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Abstract 

The estimation of parameter values (model calibration) is the bottleneck of the computational analysis of 

biological systems. Modeling approaches are central in systems biology, as they provide a rational framework 

to guide systematic strategies for key issues in medicine as well as the pharmaceutical and biotechnological 

industries. Inter- and intra-cellular processes require dynamic models, that contain the rate constants of the 

biochemical reactions. These kinetic parameters are often not accessible directly through experiments. 

Therefore methods that estimate rate constants with the maximum precision and accuracy are needed. 

We present here a new method for estimating rate coefficients from noisy observations of concentration levels 

at discrete time points. This is traditionally done by computing the least-squares estimator. However, 

estimation of the error function generally requires solving the reaction rate equations, which can become 

computationally unfeasible. We propose an alternative approach based on a probabilistic, generative model of 

the variations in reactant concentration. Our method returns the rate coefficients, the level of noise and an 

error range on the estimates of rate constants. Its probabilistic formulation is key to a principled handling of 

the noise inherent in biological data, and it allows for a number of further extensions. The mathematical 

procedure presented here has been implemented in a software tool, named KInfer. 

1 Background 

The relation between the instantaneous rate of reaction and the concentrations of the reactants at any moment 

is given by the law of mass action: i.e. the rate at which a substance takes part in a reaction is proportional to 

its concentration raised to a power which represents the number of molecules taking part in the reaction. Such 

formulation is made for simultaneous as well as isolated reactions, and for heterogeneous as well as 

homogeneous systems.  The ability to infer these constants of proportionality for a system of biochemical 

reactions is crucial in systems biology, yet their direct measurement is a challenging experimental problem.  

Parameter estimation is commonly achieved by the best fit of numerical simulations to experimental 

observations. The fitting  procedure is based on optimization techniques where a measure of the distance 

between model prediction and experimental data (the cost function)  is used as the optimality criterion to be 

minimized. In most approaches dealing with parameter estimation the cost function is the likelihood function, 
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also know as joint transitional density. It expresses the probability of obtaining the observed outcomes in 

terms of measured systems variables and parameters. Thus it can be used to determine unknown parameters 

based on known outcomes. The optimal values of the parameters can be estimated by maximizing the 

likelihood function (maximun likelihood criterion) or, equivalently, by minimizing the log-likelihood 

function. However, when estimating parameters of dynamical systems with optimization methods a number of 

difficulties may arise, the main of which are convergence to local solutions, very flat objective function in the 

neighborhood of the solution, over-determined models, and non-differentiable terms in the systems dynamics. 

Due to the non-linear nature of the dynamics of the biological processes, these problems are often multimodal, 

so that traditional gradient based methods fail to identify the global solution and may converge to a local 

minimum. Moreover, in the case in which a bad fit has been performed, there is no way of knowing if it is due 

to a wrong model structure or if it is consequent to a local convergence. 

The recent literature reports many examples of new effective methods attempting either to work out these 

difficulties or to develop new methodologies of parameter estimation both in deterministic and stochastic 

models. Here we briefly mention the most recent ones. Polisetty et al. in [13] suggested global optimization 

techniques as alternative to traditional local methods. Rodrigez-Fernandez et al. in [15] developed a hybrid 

stochastic-deterministic global optimization method. Moles et al. in [12] explored several state-of-the-art 

deterministic and stochastic global optimization techniques and compared their accuracy and effectiveness on 

nonlinear biochemical dynamic models. Tian et al.  [7]  presented simulated maximum likelihood method to 

evaluate parameters in stochastic models described by stochastic differtial equation. They propose different 

types of transitional probability  and a genetic optimization algorithm to search for optimal reaction rates. 

Chou et al. [4] developed an alternate regression method, that dissects the parameter inference problem into 

iterative steps of linear regression. Sugimoto et al. [16] provided a computational technique based on genetic 

programming that simultaneously generates biochemical equations and their parameters from time series data. 

