.64 93.34 92.64 96.29 92.72 98.35

combined 99.10 99.69 99.24 99.74 99.40 99.68

Wall Street Journal and Brown corpus data [22], which both contain long texts,
mostly from newswire. Second, we train our own tokenization and tagging mod-
els and analyse their performance. We use the best performing models for the
analysis of the full datasets presented in the next section. In addition, we per-
formed an incremental training to evaluate whether our samples are large enough
for the models to stabilize and found that the performances of our models stabi-
lize around 96-98% precision per label on the size of our training samples. This
shows that a larger manually annotated sample would not provide important
accuracy improvements.

We report the results of our experiments in Table 2 where the columns report
the dataset on which the experiments are run and the rows the training model
used. As baseline, the “OpenNLP” row reports the performance of the stan-
dard OpenNLP tagging model. The “all-except” row reports the performance of
the model trained on all datasets except the one it will be tested on to show
robustness across datasets and on unseen data. The “path-cv” row reports the
performance of the model where the labels appearing higher in the hierarchy were
included in the context for training. Finally, the “combined” row reports the per-
formance of the model trained on a combination of datasets. The figures on the
diagonal and in the “path-cv” row are obtained by a 10-fold cross-validation.
We report in bold the best performances. To indicate the percentage of correctly
processed labels we report the precision per label.

We observe that NLM differs from the language used in normal texts. To
assess whether NLM could be considered a separate language domain, we did
cross-tests and took a closer look at the “all-except” row, comparing it with the
“OpenNLP” one. In all the cases the performance is higher by a margin of 25%-
47%. At the same time, the differences in model performance on different datasets
are smaller than between the models. This performance evaluation confirms the
difference between the NL used in metadata and in normal texts and it enables
us to select the best applicable model for tagging unknown NLM.



As the major reasons for such differences in performance, we see the lack of
context in labels which is not an issue in long texts (see average label length in
Table 1), the different capitalization rules between metadata and long texts, and
the different use of commas. In addition, the POS tags distribution for labels is
different from the one in normal texts as, for example, verbs are almost absent
in NLM with, on average, 3.5 verbs (VB) per dataset, ranging from 0.0001% to
0.15% of all tokens of the dataset (see Fig. 1).

4 Language Structure Analysis

The training of the part-of-speech (POS) tagger reported in the previous section
enabled the study of the language structure of the classification labels. We anal-
ysed the labels’ language structure by automatically POS tagging each dataset
with the best performing model and found interesting repeating patterns.

For instance, the comma is widely used in LCSH and eCl@ss to structure
the labels. LCSH labels are chunks of noun phrases, separated by commas, of-
ten in reverse order, such as in the label “Dramatists, Belgian” with the pat-
tern [NNS, JJ]8 covering 4 437 or 1.32% of all labels. There are also some nat-
urally ordered examples, such as “Orogenic belts, Zambia” with the pattern
[JJ NNS, NNP], which can be simplified into two noun phrase (NP) chunks
[NP, NP] with independent structures. This pattern accounts for 1 500 or 0.45%
of all labels.

We studied some other language characteristics as well, such as label length
and POS tag distribution, with which, in addition to the patterns, we can derive
grammars to generalize the parsing of the labels and simplify the translation
to a formal language (see Sect. 5). This study also allows, by revealing the
semantics of different pieces and elements of labels’ pattern, to code “semantic
actions” attached to the appropriate grammar nodes in our lightweight parser
to specialize the translation to the specific language used in the dataset.

Our analysis of the label lengths (see Fig. 1) shows that the majority of
labels is one to three tokens long. For example, more than half (50.83%) of all
the DMOZ labels contain only one token. Two and three tokens labels represent
17.48% and 27.61%, respectively, while the longer labels only occur in less than
5% of the dataset. In comparison, the LCSH dataset tends to contain longer and
more complex labels, with only 8.39% of them containing one token, 20.16% – two
tokens and about 10-14% for each of 3-, 4-, 5- and 6-token labels; the remaining
11.45% of labels contain more than 6 tokens. Differently to LCSH, almost all the
NALT labels are one and two tokens long. The amount of labels longer than 9
tokens in all datasets is less than 1% and we omit it from the graph.

Fig. 1 shows also the distribution of POS tags. We included all the tags
that occur in more than 1% of all the tokens in any of the datasets analysed.
Out of the 36 tags from the PennTreeBank’s tagset [21], only 28 tags are used
in the NLM datasets that we analysed. For comparison, we include POS tag
distribution in normal text, represented by the Brown corpus [23].

