
Technical Report CoSBi 26/2007

Experiments on the Reliability of
Stochastic Spiking Neural P Systems

Matteo Cavaliere, Ivan Mura

Microsoft Research - University of Trento
Centre for Computational and Systems Biology, CoSBi, Trento, Italy

{cavaliere, mura}@cosbi.eu

This is the preliminary version of a paper that will appear in
Natural Computing, 7, 4, 2008

available at http://www.springerlink.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints Research

https://core.ac.uk/display/11829982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

In the area of membrane computing, time-freeness has been de-
fined as the ability for a timed membrane system to produce always
the same result, independently of the execution times associated to
the rules. In this paper, we use a similar idea in the framework of
spiking neural P systems, a model inspired by the structure and the
functioning of neural cells. In particular, we introduce stochastic spik-
ing neural P systems where the time of firing for an enabled spiking
rule is probabilistically chosen and we investigate when, and how, these
probabilities can influence the ability of the systems to simulate, in a
reliable way, universal machines, such as register machines.

1 Introduction and Motivations

Membrane computing (known also as P systems) is a model of computation
inspired by the structure and the functioning of living cells (a monograph
dedicated to the area is [21], an updated bibliography can be found at the
web-page [30]). Essentially, a P system is a synchronous parallel computing
device based on multiset rewriting in compartments where a global clock is
assumed and each rule of the system is executed in one time step.

Starting from the idea that different reactions may take different times
to be executed (or to be started, when enabled) a timed model of P system
was introduced in [5], where to each rule of the system is associated a time of
execution. The goal was to understand how time could be used to influence
the result produced by the P system (see, e.g., [6]) and, possibly, how to
design computational powerful time-free systems where the output produced
is independent of the timings associated to the rules, e.g., [2].

In this paper we use a similar idea in the framework of spiking neural P
systems, and we investigate how the timing of the spiking rules can influence
the output produced by the systems and in particular can influence the
ability of the systems to simulate universal computing devices.

Spiking neural P systems (in short, SN P systems) have been introduced
in [14] as computing devices inspired by the structure and functioning of
neural cells (a friendly introduction to the area is [20]).

The main idea of an SN P system is to have several one-membrane cells
(called neurons) which can hold any number of spikes; each neuron fires
(we also say, spikes) in specified conditions (after accumulating a specified
number of spikes).

In the standard definition of SN P systems, the functioning of the system
is synchronous: a global clock is assumed and, in each time unit, each neuron
that can use a rule does it. The system is synchronized but the work of the
system is sequential: only (at most) one rule is used in each neuron. One
of the neurons is considered to be the output neuron and its spikes are also
sent to the environment. The moments of time when (at least) one spike

1

is emitted by the output neuron are marked with 1, the other moments are
marked with 0. The binary sequence obtained in this manner is called the
spike train of the system – it is infinite if the computation does not stop.

To a spike train one can associate various numbers, which can be consid-
ered as computed (we also say generated) by an SN P system. For instance,
in [14] only the distance between the first two spikes of a spike train was con-
sidered, then in [22] several extensions were examined: the distance between
the first k spikes of a spike train, or the distances between all consecutive
spikes, taking into account all intervals or only intervals that alternate, all
computations or only halting computations, etc..

In [14] it is proved that synchronized SN P systems, with spiking rules in
the standard form (i.e., they produce only one spike) are universal – they can
characterize NRE, the family of Turing computable sets of natural numbers;
normal forms of universal SN P systems were presented in [13].

In the proof of these results, the synchronization plays an important
role and, in general, the synchronization is a very powerful feature, useful
in controlling the work of a computing device. However implementing syn-
chronization is not always easy or possible and is (not always) biologically
justified, as, for instance, in case of network of spiking neurons (see, e.g., [9]).
For these reasons in [4], [3] an asynchronous version of SN P systems, where
at each step of the computation a spiking rule can be applied or skipped,
has been considered. There has been shown that removing the synchroniza-
tion, in some cases, can lead to a decrease of the computational power of
the systems. In the same papers, it is also conjectured that asynchronous
spiking neural P systems using standard rules are not universal.

However, the “border” between synchronous and asynchronous systems
seems to be not so drastic in natural systems, and in many other artificial
systems, e.g., networks of computers. In many cases we encounter networks
of computational units that do not work in a synchronous way, i.e., they do
not use same global clock, but still they do their operations in an “enough”
synchronous way, in such way that the functioning of the entire system
follows the specified goals.

We try to capture such intuition in the framework of SN P systems by
considering stochastic SN P systems (in short, SSN P systems) where to
each rule, when enabled, is associated a probability to fire in a certain time
interval. This means that, during the computation of a SSN P system,
an enabled rule may not spike immediately but can remain silent for a
certain (probabilistic) time interval and then spikes. During such interval
the neuron where the rule is present could receive other spikes from the
neighboring neurons or maybe other rules can fire in the same neuron. The
computation would then continue in the new circumstances (maybe different
rules are enabled now – the contents of the neuron has changed). If there is
competition between enabled rules for using the spikes present in the same
neuron, the fastest (probabilistically determined) rule spikes.

2

The choice of the probability distributions for the firing of the rules
clearly influences the synchrony of the entire system. Because of the results
in [4], we can expect that the probability distributions for the firing of the
rules “influence” the ability for the systems to simulate, in a “reliable” way,
computational universal machines. In this paper we do not want to provide
a formal proof for this statement but rather we want to present ways to
investigate such “influence”.