Reinker et al. [14] are the authors of the approximate maximum likelihood method and the singular value 

decomposition likelihood method that estimate  stochastic reaction constants from molecule count data 

measured with errors at discrete time points. Tools for parameter fitting through regression or maximum 

likelihood methods can be found as integral part of simulation tools (e. g. Copasi [10]), but there exist also 

―stand-alone‖ software exclusively designed for that purpose, like Splindid [2] and PET [21]. Finally we 

mention the works of Boys [3], Golitki [8] and Wilkinson [19, 20],  that developed Bayesian model-based 

inference techniques. Baysesian scheme depart from the approaches previously mentioned. They offer some 

advantages over the maximum likelihood methods, for instance when the volume of data is limited or the 

analytic form of the kinetic model makes the maximization of the likelihood not straightforward. The 

disadvantages of the most part of the current tools for paramter estimation is the lack of robustness to the 

noise and the absence of any estimates of experimental error in their outcome. Experimental uncertainties on 

parameters propagate from the measurements of the concentrations of the species. Returning the parameters 

with an estimate of their uncertainty is essential if we want to use the tool in the context of optimal 

experimental design. Moreover, the most part of the current tools, based on optimization techniques suffer 

from the problem of univocally finding the solution global optimization, and ask the user to provide a priori to 

the optimization algorithm the region of parameter space in which to perform the search for the global 

maxmimum. 

In this paper we present a novel approach to the model calibration, that proposes the solution to these 

difficulties.  The method is based on a probabilistic, generative model of the variations in reactant 

concentration. Given  reactant species, we observe time series concentrations for each of the species, 

gathered in  state vectors , our method discretizes the law of mass action and provides a tool to 

predict the values of the variables  at time , conditioned on their values at the previous time point. The 
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variations of the concentration of the species  at different time points are conditionally independent by the 

Markov nature of the discrete model of the law of mass action. Assuming the observation noise to be Gaussian 

with variance , the probability of observing a variation  for the concentration  of species  between 

time  and  is a Gaussian with variance depending on  and mean the expectation value of the law of 

mass action under the noise distribution. The discretization of the law of mass action provides a model for the 

variations of the species concentration, rather than a model for the time-trajectory of the species 

concentrations. This makes the evaluation of the expectation value of law mass action function (the integral of 

the transitional probability) simpler and analytically tractable. The rate coefficients and the level of noise  

are then obtained by maximizing the likelihood function defined by the observed variations. Our method 

returns the rate coefficients, the level of noise and an error range on the estimates of rate constants. Its 

probabilistic formulation is key to a principled handling of the noise inherent in biological data, and it allows 

for a number of further extensions, such as a fully Bayesian treatment of the parameter inference and 

automated model selection strategies based on the comparison between marginal likelihoods of different 

models. Finally, the implementation of this method may be used as an interface tool, connecting the outcomes 

of the wet-lab activity for the concentration measurements and the software for the simulation of chemical 

kinetics. 

We show the ability of our algorithm of obtaining reasonable estimates for the rate coefficients in case studies 

of different complexity including first and second order chemical reactions, didactical examples of 

biochemical networks, and more complex biological pathways. In particular we present the results of the 

application of our inference procedure to the following case studies: the gene transcription, the gene 

transcription regulation, the gene expression, the thermal isomerization of -pinene, the fermentation pathway 

in Saccharomyces Cerevisiae and finally the activation of M-phase promoting factor in the cell cycle.  The 

parameters of the kinetics of these pathways are known, since they were experimentally determined and 

widely documented in literature.  Thus, we could compare our estimates of the parameters with the known 

values to assess the soundness of the methodology and the performance of its implementation. 

The technical report is divided into four sections: the next section describes the inference model. Section 3 

illustrates the results of the method applied to the case studies. Finally Section 4 points out some conclusion 

and future directions. The work is mainly focused on the mathematical foundations of the inference method 

and reports some preliminary results obtained with KInfer, the software prototype implementing the 

procedure. The method of inference, proposed here, returns estimates of the rate coefficients with their 

experimental uncertainty, and since none of the considered tools returns the experimental error of the outputs 

(rather most of them consider standard deviation on the average values of the rate constant  obtained by 

several algorithm runs), here we test the method by evaluating the discrepancy of our estimates from the 

expected values. The comparison of Kinfer with other tools in term of performances will be considered as 

future work, as the performance analysis have to be based on a common definition of error and accuracy, that, 

at the moment of writing, is under investigation. In each case study we refer the reader to the suitable 

literature references. 

2 The model 

Consider  reactant species,  with concentrations , that evolve according to a 

system of rate equations 

  (2.1) 
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where , , is the vector of the rate coefficients, which are present in the expression of the 

function . We wish to estimate the set of parameters  ( ), whose element  is the set 

of rate coefficients appearing in the rate equations of i-th species, therefore  

 . 

 is the vector of concentrations of chemicals that are present in the expression of the function  for the 

species . 