8 POS tags: NNS: plural noun, JJ: adjective, NNP: proper name, CD: cardinal number
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Fig. 1. Distributions of label lengths and POS tags

We observe that all the datasets, except Yahoo, use less than 20 tags in total
(see Table 3). Among the top ones are proper nouns (NNP, NNPS) and common
nouns (NN, NNS), adjectives (JJ, JJR, JJS), conjunctions (CC), prepositions
(IN) and punctuations (“,” and “(”, “)”). A small amount of verbs is present,
used as modifiers in the past form (VBD, max 0.0002%) and in the gerund form
(VBG, max 0.08%).

Table 3. Metadata language characteristics

Dataset Tags Patterns 90% Coverage Top Pattern

LCSH 20 13 342 1 007 NNP NN
NALT 16 275 10 NNP NNP
DMoz 18 975 9 NN
Yahoo 25 2 021 15 NN
eCl@ss 20 1 496 360 NN NN

UNSPSC 18 1 356 182 NN NNS

In each dataset we found specific repetitive combinations of POS tags (re-
ferred to as patterns). Table 3 shows some characteristics of the language used in
classifications with regard to these patterns. The column “90% coverage” shows
count of POS tag patterns required to cover at least 90% of the dataset.

A qualitative analysis reveals more details. For example, labels are almost
exclusively noun phrases. DMOZ category names are clearly divided into the



“proper” and “common” categories, which was noted in [6]. However, this is
not the case for all datasets. Also a noticeable presence of round brackets is
explained by their use as a disambiguation and specification tool, as illustrated
by the labels “Watchung Mountains (N.J.)” and “aquariums (public)”, which,
if treated properly, helps in the formal language translation procedure.

When studying the LCSH patterns at a chunk level (using commas as separa-
tors) we can identify 44 groups of chunk-patterns, where many chunks bear clear
semantics. For example, the pattern [NNP NNP, NN CC NN, CD] of the label
“United States, Politics and government, 1869-1877”, when seen at a chunk level
transforms into [geo, NP, time], where “geo” stands for a geographical proper
name, “NP” stands for a noun phrase, and “time” stands for a time period.

5 Lightweight Parsing

The parsing of labels in higher level structures can provide a better understand-
ing of their semantics and thus to process them in a more meaningful notation
for the computer. Following motivating application a) from Sect. 1, we want to
use the S-Match algorithm [24] to align different classifications, such as in the
experiment described in [7] and thus need a translation in a lightweight ontol-
ogy, which. This allows, for example, for the automatic integration of existing
heterogeneous classifications.

Rule-based parsers use manually created linguistic rules to encode the syn-
tactic structure of the language. These rules are then applied to the input text to
produce parse trees. In long texts parsing, these have been disregarded because
of two main disadvantages: they require a lot of manual work to produce linguis-
tic rules and they have difficulties achieving a “broad coverage” and robustness
to unseen data. To tackle these problems, state of the art statistical parsers, such
as [25], infer grammar from an annotated corpus of text. However, this approach
requires a large annotated corpus of text and a complicated process for tuning
the model parameters. Moreover, producing a corpus annotated with parse trees
is a much more costly and difficult operation than doing a basic annotation, such
as POS tagging.

However, as we have seen in the previous section, in NLM, the language used
is limited to (a combinations of) noun phrases. Hence, we need a limited cover-
age, which simplifies the construction of the rules. Therefore we use a simpler
approach and manually construct a grammar for parsing. This requires having
only an accurate POS tagging and some structural information of the language,
which are provided by the analysis we described in the previous sections. We use
a basic noun phrase grammar as a starting point for our grammars. Analyzing
the POS tag patterns we modify this grammar to include the peculiarities of
noun phrases as they are used in NLM, such as the use of commas and round
brackets for disambiguation and specification (see examples in Sect. 4).

We have developed a set of lightweight grammars for the datasets discussed
in this paper. The grammars we constructed can be divided into two categories:
“simple” ones with nine and ten rules (DMoz, eCl@ss and UNSPSC) and a



“complex” ones with 15 and 17 rules (Yahoo, NALT and LCSH). Table 4 provides
details about the grammar coverage.