We first show that a SSN P system can simulate universal machines
when the probability distributions can be chosen in an arbitrary manner.
When such distributions cannot be arbitrarily chosen but they are given,
then, the reliability of an SSN P system (i.e., the ability for the system
to work correctly) depends on the given distributions, and, in some cases,
on the variance associated to the distributions. In general, one has to use
statistical analysis to investigate the reliability of the systems, when, for
instance, varying the variance associated to the distributions. In this paper,
we provide such an analysis for a specific example of SSN P system and
considering a specific register machine program. We also show how, using
such method of analysis, it is possible, to identify the (maximal) value for
the variance that guarantees that the system has a certain chosen reliability.

The functioning of the SSN P system is somehow similar to the one
of stochastic Petri nets, [17] where a time of delay for each transition is
used. However, motivations and questions of the two paradigms are clearly
different (modeling network of spiking neurons for computability study in
our case, modeling concurrent processes in case of stochastic Petri nets).
This is more evident when considering the control associated to the the
single computational unit: regular expressions associated to each neuron in
a SS N P system, presence of tokens in the places in stochastic Petri nets.

Probabilities have been also used in the more general framework of P sys-
tems. In particular, in [24] and [16] probabilities have been associated with
the localization of single objects and with rules and universality has been
shown when such probabilities are chosen in a very specific way. However,
no explicit analysis of the reliability of the systems has been presented. A
different approach is used in [19] and [23] where sequential membrane sys-
tems have been investigate using Markov chains theory. In these papers
however probability distributions are not directly associated to the timing
of the rules, but are rather obtained by starting from chemical reactions and
molecular dynamics; the goal of the authors is, in fact, to provide algorithms
to investigate dynamics of molecular systems.

We conclude by mentioning a similar work presented in [15] in the frame-
work of network of spiking neurons where each neuron has associated a given
threshold that specifies when a neuron fires. In [15] the author shows how
a network of spiking neurons, with noisy neurons (i.e., the time of firing is
not deterministic) can simulate, in a reliable way, boolean circuits and finite
state automata. In our case, we use more general and abstract type of neu-

3

rons and, for this reason, we can investigate more “complex” and general
encodings such as the one of register machines.

2 Preliminaries

We introduce in this section a limited amount of technical notation, assum-
ing the reader has some familiarity with (basic elements of) language and
automata theory, e.g., from the standard book [27] or from the correspond-
ing chapters of the handbook [25].

For an alphabet V , V ∗ is the free monoid generated by V with respect
to the concatenation operation and the identity λ (the empty string); the
set of all nonempty strings over V , that is, V ∗ − {λ}, is denoted by V +.
When V = {a} is a singleton, then we simply write a∗ and a+ instead of
{a}∗, {a}+. The length of a string x ∈ V ∗ is denoted by |x|. The family of
Turing computable sets of natural numbers is denoted by NRE.

A regular expression over an alphabet V is constructed starting from λ
and the symbols from V and using the operation of union, concatenation
and Kleene +, using parentheses when necessary for specifying the order of
operations. Specifically, (i) λ and each a ∈ V are regular expressions, (ii)
if E1 and E2 are regular expressions over V , then (E1) ∪ (E2), (E1)(E2)
and (E1)+ are regular expressions over V , and (iii) nothing else is a regular
expression over V .

To each regular expression E we associate a language L(E) defined
in the following way: (i) L(λ) = {λ} and L(a) = {a}, for all a ∈ V ,
(ii) L((E1) ∪ (E2)) = L(E1) ∪ L(E2), L((E1)(E2)) = L(E1)L(E2), and
L((E1)+) = L(E1)+ for all regular expressions E1, E2 over V . Non-necessary
parentheses are omitted when writing a regular expression and (E)+ ∪ {λ}
is written in the form (E)∗.

In what follows we also assume that the reader possesses a basic knowl-
edge of probability theory, specifically about random variables and their
distribution. An introduction to these concepts can be found in [28].

2.1 Register Machines

A (non-deterministic) register machine is a construct M = (m,H, l0, lh, I)
where m is the number of registers, H is the set of instruction labels, l0 is the
start label (labeling an ADD instruction), lh is the halt label (assigned to an
HALT instruction) and I is the set of instructions; each label from H labels
only one instruction from I, thus precisely identifying it. The instructions
are of the following general forms:

• l1 : ADD(r), l2, l3, adds 1 to register r and then goes non-deterministically
to one of the instructions with labels l2, l3;

4

• l1 : SUB(r), l2, l3, if register r is non-empty, then subtracts 1 from it
and goes the instruction with label l2, else goes to the instruction with
label l3;

• lh : HALT , is the halt instruction.

A computation of a register machine M is defined in the following way.
The machine starts with all empty registers (i.e., storing the number zero).
Initially, the instruction with label l0 is executed. The computation pro-
ceeds by applying the instructions as indicated by the labels (and made
possible by the contents of the registers); if the halt instruction is reached,
the computation halts and the number n stored at that time in the first
register (output register) is the output of the computation. Because of the
non-determinism present in the ADD instruction, a machine M may have
multiple halting computations.

Without loss of generality, we can assume that, for any instruction, l2,
l3 is different from l1.

We denote by CM the set of halting computations of M, and by Out(c),
the output produced by a computation c ∈ CM . Then N(M) = {Out(c), c ∈
CM} is the set of all natural numbers computed by machine M .