According to the law of mass action, the functions  have the general form  

 . (2.2) 

In this equation , with , , is a vector whose set of elements is a subset of 

the set of  elements  of the vector  .  

The function  is the product of reactant concentrations, accordingly to the empirical law of rate equation as 

follows 

  

where  denotes the partial order of reaction with respect to the reactant having concentration  

Substituting these expressions in Eq. (2.2) gives 

  (2.3) 

We assume we have noisy observations  at times , where   is a Gaussian 

noise term with mean zero and variance . We also assume a number  of concentration measurements for 

each considered species. 

We discretize the rate equation (1.1) as a finite difference equation between the observation times, 

  (2.4) 
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where . In Eq. (1.4) the rate equation is viewed as a model of increments/decrements of reactant 

concentrations; i.e., given a value of the variables at time , the model can be used to predict the value at the 

next time point. Increments/decrements between different time points are conditionally independent by the 

Markov nature of the model (2.4). Therefore, given the Gaussian model for the noise, it is possible to estimate 

the probability to observe the value  given the model at time , and the set of parameters 

, as 

  (2.5) 

Moreover, by symmetry, the true value of  is normally distributed around the observed value , so 

that  

 (2.6) 

Therefore, the probability to observe a variation  for the concentration of the i-th species between the time 

 and  , given the parameter vector  is 

  (2.7) 

and  

  (2.8) 

where  is the number of chemical species in the expression for . 

While the increments/decrements are conditionally independent given the starting point , the random 

variables  are not independent of each other. Intuitively, if  happens to be below its expected 

value because of random fluctuations, then the following increment  can be expected to be bigger as a 

result, while the previous one   will be smaller. A simple calculation allows us to obtain the covariance 

matrix of the vector of increments for the i-th species. 

This is a banded matrix  with diagonal elements given by  

  

and a non-zero band above and below the diagonal given by  

  

with all other entries zero. The likelihood for the observed increments/decrements therefore will be 

  (2.9) 

where  
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and  

  

The Eq. (2.9) can be optimized w. r. t. the parameters   of the model to yield estimates of 

the parameters themselves and of the noise level. 

The chief numerical problem of this approach is the computation of the expectations of the rate functions 

given by equation (2.8). Non-integer values of the coefficients  can make estimating the integral analytically 

difficult. We propose an approximate method in which the Gaussian noise is replaced by an approximate 

uniform (white) noise, with the amplitude of the uniform noise being obtained as a sample from the Gaussian 

cumulative distribution function. 

At the first order, for small  we can approximate the Gaussian with zero mean and variance $\sigma$ with an 

uniform distribution defined on the interval , so that 

  (2.10) 

where 

  

Therefore 

 

  (2.11) 

 

Now, since 

  

  

we have   
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 (2.12) 

where S is the set containing the indexes referring to all the  species appearing in . 

  

 If in the Eq. (2.9),  is substituted with the expression (2.12) , Eq. (2.9) becomes more tractable can be 

optimized w. r. t. the parameters  and . The values of the model’s parameter for which 

 has a maximum are the most likely values giving the observed kinetics.   

 

2.1 Initial guesses and bounds for the parameter values 

The search for the optimal values of rate constants can be made more efficient if we provide the algorithm of 

optimization of Eq. (2.9) with the initial guesses for these constants. In this way the algorithm does not waste 

time in exploring large regions of the parameter space or regions in which the model (2.4) is not valid. Our 

model calibration method also includes a procedure for the automatic calculation of the initial guesses of the 

parameters. Therefore, the task to direct the inference method to efficiently exploring the parameter space is 

not left to the user, that often does not have a precise idea about a reasonable value of the parameters. The 

method of calculating the approximated guesses of the parameter is explained in the following. 

The rate equation of a species , ( ), is a measure of the slope  of the curve of the function  

as follows 

 . (2.1.1) 

We obtained the slopes  in each time point , ( ), from the experimental data by using the 

Stineman algorithm. This algorithm provides a procedure of interpolation and returns the slope of the 

interpolating function running through a set of points in the xy-plane.  The functions  are the same as in Eq. 
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(2.2). The left-hand side of the equations of system (2.1.1) is determined by the Stineman algorithm, whereas 

the right-hand side is an expression containing the unknown parameters . In general the system (2.1.1) has 

 equations and at most  unknown rate constants. Since in general , where  

is the cardinality of , the system could be singular. In those cases, we considered a different time re-

sampling of the Stineman curve interpolating the experimental data. The new set of time-points are those in 

which the values of the interpolating curve have null slope. In this way the curve is under-sampled and the 

system has a less number of equations. If the system is still singular, the number of equations is cut down 

further on, until the equality  is satisfied, and thus the system can be solved to find the 

approximated values of unknown parameters to be used as initial guesses for the algorithm of optimization. 

