

DISI ‐ Via Sommarive 14 ‐ 38123 Povo ‐ Trento (Italy)
http://www.disi.unitn.it

CONCEPT SEARCH: SEMANTICS
ENABLED INFORMATION
RETRIEVAL

Fausto Giunchiglia, Uladzimir Kharkevich,
Ilya Zaihrayeu

January 2010

Technical Report # DISI-10-004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints Research

https://core.ac.uk/display/11830034?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Concept Search: Semantics Enabled

Information Retrieval 1

Fausto Giunchiglia, Uladzimir Kharkevich, Ilya Zaihrayeu

Department of Information Engineering and Computer Science,
University of Trento, Italy

Abstract

In this paper we present a novel approach, called Concept Search, which extends
syntactic search, i.e., search based on the computation of string similarity between
words, with semantic search, i.e., search based on the computation of semantic
relations between concepts. The key idea of Concept Search is to operate on complex
concepts and to maximally exploit the semantic information available, reducing to
syntactic search only when necessary, i.e., when no semantic information is available.
The experimental results show that Concept Search performs at least as well as
syntactic search, improving the quality of results as a function of the amount of
available semantics.

Key words: Semantic Search, Semantic Inverted Index, Semantic Continuum

1 Introduction

Historically, there have been two major approaches to information retrieval
that we call syntactic search and semantic search. Syntactic search uses words
or multi-word phrases as atomic elements in document and query represen-
tations. The search procedure is essentially based on the syntactic matching

Email addresses: fausto@disi.unitn.it (Fausto Giunchiglia),
kharkevi@disi.unitn.it (Uladzimir Kharkevich), ilya@disi.unitn.it (Ilya
Zaihrayeu).
1 This article is an extended and updated version of an earlier conference paper [14],
where Concept Search was originally introduced.
2 This work has been partially supported by the European Commission - LIVING
KNOWLEDGE project, Grant agreement no.: 231126.

Preprint submitted to Elsevier 20 January 2010

of document and query representations. Semantic search is based on fetch-
ing document and query representations through a semantic analysis of their
contents using natural language processing techniques and, later, on retriev-
ing documents by matching these semantic representations. The key idea is
that, differently from syntactic search, semantic search exploits the meaning
of words, thus avoiding many of the well known problems of syntactic search,
e.g., the problems of polysemy and synonymy.

In this paper we propose a novel approach called Concept Search (C-Search
in short) which extends syntactic search with semantics. The main idea is to
keep the same machinery which has made syntactic search so successful, but
to modify it so that, whenever useful, syntactic search is substituted by se-
mantic search, thus improving the system performance. This is why we say
that C-Search is semantics enabled syntactic search. Semantics can be enabled
along different dimensions, on different levels, and to different extents forming
a space of approaches lying between purely syntactic search and full semantic
search. We call this space the semantic continuum. In principle, C-Search can
be tuned to work at any point in the semantic continuum taking advantage of
semantics when and where possible. As a special case, when no semantic infor-
mation is available, C-Search reduces to syntactic search, i.e., results produced
by C-Search and syntactic search are the same.

The remainder of the paper is organized as follows. In Section 2, we first dis-
cuss information retrieval (IR) in general, and then focus on syntactic search.
In this section, we provide a general model of IR which will be latter ex-
tended to semantic search. In Section 3, we introduce and describe the seman-
tic continuum. In Section 4, we describe how C-Search is positioned within
the semantic continuum. Section 5 describes how semantics enabled relevancy
ranking is implemented in C-Search. In Section 6, we show how C-Search can
be efficiently implemented using inverted index technology. Section 7 presents
experimental results. In Section 8, we discuss the state-of-the-art in semantic
search and compare our approach with other related approaches. Section 9
concludes the paper. In Appendix A, we provide a proof of the correctness
and the completeness of the concept matching algorithm which is described
in Section 4.

2 Syntactic Search

The goal of an IR system is to map a natural language query q (in a query
set Q), which specifies a certain user information needs, to a set of documents
d in the document collection D which meet these needs, and to order these
documents according to their relevance to q. IR can therefore be represented

2

as a mapping function:

IR : Q → D (1)

In order to implement an IR System we need to decide (i) which models
(Model) are used for document and query representation, for computing query
answers and relevance ranking, (ii) which data structures (Data Structure) are
used for indexing document representations in a way to allow for an efficient
retrieval, (iii) what is an atomic element (Term) in document and query repre-
sentations, and (iv) which matching techniques (Match) are used for matching
document and query terms. Thus, an IR System can be abstractly modelled
as the following 4-tuple:

IR System = 〈Model, Data Structure, Term, Match〉 (2)

The bag of words model, i.e., the model in which the ordering of words in
a document is not considered, is the most widely used model for document
representation. The boolean model, the vector space model, and the probabilistic
model are the classical examples of models used for computing query answers
and relevance ranking. Conventional search engines rank query results using
the cosine similarity from the vector space model with terms weighted by
different variations of the tf-idf weight measure. Various index structures, such
as the signature file and the inverted index, are used as data structures for
efficient retrieval. Inverted index, which stores mappings from terms to their
locations in documents, is the most popular solution. Finally, in syntactic
search, Term and Match are instantiated as follows:

• Term - a word or a multi-word phrase;
• Match - syntactic matching of words and/or phrases.

In the simplest case, syntactic matching is implemented as search for identical
words. These words are often stemmed. Furthermore, some systems perform
approximate matching by searching for words with common prefixes or words
within a certain edit distance with a given word. Readers interested in a
detailed discussion of IR systems and their components are referred to [20].

There are several problems which may negatively affect the performance of
syntactic search, as discussed below.

Polysemy. The same word may have multiple meanings and, therefore, query
results may contain documents where the query word is used in a meaning
which is different from what the user had in mind when she was defining the
query. For instance, a document D1 (in Figure 1) which talks about baby in
the sense of a very young mammal is irrelevant if the user looks for documents
about baby in the sense of a human child (see query Q1 in Figure 1). An answer
for query Q1, computed by a syntactic search engine, includes document D1,
while the correct answer is the empty set.

3

A small baby dog runs after a huge white cat. D1:

A laptop computer is on a coffee table. D2:

A little dog or a huge cat left a paw mark on a table. D3:

Babies and dogs Q1: Computer table Q3: Carnivores Q4: Paw printQ2:

Documents:

Queries:

Fig. 1. Queries and a document collection

Synonymy. Two different words can express the same meaning in a given
context, i.e., they can be synonyms. For instance, words mark and print are
synonymous when used in the sense of a visible indication made on a surface,
however, only documents using word print will be returned if the user query
was exactly this word. An answer for query Q2 (in Figure 1), computed by
a syntactic search engine, is the empty set, while the correct answer includes
document D3.

Complex concepts. Syntactic search engines fall short in taking into account
complex concepts formed by natural language phrases and in discriminating
among them. Consider, for instance, document D2 (in Figure 1). This doc-
ument describes two concepts: a laptop computer and a coffee table. Query
Q3 (in Figure 1) denotes concept computer table which is quite different from
both complex concepts described in D2, whereas a syntactic search engine is
likely to return D2 in response to Q3, because both words computer and table
occur in this document. The correct answer to Q3 is the empty set.

Related concepts. Syntactic search does not take into account concepts
which are semantically related to the query concepts. For instance, a user
looking for carnivores might not only be interested in documents which talk
about carnivores but also in those which talk about the various kinds of carni-
vores such as dogs and cats. An answer for query Q4 (in Figure 1), computed
by a syntactic search, is the empty set, while the correct answer might include
documents D1 and D3, depending on user information needs and available
semantic information.

3 The Semantic Continuum

In order to address the problems of syntactic search described in Section 2,
we extend syntactic search with semantics. In the following, we identify three
dimensions where semantics can improve syntactic search and represent these
dimensions in the cartesian space shown in Figure 2.

From natural language to formal language (NL2FL-axis in Figure 2). To
solve the problems related to the ambiguity of natural language, namely, the

4

NL2FL

W2P

+Noun Phrase

+Lexical

knowledge

+Verb Phrase

…
C-Search

(0, 0, 0)

Pure Syntax

NL

 (FL)

1

Word

String

Similarity

+Statistical

Knowledge

1

(Complete

 Ontological

 Knowledge)

…

1 (Full-fledged

 sentence)

KNOW

+Descriptive Phrase

NL&FL

Full Semantics

(1, 1, 1)

Fig. 2. Semantic Continuum

problems of polysemy and synonymy, we need to move from words, expressed
in a natural language, to concepts (word senses), expressed in an unambiguous
formal language. An overview of existing approaches to sense based IR is pre-
sented in [26]. In the NL2FL-axis, value 0 represents the situation where only
words are used, while value 1 represents the situation where only concepts are
used. When we move from words to concepts, it is not always possible to find a
concept which corresponds to a given word. The main reason for this problem
is the lack of background knowledge [12,16], i.e., a concept corresponding to
a given word may not exist in the lexical database. To address this problem,
indexing and retrieval in the continuum are performed by using both syntac-
tic and semantic information, i.e., a word itself is used as a concept identifier,
when its denoted concept is not known.