We denote by RMNDET the class of non-deterministic register machines.
It is known (see, e.g., [18]) that RMNDET computes all sets of numbers which
can be computed by a Turing machine, hence characterizes NRE.

3 Stochastic Spiking Neural P Systems

We introduce a class of spiking neural P systems (in short, SN P system),
called Stochastic Spiking Neural P Systems (in short, SSN P systems). SSN
P systems are obtained from SN P systems by associating to each spiking
rule a firing time that indicates how long an enabled rule waits before it
is executed. Such firing times are random variables whose probability dis-
tribution functions have support contained in the set of non-negative real
numbers, which we shall denote by R+.

Informally, an SSN P system is an asynchronous SN P system ([4])
where the firing of the rules (hence, the asynchrony present in the system)
is stochastically regulated. Formally, an SSN P system is a quadruple

Π = (O,Σ, syn, io)

where:

(i) O = {a} is the singleton alphabet (a is called spike);

(ii) Σ = {σ1, σ2, . . . , σm} are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

5

where:

• ni ≥ 0 is the initial number of spikes contained by the neuron;

• Ri is a finite set of rules, of the following two forms:

(a) E/ar → a;F ′(·) where E is a regular expression over O,
r ≥ 1 and F ′(·) is (a function that represents) a probability
distribution with support in R+;

(b) as → λ;F ′′(·) for some s ≥ 1, with the restriction that as 6∈
L(E) for any rule of type (a) in Ri and F ′′(·) is a probability
distribution with support in R+;

(iii) syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with (i, i) 6∈ syn for 1 ≤ i ≤ m is
a set of synapses among the neurons;

(iv) io ∈ Σ is the output neuron.

A rule of type E/ar → a;F ′(·) present in neuron i, for i ∈ {1, 2, . . . ,m},
is a firing (also called spiking) rule: provided that the contents of neuron i
(i.e., the number of spikes present in it) is described by the regular expression
E, then the rule is enabled and can fire (spike). When the rule fires, r spikes
are consumed in neuron i and exactly 1 spike is sent to all the neurons to
which neuron i is linked through the synapses. A rule of type as → λ;F ′′(·)
is a forgetting rule, and it functions in a similar way. The only difference
with respect to the firing rule is that, when the forgetting rule fires, s spikes
are consumed in neuron i and no spike is sent out.

From the moment in which a rule is enabled up to the moment when the
rule fires, a random amount of time elapses, whose probability distribution
is specified by the function F (·) associated to the rule (different rules may
have associated different distributions).

Therefore, if a rule is enabled in neuron i and before the rule fires the
neuron receives new spikes or another rule in neuron i fires, it may happen
that the rule is not enabled anymore because the contents of neuron i has
changed.

We suppose, that once the rule fires, the update of the number of spikes
in the neuron, the emission of spikes and the update of spikes in the receiving
neurons are all simultaneous and instantaneous events. Multiple rules may
be simultaneously enabled in the same neuron. Whenever multiple enabled
rules in a neuron draw the same random firing time, the order with which
those rule fire is randomly chosen, with a uniform probability distribution
across the set of possible firing orders.

A configuration of an SSN P system Π is composed by the neurons with
their associated contents. Using the rules in the way described above, in each
neuron, the system Π passes from a configuration to another configuration:

6

such a step is called transition1.
A sequence of transitions, starting in the initial configuration, is called

computation. A halting computation is a computation that reaches a halting
configuration, i.e., one in which no rule is enabled. We denote by CΠ the set of
all halting computations of an SSN P system Π. For an halting computation
c ∈ CΠ, Out(c), the output produced by c, is defined as the contents of the
output neuron in the halting configuration and N(Π) = {Out(c), c ∈ CΠ} is
the set of natural numbers generated by Π.

In what follows, we will use the usual convention to simplify spiking
systems rule syntax, writing ar → a;F (·) when the regular expression of the
rule is ar.

4 Computational power of SSN P systems

In this section we discuss the computational power of SSN P systems, by
relating their capabilities to those of register machines. In particular, we
construct specific SSN P systems modules that can simulates the instructions
of a register machine. We follows and combines the approaches presented in
[13] and [14]; the main difference here is that, in this case, care must be put in
the selection of the distributions associated to the spiking rules. In the next
Theorem, we show that an SSN P system can “simulate” a synchronous SN P
system, hence a register machine, provided that the distributions associated
to the spiking rules are appropriately chosen.

Theorem 4.1 For every M ∈ RMNDET there exists an SSN P system Π
such that N(M) = N(Π).

Proof Let r1, r2, . . . , rm be the registers of M , r1 being the output
register, and I = {l0, l1, . . . , ln, lh} the set of labels for the instructions I
of M . Without any loss of generality, we may assume that in the halting
configuration, all registers of M different from r1 are empty, and that the
output register is never decremented during the computation, we only add
to its contents.

We construct the SSN P system Π = (O = {a},Σ, syn, io) that simulates
the register machine M . In particular, we only present separate types of
modules that can be used to compose the SSN P system Π. Each module
simulates an instruction of the register machine M (we distinguish between
a deterministic and non-deterministic version of the ADD).

(i) A deterministic add instruction li : ADD(rp), lj , lj , for some p ∈ {2, . . . ,m}
and i, j ∈ {0, 1, . . . , n} ∪ {h}, is simulated by the module presented in
Figure 1.

1Notice that, because of the way the firing of the rules has been defined, in general
there is no upper bound on how many rules fire for each transition.