Determining the parameter values with the maximum likelihood of being correct is only part of the parameter 

estimation problem. It is equally important to find a realistic measure of the precision of those parameters. 

Since the experimental values of the concentrations are affected by errors, then we considered the propagation 

of these errors to the estimate of the parameters. 

A system of equations similar to the system (2.1.1) can be written also for the errors  affecting the slopes 

: 

  (2.1.2) 

where, using (2.3), we obtain  

  (2.1.3) 

For convenience, consider a single term of the sum on the right-hand side of Eq. (2.1.3), for instance the first, 

and calculate the relative error on this term as follows 

  (2.1.4) 

where  is the cardinality of the set . Therefore, Eq. (2.1.3) becomes 

  (2.1.5) 

Assuming that the measurements of times are not affected by errors, the error  is calculated from Eq. (2.4) 

as follows  

  (2.1.6) 

where  is the experimental error on the measurement of concentration of species i at time . In Eq. 

(2.1.6)  the left-hand side is determined from the data. The right-hand side contains the unknown parameters 
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, that are the errors on the estimates of the rate constants. They are calculated by solving the system of 

equations of the form of Eq. (2.1.5) for all the involved species with the same criteria we used to make 

solvable the system (2.1.1). 

The optimization algorithm for the function (2.9) is provided with the initial guesses of the parameters and 

their bounds obtained as solutions of system (2.1.1) and system (2.1.2), respectively. Therefore, without any 

intervention by the user, the search for the maxima of the probability density function of the observed 

concentration increments/decrements is addressed to the region of parameter space in which the empirical 

model (2.4) holds for the observed data. 

3 The structure of KInfer 

We developed the prototype KInfer that implements the procedure described in the previous section. The tool 

consists of four main blocks: 1) the input interface, 2) the model generator, 3) the maximization algorithm and 

4) the output interface (Fig. 1). 

 

Figure 1: Scheme of KInfer's design. 

 

A screenshot of the front-end is shown in Fig. 2. The tool takes as input the set of chemical reactions 

describing the kinetics of the systems, specified in the following syntax. 

  

On the left-hand side of the arrow, the reactants ( ) and the reactants stoichiometric coefficients 

( ) are indicated, whereas on the right-hand side the products ( ) and the product 
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stoichiometric coefficients ( ) are indicated. The reaction specification contains also the indication of 

the name of the rate constant after colon and the partial orders of reaction ( ). The specification of the 

reactions must end with semicolon. Along with the specification of the set of reactions involved in the system, 

KInfer requires the experimental time series data, in tabular text format, of the concentration (or number of 

molecules) of the species present in the system. The option ―Load concentrations…‖ in the File menu of the 

front-end allows the user to download the experimental times series of concentrations. 

From the set of chemical reactions the tool automatically generates the ordinary differential equations model, 

consisting of a system of equations of the form of Eq. (2.3) (See the field ―Automatic model‖ in the front-end 

in Fig. 2). However, the user is allowed to insert a different model that can be entered in the ―Manual Model‖ 

part of the interface (Fig. 2). The user is allowed also to enter an ordinary differential equation model without 

specifying the reaction in the standard ―chemical‖ notation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: front-end of KInfer. 

The tool processes the inputs and it derives from the data set of the concentration time-series and from the 

model of rate equation the form of the probability density function (2.9) to maximize and the initial guesses 

for the parameters. Although the tool automatically calculate the initial guesses of the parameters, the user is 

allowed to change the estimated values as well as to directly insert new different estimates.  