From words to phrases (W2P-axis in Figure 2). To solve the problem re-
lated to complex concepts, we need to analyze natural language phrases, which
denote these concepts. It is well known that, in natural language, concepts are
expressed mostly as noun phrases [28]. An example of a noun phrase parsing
algorithm and its application to document indexing and retrieval is described
in [32]. There are approaches in which the conceptual content of noun phrases
is also analyzed (e.g., see [1]). In general, concepts can be expressed as more
complex phrases than noun phrases (e.g., verb phrases) and possibly as ar-
bitrary complex full-fledged sentences. In the W2P-axis, value 0 represents
the situation where only single words are used, while value 1 represents the
situation where complex concepts, extracted from full-fledged sentences, are
used.

From string similarity to semantic similarity (KNOW-axis in Figure 2).
The problem with related concepts can be solved by incorporating knowledge

5

about term relatedness. For instance, it can be statistical knowledge about
word co-occurrence (e.g., see [10]), lexical knowledge about synonyms and re-
lated words (e.g., see [22]), or ontological knowledge about classes, individuals,
and their relationships (e.g., see [23]). In the KNOW-axis, value 0 represents
the situation where only string similarity is used during the term matching
process, while 1 represents the situation where complete ontological knowledge
is used during term matching.

The three-dimensional space contained in the cube (see Figure 2) represents
the semantic continuum where the origin (0,0,0) is a purely syntactic search,
the point with coordinates (1,1,1) is full semantic search, and all points in be-
tween represent search approaches in which semantics is enabled to different
extents. The C-Search approach can be positioned anywhere in the semantic
continuum with the purely syntactic search being its base case, and the full se-
mantic search being the optimal solution, at the moment beyond the available
technology.

4 Concept Search

C-Search is implemented according to the model described in Equations 1
and 2 from Section 2. In our proposed solution, C-Search reuses retrieval mod-
els (Model) and data structures (Data Structure) of syntactic search with the
only difference in that now words (W) are substituted with concepts (C) and
syntactic matching of words (WMatch) is extended to semantic matching of
concepts (SMatch). This idea is schematically represented in the equation
below:

Syntatic Search
Term(W → C), Match(WMatch → SMatch)−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ C-Search

Let us consider in details how the words in W are converted into the complex
concepts in C and also how the semantic matching SMatch is implemented.

4.1 From Words To Complex Concepts (W → C)

Searching documents, in C-Search, is implemented using complex concepts
expressed in a propositional Description Logic (DL) [2] language (i.e., a DL
language without roles). Complex concepts are computed by analyzing mean-
ing of words and phrases in queries and document bodies.

Single words are converted into atomic concepts uniquely identified as the
lemma-sn, where lemma is the lemma of the word, and sn is the sense number

6

in a lexical database such as WordNet [21]. For instance, the word dog used
in the sense of a domestic dog, which is the first sense in the lexical database,
is converted into the atomic concept dog-1. The conversion of words into con-
cepts is performed as follows. First, we look up and enumerate all meanings of
the word in the lexical database. Next, we perform word sense filtering, i.e., we
discard word senses which are not relevant in the given context. In order to do
this, we follow the approach presented in [31], which exploits part-of-speech
(POS) tagging information and the lexical database for the disambiguation of
words in short noun phrases. Differently from [31] we do not use the disam-
biguation technique which leaves only the most probable sense of the word,
because of its low accuracy. If more than one sense is left after the word sense
filtering step then we keep all the left senses. If no senses from the lexical data-
base are found then lemma is used as the identifier for the atomic concept. In
this case, C-Search is reduced to syntactic search.

Complex concepts are computed by extracting phrases and by analyzing their
meaning. Noun phrases are translated into the logical conjunction of atomic
concepts corresponding to the words in the phrase. For instance, the noun
phrase A little dog is translated into the concept little-4u dog-1. Note that in
this paper, we adopt the approach described in [15] by defining the extension
of a concept as a set of noun phrases which describe this concept. For instance,
the extension of the concept little-4udog-1 is the set of all noun phrases about
dogs of a small size.

Concepts in natural language can be described ambiguously. For instance,
the phrase A little dog or a huge cat represents a concept which encodes the
fact that it is unknown whether the only animal described in the document
is a little dog or a huge cat. In order to support complex concepts which
encode uncertainty (partial information) that comes from the coordination
conjunction OR in natural language, we introduce the notion of descriptive
phrase. We define a descriptive phrase as a set of noun phrases, representing
alternative concepts, connected by OR:

descriptive phrase ::= noun phrase {OR noun phrase} (3)

Descriptive phrases are translated into the logical disjunction of the formulas
corresponding to the noun phrases. For instance, the phrase A little dog or a
huge cat is translated into the concept (little-4u dog-1)t (huge-1u cat-1). To
locate descriptive phrases we, first, follow a standard NLP pipeline to locate
noun phrases, i.e., we perform sentence detection, tokenization, POS tagging,
and noun phrase chunking. Second, we locate descriptive phrases satisfying
Formula 3.

In C-Search, every document d is represented as an enumerated sequence of
conjunctive components uAd (where Ad is an atomic concept from d, e.g.,
dog-1) possibly connected by disjunction symbol “t”. For example, in Fig-

7

2

3

laptop-1 computer-1

carnivore-1 computer-1 table-1 paw-1 print-3baby-1

onpaw-1 mark-4leavehuge-1 cat-1little-4 dog-1 D3:

Q1: Q3: Q4:Q2:

2 31 4 5 table-176

AND dog-1

Documents:

Queries:

coffee-1 table-1beD2: 41 on 3

huge-1 white-1 cat-1runsmall-4 baby-3 dog-1 D1: 21

Fig. 3. Document and Query Representations

ure 3 we show the sequences of uAd extracted from documents in Figure 1.
Rectangles in Figure 3 represent either conjunctive components uAd or the
disjunction symbol “t”, a number in a square at the left side of a rectangle
represents the position of the rectangle in the whole sequence. Note, that sym-
bol “t” is used to specify that conjunctive components uAd connected by this
symbol form a single disjunctive concept t u Ad, namely:

t u Ad ::= (uAd){(“ t ”)(uAd)} (4)

For example, the first three positions in the sequence for document D3 in
Figure 3 represent the concept (little-4 u dog-1) t (huge-1 u cat-1).

Queries usually are short phrases (i.e., 1-3 words) and, as shown in [31], stan-
dard NLP technology, primarily designed to be applied on full-fledged sen-
tences, is not effective enough in this application scenario. An atomic concept,
in a query, can be computed incorrectly, because of the selection of a wrong
part-of-speech tag. In order to address this problem, for short queries, we
use a POS-tagger which is specifically trained on short phrases [31]. On the
other hand, for long queries (i.e., 4 words or more), we use the standard NLP
technology.

Even if atomic concepts are computed correctly, complex concepts can be er-
roneously computed. One of the reasons is that a complex concept can be
represented as a sequence of words without following the grammar for noun
phrases. For instance, the query cat huge is converted into two atomic con-
cepts cat-1 and huge-1, while the correct concept might be cat-1 u huge-1.
Another reason is that a query describing more than one concept, without
properly separating them, can be recognized as a single complex concept. For
instance, the query dog cat is converted into the concept dog-1 u cat-1, while
the user might be actually looking for a document describing both animals,
i.e., dog-1 and cat-1. The examples described above show that, in general, it
is unknown how atomic concepts Aq

1, . . . , Aq
n, extracted from short queries,

should be combined in order to build complex query concepts. To represent
this uncertainty we use the following query:

(Aq
1 AND . . . AND Aq

n) AND (Aq
1 t · · · t Aq

n) (5)

where the first part (Aq
1 AND . . . AND Aq

n), i.e., atomic concepts Aq
1, . . . , Aq

n

connected by using boolean operator AND, encodes the fact that it is known

8

that the query answer should contain documents which are relevant to all
the atomic concepts in the query. The second part, i.e., the complex concept
Aq

1 t · · · tAq
n, can be equivalently rewritten as (Aq

1)t (Aq
2)t · · · t (Aq

1 uAq
2)t

· · · t (Aq
1 u · · · u Aq

n) and, therefore, encodes the fact that it is unknown to
which complex concept (e.g., Aq

1 uAq
2, or Aq

1 u · · · uAq
n) the documents in the

query answer should actually be relevant to. For instance, for queries cat huge
and dog cat the following C-Search queries will be generated:

cat huge ⇒ cat-1 AND huge-1 AND cat-1 t huge-1 t (cat-1 u huge-1)

dog cat ⇒ dog-1 AND cat-1 AND dog-1 t cat-1 t (dog-1 u cat-1)

Note that in C-Search (as it will be discussed later in Section 5) we give a
preference to documents which match complex concepts, therefore, in the first
example, documents about cat-1uhuge-1 will be ranked higher. Let us assume
that in the second example there are no documents about complex concept
dog-1 u cat-1. In this case, it can be shown that the query results will be the
same as the results of the query dog-1 AND cat-1.