Table 4. Grammar characteristics

Grammar Rules
Coverage (%) Parsing Mistakes (%)

Patterns Labels POS Tagger Grammar Rules

LCSH 17 92.96 99.45 49.59 47.94
NALT 15 59.27 99.05 80.35 13.30
DMoz 9 90.95 99.81 85.98 11.01
Yahoo 15 65.31 99.46 70.90 20.50
eCl@ss 9 67.45 92.70 44.17 47.93

UNSPSC 10 70.58 90.42 25.01 65.70

One can note that in all cases we have a high coverage of the dataset labels,
more than 90% in all cases and more than 99% in four cases. If we look at the
pattern coverage we notice a slightly different picture. For NALT, Yahoo, eCl@ss
and UNSPSC, we have only 60% to 70% coverage of the patterns. This can be
explained by Table 3 where, for instance, only around 1% of the patterns already
cover 90% of the labels in NALT. This shows how a small amount of the labels
uses a large variety of language construction while the majority of the NLM uses
highly repetitive constructs.

Our analysis shows that the main reason for the lower coverage is a less reg-
ular use of language in these four classifications as compared to the other two
classifications. We have analysed the mistakes done by the parser and found that
they mostly fall into two major categories: POS tagger errors and linguistic rules
limitations (see Table 4). This can be explained by the rule-based nature of our
parser that makes it particularly sensitive to POS tagger errors. Other parser
mistakes are due to the inconsistent (ungrammatical) or unusually complex la-
bels, which could be seen as “outliers”. For example, the “English language,
Study and teaching (Elementary), Spanish, [German, etc.] speakers” label from
LCSH contains both a disambiguation element “(Elementary)” and a “wildcard”
construction “[German, etc.]”.

Fig. 2 shows two examples out of the grammars we produced for the LCSH
and UNSPSC datasets. We use Backus-Naur form (BNF) for representing the
grammar rules. The LCSH one starts with a top production rule Heading, which
encodes the fact that LCSH headings are built of chunks of noun phrases, which
we call FwdPhrase. In turn, a FwdPhrase may contain two phrases DisPhrase

with disambiguation elements as in the example above. The disambiguation el-
ement may be a proper noun phrase (ProperDis) or a common noun phrase
(NounDis), surrounded by round brackets. NounDis is usually a period of time
or a type of object, like “Fictitious character” in “Rumplemayer, Fenton (Ficti-
tious character)” while ProperDis is usually a sequence of geographical named
entities, like “Philadelphia, Pa.” in “Whitemarsh Hall (Philadelphia, Pa.)”.



1 Heading:=FwdPhrase {"," FwdPhrase}

2 FwdPhrase:=DisPhrase

{Conn} DisPhrase

3 DisPhrase:=Phrase {"("ProperDis

| NounDis")"}

4 Phrase:=[DT] Adjs [Nouns] |

[Proper] Nouns | Foreigns

5 Adjs:=Adj {[CC] Adj}

6 Nouns:=Noun {Noun}

7 Conn:=ConjConn | PrepConn

8 Noun:=NN [POS] | NNS [POS] | Period

9 Adj:=JJ | JJR

10 ConjConn:=CC

11 PrepConn:=IN | TO

12 Proper:=NNP {NNP}

13 NounDis:=CD | Phrase [":" Proper]

14 ProperDis:=ProperSeq ":" Phrase |

ProperSeq CC ProperSeq

15 Period:=[TO] CD

16 ProperSeq:=Proper ["," Proper]

17 Foreigns:=FW {FW}

1 Label:=Phrase {Conn (Phrase

| PP$ Label)}

2 Phrase:=Adjs [Nouns] | Nouns

3 Adjs:=Adj {Adj}

4 Nouns:=Noun {Noun}

5 Conn:=ConjConn | PrepConn

6 Noun:=NN [POS] | NNS [POS] |

DT RB JJ | Proper

7 Adj:=JJ | JJR | CD | VBG

8 ConjConn:=CC | ,

9 PrepConn:=IN | TO

10 Proper:=NNP {NNP}

Fig. 2. LCSH (left) and UNSPSC (right) BNF production rules

The core of the grammar is the Phrase rule, corresponding to the variations
of noun phrases encountered in this dataset. It follows a normal noun phrase
sequence of: a determiner followed by adjectives, then by nouns. Alternatively,
it could be a noun(s) modified by a proper noun, or a sequence of foreign words.

A comparative analysis of the grammars of different classifications shows that
they all share the nine base rules with some minor variations. Compare the rules
4-12 of LCSH with the rules 2-10 of UNSPSC in Fig. 2. These nine rules encode
the basic noun phrase. Building on top of that, the grammars encode the differ-
ences in syntactic rules used in different classifications for disambiguation and
structural purposes. For example, in LCSH, a proper noun in a disambiguation
element is often further disambiguated with its type, as “Mountain” in: “Nittany
Mountain (Pa. : Mountain)”.