Our choice of the optimization algorithm has been driven by the fact that a biological model of realistic size 

and complexity presents a high number of parameters with possible nonlinear relations between them. In such 

cases the use of methods belonging to the class of Genetic Algorithms (GA) [22] is recommendable. A genetic 

algorithm is a population based stochastic optimization technique, that, starting from a set of initial guesses 

about the solution, determines the next set of possible solutions to the optimization problem on the basis of the 

results obtained from the preceding set. These methods have been designed primarily to address problems that 
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cannot be tackled through traditional optimization algorithms. Such problems are characterized by 

discontinuities, lack of derivative information, noisy function values and disjoint search spaces. In the GA 

approach, the evolution starts from a population of randomly generated individuals. Then in each generation 

the fitness of every individual in the population is evaluated and multiple individuals are stochastically 

selected from the current population (based on their fitness). The chosen individuals are modified (recombined 

and possibly randomly mutated) to form a new population. The new population will be used in the next 

iteration of the algorithm. The algorithm terminates when either a maximum number of generations has been 

produced, or a satisfactory fitness level has been reached for the population. 

 

The selection operation involves the evaluation of each possible solution with respect to the target assigned: 

the lower the log-likelihood value is, the better the solution is considered. The next step is to select the 

solutions for the next generation in such a way that those with higher fitness have higher probability of 

selection: to each guessed solution will be assigned a selection probability derived by the ratio of its square 

fitness and the sum of the squared fitness of all the solutions. The selected solutions are then subjected to 

cross-over, mutation and innovation operators. To realize cross-over, every two parents create two children in 

the following way: the algorithm selects randomly from the first parent how many and which variables will 

have to be kept in the first child. Then from the second parent the algorithm takes the complementary number 

of variables and uses these values to complete the first child. The second child is then built with the remaining 

variables of the two parents. The mutation operation, with a low probability (in our examples p = 0.1), 

randomly selects one variable to be mutated. After the selection, the value of the variable is changed selecting 

(again randomly) from the possible values it can take excluding the currently one. Finally, the innovation 

operator randomly select new solutions never tested to be performed. Usually this operator is kept at low rate 

(here at 5%), trying to optimize the trade-off  between exploration and exploitation. Once the new population 

of experiments is derived from the algorithm it is then proposed as a new generation for the next algorithm 

iteration. The size of each population of solution in each generation is maintained constant. 

4 Case studies 

Here we provide some validation tests on biochemical networks. For each case study we briefly describe the 

topology of the reaction network, and we report our estimates of the kinetic rate constants compared with the 

estimates obtained by other studies and approaches. We did not include in the text of this manuscript the 

experimental and/or synthetic time series of the concentrations we used as input of our procedure to infer the 

parameter. They are separately provided as additional files. 

We also show the model simulations obtained with the estimated parameters and with the actual parameters, 

in order to show the discrepancy between the actual expected time behavior and the estimated time behavior 

due to the propagation of the errors on rate constants to the time course of the concentration. 

The errors on the parameter estimates computed by our procedure are not computational errors imputable to 

the precision of the integration algorithms and the optimization algorithm. They are experimental errors that 

we expect to obtain from input data affected by and/or simulated with experimental errors. Moreover they 

depend on the time resolution at which the concentration measurement is recorded. Therefore, their values are 

not comparable with the values of errors on the parameters estimates obtained by the references cited in each 

case study, to which we refer the reader for a more detailed discussion on the computation of the estimates 

precision, accuracy and errors. 



12 

 

 

The results we present in the next section confirm that the procedure converges to the expected solution within 

the experimental errors and the strength of noise affecting the input data. 

 

4.1 Didactic example: a small biochemical network 

The system depicted in Figure 3 is representative of a small biochemical network of 4 interacting species. The 

network has two feedback loops: 1. the species X5 inhibits the production of species X1, and 2. The species X4 

promotes the activation of X5. 

 

Figure 3: A didactic example of biochemical network with four variables [4, 16]. 

A numerical implementation with typical parameters is 

  

This system of equation is used to create the artificial time series data of the five involved variable. Typical 

units might mM for the concentration and minutes for the times, but the example could as well run on an 

hourly scale and with variables of different nature. Table 1 lists the results. Within the experimental 

uncertainties, these results are in agreement with those in [4].  

  Actual rate constants Bounds for the initial guesses Estimated rate constants 

1 12 [10.18; 13.84] 11.37 ± 3.66 

2 10 [8.28; 11.74] 9.39 ± 3.46 

3 8 [9.81; 9.87] 9.83 ± 0.06 

4 3 [3.92; 3.99] 3.98 ± 0.07 

5 3 [2.91; 2.96] 2.94 ± 0.05 

6 5 [4.89; 4.91] 4.90 ± 0.02 

7 2 [1.50; 2.55] 1.84 ± 1.05 

8 6 [4.01; 8.17] 5.5 ± 4.16 

Estimated noise strength   = 0.3 

Table 1: Estimated parameters values for the network of Figure 3. 