4.2 From Word to Concept Matching (WMatch → SMatch)

In C-Search, we allow the search of documents describing concepts which are
semantically related to query concepts. We assume that, when a user is search-
ing for a concept, she is also interested in more specific concepts 3 . For exam-
ple, the extension of concept (little-4 u dog-1) t (huge-1 u cat-1) is a subset
of the extension of concept carnivore-1. Therefore, documents describing the
former concept should be returned as answers to the query encoded by the
latter concept. Formally a query answer A(Cq, T) is defined as follows:

A(Cq, T) = {d | ∃Cd ∈ d, s.t. T |= Cd v Cq} (6)

where Cq is a complex query concept extracted from the query q, Cd is a
complex document concept extracted from the document d, and T is a termi-
nological knowledge base (the background knowledge) which is used in order
to check if Cd is more specific then Cq. Equation 6 states that the answer to a
query concept Cq is the set of all documents d, such that, there exists concept
Cd in d which is more specific than the query concept Cq.

During query processing we need to compute A(Cq, T) for every query concept
Cq in the query. One approach is to sequentially iterate through each concept
Cd, compare it to the query concept Cq using semantic matching [17], and col-
lect those Cd for which semantic matching returns more specific (v). However,

3 This could be easily generalized to any set of semantically related concepts. The
impact of this choice onto the system performance is part of the future work.

9

cat-1 lion-1

carnivore-1

canine-2 feline-1

dog-1 wolf-1

is a subsumption relation

Fig. 4. Example of terminological knowledge base TWN

this approach may become prohibitory expensive as there may be thousands
and millions of concepts described in documents. In order to allow for a more
efficient computation of A(Cq, T), we propose an approach described below.

Let us assume, as it is the case in the current implementation, that T con-
sists of the terminological knowledge base TWN generated from WordNet and
extended by words (represented as concepts) for which no senses in WordNet
are found. One small fragment of TWN is represented in Figure 4. TWN can be
thought of as an acyclic graph, where links represent subsumption axioms in
the form Ai v Aj, with Ai and Aj atomic concepts.

Concepts Cd and Cq, are created by translating descriptive phrases into propo-
sitional DL formulas (see Section 4.1 for details). The resulting concepts are
disjunctions (t) of conjunctions (u) of atomic concepts (A) without negation,
i.e., Cd ≡ tuAd and Cq ≡ tuAq. For example, possible document and query
concepts are:

Cd ≡ (little-4 u dog-1) t (huge-1 u cat-1)

Cq ≡ (small-4 u canine-2) t (large-1 u feline-1)

By substituting Cd with tuAd, Cq with tuAq, and T with TWN in Equation 6,
we obtain:

A(t u Aq, TWN) = {d | ∃(t u Ad) ∈ d, s.t. TWN |= t u Ad v t u Aq} (7)

Let us denote by CtuAq the set of all the complex document concepts tuAd,
which are equivalent to or more specific than t u Aq, in formulas:

CtuAq = {t u Ad | TWN |= t u Ad v t u Aq} (8)

Then Equation 7 can be rewritten as follows:

A(t u Aq, TWN) = {d | ∃(t u Ad) ∈ d, s.t. (t u Ad) ∈ CtuAq} (9)

In order to compute set CtuAq , as defined in Equation 8, we need to solve the
following subsumption problem

TWN |= t u Ad v t u Aq (10)

10

Given that TWN consists only of subsumption axioms between atomic con-
cepts, and that concepts t u Ad and t u Aq do not contain negations, the
problem in Equation 10 can be reduced to the set of subsumption problems

TWN |= uAd v Aq (11)

This problem reduction is obtained by applying the following three equa-
tions 4 :

TWN |=t u Advt u Aq iff for all u Ad in t uAd, TWN |=uAdvt u Aq (12)

TWN |=uAdvt u Aq iff there exists u Aq in t uAq, TWN |=uAdvuAq (13)

TWN |=uAdv uAq iff for all Aq in u Aq , TWN |=uAdvAq (14)

Notice that the second part of each equation is the same as the first part of
the equation that follows, and that the first part of Equation 12 and the last
part of Equation 14 are exactly Equations 10 and 11. This proves that the
above problem reduction is correct.

If by Cu
C we denote a set of all the conjunctive components uAd, which are

equivalent to or more specific than concept C, i.e.,

Cu
C = {uAd | TWN |= uAd v C}, where C ∈ {Aq,uAq,t u Aq} (15)

Given Equations 12, 13, and 14, the query answer A(Cq, TWN), as defined in
Equation 9, can be computed by using Algorithm 1. The algorithm consists
of the five principle phases which are described below:

Phase 1 (line 6) We compute Cu
Aq , i.e., the set of all uAd, such that, uAd v

Aq.
Phase 2 (lines 5-13) We compute Cu

uAq , i.e., a set of all uAd, such that,
uAd v uAq. As it follows from Equation 14, uAd ∈ Cu

uAq only if for every
Aq in uAq, uAd ∈Cu

Aq . To compute Cu
uAq , we intersect sets Cu

Aq for all Aq

in uAq.
Phase 3 (lines 2-15) We compute the set Cu

tuAq , i.e., the set of all uAd,
such that, uAd v t u Aq. As it follows from Equation 13, uAd ∈ Cu

tuAq if
uAd ∈ Cu

uAq at least for one uAq in t uAq. To compute the set Cu
tuAq , we

take the union of all the sets Cu
uAq for all uAq in t u Aq.

Phase 4 (line 16) We compute the set CtuAq , i.e., the set of all complex
document concepts t u Ad, such that, t u Ad v t u Aq. As it follows from
Equation 12, t u Ad ∈ CtuAq only if all the conjunctive components uAd

4 In Appendix A, we prove correctness and completeness of Equation 13 when
the knowledge base and complex concepts are as described above. Note, that in
general, Equation 13 cannot be applied. One such case is when negation is allowed,
a counterexample is |= Ai v Aj t¬Aj . A second case is when T contains axioms of
the form Ai v Aj tAk; consider, e.g., T = {Ai v Aj tAk} |= Ai v Aj tAk.

11

Algorithm 1 Compute A(t u Aq, TWN)

1: Cu
tuAq ← ∅

2: for all uAq in t u Aq do
3: i ← 0
4: Cu

uAq ← ∅
5: for all Aq in uAq do
6: Cu

Aq ← {uAd |TWN |=uAd v Aq}
7: if i = 0 then
8: Cu

uAq ← Cu
Aq

9: else
10: Cu

uAq ← Cu
uAq ∩Cu

Aq

11: end if
12: i ← i + 1
13: end for
14: Cu

tuAq ← Cu
tuAq ∪Cu

uAq

15: end for
16: CtuAq ← {t u Ad | all uAd in t u Ad belong to Cu

tuAq}
17: A ← {d | there exists t u Ad in d, s.t., t u Ad belongs to CtuAq}

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

in tuAd belong to Cu
tuAq . To compute the set CtuAq , we collect all tuAd

which consist only from conjunctive components uAd in Cu
tuAq .

Phase 5 (line 17) We compute A(tuAq, TWN) as defined in Equation 9, i.e.,
by collecting all the documents which contain concepts from CtuAq .

The next section reports different approaches to how the phases above can
actually be implemented and their output on a running example.

