
Technical Report CoSBi 02/2007

Dynamic-Epistemic reasoning on distributed
systems

Radu Mardare

The Microsoft Research-University of Trento Centre for Computational and Systems Biology,
Trento, Italy

mardare@cosbi.eu

This is the preliminary version of a paper that will appear in
In Proceedings of the second Conference on Algebra and Coalgebra in Computer Science

(CALCO2007), LNCS 4624, Springer, 2007.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints Research

https://core.ac.uk/display/11829958?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dynamic-Epistemic reasoning on distributed systems

Radu Mardare
The Microsoft Research-University of Trento, Italy

September 30, 2009

Abstract

We propose a new logic designed for modelling and reasoning about information flow
and information exchange between spatially located (but potentially mobile), intercon-
nected agents witnessing a distributed computation. This is a major problem in the field
of distributed systems, covering many different issues, with potential applications from
Computer Science and Economy to Chemistry and Systems Biology.

Underpinning on the dual algebraical-coalgebraical characteristics of process calculi,
we design a decidable and completely axiomatizad logic that combines the process-algebraical/equational
and the modal/coequational features and is developed for process-algebraical semantics.
The construction is done by mixing operators from dynamic and epistemic logics with
operators from spatial logics for distributed and mobile systems.

1 Introduction
Observation is fast becoming an important topic in computer science. In which manner can
observation (in the broad sense of the word) influence the way of computing? In which way
can the partial information available to an external observer of a computational system be used
in deriving knowledge about the overall complete system? We will approach these problems
by developing a logic designed to handle (partial) information flow and information exchange
between external observers (agents) of a distributed system.

In the context of distributed computation, a concurrent computational system can be thought
of as being composed of a number of modules, i.e. spatially localized and independently ob-
servable units of behavior and computation (e.g. programs or processors running in parallel),
organized in networks of subsystems and being able to interact, collaborate, communicate and
interrupt each other. Moreover, with the development of mobile computation, modules (sub-
systems) are able to move across networks. We shall consider agents - external observers of
the modules. As an external observer, an agent witnesses the global computation and interacts
with the whole system only by means of its module. Thus it derives its knowledge about the
overall system from the observed behavior of its subsystem and from epistemic reasoning on
the knowledge (and reactions) of other agents witnessing the same computational process (pos-
sibly from a different perspective). The mobility of modules allows agents to even “penetrate”

1

inside other modules, either “legally” (i.e. with the proper authorizations) or “illegally” (by
taking advantage of some security failures).

In this context, one has to face issues concerning control over information and its flow
(specifications of when agents can acquire, communicate and protect truthful, relevant, prefer-
ably exclusive information), and hence issues of privacy, secrecy, belief, trust, authentication
etc; all these in the context of concurrent computation. The general problem approached in
this paper has thus to do with modelling and reasoning about information flow and information
exchange between spatially located (but potentially mobile), interconnected agents. This is
a major problem in the field of distributed systems, covering many different issues, with po-
tential applications: in Secure Communication (checking secrecy and authentication for given
communication protocols), in Debugging and Performance analysis (checking for the cause of
errors or of high computational costs in a system where we can control only some modules), in
Artificial Intelligence (endowing artificial agents with good and flexible tools to reason about
their changing environment and about each other), in designing and improving strategies for
knowledge acquisition over complex networks (such as the Internet), etc.

Lately, in experimental sciences, such as Systems Biology or Bio-Chemistry, the possibility
has been considered to construct tools for analysing and simulating bio-systems in silico. The
approach is based on the partial information we have about the live systems (obtained from
in vivo experiments). We are just external observers of a bio-system and we observe only a
subpart of it (which we consider essential with respect to the problem we want to approach). It
is not realistic to suppose that we will ever have complete information about a live system [?].
From this partial information we want to understand the behavior of the system and to design a
method to control it. Hence, the success of our approach depends on our ability to manipulate
partial information and to extract knowledge from it.

In approaching this problem we have chosen the process-algebraical representation of (mo-
bile) distributed system and we developed a logic of information flow for process-algebraical
semantics. Taking process calculi as semantics is theoretically challenging due to their dual
algebraical/coalgebraical nature. While the algebraical features of processes are naturally ap-
proached in equational fashion (that reflects, on logical level, the program constructors), the
coalgebraical features (intrinsically related to transition systems via the denotational and the
operational semantics of process calculi) ask for a modal/coequational treatment. The modal
approach is also needed for developing the epistemic reasoning.