13 

 

 

4.2 Gene transcription 

In this test, we consider the transcription of a single gene as given by the model of Golding et al. in [7, 14]. 

The DNA for the tagged mRNA is switched on and off by polymerase binding and unbinding, respectively. 

Only polymerase-bound DNA is transcribed into mRNA. The system is depicted in Figure 5. The reaction 

rates associated  with the reaction R1: DNAOFF → DNAON, R2: DNAON  → DNAOFF, and R3: DNAON → 

DNAON + mRNA are , . and , respectively. As initial 

conditions in this system, we set DNAOFF =1, DNAON = 0 and mRNA = 0. 

 

 

Figure 4: Golding model of gene transcription process. 

Our  estimates  in Table 2 are in strong agreement with the actual ones as well as with  those obtained by 

Reinker et al. [13].  

 

 
Actual rate constants Bounds for the initial guesses Estimated rate constants 

1 0,027 [0.0242; 0.0249] 0.0244 ± 0.0007 

2 0,1667 [0.151; 0.152] 0.152 ± 0.001 

3 0,4 [1.578; 2.385] 1.579 ± 0.807 

Estimated noise strength  = 0.445 

Table 2: Estimates of the kinetic parameters of the Golding’s model of gene expression. 

 

4.3 Transcriptional regulation 

Figure 7 illustrates a model of transcriptional regulation that was proposed by Goutsias [9] and reported in 

[14]. Here, the mRNA is translated into a protein monomer M that can dimerise. The dimer D, in turn, can 

bind to its DNA and acts as a transcription factor  to auto-regulate its own mRNA production. Both mRNA 

and protein are degraded at constant rates. The set of reactions of this network is the following 
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As in [14], we used this set of reactions to generate, with the Dizzy simulator [24], a database of deterministic 

time series of number of molecules for each component in the system. As initial values we used M = 2, D = 4, 

DNA = 2, and mRNA = 0, DNA∙D = 0. All the reaction constants are in units of per seconds. 

 

Figure 7: Goutsias transcriptional regulation system. 

 

Table 3 reports the estimates of the rate constants in agreement with the actual values and with the results in 

[9].  

  Actual rate constants Bounds for the initial guesses Estimated rate constants 

1 0,043 [1.3750; 1.3784] 1.3769 ± 0.0034 

2 0,0007 [3.3416; 3.3811] 3.3499 ± 0.0396 

3 0,715 [0.0859; 0.1203] 0.1051 ± 0.0344 

4 0,00395 [0.00340; 0.00386] 0.003777 ± 0.000459 

5 0,02 [0.0468; 0.1157] 0.1118 ± 0.0688 

6 0,4791 [1.3057; 1.4794] 1.4682 ± 0.1737 

7 0,083 [0.1928; 0.1978] 0.1973 ± 0.0051 

8 0,5 [0.0801; 0.1898] 0.112 ± 0.1097 

Estimated noise strength  = 0.2998 

Table 3: Estimates of kinetic rate constants of Goutsias transcription regulation model. 
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4.4 Gene expression 

Figure 9 illustrates the gene expression of a single gene with both transcription and translation. The model 

consists in the following set of reactions: R1: DNA → DNA + mRNA, R2: mRNA → () , R3: mRNA + 

protein, and R4: protein → (). The kinetic constants associated to these reactions are: , 

, , and  ([16]). The results of our inference 

procedure are listed in Table 5.  

 

 

 

Figure 9: Gene expression of a single gene. 

 

 

 

 

Table 4: Estimates of kinetic rate constants of the model of gene expression in Figure 9. 

 

4.5 Isomerization of -pinene 

In this case study we estimate the rate constants of a complex biochemical network describing  the thermal 

isomerization of -pinene (X1) to dipentene (X2) and allo-ocimen (X3) which in turn yields - and -pyronene 

(X4) and dimer (X5). This process is described by the reaction scheme reported in Figure 11 and investigated 

in [5, 15]: 

  

  Actual rate constants Bounds for initial guesses Estimated rate constants 

1 6 [7.0660; 7.0920] 7.0896 ± 0.026 

2 0,6931 [0.8177; 0.8178] 0.8178 ± (~0) 

3 10,3972 [12.939; 12.942] 12.94 ± 0.003 

4 0,003852 ~ 0.00654 0.00654 ± (~0) 

Estimated noise strength  = 0.3 
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The best known solution for the kinetics are , , 

, , and  [15].  