In C-Search, query concepts Cq can be combined into more complex queries q
by using the boolean operators AND, OR, and NOT. Query answer A(q, TWN)
in this case is computed by recursively applying the following rules:

A(qi AND qj, TWN) = A(qi, TWN) ∩ A(qj, TWN)

A(qi OR qj, TWN) = A(qi, TWN) ∪ A(qj, TWN)

A(qi NOT qj, TWN) = A(qi, TWN) 6 A(qj, TWN)

For instance, the query answer for query baby-1 AND dog-1 (in Figure 3) is
computed as follows: A(baby-1 AND dog-1, TWN) = A(baby-1, TWN)∩A(dog-1,
TWN) = ∅ ∩ {D1, D3} = ∅

5 Relevance Ranking

In order to compute the relevance of documents, in C-Search, standard IR
ranking techniques are adapted. In syntactic search, ranking of documents is

12

usually performed by calculating frequencies f(wq, d) of appearance of query
words wq in a document d and then by applying different scoring functions
S(wq, d) = S(f(wq, d), d), which depend on f(wq, d) and, in general, can also
depend on many other parameters, e.g., length of d. In order to adapt such
techniques for ranking query results in C-Search, f(wq, d) is replaced by the
following function:

f ′(Aq, wq, d) = P (Aq, wq) · ∑

AdvAq

SS(Aq, Ad) · P (Ad, wd) · f(Ad, wd, d) (16)

which takes into account frequencies f(Ad, wd, d) of all the atomic document
concepts Ad which are related to Aq and described in d. Moreover, f ′(Aq, wq, d)
takes into account the fact that not all the atomic concepts Aq are equally
important to query concept Aq. To measure this importance the following three
parameters are used: SS(Aq, Ad) - a measure of semantic similarity between
concepts Ad and Aq; P (Aq, wq) - a coefficient which is proportional to the
probability of that atomic concept Aq is correctly assigned to a word wq in
the query; and P (Ad, wd) - a coefficient which is proportional to the probability
that an atomic concept Ad is correctly assigned to a word wd in the document.
Informally, f ′(Aq, wq, d) is higher for: (i) concepts Ad which are closer in the
meaning to the concept Aq, (ii) a concept Aq which is more likely to be a
correct sense of a word wq in a query q, and (iii) concepts Ad which are more
likely to be correct senses for words wd in a document d.

As a measure of semantic similarity SS(Aq, Ad) the following formula is used 5 :

SS(Aq, Ad) =
1

10dist(Aq ,Ad)
(17)

where dist(Aq, Ad) is a distance between concepts Aq and Ad in the concept
hierarchy from TWN . To estimate the coefficients P (A,w), we use the following
formula:

P (A,w) =
freq(A, w)

maxFreq(w)
(18)

where freq(A,w) is a number provided by WordNet which shows how fre-
quently the specified word w is used to represent the meaning A (incremented
by one in order to avoid zero values), maxFreq(w) is a maximum freq(A,w)
for w.

As an example, let us compute value f ′(Aq, wq, d) for a concept canine-2 in
a document D1 from Figure 3. The only more specific concept for a concept
canine-2 in D1 is a concept dog-1. Given that the distance dist(canine-2, dog-1)
is equal to one (see Figure 4), SS(canine-2, dog-1) will be equal to 10−1.

5 Note that other measures of semantic similarity (e.g., see [4]) can also be used.
It is a part of our future work to analyze the performance of different semantic
similarity measures.

13

Assume that concepts canine-2 and dog-1 are the only concepts assigned
to words canine and dog respectively. In this case, P (canine-2, canine) =
P (dog-1, dog) = 1. A word dog appears in document D1 only once, therefore,
f(dog-1, dog,D1) = 1. Finally, f ′(canine-2, canine, D1) = 1 ∗ 10−1 ∗ 1 ∗ 1 =
10−1.

Given the scores S(Aq, d) for atomic concepts Aq (computed by a syntactic
relevancy ranking technique with f(wq, d) replaced by f ′(Aq, wq, d)), a score
for a complex concept t u Aq is computed by using the following equation.

S(t u Aq, d) =
∑

uAq∈tuAq

isAns(uAq, d) · size2(uAq) · ∑

Aq∈tuAq

S(Aq, d) (19)

where isAns(uAq, d) is a function which has value 1 when document d de-
scribes at least one conjunctive component uAd which is more specific than
the given conjunctive component uAq from the query concept t u Aq; other-
wise, it has value 0. Function size(uAq) returns the number of atomic concepts
in conjunctive component uAq. Informally, S(tuAq, d) is higher for those doc-
uments d which are answers to more complex concepts uAq in t u Aq.

6 Concept Search via Inverted Indexes

In the section, we will show how document representations (e.g., see Figure 3)
can be indexed and retrieved by using (different modifications of) inverted
indexes.

6.1 Approach 1: C-Search via a Record Level Inverted Index

In this section, we describe how the document representations (see Figure 3)
can be indexed and retrieved by using a (record level) inverted index (as it
was proposed in [13]). In the inverted index, as used in syntactic search, there
are two parts: the dictionary, i.e., a set of terms (t) used for indexing; and a
set of posting lists P(t). A posting list P(t) is a list of all the postings for term
t:

P (t) = [〈d, freq〉]

where 〈 d, freq〉 is a posting consisting of a document d associated with term
t and the frequency freq of t in d.

In Approach 1, inverted indexes are used to:

14

Dictionary (t) Posting lists (P(t))

little-4 [〈little-4udog-1 , 1〉; 〈small-4ubaby-1udog-1 , 1〉]
dog-1 [〈little-4udog-1 , 1〉; 〈small-4ubaby-1udog-1 , 1〉]

huge-1 [〈huge-1ucat-1 , 1〉; 〈huge-1uwhite-1ucat-1 , 1〉]
cat-1 [〈huge-1ucat-1 , 1〉; 〈huge-1uwhite-1ucat-1 , 1〉]

Fig. 5. Concept u-index

Dictionary (t) Posting lists (P(t))

little-4udog-1 [〈(little-4udog-1) t (huge-1ucat-1), 1〉]
huge-1ucat-1 [〈(little-4udog-1) t (huge-1ucat-1), 1〉]

Fig. 6. Concept t-index

Dictionary (t) Posting lists (P(t))

small-4ubaby-1udog-1 [〈D1, 1〉]
huge-1uwhite-1ucat-1 [〈D1, 1〉]

(little-4udog-1) t (huge-1ucat-1) [〈D3, 1〉]
Fig. 7. Document index

(1) index conjunctive components uAd by their atomic concepts Ad. We call
the resulting index the concept u-index. Concept u-index stores a map-
ping from each atomic concept to a set of all the conjunctive components
which contain this concept. In Figure 5, we show a fragment of a concept
u-index.

(2) index complex concepts t u Ad by their conjunctive components uAd.
We call the resulting index the concept t-index. Concept t-index stores
a mapping from each conjunctive component uAd to a set of complex
concepts t u Ad which contain this component. In Figure 6, we show a
fragment of a concept t-index.

(3) index documents by (complex) concepts described in the documents. We
call the resulting index the document index. The document index stores a
mapping from each (complex) concept to a set of all the documents which
describe this concept. In Figure 7, we show a fragment of a document
index.

Now we will see how Algorithm 1 in Section 4.2 can be implemented in Ap-
proach 1 given that concept u- and t- indexes as well as document index were
constructed.

Phase 1 To compute the set Cu
Aq (line 6 in Algorithm 1), first, we search

15

the knowledge base TWN for a set CA
Aq of atomic concepts A which are

equivalent to or more specific than Aq. For example (see Figure 4),

CA
canine-2 = {canine-2, dog-1, wolf -1, . . . }

CA
feline-1 = {feline-1, cat-1, lion-1, . . . }
CA

little-4 = {little-4, . . . }
Second, we collect all the conjunctive components uAd in Cu

Aq by searching
in the concept u-index with atomic concepts from CA

Aq . For instance (see
Figure 5),

Cu
canine-4 = {little-4 u dog-1, small-4 u baby-1 u dog-1}

Cu
feline-1 = {huge-1 u cat-1, huge-1 u white-1 u cat-1}
Cu

little-4 = {little-4 u dog-1, small-4 u baby-1 u dog-1}
Phase 2 Compute the set Cu

uAq (lines 5-13 in Algorithm 1). For instance,

Cu
little-4ucanine-1 = {little-4 u dog-1, small-4 u baby-1 u dog-1}

Phase 3 Compute the set Cu
tuAq (lines 2-15 in Algorithm 1). For instance,

Cu
canine-2tfeline-1 ={little-4 u dog-1, small-4 u baby-1 u dog-1,

huge-1 u cat-1, huge-1 u white-1 u cat-1}
Phase 4 We compute the set CtuAq (line 16 in Algorithm 1) by searching in
the concept t-index with conjunctive components from Cu

tuAq . Note that
we search only for those concepts t u Ad which have all their conjunctive
components uAd in Cu

tuAq and discard other concepts. For instance (see
Figure 6),

Ccanine-2tfeline-1 ={small-4 u baby-3 u dog-1, huge-1 u white-1 u cat-1,

(little-4 u dog-1) t (huge-1 u cat-1)}

Phase 5 The query answer (line 17 in Algorithm 1) is computed by searching
in the document index with complex concepts from CtuAq . For instance (see
Figure 7),

A(canine-2 t feline-1, TWN) = {D1, D3}

The described above approach has several potential problems. First, the size
of an inverted index dictionary in concept t-index and document index, in the
worst case, is exponential with respect to the size of terminology TWN . Second,
the search time can be lengthy. If the query concepts Aq are very general,
than, in phases 1,4, and 5, the sets CA

Aq , Cu
tuAq , and CtuAq can contain many

(in principle, all) related concepts. Consequently, the search time, which is
growing linearly with the number of related (complex) concepts, can exceed
an acceptable limit.