Consequently, our paper combines two logical paradigms to information flow in distributed
systems: dynamic-epistemic (and doxastic) logics [20, 15, 18], semantically based on epistemic-
doxastic Kripke models; and the spatial logics for concurrency [8, 9, 10], for which the se-
mantics is usually given in terms of process algebra. The intention is to develop and study
a decidable and completely axiomatized process-based multimodal logic able to capture the
complexity of the process-algebraical semantics.

Finally, we are interested in using this tool for the general task of modelling and classifying
various types of information exchanges in distributed settings, and more specifically for the
concrete task of reasoning about, verifying and designing communication protocols in an open,
mobile environment.

2

2 Using partial information
In this section we will show how, playing with partial information about a system, we can
derive properties of the whole system. For this we reconsider a variant of the muddy children
puzzle [15] adapted for our paradigm.

Figure 1: The system S Figure 2: The perspective of O1

Consider a computational system S composed by four disjoint modules S1, S2, S3 and S4

running in parallel (Figure 1). Syntactically, we describe this situation using the parallel oper-
ator S = S1|S2|S3|S4. Each module is characterized by the presence/absence of a “bug” that
might generate undesirable behavior. Suppose, in addition, that the system is analyzed by four
observers, each observer having access to a subpart of S. Thus, observer O1 can see the sub-
system S2|S3|S4, O2 the subsystem S3|S4|S1, O3 can see the subsystem S4|S1|S2 and observer
O4 sees S1|S2|S3. Each observer has a display used for making public announcements.

The observers know that each module of the system S might contain a bug and that the
system contains at least one bug. Each observer tries to compute the exact number of them and
their positions in the system. In doing this the observers do not communicate but they make
public announcements concerning their knowledge about the system. Thus, each observer
displays 0 until it knows the exact number and positions of the bugs in the system, at which
point it switches to 1. In addition, the observers are synchronized by a clock that counts each
step of computation. After each ”tic“ the observer has to evaluate its knowledge and to decide
if its display remains on 0 or switches to 1. Thus, each observer computes information about
the whole system by using the partial information it possesses and by evaluating the knowledge
of the other observers (by reading their displays). If an observer is able to decide the correct
number of bugs and their exact positions in the system, then it succeeded to do this with a lower
cost than the cost of fully investigating the system. Hereafter we show that such a deduction is
possible.

Consider that the real state of the system is the one in Figure 1. And suppose that we can
control only the observer O1. As O1 sees the subsystem S2|S3|S4, it sees a bug in subsystem
S2 and no bugs in S3 and S4 (Figure ?? represents the perspective of O1). But it does not know
if the system S1 contains a bug or not. For O1 both situations are equally possible. Hence, after
the first round of computation the display of O1 remains 0. Concerning observer O2, it sees a

3

bug in S1, but it does not know if there is one also in S2, thus, after the first round, it will show
0 too.

Figure 3: A hypothetical perspective of O2 Figure 4: The real perspective of O2

The second round of computation starts. O1 has seen that, after the first round, the observer
O2 has not succeeded in understanding the situation (as O2 shows 0 on its display). If the
system S1 does not contain a bug then, in the first round, O2 would have seen no bugs (Figure
??). O2 also knows that there is at least one bug in the system. Hence, if this was the case, O2

had enough information to decide, in the first round, that the only bug of the system is in S2.
Consequently, 1 had to appear on its display. But this was not the case. This means that what
O2 observed was the situation presented in Figure ??. Therefore, O1 is able to decide that the
real situation of the system is the one with a bug in S1 and it will display 1. The example works
similarly in more complex situations.

Observe the advantages of this analysis: using only the partial information available to O1

and judging the behavior of the other observers, we were able to compute the real configuration
of the system. The observers do not exchange information about S, but only about their level
of understanding S. The rest can be computed. If each subsystem is very complex then the
complete information about the system can be larger than an observer can store or manipulate.
Note also that the observers do not need a central unit for organizing their information. Each
observer organizes its own information and makes public announcements about its level of
knowledge. They work simultaneously in a distributed network and, only playing with their
partial information about S and with the information about the state of the network, they are
able to derive overall properties of the system.

3 The main problem and alternative approaches
We can consider even more complex examples where the system itself evolves while it is
observed and where the agents can also interact with the system as a response to their level of
knowledge about it. In such a case we can identify two parallel levels of the model. On one
level we have the evolution of the system and, in each state of the system, there is a second

4

level - the evolution of the knowledge of the agents with respect to the system. As underlined
in [2] it is difficult to collapse the two in one Kripke-style semantics.