7

Figure 1: Module for the deterministic ADD instruction

(ii) A deterministic add instruction to register r1, li : ADD(r1), lj , lj , for
some i, j ∈ {0, 1, . . . , n} ∪ {h} is simulated by a module as the one
shown in Figure 1, where neuron l1i is removed and neuron nr1 has no
rules.

(iii) A non-deterministic add instruction, li : ADD(rp), lj , lk, for some p ∈
{2, . . . ,m} and i, j, k ∈ {0, 1, . . . , n} ∪ {h} is simulated by the module
shown in Figure 2; Again, as in the deterministic case, li : ADD(r1), lj , lk
(i.e., a non-deterministic add instruction to register 1) is simulated by
a module as the one in Figure 2, but in which neuron l1i is removed
and neuron nr1 has no rules inside.

(iv) A sub instruction, li : SUB(rp), lv, lw, for some p ∈ {2, . . . ,m} and
i, j, k ∈ {0, 1, . . . , n}∪{h} is simulated by the module shown in Figure
3.

Neuron nrj , for each j ∈ {1, · · · ,m}, corresponds to the register rj

of M . Neuron nlj , for each j ∈ {0, 1, . . . , n} ∪ {h}, corresponds to the
(starting point of) instruction lj in the set I. In the initial configuration of
Π all neurons are empty, except the neuron nl0 corresponding to the initial
instruction of M that has 1 spike. The output neuron of Π is defined to be
nr1 corresponding to register r1 of M (we recall that such register is only
subject to add instructions).

Finally, to complete the specification of the modules, we select the prob-
ability distribution functions associated to the rules as follows:

• F1(x) is defined as the Gaussian normal distribution with average µ1

8

Figure 2: Module for the non-deterministic ADD instruction

and variance σ2, which we shortly denote as N(µ, σ2), where we set
µ1 = 1 and σ2 = 0 so that F1(x) = H(x − 1), where H(x) is the
Heaviside unitary step function2;

• F2(x) is defined to be N(µ2, σ
2), with µ2 = 2;

• F3(x) is defined to be 0.5H(x − 1) + 0.5H(x − 2) , i.e., F3(x) is the
discrete uniform distribution in {1, 2});

• F4(x) is defined to be N(µ4, σ
2), with µ4 = 0.5.

We now show how, because of the selected distributions of firing rules,
each instruction of the register machine can be correctly simulated by the
corresponding presented module.

2The Heaviside unitary step function H(x) is defined as H(x) = 0 if x < 0, H(x) = 1
if x ≥ 0.

9

Figure 3: Module for the SUB instruction

Let us suppose that, at an arbitrary time t, the register machine M is
in a given configuration, in which it is to execute the instruction at label li
with a given state of r1, r2, . . . , rm registers, and suppose that the SSN P
system Π is in a configuration that corresponds to that of M , that means:

• neuron nri contains a number of spikes that is twice the contents of
register ri, for i = 2, 3, . . . ,m;

• neuron nr1 contains a number of spikes equal to the contents of register
r1;

• all other neurons are empty except neuron nli that contains exactly 1
spike.

10

Notice that, by construction, the initial configuration of Π corresponds
to the initial one of M .

Consider now the various possible cases for the instruction li that M
starts executing at time t.

• li : ADD(rp), lj , lj (deterministic add) – module shown in Figure 1.

Suppose first that p 6= 1. Then, the execution of instruction li is
simulated in Π in the following way. At time t + 1 neuron nli fires
(with probability 1, because of the chosen distributions), one spike is
introduced (at time t+1, hence instantaneously) in neurons l1i and l2i .
At time t+2 neurons l1i and l2i fire with probability 1 and two spikes are
added to neuron nrp. Also, at time t+2, one spike is added to neuron
nlj . Except the ones mentioned, no other rule can fire in neurons l1i , l

2
i

and nrp. Then, Π reaches, starting from the supposed configuration,
and with probability 1, a configuration that corresponds to the state
of M after the execution of instruction li. If p = 1, the execution of
instruction li is simulated in a similar way, the only difference being
that only 1 spike is deposited in neuron nr1 at time t+2. Thus, again
Π reaches with probability 1 a configuration that corresponds to the
state of M after the execution of instruction li.

• li : ADD(rp), lj , lk (non-deterministic add) – module shown in Figure
2. In this case, the execution of the instruction li is simulated in Π as
follows. We only describe the case when p 6= 1, the non-deterministic
add to register r1 is similar. At time t + 1, neuron nli fires with
probability 1, and at the same time one spike is introduced in neuron
l1i and l2i . At time t + 2, neurons l1i and l2i fire with probability 1,
two spikes are then added to the neuron nrp and one spike is added to
neurons l3i , l

4
i and l5i . Neurons l4i and l5i fire, with probability 1, at time

t + 3 and t + 4, respectively, emitting one spike to neuron l6i and l7i .
In neuron l3i , the rule a → a;F3(x) fires at a time that is either t + 3
or t + 4, with equal probability 2−1, and l3i emits one spike to neurons
l6i and l7i : this probabilistic choice of the firing time in l3i simulates the
non-deterministic choice of the ADD instruction.

In fact, if neuron l3i fires at time t + 3, then one spike is sent to both
neurons l6i and l7i . The rule a2 → a;F1(x) fires with probability 1 in
neuron l6i at time t+4, sending one spike to neuron nlj . The forgetting
rule in neuron l7i fires with probability 1 at time t+3.5. At time t+4,
the spike emitted by neuron l5i also reaches neuron l7i , the forgetting
rule is enabled and it fires, with probability 1, at time t + 4.5.