16

Dictionary (t) Posting lists (P(t))

t [〈D3, 1, [2]〉]
baby-3 [〈D1, 1, [1]〉]

canine-2 [〈D1, 1, [1]〉; 〈D3, 1, [1]〉]
carnivore-1 [〈D1, 2, [1, 3]〉; 〈D3, 2, [1, 3]〉]
computer-1 [〈D2, 1, [1]〉]

feline-1 [〈D1, 1, [3]〉; 〈D3, 1, [3]〉]
leave [〈D3, 1, [4]〉]

little-4 [〈D1, 1, [1]〉; 〈D3, 1, [1]〉]
Fig. 8. Positional Inverted Index

6.2 Approach 2: C-Search via a Word Level Inverted Index

In this section, we describe how the document representations (see Figure 3)
can be indexed and retrieved by using a positional (word level) inverted index
(as it was proposed in [14]). In a positional inverted index, differently from
a record level inverted index, a posting list P(t) additionally contains all the
positions of term t within a document.

P (t) = [〈d, freq, [position]〉]

where 〈 d, freq, [position]〉 is a posting consisting of a document d associ-
ated with term t, the frequency freq of t in d, and a list [position] of posi-
tions of t in d.

In Approach 2, we adopt a positional inverted index to index conjunctive
components uAd by all more general or equivalent atomic concepts from TWN .
For example, in Figure 8 we show a fragment of the positional inverted index
created by using the document representations in Figure 3. The inverted index
dictionary, in Approach 2, consists of atomic concepts from TWN (e.g., concepts
baby-3 and canine-2 in Figure 8), and symbol “t” (e.g., the first term in
Figure 8). Note that differently from Approach 1, the size of the dictionary
in this case is the same as the size of TWN . The posting list P (A) for an
atomic concept A stores the positions of conjunctive components uAd, such
that, uAd v A. For instance, P(canine-2) = [〈D1, 1, [1]〉; 〈D3, 1, [1]〉], which
means that at first position in documents D1 and D3 there are conjunctive
components (i.e., small-4ubaby-3udog-1 and little-4udog-1) which are more
specific than canine-2. The posting list P (t) stores the positions of the symbol
“t”.

17

Now, let us see how Algorithm 1 in Section 4.2 can be implemented by using
the positional information of conjunctive components uAd stored in the in-
verted index. Notice that below instead of conjunctive components themselves
we work only with their positions in documents.

Phase 1 Positions of conjunctive components uAd in the set Cu
Aq (line 6 in

Algorithm 1) are computed by fetching the posting list P (Aq) for an atomic
concept Aq. For instance (see Figure 8),

Cu
little-4 = [〈D1, 1, [1]〉; 〈D3, 1, [1]〉]

Cu
carnivore-1 = [〈D1, 2, [1, 3]〉; 〈D3, 2, [1, 3]〉]

Phase 2 The intersection of the sets of conjunctive components (line 10 in
Algorithm 1) is implemented by the intersection of corresponding posting
lists. For instance,

Cu
little-4ucarnivore-1 = [〈D1, 1, [1]〉; 〈D3, 1, [1]〉]

Phase 3 The union of the sets of conjunctive components (line 14 in Algo-
rithm 1) is implemented by uniting corresponding posting lists. For instance,

Cu
canine-2tfeline-1 = [〈D1, 2, [1, 3]〉; 〈D3, 2, [1, 3]〉]

Phase 4 Every concept in set CtuAq (line 16 in Algorithm 1) should con-
sists only from the conjunctive components in Cu

tuAq . In order to find the
positions of such concepts, we take the union of the posting lists for Cu

tuAq

with the posting list for the symbol “t”. Then we filter out all the positions
which does not comply with the pattern defined in Equation 4. For instance,
for complex query concept canine-2 t feline-1, we will find the following
complex document concepts:

〈D1, 1, [1]〉 ⇒ 1 | small-4 u baby-3 u dog-1

〈D1, 1, [3]〉 ⇒ 3 | huge-1 u white-1 u cat-1

〈D3, 1, [1, 2, 3]〉 ⇒ 1 | little-4 u dog-1 2 | t 3 | huge-1 u cat-1

Phase 5 The query answer (line 17 in Algorithm 1) is computed by collecting
the documents from all the postings. For instance,

A(canine-2 t feline-1, TWN) = {D1, D3}

If n is a number of atomic concepts Aq in the query concept t u Aq, then
to compute A(Cq, TWN) it takes n posting list merges (i.e., intersections and
unions). Note that, in a positional inverted index, the same number of posting
list merges is required to process a phrase query consisting of n+1 words [20].

18

The main problem with Approach 2, is that the size of the index can be
relatively big. If s is the maximum number of concepts which are assigned
to each word after the word sense filtering step and depth is the depth of
the knowledge base TWN (i.e., the number of edges on the longest path from
the concept to a root concept in TWN), then, in the worst case, a semantic
inverted index in Approach 2 will contain s ∗ depth times more postings than
an inverted index in syntactic search for the same document collection. For
example, if depth = 16 (as it is the case in WordNet) and s = 3, then, in the
worst case, semantic inverted index will contain 48 times more postings than
the syntactic inverted index.

6.3 Approach 3: C-Search with a Minimum Index Size

In this section, we propose Approach 3 which is a modification of Approach 2,
such that, the size of an inverted index is minimized.

First, in Approach 3, positions of conjunctive components are indexed only by
atomic concepts which are contained in the conjunctive components uAd (and
not by all the more general atomic concepts as it was done in Approach 2).
Algorithm 1, in this case, is implemented in the same way as in Approach 2
apart from phase 1. Now, in phase 1, we first search the knowledge base TWN

for a set CA
Aq of atomic concepts A which are equivalent to or more specific

than Aq. Second, the positions of conjunctive components uAd in the set Cu
Aq

(line 6 in Algorithm 1) are computed by fetching the posting lists P (Aq) for
atomic concepts Aq in CA

Aq and merging them.

Second, all the atomic concepts which have been assigned for a word, in Ap-
proach 3, are stored in a single posting (and not in separate postings as it
was done in Approach 2). An inverted index which supports payloads is used.
A payload is metadata that can be stored together with each occurrence of
a term 6 . In a positional inverted index with payloads, a posting list P(t) is
represented as follows:

P (t) = [〈d, freq, [position, payload]〉]

where payload is a sequence of bytes of an arbitrary length which is associated
with the term t and which can be used to codify additional information about
t at the position position in the document d.

The inverted index dictionary, in Approach 3, consists only of word lemmas
(as in syntactic search) and the symbol “t”. Payloads are used to store sense

6 http://lucene.apache.org/java/2 4 0/api/org/apache/lucene/index/
Payload.html

19

numbers sn in WordNet. Each payload is seen as a bit array, where the size of
the array is equal to the number of possible senses for a given lemma and the
positions of bits which are set to one are used to represent active sense numbers
sn (note that in general all the bits can be set to one if no senses were filtered
out). For instance, if we take the word dog which has 7 senses in WordNet,
then the posting list P (dog) created by using the document representations
in Figure 3 will be as follows:

P (dog) = [〈D1, 1, [1, 1000000]〉; 〈D3, 1, [1, 1000000]〉]

During the retrieval, the posting list P(Aq =lemma-sn) can be computed, first,
by fetching posting list P(lemma) and then by filtering out all the positions
where sn bit is not set to one.

In this approach, the size of the inverted index dictionary as well as the num-
ber of postings are almost the same as in the inverted index in syntactic
search (note that the symbol “t” is the only additional term). Payloads take
some additional space, but it can also be minimized. For instance, we can
store a payload in a posting only when its value is different from the one in
the preceding posting and use the payload value from the preceding posting
otherwise.

P (dog) = [〈D1, 1, [1, 1000000]〉; 〈D3, 1, [1]〉]
Here the assumption is that the same word tends to have the same meaning
within the same document [11]. If it is the case, then only a few additional
bytes will be stored for each document.

Similarly to Approach 1, the potential problem of Approach 3 is that the search
time can increase if we search for a very general atomic concept Aq. Note,
however, that differently from Approach 1, we need to consider only related
atomic concepts, and not all the complex concepts, which, in the worst case,
are exponentially many.