There are three kinds of modal logics of relevance to our subject: epistemic/doxastic logics
[20, 15], dynamic logics [18] and spatial logics [9, 8]. The usual semantics for the first two is
in terms of Kripke models, while the third was developed as a logic for concurrent processes,
with semantics given in terms of process calculi.

3.1 Kripke-model based logics
Epistemic/doxastic logics [15] formalize in a direct manner notions of knowledge, or belief,
possessed by an agent, or a group of agents, using modalities like KAφ (A knows that φ)
or �Aφ (A justifiably believes that φ). In the models of these logics each basic modality is
associated to a binary “accessibility” relation interpreted as an “indistinguishability” relation
A

to for each agent A. It expresses the agent’s uncertainty about the current state. The states s′

such that s
A

tos′ are the epistemic alternatives of s to agent A: if the current state is s, A thinks
that any of the alternatives s′ may be the current state. These logics have been extensively
studied and applied to multiagent systems.

Dynamic logics [18] are closer to process calculi, in that they have names for “programs”,
or “actions”, and ways to combine them. Accessibility relations are interpreted as transitions
induced by programs, and a dynamic modality [π]φ captures the weakest precondition of such
a program w.r.t. a given post-specification φ. Modalities in a dynamic logic form an alge-
braic structure: programs are built using basic program constructors such as π.π′ (sequential
composition) or π∗ (iteration), etc.

Dynamic Epistemic Logics. By combining the dynamic and epistemic formalisms a class
of logics have been developed [2, 3, 17, 4, 14] for specifying properties of evolving knowledge
and beliefs in dynamic systems. The high level of expressivity reaches here a low complexity
(decidability and complete axiomatizations). Further, all these approaches have been general-
ized by the so called Logics of Epistemic Programs [2, 3]. These are based on the concept of
“epistemic programs” - models for informational changes, providing a representation of the
inherent epistemic features of a program (what is happening, what does each agent “think” is
happening, what does it think the others think etc). In this approach the uncertainties about the
current action of the system are also modelled as Kripke models. So, an epistemic program
is essentially just an epistemic Kripke model, but whose elements are now interpreted as “ac-
tions”. Each action σ has attached a precondition σ0, telling us when σ can be executed. To
see how an epistemic program changes an epistemic situation, [1] proposes a binary operation,
taking “static” models (i.e. epistemic Kripke models of possible input states) and “dynamic”
models (i.e. epistemic programs) and returning other static models (of possible output states).
The operation associates to each pair (s, σ) of a state and an action an input state s′, provided
the action’s precondition σ0 is satisfied by the state s.

5

3.2 Process logics
In modeling parallel distributed (and mobile) systems process algebra imposes itself as a mal-
leable tool useful in many applications. In this paradigm, typically, one considers various oper-
ations with processes, corresponding to known program constructors: sequential composition
α.P , various notions of parallel composition P |P ′ (some of which involve communication),
replication !P etc. These calculi are also adapted to deal with mobility, i.e. changes affecting
the communication network (redirecting communication channels, creating new ones, send-
ing not just information, but the processes themselves, over channels). Further, for specifying
properties of distributed systems different types of logics have been developed for semantics
based on process calculi.

Process Logics. Process semantics for modal logics can be considered as a special case of
Kripke semantics, since it involves structuring a class of processes as a Kripke model, by en-
dowing it with accessibility relations, and then using the standard clauses of Kripke semantics.
The most obvious accessibility relations on processes are the ones induced by action transitions
α.P , and thus the corresponding (Hennessy- Milner) logic [19] was the first process-based
modal logic that was developed. Later, temporal, mobile and concurrent features have been
added [32, 13, 29].

Spatial logics. A relatively new type of process logics are spatial logics [8, 9, 10], which are
particularly tailored for reasoning about mobility and security, since they capture spatial prop-
erties of processes, i.e. properties which depend on location. Informally, these are properties
such as “the agent has gone away”, “eventually the agent crosses the firewall”, “somewhere
there is a virus” etc. Among the various spatial operators we mention: the parallel operator
φ|ψ and its adjoint - the guarantee operator φ . ψ; operators designed for expressing the “new
name features” that are central in security - revelation and hiding operators, inspired by the
Gabbay-Pitts quantifier [16]. In addition, most of these logics include temporal modalities and
quantifiers. Though expressive and useful, most spatial logics proved to be undecidable, even
in the absence of quantifiers.