If neuron l3i fires at time at time t + 4, the spike that was deposited
in neuron l6i by the firing of l4i at time t + 3 gets consumed, with
probability 1, by using the forgetting rule at time t + 3.5. Then, the

11

spike deposited at time t + 4 in l6i by the firing of neuron l3i enables
again the forgetting rule of neuron l6i , and the spike present in l6i is
consumed, with probability 1, at time t + 4.5. Also, at time t + 4,
2 spikes are deposited in neuron l7i (coming from neurons l5i and l3i).
This allows the rule a2 → a;F1(x) in neuron l7i to fire at time t+5 with
probability 1 and to send 1 spike in neuron nlk. In both considered
cases, when 1 spike reaches either neuron nlj or nlk, no rule can fire
anymore in neurons l1i , l

2
i , · · · , l7i and nrp.

The system Π can only execute, when starts from the supposed config-
uration, with probability 1, the above described transitions. Therefore,
Π reaches, with probability 1, the configuration that corresponds to
the state of M after the instruction li has been executed.

• li : SUB(rp), lj , lk (non-deterministic sub) – module shown in Figure
3. The execution of instruction li is simulated in Π in the following
way. At time t + 1, neuron nli fires with probability 1 and one spike
is added to neuron nrp and one spike is added to both neurons l1i and
l2i . Neuron l1i fires at time t + 2 with probability 1 and deposits one
spike in neuron l3i . Also, neuron l2i fires, with probability 1, at time
t + 2 and deposits one spike in neuron l4i . Which rules fires in neuron
nrp and at which time depends on the contents of the neuron at time
t. There are the two possible cases.

(i) The number of spikes in neuron nrp at time t is 0. Then, the
forgetting rule a → λ;F1(x) consumes the single spike present in
the neuron, at time t + 2, with probability 1.

(ii) The number of spikes in neuron nrp at time t is 2k with k >
0. Then, the rule a(aa)+ → a;F1(x) fires at time t + 2 with
probability 1, depositing one spike in neuron l3i .

Notice that both rules present in neuron nrp consume an odd number
of spikes and then, once a rule is applied, no other rule in such neuron
is enabled anymore.

In the case (i) only one spike reaches neuron l3i at time t + 2, and this
spike is consumed, with probability 1, by using the forgetting rules, at
time t+3. Also, only one spike is deposited in neuron l5i at time t+3,
which fires, with probability 1, at time t + 4 depositing one spike in
neuron nlk.

In the case (ii), two spikes are deposited in neuron l3i at time t +
2, which enable the rule a2 → a;F1(x). Neuron l3i then fires, with
probability 1, at time t+3, depositing one spike in neuron nlj and one
spike in neuron l5i . Neuron l5i has two spikes at time t + 3 which are
consumed, with probability 1, by the forgetting rule a2 → λ;F1(x) at
time t + 4.

12

Starting from the supposed configuration Π can only execute, with
probability 1, the above described transitions. Therefore, Π reaches,
with probability 1, the configuration that corresponds to the state of
M after the instruction li has been executed.

The execution of an instruction (ADD or SUB) in M followed by the
HALT instruction is simulated in Π by simulating the corresponding in-
struction (ADD or SUB) as described above and then sending 1 spike to the
neuron nlh. By construction, neuron nlh does not have any outgoing synapse
to other neurons. Hence, the firing of its rule a → a;F1(x) consumes the
spike without sending any. Thus, also in this case Π halts in a configuration
that correspond to the situation of M when the register machine halts.

From the above description, it is clear that Π can be composed using the
presented modules in such a way that can simulate each computation of M
and each computation in Π can be simulated in M . Therefore, the Theorem
follows.

A remark concerns the dashed neurons shown in Figures 1,2, and 3.
They represent the neurons shared among the modules. In particular, this
is true for the neurons corresponding to the registers of M . Each neuron
nrp, with p ∈ {2, 3, · · · ,m} subject of a SUB instruction sends a spike to
several, possibly to all, neurons l3i , i = 0, 1, . . . , n, but only one of these also
receives at same time a spike from the corresponding neuron l1i . In all other
cases, the other neurons forget the unique received spike.

A last comment closes the proof – it concerns the probabilities of the
computations in Π. Each numbers x ∈ N(Π) is obtained with a proba-
bility p(x) greater than zero. However not all the numbers in N(Π) are
obtained in Π with the same probability. Indeed, for every computation
c in M such that Out(c) = x, there is a probability 2−uc that Π simulates
exactly such computation where uc is the number of non-deterministic ADD
instructions executed in c. Therefore, the overall probability px is given by∑

c∈M |Out(c)=x 2−uc .
2

5 Experiments on the Reliability of SSN P Sys-
tems

The SSN P system Π constructed in the proof of Theorem 4.1 works cor-
rectly because of the appropriate choice of the probability distributions for
the firing times associated to the rules in the neurons. In fact, the chosen
distributions constrain the possible computations of Π in a way that the
register machine M is able to simulate all the computations of Π and vice
versa.

13

It was crucial in Theorem 4.1 that some of the chosen probability distri-
butions had zero-variance. It is interesting to understand what happens to
the correctness of the computation when this is not true anymore. In other
words, what happens if we use the modules defined in Theorem 4.1 but we
select, for all of them, a value of σ2 > 0? In informal words, this corresponds
to increase the degree of non-synchronization in the constructed SSN P sys-
tem: more variance is admitted for the distributions, more non-synchronous
is the obtained system. As mentioned in the Introduction, in some cases
asynchronous spiking neural P systems are not universal [4], so we conjec-
ture that having distributions with non-zero variance makes more difficult
(if not impossible) to simulate a register machine, with good “reliability”.