6.4 Approach 4: C-Search with a Hybrid Index

Approach 3 can perform well if atomic concepts Aq in a query have only a
few more specific concepts in TWN , but it can become inefficient otherwise.
In Table 1, we show a statistics for a number of more specific concepts in
WordNet. As we can observe from Table 1, only 909 out of 100303 concepts
(i.e., less than 1%) are very general, i.e., have more than 100 more specific
atomic concepts. For instance, concepts mammal-1, animal-1, and entity-1
have 9472, 12953, and 76439 more specific atomic concepts respectively. These
909 concepts form a tree (where > is a root) which we call a ‘cap’ of the
knowledge base.

20

Table 1
Statistics for the number of more specific concepts

Number N of more

specific concepts

Number of concepts with

N more specific concepts
Number of concepts (%)

N<=10 95264 94.98

10<N<=100 4130 4.12

100<N<=1000 745 0.74

1000<N<=10000 136 0.13

10000<N<=100000 28 0.03

In this section, we propose Approach 4 which combines Approaches 2 and 3,
where Approach 2 is used only for concepts in the cap and Approaches 3 is
used for the rest of the concepts. Let us consider how it is done in detail. First,
all the concepts are indexed by using Approach 2. Second, each concept which
is not in the cap is additionally indexed by the most specific concept(s) from
the cap, which is more general than the given concept.

During the retrieval, in order to compute the posting list P (Aq) for a concept
Aq which is in the cap, first, we follow Approach 3, where the set CA

Aq consists
only of atomic concepts A which are equivalent to or more specific than Aq and
are in the cap. Second, we follow Approach 2 by using the most specific atomic
concepts from CA

Aq (i.e., we use only those concepts which don’t have more
general concepts in CA

Aq). The results of both approaches are then merged.
For concepts which are not in the cap we just follow Approach 3. Note that
for all the concepts inside/outside the cap Approach 3 is used for a relatively
small number of atomic concepts.

If s is the number of senses, then in the worst case the index will contain 2 ∗ s
times more postings (and not s∗depth as in Approach 2) than in the syntactic
search approach. Moreover, the search time in Approach 4 can be always kept
relatively small for both very specific and very general concepts (which is not
the case in Approach 3).

6.5 Approach 5: Approximated C-Search

As it was discussed in Section 5, only those atomic document concepts Ad

are scored high which are not very distant from the query concepts Aq (see
Formula 16) in the concept hierarchy of TWN . Therefore, if we use only the
closest concepts, the quality of results returned by C-Search should not be
affected much. Moreover, as it was discussed in Sections 6.1-6.4, by using
fewer related concepts, we can decrease the search time.

Approach 5 is a modified version of Approach 3 which approximates the results
of C-Search by using not all but only more specific concepts within distance

21

dist from the atomic concept Aq. Also, in Approach 5, we limit the number of
atomic concepts which can be assigned for each word in a query, by selecting
only the s most probable senses. The influence of parameters dist and s on a
quality and a performance of C-Search is discussed in Section 7.3.

7 Evaluation

In order to evaluate the proposed approaches, we built six IR systems. One
system is an instantiation of syntactic search and is build on top of Lucene 7 ,
an open source IR toolkit used in many search applications 8 . Standard tok-
enization and English Snowball stemmer were used for document and query
preprocessing. The AND operator was used as a default boolean operator in
a query. The Lucene default implementation of the cosine similarity from the
vector space model was used for relevancy ranking 9 . Other five systems are
semantics enabled versions of Lucene, implemented following the approaches
described in Sections 6.1-6.5. WordNet 2.1 was used as a lexical database in
all these systems. GATE [8] was used in order to locate descriptive phrases
(see Section 4.1). Relevancy ranking, in these systems, was implemented by
modifying Lucene default score function9 as it was described in Section 5.

7.1 Quality Evaluation

In this section, we compared the quality of results returned by Lucene and
by C-Search. Approach 3 was used for this evaluation but, given that the ap-
proaches 1, 2 and 4 implement the same algorithm, the results returned by
these approaches should be comparable. As a data-set for our experiments, we
used the TREC ad-hoc document collection 10 (disks 4 and 5 minus the Con-
gressional Record documents) and three query sets: TREC6 (topics 301-350),
TREC7 (topics 351-400) and TREC8 (topics 401-450). Only the title for each
topic was used as a query. The whole data-set consists of 523,822 documents
and 150 queries. In the evaluation we used the standard IR measures and
in particular the mean average precision (MAP) and precision at K (P@K),
where K was set to 5, 10, and 15. The average precision for a query is the mean
of the precision obtained after each relevant document is retrieved (using 0
as the precision for not retrieved documents which are relevant). MAP is the

7 http://lucene.apache.org/java/docs/index.html
8 http://wiki.apache.org/lucene-java/PoweredBy
9 http://lucene.apache.org/java/2 4 0/api/org/apache/lucene/search/
Similarity.html
10 http://trec.nist.gov/data/test coll.html

22

Table 2
Evaluation results

TREC6 (301-350)

MAP P@5 P@10 P@15

Lucene 0.1361 0.3200 0.2960 0.2573

C-Search(Lucene) 0.1711(+25.7%) 0.3920(+22.5%) 0.3480(+17.6%) 0.3000(+16.6%)

TREC7 (351-400)

MAP P@5 P@10 P@15

Lucene 0.1138 0.3560 0.3280 0.3000

C-Search(Lucene) 0.1375(+20.8%) 0.4200(+18.0%) 0.3680(+12.2%) 0.3427(+14.2%)

TREC8 (401-450)

MAP P@5 P@10 P@15

Lucene 0.1689 0.4320 0.4000 0.3573

C-Search(Lucene) 0.2070(+22.6%) 0.4760(+10.2%) 0.4280(+7.0%) 0.4013(+12.3%)

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Recall

P
r
e
c
is

io
n

C-Search

Lucene

Fig. 9. Recall-Precision Graph (TREC6)

mean of the average precisions for all the queries in the test collection. P@K
is the percentage of relevant documents among the top K ranked documents.
MAP is used to evaluate the overall accuracy of IR system, while P@K is used
to evaluate the utility of IR system for users who only see the top K results.

First, in Table 2, we report the evaluation results for the two systems and
further, in Figures 9,10, and 11 we provide recall-precision graphs, i.e., we
plot precision as a function of recall, for these systems.

The experiments show that, on TREC ad-hoc data sets, C-Search performs
better than the purely syntactic search, which supports the underlying as-
sumption of our approach. In particular, from Table 2 we observe that C-
Search improves precision P@K for all K in all three TREC data sets. This is
coherent with the intuition that semantics improve on precision. Notice that
it means that we are able to show to the users more relevant documents at
the top of the list. From Figures 9, 10, and 11, we observe that the recall-

23

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Recall

P
r
e
c
is

io
n

C-Search

Lucene

Fig. 10. Recall-Precision Graph (TREC7)

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Recall

P
r
e
c
is

io
n

C-Search

Lucene

Fig. 11. Recall-Precision Graph (TREC8)

precision graphs for C-Search are above those for Lucene, which means that
the improvement in precision achieved by C-Search does not decrease recall.

7.2 Performance Evaluation

In this section, we compared an index size and a search time of different
versions of C-Search. TREC was used as a document collection. Three query
sets, with queries consisting of: (i) 1 word, (ii) 2 words, and (iii) 3 words
were generated by randomly selecting a set of 1000 queries from the AOL
query log [24] for each query set. Queries which contain punctuation, special
symbols, or boolean operators (e.g., ’+’, ’ ’, and ’?’); queries which contain
the words shorter than 3 letters; and queries which didn’t have any results
were filtered out. All the experiments described in this section were run on a
machine with the following parameters:

• CPU : Intel(R) Core(TM)2 Duo T7500 @2.20GHz

24

0

1

2

3

4

5

6

7

8

9

10

11

Lucene Approach 1 Approach 2 Approach 3 Approach 4

In
d

e
x

 s
iz

e
 (

G
B

)

Fig. 12. Size of the inverted index

1

10

100

1000

10000

Lucene Approach 1 Approach 2 Approach 3 Approach 4

S
e
a
rc

h
 t

im
e
 (

m
s
)

1 word

2 words

3 words

Fig. 13. Search time

• RAM : 3GB
• HD : 250GB @ 5400 RPM
• OS : Windows XP (SP3)

In Figure 12, we report on the size of the inverted indexes created by Lucene
and by C-Search (approaches 1-4). In Figure 13, we report an average search
time per query in milliseconds (ms) 11 . As we can observe from Figure 13,
Approach 2 is the the fastest among of C-Search approachs. It can provide
answers in less than a second, namely in a time which is acceptable for the user
to wait. The main reason why Approach 2 is still much slower than Lucene is
that, in C-Search, we need to analyze positions of atomic concepts and not just
the number of their occurrences. Note that the number of positions which need
to be analyzed can be much bigger than the number of relevant documents
(especially for a very general query concept). The large size of the index in
Approach 2 (see Figure 12) is also due to the large amount of positions which
need to be stored (see Section 6.2 for details). On the contrary, in Approach 3,
the size of the index is the smallest among all the other C-Search approaches
and the average search time is within a few seconds. Approach 4 improves the
search time of Approach 3 at the cost of doubling its index size.