4 A unified paradigm
In this paper we will collapse the two paradigms and propose a unified one. We give a spatial
interpretation of epistemic modalities in CCS: if we associate to each “agent” A the process
P describing the behavior of the module observed by A, then the agent observing a process
(possibly running in parallel with many other processes) “knows” only the activity and actions
of its own process. “Knowledge” is thus identified with “information (about the overall, global
process) that is locally available (to an agent observing a subprocess)”. In effect, this organizes
any classM of processes (thought of as “states”) as an epistemic Kripke model, with indistin-

guishability relations
A

to for each agent A observing the subprocess P , given by: P |P ′
A

toP |P ′′
for any P ′, P ′′. Since these are equivalence relations, we obtain a notion of “(truthful) knowl-
edge”. The resulting Kripke modality, KAφ, read the agent A knows φ, holds at a given state
(process) R iff the process P is active (as a subprocess) at R and property φ holds in any
context in which P is active.

6

We capture a very simplified analogue of the above notion of “appearance of an action to
an agent” by stating that an agent A can “see” only the actions of the process P it observes.
To make this precise, we need to keep track of which actions are executed by which mod-

ule, by defining “signed” transitions of the form Q
A:α

toR whenever Q ≡ P |S, R ≡ P ′|S and

P
α

toP ′. The corresponding dynamic modalities are of the form [A : α]φ, exhibiting the agent
A doing/witnessing the action α.

The resulting logic is completely axiomatizable and decidable. The Hilbert-style axiomat-
ics we propose for it presents our logic as an authentic dynamic-epistemic logic. The classical
axioms of knowledge will be present in our system.

Unlike in standard dynamic-epistemic logic, our agents are now structured: the process
algebraical structure defined on the modules of the system can be projected on the ontology of
agents. Thus we can have the agent A1|A2 which is the agent seeing the process P1|P2, where
the agent A1 sees P1 and the agent A2 sees P2. In this way the knowledge of the agent A1|A2

contains the common knowledge of A1 and of A2 together with all the properties that derive
from the fact that P1 and P2 runs in parallel. Similarly we might speak of the agent α.A as the
agent seeing the process α.P when A is an agent seeing P . This algebraical structure on the
level of ontology of agents is relevant in many applications and there is no trivial way to mimic
it using classical epistemic logics.

5 On processes
In this section we introduce a fragment of CCS [27] calculus that is representative for process
algebra being “the core” of most of the process calculi. This fragment will be used further as
semantics for our logic. For the proofs of the results presented in this section and for additional
results on the subject, the reader is referred to [25, 23, 24].

5.1 CCS processes
Definition 5.1 (Processes) Let A be a denumerable signature. The syntax of the calculus is

given by a grammar with one non-terminal symbol P and the productions

P := 0 | α.P | P |P

where α ∈ A. We denote by P the language generated by this grammar. We call the elements
of A (basic) actions and the objects in P processes.

Definition 5.2 (Structural congruence) Let ≡⊆ P×P be the smallest equivalence relation
defined on P such that

1. (P, |, 0) is a commutative monoid with respect to ≡;

2. ≡ is a congruence on the syntax of P, i.e. if P ′, P ′′ ∈ P such that P ′ ≡ P ′′ then
α.P ′ ≡ α.P ′′ and P ′|P ≡ P ′′|P for any P ∈ P and α ∈ A.

7

Definition 5.3 We call a process P guarded iff P ≡ α.Q for α ∈ A. We denote P 0 def
= 0 and

P k def
= P |...|P︸ ︷︷ ︸

k

.

Definition 5.4 (Labelled transition system) We consider on P the labelled transition sys-
tem1 PtoA×P defined by the next rules.

α.P
α
toP P≡ Q

P
α
toP ′ Q

α
toP ′ P

α
toP ′ P |Q

α
toP ′|Q

Definition 5.5 (Extended transition system) We write P
Q:α−→ P ′ whenever P ≡ Q|R, P ′ ≡

Q′|R and Q α−→ Q′. We call this composed transition and its label (Q : α) composed action.
We consider the set A∗ of all basic and complex actions. Hereafter we use a to range over A∗,
while α will be used to refer to arbitrary objects of A.
We extend the transition system previously defined to PtoA∗ ×P that includes the composed
transitions.

Definition 5.6 We call a process P guarded iff P ≡ α.Q for α ∈ A.
We introduce the notation P k def

= P |...|P︸ ︷︷ ︸
k

, and convey to denote P 0 ≡ 0.

[Representativeness modulo structural congruence] By definition,≡ is a congruence (thence
an equivalence relation) over P. Consequently, we convey to identify processes up to structural
congruence, because the structural congruence is the ultimate level of expressivity we want for
our logic. Hereafter in the paper, if it is not explicitly otherwise stated, we will speak about
processes up to structural congruence.