Therefore, from a computational point of view it is interesting to under-
stand how the asynchrony present in the system, influences the ability for the
system to correctly simulate a register machine. Moreover, considering dis-
tributions with non-zero variance is interesting also from a biological point
of view: spiking in neurons is the result of biochemical reactions, which are
inherently random processes, hence they generally have a non-zero variance
associated to their distributions.

As it has been shown in Theorem 4.1, by using σ2 = 0, each of the
considered SSN P modules simulates the corresponding register machine
instruction. When σ2 > 0 such an equivalence may not exists anymore,
since the synchronization of the neurons in the modules is crucial. For
example, consider the following transitions of the module corresponding to
the deterministic ADD instruction, as shown in Figure 1. Neurons l1i and l2i
simultaneously receive 1 spike, but it may happen that the rule in l1i neuron
fires at time t and the one in neuron l2i fires at time t + δ, where δ depends
on σ2 and may be large enough to make the two spikes in neuron nrp to
be consumed, one after the other, without actually increasing the number
of spikes in neuron nrp as it should be done for a proper simulation of the
ADD instruction.

For an SSN P systems Π constructed as described in Theorem 4.1 we
define the notion of correct simulation of a single instruction of the register
machine M . We say that Π simulates correctly the instruction with label li
of M (suppose that li is followed by the instruction with label lj) when the
following thing is true. If Π starts from the configuration that corresponds
to the configuration of M when instruction li is started, then Π executes a
sequence of transitions that leads to the configuration of Π that corresponds
to that of M after the instruction li has been executed and, during these
transitions, the contents of all the neurons of Π, except nli and nlj , have
not been modified.

Let pADD, pADD−ND and pSUB be the probability that Π simulates
correctly the a deterministic ADD instruction, a non-deterministic ADD
instruction and the SUB instruction of M , respectively. Theorem 4.1 shows

14

that, when σ2 = 0 is used, we have that pADD, pADD−ND and pSUB are
all equal to 1. When σ2 > 0, this is not true anymore. To quantitatively
evaluate the effect of the variance σ2 we have developed a simulator of SSN
P systems 3.

We report the outcome of simulations conducted to evaluate probabilities
pADD, pADD−ND and pSUB when varying the variance σ2 > 0. We present
in Figure 4 the obtained results for pADD, pADD−ND and pSUB when σ2 is
varied in the range [0.01, 0.1]. These probabilities have been computed with
10000 simulation batches for every value of σ2, with confidence level of 95%.
The width of the confidence intervals for the simulation results is in each
case below 0.1%, too narrow to be shown in Figure 4.

Figure 4: Probabilities pADD, pADD−ND and pSUB for values of σ2 in
[0.01, 0.1]

To give a quantitative feeling to the reader, we underline this well-known
fact: the probability that a random sample of a random variable distributed
as N(µ, σ2) is far from µ more than σ is about 0.3, more than 2σ is about
0.05 and more than 3σ is about 0.003. For instance, when σ2 = 0.1, a
random sample drawn from distribution F1(x) will have probability 0.3 of
being outside interval [0.7, 1.3] and probability 0.05 of being outside interval
[0.4, 1.6]. Such variability brings asynchrony in the considered instruction
modules and this makes possible many transitions, which would not occur
if σ2 = 0. Therefore, it is not surprising that probabilities pADD, pADD−ND

and pSUB decrease as σ2 increases (as Figure 4 shows).
From Figure 4 it is also possible to observe that probabilities pADD,

pADD−ND and pSUB are close to 1 (i.e., the corresponding instructions are
simulated correctly) when σ2 takes values in the lower part of the considered
range of variation. This result supports the idea that Π is able to simulate
correctly, with high probability, long computations of the register machine
M even for values of σ2 > 0.

3To simulate SSN P systems, we have used the Möbius modeling framework [7].

15

To understand more precisely how Π can simulate M in a reliable way,
when a non-negative variance σ2 is considered, we define a probability metric
called the reliability of Π, which we use to characterize the ability of Π to
compute correctly a number in Out(M).

The reliability of a system is defined as a function R(t), t ≥ 0, which
expresses the probability that in the interval of time [0, t] the system has
been working correctly, supposing that the system was working correctly
at time t = 0 (this follows the standard definition of reliability. See, e.g.,
[11]). The definition of the correct behavior of the system has to be given
with reference to a specification of the system, or alternatively can be given
with respect to another system, which is assumed to be always correct. We
choose the second approach: In what follows, we shall evaluate the reliability
of the SSN P system Π (when varying σ2) by comparing the sequences of
transitions performed by Π against the ones that are performed by a register
machine M .

Precisely, we define the reliability RM
Π (n) as the probability that Π sim-

ulates correctly a sequence of n instructions executed by M , when M starts
from the initial configuration and Π starts from the corresponding one.

In what follows we experiment on a particular SSN P system (and on
a particular computed set of numbers) how the variance of firing rules dis-
tribution times systems affects the reliability. For this purpose we consider,
the set of natural numbers Pow2 = {n | n = 2m,m ≥ 0} that is the set of
natural numbers that are power of 2 (actually, Pow2 is also a non-semilinear
set of natural numbers).