11 Every experiment was run 5 times and the average result was reported.

25

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7

Maximum number of senses (s)

S
e

a
rc

h
 t

im
e

 (
m

s
)

0,06

0,1

0,14

0,18

0,22

M
e

a
n

 a
v

e
ra

g
e

 p
re

c
is

io
n

TREC6 TREC7 TREC8
TREC6 TREC7 TREC8

Fig. 14. Influence of a max number of senses for a word on a search time and MAP

7.3 Quality vs. Performance

In this section, we studied the influence of the following two parameters on
the quality of results and performance of Approach 5 (see Section 6.5): (i) s
- a maximum number of senses which can be assigned to a word in a query
after the word sense filtering step; and (ii) dist - a maximum allowed distance
between atomic concepts in a query and a document. As a data-set, we used
the data-set described in Section 7.1.

Figure 14 shows the influence of the parameter s on the search time (repre-
sented as bars) and MAP (represented as broken lines) for Approach 5 on the
three query sets: TREC6, TREC7, and TREC8. As we can see from Figure 14,
the quality of results (measured by MAP) returned by the approximated ver-
sion of C-Search is not decreasing much if we use s equal to or bigger than
three. At the same time, the search time decreases substantially, namely, if s
is reduced from 7 to 3, the search time becomes three times smaller on the
TREC7 query set. In Figure 15, we show how the search time and MAP for
Approach 5 are influenced by the parameter dist (where s was set to 3). As
we can see from Figure 15, the MAP remains almost constant if we keep dist
equal or bigger than three. If dist is set to 3, the search time is decreased
around two times, with respect to the case when dist is not limited. In total,
by using s = 3 and dist = 3, Approach 5 can perform 6 times faster than Ap-
proach 3, while having almost no decrease in the quality of results measured
by MAP.

26

0

500

1000

1500

0 1 2 3 4 5 6 7 inf

Maximum distance (dist)

S
e

a
rc

h
 t

im
e

 (
m

s
)

0,06

0,1

0,14

0,18

0,22

M
e

a
n

 a
v

e
ra

g
e

 p
re

c
is

io
n

TREC6 TREC7 TREC8
TREC6 TREC7 TREC8

Fig. 15. Influence of a max distance between concepts on a search time and MAP

8 Related work

Semantic search is a research topic that has its roots in the information re-
trieval (IR) community that proposed first approaches to extending the clas-
sical IR with explicit semantics long time ago (e.g., see [7]). Since then many
approaches were proposed by the community; however, their core common idea
to codify the explicit semantics was in the use of informal knowledge represen-
tation structures such as thesauri with no or little formal reasoning support.
On the other hand, with the advent of the Semantic Web (SW), many formal
frameworks to represent and reason about knowledge were proposed by the
SW community with a reasonable level of success in data retrieval applications
which, however, required from the user the knowledge of a formal query lan-
guage. In the recent years, semantic search is gaining an increasing popularity
within the SW community (and not only) as a research topic aimed at the
exploration of approaches that would leverage the advances of technologies
developed by the two communities (see [18,19] for an overview of approaches
proposed so far). The work presented in this paper tackles exactly this line of
research.

The fact that the syntactic nature of classical IR leads to problems with preci-
sion was recognised by the IR community a long time ago (e.g., see [29]). There
were two major approaches to addressing this problem. The first is based on
natural language processing and machine learning techniques in which (noun)
phrases in a document corpus are identified and organised in a subsumption hi-
erarchy which is then used to improve the precision of retrieval (e.g., see [30]).
The second is based on using a linguistic database in order to associate words
in a document corpus with atomic lexical concepts in this database and then
to index these documents with the associated concepts (e.g., see [27]). Our ap-
proach is different from both these approaches. In fact, the former approach
is still essentially syntactic (and semantics is only implicitly derived with no

27

guarantee of correctness), while in the latter approach only atomic concepts
are indexed, whereas C-Search allows for indexing of and reasoning about
complex concepts and explicitly takes into account existing relations between
them. More importantly, our approach extends syntactic search and does not
replace it as the latter approach does and, therefore, supports the continuum
from purely syntactic to fully semantic search.

In the SW community, semantic search is primarily seen as the task of query-
ing an RDF graph based on the mapping of terms appearing in the input
natural language query to the elements of the graph. Our approach is fun-
damentally different because, similarly to the classical IR, the input query is
matched with document contents and not with elements of a knowledge rep-
resentation structure. The matching of document and query representations,
in these approaches, is based on the query expansion (e.g., see [6]), graph tra-
versal (e.g., see [25]), and RDF reasoning (e.g., see [9]). Differently from these
approaches, C-Search is based on the semantic matching of complex concepts,
where semantic matching is implemented by using positional inverted index.

To the best of our knowledge, there are few approaches that are based on
similar ideas to those of C-Search. For example, Hybrid Search [3] is similar to
C-Search in that it combines syntactic search with semantic search. Differently
from us, in [3], semantic search is implemented on metadata and is totally
separated from syntactic search, implemented on keywords. Another approach,
reported in [5], uses classes and instances of an RDF ontology to annotate
documents in order to combine ontology-based search with the classical IR.
Our approach is different from both [3] and [5] in that it is based on a seamless
integration of syntactic and semantic kinds of search within a single solution
enabled by the proven IR technology based on inverted indexes. In a sense,
instead of using a reasoning engine to enable semantics, we integrated semantic
reasoning within an inverted index, by taking advantage of the simplifying
assumptions that we made about the ontologies used to enable the semantic
search (see Section 4.2). Finally, to the best of our knowledge, our approach is
the first one that proposes and explains how semantic indexing and retrieval
can be performed on complex concepts and not on atomic ones (i.e., for which
there is a single class or an instance in the ontology).

9 Conclusion

In this paper we presented a novel approach to IR in which syntactic search is
extended with a layer of semantics which enables semantic searching still fully
reusing the proven IR technologies such as the inverted index. Noteworthy,
the approach is tolerant to the lack of knowledge encoded in the underlying
ontology that enables the semantic search, and it improves gracefully as more

28

knowledge becomes available. We demonstrated the proof of concept for the
proposed approach by reporting the results of the experiments conducted in
different settings. The experiments showed that our approach allowed us to
reach noteworthy better results than the classical IR approach. While the
first results are promising, more research needs to be done in order to check
how much the approach scales in terms of the size of underlying ontology,
to develop and compare new semantics-aware document relevant metrics, to
explore new natural language processing algorithms and heuristics in order to
improve the accuracy of concept identification in queries and in the document
corpus.

References

[1] T. Andreasen, P. A. Jensen, J. F. Nilsson, P. Paggio, B. S. Pedersen, H. E.
Thomsen, Content-based text querying with ontological descriptors, Data &
Know. Eng. 48 (2) (2004) 199–219.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider,
The Description Logic Handbook: Theory, Implementation and Applications,
Cambridge University Press, 2003.

[3] R. Bhagdev, S. Chapman, F. Ciravegna, V. Lanfranchi, D. Petrelli, Hybrid
search: Effectively combining keywords and semantic searches, in: ESWC, 2008.

[4] A. Budanitsky, G. Hirst, Evaluating wordnet-based measures of lexical semantic
relatedness, Computational Linguistics 32 (1) (2006) 13–47.

[5] P. Castells, M. Fernández, D. Vallet, An adaptation of the vector-space model
for ontology-based information retrieval, IEEE Trans. Knowl. Data Eng. 19 (2)
(2007) 261–272.

[6] I. Celino, E. D. Valle, D. Cerizza, A. Turati, Squiggle: a semantic search engine
for indexing and retrieval of multimedia content, in: SEMPS, 2006.

[7] W. B. Croft, User-specified domain knowledge for document retrieval, in:
SIGIR, 1986.

[8] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, GATE: A framework
and graphical development environment for robust NLP tools and applications,
in: 40th Anniversary Meeting of the Association for Computational Linguistics,
2002.

[9] J. Davies, R. Weeks, QuizRDF: Search technology for the semantic web, in:
HICSS, 2004.

[10] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, R. A. Harshman,
Indexing by latent semantic analysis, Journal of the American Society of
Information Science 41 (6) (1990) 391–407.