5.2 Size of a process
Definition 5.7 We define, inductively, the size P = (h,w) (height and width) of a process P :

1. 0
def
= (0, 0)

2. P
def
= (h,w) iff P = (α1.Q1)k1|...|(αj.Qj)

kj ,
for Qi = (hi, wi) and h = 1 +max(h1, .., hk), w = max(k1, .., kj, w1, .., wj).
We convey to write (h1, w1) ≤ (h2, w2) for h1 ≤ h2 and w1 ≤ w2 and (h1, w1) < (h2, w2) for
h1 < h2 and w1 < w2.

The intuition is that the size of a process is given by the depth of its syntactic tree and by
the maximum number of bisimilar processes that can be found in a node of the syntactic tree.
Observe that, by construction, the size of a process is unique up to structural congruence.

1We did not consider the communication transition as, on the logical level, we can express it as a composition
of dynamic operators.

8

Example 5.1 The size for some processes:
1. 0 = (0, 0) 4. α.0|α.0 = (1, 2)
2. α.0 = (1, 1) 5. α.α.0 = α.β.0 = (2, 1)
3. α.0|β.0 = (1, 1) 6. α.(β.0|β.0) = (2, 2)

Definition 5.8 For a set M ⊂ P we define2 M
def
= max{P | P ∈M}.

5.3 Structural bisimulation
Hereafter we introduce the structural bisimulation, a relation on processes that is an approx-
imation of the structural congruence defined on size. It analyzes the behavior of a process
focusing on a boundary of its syntactic tree. This relation is similar with the pruning relation
proposed in [6] for the syntactic trees of ambient calculus.

Definition 5.9 (Structural bisimulation) Let P,Q ∈ P. We define P ≈wh Q by:
P ≈w0 Q always
P ≈wh+1 Q iff ∀i ∈ 1..w and ∀α ∈ A we have
• if P ≡ α.P1|...|α.Pi|P ′ then Q ≡ α.Q1|...|α.Qi|Q′ with Pj ≈wh Qj , for j = 1..i
• if Q ≡ α.Q1|...|α.Qi|Q′ then P ≡ α.P1|...|α.Pi|P ′ with Qj ≈wh Pj , for j = 1..i

Example 5.2 Consider the processes

R ≡ α.(β.0|β.0|β.0)|α.β.0 and S ≡ α.(β.0|β.0)|α.β.α.0

We can verify the requirements of the definition 5.9 and decide that R ≈2
2 S. But R 6≈2

3 S
because on the depth 2 R has an action α (in figure 1 marked with a dashed arrow) while S
does not have it (because the height of S is only 2). Also R 6≈3

2 S because R contains only
2 (bisimilar) copies of β.0 while S contains 3 (the extra one is marked with a dashed arrow).
Hence, for any weight bigger than 2 this feature will show the two processes as different. But
if we remain on depth 1 we have R ≈3

1 S, as on this deep the two processes have the same
number of bisimilar subprocesses, i.e. any of them can perform α in two ways giving, further,
processes in the relation ≈3

0. Indeed

R ≡ αR′|αR′′, where R′ ≡ β.0|β.0|β.0 and R′′ ≡ β.0
S ≡ α.S ′|α.S ′′, where S ′ ≡ β.0|β.0 and S ′′ ≡ β.α.0

By definition, R′ ≈3
0 S
′ and R′′ ≈3

0 S
′′

We focus further on the properties of the relation ≈wh . We start by proving that structural
bisimulation is a congruence relation.

Theorem 5.1 (Equivalence Relation) The relation ≈wh on processes is an equivalence rela-
tion.

2Observe that not any set of processes has a size, as for an infinite set it might be not possible to have the
maximum required. However we accept the definition and we will use it only where it is well-defined.

9

S ≡ R ≡
α.(β.0|β.0|β.0)|α.β.0

�� **UUUUUUUUUUUUUUUUUUU

β.0|β.0|β.0

vvnnnnnnnnnnnnnn

�� ((PPPPPPP β.0

��
0 0 0 0

α.(β.0|β.0)|α.β.α.0

�� ((QQQQQQQQQQQQQ

β.0|β.0

wwoooooooooooooo

��

β.α.0

��
0 0 α.0

���
�
�

0

Figure 1: Syntactic trees

Proof We verify the reflexivity, symmetry and transitivity directly.
Reflexivity: P ≈wh P - we prove it by induction on h

the case h = 0: we have P ≈w0 P from the definition 5.9.
the case h+1: suppose that P ≡ α.P1|...|α.Pi|P ′ for i ∈ 1..w and some α ∈ A. The inductive
hypotheses gives Pj ≈wh Pj for each j = 1..i. Further we obtain, by the definition 5.9, that
P ≈wh P .