Although very similar to one another, there are a few obstacles that need to be
addressed before these grammars can be united into a single one. One of the most
difficult of these obstacles is the semantically different use of round brackets: in
most cases round brackets are used as a disambiguation tool, as illustrated by
the examples mentioned above; however, we also found some examples where
round brackets are used as a specification tool, as for instance in the label from
eCl@ss: “epoxy resin (transparent)”.



Due to these different semantics, these cases will almost certainly require dif-
ferent processing for a target application. For example, in translating metadata
for semantic matching purposes [8], we need to translate the labels of a classi-
fication into a Description Logic formula to build up a lightweight ontology. In
this application, the disambiguation element “(Pa. : Mountain)” of the label
“Nittany Mountain (Pa. : Mountain)” can be used to choose a precise concept
“Nittany Mountain” and the element itself is not included in the final formula,
while in the specification case of “epoxy resin (transparent)”, the specifier con-
cept “transparent” should be included in the formula in a conjunction with a
concept “epoxy resin” that is being specified.

Another obstacle is the different semantics of commas. Sometimes, a comma
is used to indicate a sequence of phrases. However, there are cases where the
comma separates a modifier in a phrase, written in a “backward” manner, such
as illustrated above with a label “Dramatists, Belgian”. In long texts, these
differences can be disambiguated by the context, which is almost always missing
for NLM.

Despite these differences, our results show that simple and easily customiz-
able grammars can be used to parse accurately most of the patterns found in
the state of the art classifications, thus providing extra understanding of the NL
without a loss in performance.

6 Evaluation

We have evaluated our approach in a semantic matching application with the
dataset from [4] that contains 9 482 labels from a variety of web directories. We
have manually annotated all this dataset with tokens, POS tagging information
and assigned a correct logical formula to every label. For example, we have
annotated the label “Religion and Spirituality” with the POS tags “NN CC
NN” and the formula “n#5871157 | n#4566344”, where n#ID point to WordNet
synsets for “religion” and “spirituality”, respectively, and | stands for logical
disjunction, which was lexically expressed with “and”. The average label length
is of 1.76 tokens, with the longest label being of 8 tokens. The most frequent
POS tags are singular nouns (NN, 31.03%), plural nouns (NNS, 28.20%), proper
nouns (NNP, 21.17%) and adjectives (JJ, 10.08%).

In Fig. 3, we report the accuracy of the translation to description logic formu-
las, in comparison to the POS tagger performances. We consider the translation
to be correct if the resulting formula is logically equivalent to the formula in the
manual annotation. We report two different POS tagging models (see Sect. 3):
No Context that corresponds to the best combined model, With Context that
is the best combined model trained with a context coming from the classification
path of the labels.

We can first observe an improvement of 6.6% in the POS tagging accuracy
when using the context, which stresses the importance of such context. However,
this only improves the translation accuracy by 2.62%. The improvement in POS
tagging does not translate directly into a translation improvement, due to the
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other modules of the pipeline, such as the word sense disambiguation module,
whose performance also influences the overall translation accuracy. Indeed, if we
evaluate the translation with the manual POS tagging (Manual point in Fig. 3),
we observe that even with a “perfect” tagging, the translation accuracy does not
improve much more. In comparison, a “perfect” tokenization (with a contextless
POS tagging), improves the translation accuracy only by 0.02%.

The approach we propose in this paper, with more accurate NLP models
and the language structure analysis, achieves an accuracy of 84.39% in this
application domain. This is a 17.95% improvement over the state of the art
translation approach from [24] that reaches a 66.44% precision.

Analysing the errors, we observe that incorrect recognition of atomic con-
cepts accounts for 22.94% of wrongly translated labels. In the remaining 77.06%
of wrongly translated labels the errors are split into two groups: 79.29% due
to incorrectly disambiguated senses and 20.71% due to incorrectly recognized
formula structure. This suggests directions for further improvements of the ap-
proach.

7 Conclusions

We have explored and analysed the natural language metadata represented in
several large classifications. Our analysis shows that the natural language used
in classifications is different from the one used in normal text and that language
processing tools need an adaptation to perform well. We have shown that a
standard part-of-speech (POS) tagger could be accurately trained on the specific
language of the metadata and that we improve greatly its accuracy compared to
the standard long texts models for tagging.

A large scale analysis of the use of POS tags showed that the metadata
language is structured in a limited set of patterns that can be used to develop
accurate (up to 99.81%) lightweight Backus-Naur form grammars. We can then
use parsers based on these grammars to allow a deeper understanding of the
metadata semantics. We also show that, for such tasks as translating classifica-
tions into lightweight ontologies for use in semantic matching it improves the
accuracy of the translation by almost 18%.
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