The set Pow2 can be computed, for instance, by the following register
machine M ′ = (2, {l0, l1, . . . , l8, lh}, l0, lh, I). The idea is that M ′ moves
the contents of register 1 to 2 and back, and, in this case, doubles the
contents; ADD with label l1 is a “dummy” instruction, used only for the non-
deterministic choice between continuation of the computation or halting: the
object added is, in fact, subtracted again in the SUB, at l2 or l8.

Instructions I are the following ones.

l0: ADD(r1), l1, l1
l1: ADD(r1), l8, l2
l2: SUB(r1), l3, l3
l3: SUB(r1), l4, l5
l4: ADD(r2), l3, l3
l5: SUB(r2), l6, l1
l6: ADD(r1), l7, l7
l7: ADD(r1), l5, l5
l8: SUB(r1), lh, lh
lh: HALT

16

Let Π be the SSN P system that corresponds to M , built as described in
Theorem 4.1, using the modules presented in Figures 1, 2 and 3 and having
σ2 > 0.

We evaluate the function RM ′
Π (n) by using simulations for values of σ2

close to 0.01. We show in Figure 5 the simulation results, which were com-
puted with 100000 batches of simulation for each considered value of σ2,
with a confidence level of 95%. The width of confidence intervals is within
5% of the estimated values (they are not shown in Figure 5 for the sake of
clarity).

Figure 5: Reliability function RM ′
Π (n) for different values of σ2

The reliability functions plotted in Figure 5 show that, as σ2 increases,
Π has higher and higher probability of performing incorrect simulations.
However, for σ2 = 0.01, the probability that Π is able to simulate correctly
computations of M ′ composed by 15.000 instructions is still quite high,
0.9. For such value of σ2, the value of the reliability function at n = 1000
is of about 0.996. This means that, if we restrict our attention to the
computations of M ′ that are composed by less than 1000 instructions and
consider σ2 = 0.01, then we observe that Π can simulate correctly these
computations with probability 0.996.

We can also use the above described procedure do design systems with
arbitrary reliability.

In fact, constructing an opportune Figure 5, one can identify, for an
arbitrary register machine M , the maximal value of σ2 for which is possible
to construct, using the approach given in Theorem 4.1, an SSN P system
Π with a reliability RM

Π (n) that is at least k, with k an arbitrarily chosen
constant 0 ≤ k ≤ 1.

17

Finally, it is important to mention that, for a given register machine
M , several equivalent SSN P systems can be constructed, using different
constructions (Theorem 4.1 shows only one of them). These SSN P systems,
even equivalent from a computational point of view, can have very different
reliability. A way to get different SSN P systems, with different reliability, is,
for instance, to construct different modules to simulate the register machine
instructions.

For instance, consider the module shown in Figure 6, for which we define
F1(x) = N(1, σ2). It is easy to check that, when σ2 = 0, the module shown
in Figure 6 (we call it ADD2) is equivalent to the module shown in Figure
1 (we call it ADD). In fact, both of them, for σ2 = 0, simulate correctly
the (deterministic) ADD instruction of the register machine.

However, having an intermediate neuron, makes the module in Figure
6 more reliable than the module in Figure 1. We can check that by calcu-
lating, using the above described procedure, pADD2. This is clear from the
comparison between pADD and pADD2 presented in Figure 7.

Figure 6: An alternative SSN P module li : ADD(rp), lj , lj

18

Figure 7: Probabilities pADD1 and pADD2 for values of σ2 in [0.01, 0.1]

6 Perspectives

Constructing reliable and powerful computational devices by combining sev-
eral simple (bio-inpired) units has been studied intensively in computer sci-
ence, starting from classical cellular automata. Recently, several researchers
are investigating the possibility of constructing fault-tolerant systems, es-
pecially computer architectures and software by using ideas coming from
nanotechnology and from biological processes (see, e.g., [12]).

In our case, we have investigated, in the framework of SN P systems,
a kind of fault-tolerance that concerns the possibility to obtain powerful
(universal) computing devices, when using computational units that are
simple and non-synchronized. We have defined a stochastic version of SN
P systems (SSN P system) where to each rule is associated a stochastic
“waiting” time and we have presented a preliminary study that shows how
the degree of asynchrony (expressed as variance) among the neurons can
influence the ability of an SSN P systems to simulate/executed in a reliable
way the program of a register machine.

The topic is very general and several lines of research can be followed.
The most interesting one concerns the possibility to implement powerful
computing devices (possibly, universal) using SSN P systems having an high
degree of asynchrony, i.e., with distributions associated to the firing times
with an high variance. When is this possible? What is the price to pay for
that? An important question that we have not answered in the paper is the
following one. Can the topology of the network influence the reliability of
the constructed system? (in this case one may find motivations and inspira-

19

tions from the topology of the real networks of neurons). Another relevant
question: Can the redundancy (i.e., number of neurons and connections)
help in obtaining more reliable systems? This appears to be true, at least in
view of the better reliability (Figure 7) of the module presented in Figure 6
compared to that of the module shown in Figure 1. How much redundancy
can help and what is the best way to use redundancy ?

Another line of research concerns the study of class of SSN P system
where reliability can be analytically investigated. For instance, in case of
exponential distributions, one should be able to construct an equivalent
Markov chain and then studying in an analytical manner the reliability of
the system. Are there other cases where this is possible? In general, as seen
in Section 5, there is a link between the type of transitions executed and the
reliability of the system (not all transitions are equally relevant/dangerous
for the reliability of an SSN P system). Is there a possibility to limit the
number of certain type of transitions? (this is, of course, very much linked
to the number of minimal instructions of a certain type that one has to use
in a register machine program - hence one may find links between reliability
and Kolmogorov complexity, [29]).