Symmetry: if P ≈wh Q then Q ≈wh P
Suppose that P ≡ α.P1|...|α.Pi|P ′ for some i ∈ 1..w and α ∈ A then, by the definition 5.9,
exists Q ≡ α.Q1|...|α.Qi|Q′ with Pj ≈wh−1 Qj for j = 1..i and vice versa. Similarly, if we start
from Q ≡ β.R1|...|β.Rk|R′ for k ∈ 1..w and β ∈ A we obtain P ≡ β.S1|...|β.Sk|S ′ for some
Sj , with Rj ≈wh−1 Sj for j = 1..k and vice versa. Hence Q ≈wh P .

Transitivity: if P ≈wh Q and Q ≈wh R then P ≈wh R - we prove it by induction on h.
the case h = 0 is trivial, because by the definition 5.9, for any two processes P,R we have
P ≈w0 R
the case h + 1: suppose that P ≡ α.P1|...|α.Pi|P ′ for some i ∈ 1..w and α ∈ A. Then from
P ≈wh Q we obtain, by the definition 5.9, that Q ≡ α.Q1|...|α.Qi|Q′ with Pj ≈wh−1 Qj for
j = 1..i and vice versa. Further, because Q ≈wh R, we obtain that R ≡ α.R1|...|α.Ri|R′ with
Qj ≈wh−1 Rj for j = 1..i and vice versa.

As Pj ≈wh−1 Qj and Qj ≈wh−1 Rj for j = 1..i, we obtain, using the inductive hypothesis
that Pj ≈wh−1 Rj for j = 1..i.

Hence, for P ≡ α.P1|...|α.Pi|P ′, some i ∈ 1..w and α ∈ A we have thatR ≡ α.R1|...|α.Ri|R′
with Qj ≈wh−1 Rj for j = 1..i and vice versa. This entails P ≈wh R. 2

Theorem 5.2 If P ≈wh Q and Q ≡ R then P ≈wh R.

Proof Suppose that P ≡ α.P1|...|α.Pi|P ′ for some i ∈ 1..w and α ∈ A. As P ≈wh Q, we
obtain Q ≡ α.Q1|...|α.Qi|Q′ with Pj ≈wh−1 Qj for j = 1..i and vice versa. But Q ≡ R, so
R ≡ α.Q1|...|α.Qi|Q′ with Pj ≈wh−1 Qj for j = 1..i and vice versa. Hence P ≈wh R. 2

10

Theorem 5.3 (Antimonotonicity) If P ≈wh Q and (h′, w′) ≤ (h,w) then P ≈w′h′ Q.

Proof We prove it by induction on h.
The case h = 0 is trivial, as (h′, w′) ≤ (0, w) gives h′ = 0 and for any processes P,Q we

have P ≈w0 Q.
The case h+ 1 in the context of the inductive hypothesis:

Suppose that P ≈wh+1 Q and (h′, w′) ≤ (h+ 1, w).
If h′ = 0 we are, again, in a trivial case as for any two processes P,Q we have P ≈w0 Q.
If h′ = h′′ + 1 then consider any i ∈ 1..w′, and any α ∈ A such that P ≡ α.P1|...|α.Pi|P ′.
Because i ≤ w′ ≤ w, and as P ≈wh+1 Q, we have Q ≡ α.Q1|...|αi.Qi|Q′ with Pj ≈wh Qj , for
j = 1..i. A similar argument can de developed if we start the analysis from Q.
But (h′′, w′) ≤ (h,w), so we can use the inductive hypothesis that gives Pj ≈h′′,w′ Qj for
j = 1..i. Hence P ≈w′h′′+1 Q, that is, P ≈w′h′ Q q.e.d. 2

Theorem 5.4 (Congruence) ≈wh is an equivalence relation on processes having the proper-
ties:

1. if P ≈wh Q then α.P ≈wh+1 α.Q
2. if P ≈wh P ′ and Q ≈wh Q′ then P |Q ≈wh P ′|Q′

Proof 1.: Suppose that P ≈wh Q. Because α.P is guarded, it cannot be represented as
P ≡ α.P ′|P ′′ for P ′′ 6≡ 0. The same about α.Q. But this observation, together with P ≈wh Q
gives, in the light of definition 5.9, α.P ≈wh+1 α.Q.