29

[11] W. A. Gale, K. W. Church, D. Yarowsky, One sense per discourse, in: HLT ’91:
Proceedings of the workshop on Speech and Natural Language, 1992.

[12] F. Giunchiglia, B. Dutta, V. Maltese, Faceted lightweight ontologies, in:
Conceptual Modeling: Foundations and Applications, 2009.

[13] F. Giunchiglia, U. Kharkevich, I. Zaihrayeu, Concept search: Semantics enabled
syntactic search, in: SemSearch2008 workshop at ESWC, 2008.

[14] F. Giunchiglia, U. Kharkevich, I. Zaihrayeu, Concept search, in: ESWC, 2009.

[15] F. Giunchiglia, M. Marchese, I. Zaihrayeu, Encoding classifications into
lightweight ontologies, in: Journal on Data Semantics (JoDS) VIII, Winter 2006.

[16] F. Giunchiglia, P. Shvaiko, M. Yatskevich, Discovering missing background
knowledge in ontology matching, in: Proc. of ECAI, 2006.

[17] F. Giunchiglia, M. Yatskevich, P. Shvaiko, Semantic matching: Algorithms and
implementation., Journal on Data Semantics (JoDS) 9 (2007) 1–38.

[18] M. Hildebrand, J. van Ossenbruggen, L. Hardman, An analysis of search-based
user interaction on the semantic web, Tech. Rep. INS-E0706, CWI (2007).

[19] C. Mangold, A survey and classification of semantic search approaches, Int. J.
Metadata Semantics and Ontology 2 (1) (2007) 23–34.

[20] C. Manning, P. Raghavan, H. Schtze, Introduction to Information Retrieval,
Cambridge University Press, 2008.

[21] G. Miller, WordNet: An electronic Lexical Database, MIT Press, 1998.

[22] D. I. Moldovan, R. Mihalcea, Using wordnet and lexical operators to improve
internet searches, IEEE Internet Computing 4 (1) (2000) 34–43.

[23] G. Nagypl, Improving information retrieval effectiveness by using domain
knowledge stored in ontologies, OTM Workshops 2005, LNCS 3762.

[24] G. Pass, A. Chowdhury, C. Torgeson, A picture of search, in: InfoScale’06:
Proceedings of the 1st international conference on Scalable information systems,
ACM, New York, NY, USA, 2006.

[25] C. Rocha, D. Schwabe, M. de Aragao, A hybrid approach for searching in the
semantic web, in: 13th International World Wide Web Conference, 2004.

[26] M. Sanderson, Retrieving with good sense, Inf. Retr. 2 (1) (2000) 49–69.

[27] H. Schutze, J. O. Pedersen, Information retrieval based on word senses, in: 4th
Annual Symposium on Document Analysis and Information Retrieval, 1995.

[28] J. F. Sowa, Conceptual Structures: Information Processing in Mind and
Machine, Addison-Wesley, 1984.

[29] C. Stokoe, M. P. Oakes, J. Tait, Word sense disambiguation in information
retrieval revisited (2003) 159–166.

30

[30] W. A. Woods, Conceptual indexing: A better way to organize knowledge, Tech.
Rep. TR-97-61, Sun Microsystems Laboratories, USA (1997).

[31] I. Zaihrayeu, L. Sun, F. Giunchiglia, W. Pan, Q. Ju, M. Chi, X. Huang, From
web directories to ontologies: Natural language processing challenges, in: 6th
International Semantic Web Conference (ISWC 2007), Springer, 2007.

[32] C. Zhai, Fast statistical parsing of noun phrases for document indexing, Fifth
Conference on Applied Natural Language Processing (1997) 312–319.

A Correctness and Completeness

In order to show that Algorithm 1 in Section 4.2 is sound and complete, we
need to prove the following theorem:

Theorem A.1 Let A′ and B′ be atomic concepts, and TWN be a terminological
knowledge base which can be represented as an acyclic graph, where nodes are
atomic concepts and edges are subsumption axioms in the form A′ v B′. Then:

TWN |=uA′vtuB′ iff there exists uB′ in tuB′, s.t., TWN |=uA′vuB′ (A.1)

Note that, in Equation A.1, by uA we denote conjunction (u) of atomic con-
cepts (A) without negation and by t u A we denote disjunctions (t) of uA.

Proof It is known, that a subsumption problem with respect to an acyclic
terminological knowledge base can be reduced to a subsumption problem with
respect to the empty knowledge base [2]:

TWN |= D′ v E ′ ⇐⇒ |= D v E (A.2)

where (complex) concepts D and E are obtained by replacing each occurrence
of atomic concept A′ in (complex) concepts D′ and E ′ by the conjunction uA
of all atomic concepts A from TWN which are more general than or equivalent
to A′.

Given A.2, we can rewrite Equation A.1 as follows:

|=uAvt uB iff there exists uB in t uB, s.t., |=uAvuB (A.3)

Now, in order to prove Equation A.1, it is enough to prove Equation A.3. In
the following we first prove the “if” direction of Equation A.3 and later we
demonstrate the proof for the “only if” direction of Equation A.3.

If Recall that disjunction (“t”) is distributive over conjunction (“u”), i.e., if
A1, A2, and A3 are concepts than A1 t (A2 uA3) ≡ (A1 tA2)u (A1 tA3). By

31

using the distributive property of disjunction we can convert concept t u B
from DNF into CNF (we use indexes i,j,k,l in order to enumerate atomic
concepts):

ti uj Bij ≡ uk tl Ckl (A.4)

Notice, that concepts Bij and Ckl in Equation A.4 satisfy the following prop-
erty:

for all the possible combinationsB1, . . . , BI of atomic conceptsB,

where an atomic conceptBi is taken from i-th conjunctive clause uj Bij

in ti ujBij , there exists disjunctive clause tl Ckl in uk tlCkl, s.t.,
tl Ckl is composed from all and only atomic concepts in {B1, . . . , BI}.

(A.5)

Given A.4, subsumption |=uAvt u B in Equation A.3 can be rewritten as
follows:

|=uAvu t C (A.6)

A concept can be subsumed by a conjunction of concepts if and only if it is
subsumed by every concept in the conjunction:

|=uAvu t C iff for all t C in u tC, |=uAvtC (A.7)

Recall that if A1 and A2 are concepts, then:

A1 v A2 iff A1 u ¬A2 v ⊥ (A.8)

¬(A1 t A2) ≡ ¬A1 u ¬A2 (A.9)

Given A.8 and A.9, subsumption |=uAvtC in Equation A.7 can be rewritten
as follows:

|=uAvtC iff |= (uA) u (u¬C) v ⊥ (A.10)

From A.10, it follows that (a) there exists a pair of atomic concepts A and C
which have the same name; or (b) there exists an atomic concept A ≡ ⊥; or
(c) there exists an atomic concept C ≡ >. From above, it follows that there
exists a pair of atomic concepts A and C, such that, A is more specific than
C.

|=uAvtC iff there exists A and there exists C , s.t., A v C (A.11)

32

Recall that if at least one concept A in conjunction uA is subsumed by concept
C, then the whole conjunction uA is also subsumed by C. Taking it into
account and using Equation A.11 we can prove that:

|=uAvtC iff there exists C in t C, s.t., |=uAvC (A.12)

Given A.12, second part of Equation A.7 can be rewritten as follows:

for all t C there exists C in t C, s.t., |=uAvC (A.13)

Now, let us assume that the “if” direction of Equation A.3 doesn’t hold, i.e.,
concept uA is not subsumed by any concept uB:

for all uB in t uB, 6|=uAvuB (A.14)

Recall that a concept can be subsumed by a conjunction of concepts if and
only if it is subsumed by every concept in the conjunction:

|=uAvuB iff for all B in uB, |=uAvB (A.15)

Given A.15, Equation A.14 can be rewritten as follows:

for all uB in t uB there exists B in uB s.t., 6|=uAvB (A.16)

Given Property A.5, Equation A.16 can be rewritten as follows:

there exists t C s.t., for all C in t C 6|=uAvC (A.17)

Equation A.17 is in contradiction with Equation A.13. Therefore, we discard
the assumption made in Equation A.14, which means that the “if”direction
of Equation A.3 holds.

Only-if The union of concepts is more general or equivalent to every concept
in the union:

for all uB in t uB, TWN |=uBvt uB (A.18)

Recall that the subsumption is the transitive relation, i.e.,

if TWN |=uAvuB and TWN |=uBvt u B, then TWN |=uAvt uB (A.19)

From A.19, we can see that the “only-if” direction of Equation A.3 holds.

Equation A.3 and consequently Theorem A.1 are proved.

33