 

Figure 11: Reaction scheme for the thermal isomerization  of -pinene (X1). 

The deterministic model of the network is the following: 

  

It has been used to generate the database of the time series of concentration used as artificial input to KInfer. 

Table 5 reports the estimates for these rate constants obtained by our procedure and Figure 10 shows the 

expected and the estimated time course of the species concentrations. High discrepancy are obtained for the 

time course of  and , reflecting the inaccuracy in the estimate of  and . 

 

  Actual rates Bounds for the initial guesses Estimated rate constants 

1 5,95E-05 [5.63; 6.11]×10E-5 (5.86 ± 0.05) × 10E-5 

2 2,96E-05 [2.4; 3.0]×10E-5 (2.8 ±  0.6) ×10E-5 

3 2,05E-05 [0; 0.006] (6.19 ± 76.4) ×10E-5 

4 2,75E-04 [3.78; 4.54] ]×10E-4 (4.16 ± 0.08) × 10E-4 

5 4,00E-05 [10.3; 12.0] ×10E-5 (11.1 ± 0.2) × 10E-5 

Estimated noise strength = 0.745 

Table 5: Estimates of the kinetic rate constants of the biochemical network of thermal isomerization of -pinene. 
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4.6 MAP-Kinase cascade 

Figure 13 depicts the last step of the mitogen-activated protein kinase (MAPK) cascade. Activated MPAK 

kinase (Mek**) catalyzes the activation of MAPK (Erk) by phosphorilation, resulting in the activated form 

Erki**. The deactivation of the active form is catalyzed by the phosphatase (Pase). The picture shows 12 

reactions as follows:  

R1: Erk + Mek** → Erk ∙ Mek**; 

R2: Erk ∙ Mek**  →  Erk + Mek**;    

R3: Erk ∙ Mek** → Erk* + Mek**; 

R4: Erk* + Mek** → Erk* ∙ Mek**; 

R5: Erk* ∙ Mek** → Erk* + Mek**; 

R6: Erk* ∙ Mek** → Erk** + Mek**;   

 R7: Erk** + Pase → Erk** ∙ Pase; 

R8: Erk** ∙ Pase → Erk** + Pase; 

R9: Erk** ∙ Pase → Erk* + Pase; 

R10: Erk* + Pase → Erk* ∙ Pase; 

R11: Erk* ∙ Pase → Erk* + Pase;  

R12: Erk* ∙ Pase → Erk + Pase. 

 

The kinetic rates associated to these reactions have been chosen, accordingly to Faller et al. [23]  as follows: 

 

 

 

.  

 

With the following initial values for nano-molar concentrations [Erk] = 15, [Pase] = 5, [Erk*] = 5, [Erk**] = 

5, [Mek**] = 15; [Erk ∙ Mek**] = 5, [Erk* ∙ Mek**]=5; [Erk* ∙ Pase] = 5, and [Erk** ∙ Pase] = 10, we 

generated the artificial data set of the time series of concentrations and used them as input for our parameter 

inference procedure. Table 6 shows the estimates of the parameters. 

 

Figure 13: The last step of the mitogen-activated protein kinase (MAPK) cascade [23]. 
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  Actual rates Bounds for the initial guesses Estimated rate constants 

1 0,5 [0.2; 0.9] 0.30 ± 0.05 

2 0,6 [0.2; 0.9] 0.8 ± 0.3 

3 0,9 [0.0; 2.0] 1.2 ± 0.3 

4 0,5 [0.2; 0.9] 0.29 ± 0.05 

5 0,6 [0.2; 0.9] 0.6 ± 0.2 

6 0,9 [0.0; 2.0] 0.6 ± 0.3 

7 0,5 [0.2; 0.9] 0.48 ± 0.14 

8 0,6 [0.2; 0.9] 0.6 ± 0.2 

9 0,9 [0.0; 2.0] 0.4 ± 0.2 

10 0,5 [0.2; 0.9] 0.50 ± 0.15 

11 0,6 [0.2; 0.9] 0.7 ± 0.3 

12 0,9 [0.0; 2.0] 1.8 ± 0.9 

Estimated (actual) noise strength  = 0.15 

Table 6: Estimates of the kinetic rate constants of the last step of MAPK cascade in Figure 13. 