2.: We prove it by induction on h.
If h = 0 then the conclusion is immediate.
For h+ 1, suppose that P ≈wh+1 P

′ and Q ≈wh+1 Q
′; then consider any i = 1..w, α and Rj for

j = 1..i such that

P |Q ≡ α.R1|...|α.Ri|Ri+1

Suppose, without loss of generality, that Rj are ordered in such a way that there exist k ∈ 1..i,
P ′′, Q′′ such that

P ≡ α.R1|...|α.Rk|P ′′
Q ≡ α.Rk+1|...|α.Ri|Q′′

Ri+1 ≡ P ′′|Q′′

Because k ∈ 1..w, from P ≈wh+1 P
′ we have P ′ ≡ α.P ′1|...|α.P ′k|P0 such that Rj ≈wh P ′j for

j = 1..k.
Similarly, from Q ≈wh+1 Q

′ we have Q′ ≡ α.Q′k+1|...|α.Q′i|Q0 such that Rj ≈wh Q′j for j =
(k + 1)..i. Hence, we have

P ′|Q′ ≡ α.P ′1|...|α.P ′k|α.Q′k+1|...|α.Q′i|P0|Q0

As Rj ≈wh P ′j for j = 1..k and Rj ≈wh Q′j for j = (k + 1)..i, and because a similar argument
starting from P ′|Q′ is possible, we proved that P |Q ≈wh+1 P

′|Q′. 2

11

Theorem 5.5 (Inversion) If P ′|P ′′ ≈w1+w2
h Q then exists Q′, Q′′ such that Q ≡ Q′|Q′′ and

P ′ ≈w1
h Q′, P ′′ ≈w2

h Q′′.

Proof Let w = w1 + w2. We prove the theorem by induction on h:
The case h = 0: is trivial.
The case h+ 1: Suppose that P ′|P ′′ ≈wh+1 Q.

Consider the following definition: a process P is in (h,w)-normal form if whenever P ≡
α1.P1|α2.P2|P3 and P1 ≈wh P2 then P1 ≡ P2. Note that P ≈wh+1 α1.P1|α2.P1|P3. This shows
that for any P and any (h,w) we can find a P0 such that P0 is in (h,w)-normal form and
P ≈wh+1 P0.

Now, we can suppose, without loosing generality, that3:

P ′ ≡ (α1.P1)k
′
1|...|(αn.Pn)k

′
n

P ′′ ≡ (α1.P1)k
′′
1 |...|(αn.Pn)k

′′
n

Q ≡ (α1.P1)l1|...|(αn.Pn)ln

For each i ∈ 1..n we split li = l′i + l′′i in order to obtain a splitting of Q. We define the
splitting of li such that (αi.Pi)

k′i ≈h+1,w1 (αi.Pi)
l′i and (αi.Pi)

k′′i ≈h+1,w2 (αi.Pi)
l′′i . We do this

as follows:

• if k′i + k′′i < w1 +w2 then P ′|P ′′ ≈wh+1 Q implies li = k′i + k′′i , so we can choose l′i = k′i
and l′′i = k′′i .

• if k′i + k′′i ≥ w1 + w2 then P ′|P ′′ ≈wh+1 Q implies li ≥ w1 + w2. We meet the following
subcases:

– k′i ≥ w1 and k′′i ≥ w2. We choose l′i = w1 and l′′i = li−w1 (note that as li ≥ w1+w2,
we have l′′i ≥ w2).

– k′i < w1, then we must have k′′i ≥ w2. We choose l′i = k′i and l′′i = li − k′i. So
l′′i ≥ w2 as li ≥ w1 + w2 and l′i < w1.

– k′′i < w2 is similar with the previous one. We choose l′′i = k′′i and l′i = li − k′′i .

Now for Q′ ≡ (α1.P1)l
′
1|...|(αn.Pn)l

′
n and Q′′ ≡ (α1.P1)l

′′
1 |...|(αn.Pn)l

′′
n the theorem is verified

by repeatedly using theorem 5.4. 2

The next theorems point out the relation between the structural bisimulation and the struc-
tural congruence. We will prove that for a well-chosen boundary, which depends on the pro-
cesses involved, the structural bisimulation guarantees the structural congruence. P ≈wh Q
entails that if we choose any subprocess of P having the size smaller than (h,w), we will find
a subprocess of Q structurally congruent with it, and vice versa. Now, if the size indexing the
structural bisimulation is bigger than the size of the processes, then our relation will describe
structurally congruent processes.

Theorem 5.6 If P ≤ (h,w) and P ′ ≤ (h,w) then P ≈wh P ′ iff P ≡ P ′.