References

[1] A. Carbone and N. Pierce, eds. DNA Computing, 11th International
Workshop on DNA Computing. LNCS 3892, Springer, 2005.

[2] M. Cavaliere and V. Deufemia, Further results on time-free P systems.
Intern. J. Found. Computer Sci., 17(1), 2006.

[3] M. Cavaliere, O. Egecioglu, O.H. Ibarra, S. Woodworth, M. Ionescu,
and Gh. Păun, Asynchronous spiking neural P systems, Tech. Report
9/2007 Microsoft Research - University of Trento, Centre for Compu-
tational and Systems Biology. Available at www.cosbi.eu.

[4] M. Cavaliere, O. Egecioglu, O.H. Ibarra, M. Ionescu, Gh. Păun, and
S. Woodworth, Asynchronous Spiking Neural P Systems; Decidability
and Undecidability. Proceedings 13th International Meeting on DNA
Computing, DNA13, Lecture Notes in Computer Science, LNCS 4848,
Springer, 2007.

[5] M. Cavaliere and D. Sburlan, Time-independent P systems. In Mem-
brane Computing. International Workshop WMC5, Milano, Italy, 2004,
LNCS 3365, Springer, 2005, pp. 239–258.

[6] M. Cavaliere and C. Zandron, Time-Driven Computations in Membrane
Systems. In [8].

20

[7] G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J. M. Doyle,
W. H. Sanders, P. and Webster, The Möbius Modeling Tool. Proceed-
ings International Workshop on Petri Nets and Performance Models
(PNPM’01), IEEE Computer Society, 2001.

[8] M. A. Gutiérrez-Naranjo et al., eds., Proceedings of Fourth Brainstorm-
ing Week on Membrane Computing, Febr. 2006, Fenix Editora, Sevilla,
2006.

[9] W. Gerstner, Population Dynamics of Spiking Neurons: Fast Tran-
sients, Asynchronous States, and Locking. Neural Computation, 12, 43,
2000.

[10] W. Gerstner, and W. Kistler, Spiking Neuron Models. Single Neurons,
Populations, Plasticity. Cambridge Univ. Press, 2002.

[11] J. C. Laprie, Dependability - Its Attributes, Impairments and Means.
In [26].

[12] J.R. Heath, P.J. Kuekes, G.S. Snider, S. Williams, A Defect-Tolerant
Computer Architecture: Opportunities for Nanotechnology. Science,
280, 1998.

[13] O.H. Ibarra, A. Păun, Gh. Păun, A. Rodŕıguez-Patón, P. Sosik, and
S. Woodworth: Normal forms for spiking neural P systems. Theoretical
Computer Scienc, 372, 2-3, 2007.

[14] M. Ionescu, Gh. Păun, and T. Yokomori, Spiking neural P systems.
Fundamenta Informaticae, 71(2-3), 2006.

[15] W. Maass, On the Computational Power of Noisy Spiking Neurons.
Advances in Neural Information Processing Systems, 8, 1996.

[16] M. Madhu, Probabilistic Rewriting P Systems. Intern. J. of Found. of
Computer Sci.. 14 (1) 2003.

[17] M. A. Marsan, Stochastic Petri Nets: An Elementary Introduction. In:
Advances in Petri Nets, LNCS 424, Springer, Berlin, 1989.

[18] M. Minsky, Computation – Finite and Infinite Machines. Prentice Hall,
Englewood Cliffs, NJ, 1967.

[19] M. Muskulus, D. Besozzi, R. Brijder, P. Cazzaniga, S. Houweling, D.
Pescini, and G. Rozenberg, Cycles and Communicating Classes in Mem-
brane Systems and Molecular Dynamics. Theoretical Computer Science,
372, 2-3, 2007.

[20] Gh. Păun, Spiking Neural P Systems: A Tutorial. Bulletin of the
EATCS, 91 (Feb 2007).

21

[21] Gh. Păun, Membrane Computing – An Introduction. Springer, Berlin,
2002.

[22] Gh. Păun, M.J. Pérez-Jiménez, and G. Rozenberg, Spike trains in spik-
ing neural P systems. Intern. J. Found. Computer Sci., 17(4), 2006.

[23] D. Pescini, D. Besozzi, G. Mauri, and C. Zandron, Analysis and Simu-
lation of Dynamics in Probabilistic P Systems. In [1].

[24] A. Obtulowicz and Gh. Păun, (In Search of) Probabilistic P Systems.
BioSystems 70, 2003.

[25] G. Rozenberg and A. Salomaa, eds., Handbook of Formal Languages, 3
Volumes. Springer-Verlag, 1997.

[26] B. Randell, J. C. Laprie, H. Kopetz and B. Littlewood eds., Predictably
Dependable Computing Systems, Springer-Verlag, 1995.

[27] A. Salomaa, Formal Languages. Academic Press, 1987.

[28] K. H. Trivedi, Probability and Statistics with Reliability, Queuing, and
Computer Science Applications. John Wiley and Sons, New York, 2001.

[29] M. Li, P. Vitány, An Introduction to Kolmogorov Complexity and Its
Applications. Springer, 1997.

[30] The P Systems Web Page: http://psystems.disco.unimib.it.

22