 

4.7 Fermentation pathway in Saccharomyces Cerevisiae 

The metabolic pathway is given in Figure 15. The structural and numerical specifications of this model are 

based on kinetic experiments and biochemical analyses [6]. The mass action equation for this model adapted 

from [13]. The model has 5  dependent variables, 9 independent variables and 16 unknown rate constants. 

According to [13], the observed concentrations of (in units of mM) at steady state are: 

X1 (GIn) – Internal glucose = 0.0346,  

X2 (G6P) – Glucose-6-phosphate = 1.011 

X3 (FDP) – Fructose-1,6-diphosphate = 9.1876  

X4 (PEP) – Phosphoenolpyruvate = 0.0095 

X5 (ATP) – Adenosine triphosphate = 1.1278. 

 

The values of the independent variables (mM min
-1

) are: 

X6 Glucose uptake = 19.7 

X7 Hexokinase = 68.5 

X8 Phosphofructokinase = 0 31.7 

X9 Glyceraldehyde.3-phosphate dehydrogenase = 49.9 

X10 Pyruvate kinase = 3.440 

X11 Polysaccharide production (glycogen + trehalose)  = 14.31 

X12 Glycerol production = 203 

X13 ATPase = 25.1 

X14 NAD+/NADH ratio = 0.042 
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Figure 15: Model of anaerobic fermentation of glucose to ethanol, glycerol, and polysaccharides in Saccharomyces 

Cerevisiae  [13]. 

 

The mass action model of the pathways is given by the following equations adapted from [13] and has been 

use to generate a synthetic database of concentration time series. 
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Actual rate constant Bounds for the initial guesses Estimated rate constants 

0,8122 [1.07; 1.24] 1.17 ± 0.17 

2,8632 [4.009; 4.146] 4.059 ± 0.137 

2,8632 [0.0; 1.37] 0.38 ± 1.37 

0,5232 [0.0; 0.314] 0.042 ± 0.315 

0,0009 [0.0; 0.059] 0.057 ± 0.06 

0,5232 [0.0; 0.070] 0.056 ± 0.071 

0,011 [0.0; 0.439] 0.29 ± 0.44 

0,0473 [0.0; 20.60] 0.13 ± 20.61 

0,022 [0.0; 0.10] 0.06 ± 0.102 

0,0945 [0.0; 199.19] 78.23 ± 199.2 

0,022 [0.0; 0.15] 0.0021 ± 0.1545 

0,0945 [26.91; 36.60] 27.26 ± 9.69 

2,8632 [0.0; 0.0046] 0.004 ± 0.0047 

0,0009 [0.0; 0.063] 0.014 ± 0.064 

0,5232 [0.0; 0.26] 0.00093 ± 0.2618 

1 [0.055; 0.135] 0.096 ± 0.08 

Estimated (actual) noise strength  = 0.29 

Table 7: Estimates of the kinetic rate constants for the fermentation pathway model in Figure 15. 

 

5 Conclusions 

In this article, we presented a novel method for the estimation of reaction parameters and noise strength from 

time series of molecules counts or concentrations observed with error. We have shown that our procedure 

converges to the expected solutions within the bounds of the experimental errors that propagates from 

concentration measurements to the kinetic rate constants. The results confirm that the validity of the procedure 

and the validity of the discretized model of generalized mass action law for the rate equation in most cases, 

even if some discrepancies can be due to this approximation in some cases. However, results not shown here, 

and currently under investigation are showing that increasing the size of the initial guess about the model 

parameter minimizes the disagreements. Moreover, some important features missing from the existing method 

for model parameter inference are present in our method. The first is the implementation of a procedure, 

which automates the computation of the initial guesses of the parameters. In this way, the user is not forced to 

insert any a priori knowledge about the system, that often is quite hard to find, and, at the same time, the 

method is equipped with a rigorous procedure referring only to the experimental concentration measurements 

to identify a region of the parameter space where the optimization of the probability density function takes 

place. The second feature is the implementation of the error propagation. The evaluation of the experimental 

errors of the rate constants estimates is particularly useful if the procedure of parameter inference is 

incorporated in projects of experimental design. The size of the errors on the kinetic constants is indicative of 

the optmimality of the experimetal setup. Thus, any procedure devoted to the reduction of this error is 

definitely part of a methodology aiming to optimize the design of the experimental configuration. 
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