3Else we can replace P ′, P ′′ with (h+ 1, w)-related processes having the same (h,w)-normal forms

12

Theorem 5.7 If P ≈wh Q and P < (h,w) then P ≡ Q.

The next theorems point out the relation between the structural bisimulation and the struc-
tural congruence. We will prove that for a well-chosen boundary, which depends on the pro-
cesses involved, the structural bisimulation guarantees the structural congruence. P ≈wh Q
entails that if we choose any subprocess of P having the size smaller than (h,w), we will find
a subprocess of Q structurally congruent with it, and vice versa. Now, if the size indexing the
structural bisimulation is bigger than the size of the processes, then our relation will describe
structurally congruent processes. We also prove that the structural bisimulation is preserved by
transitions with the price of decreasing the size.

Theorem 5.8 If P ≤ (h,w) and P ′ ≤ (h,w) then P ≈wh P ′ iff P ≡ P ′.

Proof P ≡ P ′ implies P ≈wh P ′, because by reflexivity P ≈wh P and then we can apply
theorem 5.2.
We prove further that P ≈wh P ′ implies P ≡ P ′. We’ll do it by induction on h.
The case h = 0: P ≤ (0, w) and P ′ ≤ (0, w) means P ≡ 0 and P ′ ≡ 0, hence P ≡ P ′.
The case h + 1: suppose that P ≤ (h + 1, w), P ′ ≤ (h + 1, w) and P ≈wh+1 P

′. We can
suppose, without loosing generality, that

P ≡ (α1.Q1)k1|...|(αn.Qn)kn

P ′ ≡ (α1.Q1)l1|...|(αn.Qn)ln

where for i 6= j, αi.Qi 6≡ αj.Qj . Obviously, as P ≤ (h + 1, w) and P ′ ≤ (h + 1, w) we have
ki ≤ w and li ≤ w.

We show that ki ≤ li. If ki = 0 then, obviously, ki ≤ li. If ki 6= 0 then P ≡ (αi.Qi)
ki|Pi

and P ≈wh+1 P ′ provides that P ′ ≡ αi.Q
′′
1|...αi.Q′′ki |R with Qi ≈wh Q′′j for j = 1..ki. By

construction, Qi ≤ ((h+ 1)− 1, w) = (h,w) and Q′′j ≤ ((h+ 1)− 1, w) = (h,w). So, we can
apply the inductive hypothesis that provides Qi ≡ Q′′j for j = 1..i. Hence P ′ ≡ (αi.Qi)

ki|R
that gives ki ≤ li.

With a symmetrical argument we can prove that li ≤ ki that gives ki = li and, finally,
P ≡ P ′. 2

Theorem 5.9 If P ≈wh Q and P < (h,w) then P ≡ Q.

Proof Suppose that P = (h′, w′) and P ≡ (α1.P1)k1|...|(αn.Pn)kn with αi.Pi 6≡ αj.Pj for
i 6= j. Obviously we have ki ≤ w′ < w.

We prove the theorem by induction on h. The first case is h = 1 (because h > h′).
The case h = 1: we have h′ = 0 that gives P ≡ 0. Further 0 ≈w1 Q gives Q ≡ 0, because else
Q ≡ α.Q′|Q′′ asks for 0 ≡ α.P ′|P ′′ - impossible. Hence P ≡ Q ≡ 0.
The case h+1: as P ≡ (αi.Pi)

ki |P+, P ≈wh Q and ki < w, we obtain thatQ ≡ αi.R1|...|αi.Rki|R+

with Pi ≈wh−1 Rj for any j = 1..ki.
But Pi ≈wh−1 Rj allows us to use the inductive hypothesis, because Pi ≤ (h′ − 1, w′) <
(h− 1, w), that gives Pi ≡ Rj for any j = 1..ki. Hence Q ≡ (αi.Pi)

ki |R+ and this is sustained
for each i = 1..n. As αi.Pi 6≡ αj.Pj for i 6= j, we derive Q ≡ (α1.P1)k1|...|(αn.Pn)kn|R.

13

We prove now that R ≡ 0. Suppose that R ≡ (α.R′)|R′′. Then Q ≡ α.R′|R−, and as
P ≈wh Q, we obtain that there is an i = 1..n such that α = αi and R′ ≈h−1,w Pi.
Because Pi ≤ (h′ − 1, w′) < (h − 1, w), we can use the inductive hypothesis and obtain
R′ ≡ Pi. Therefore R ≡ αi.Pi|R′′, that gives further

Q ≡ (α1.P1)k1|...(αi−1.Pi−1)k(i−1) |(αi.Pi)ki+1|(αi+1.Pi+1)k(i+1)|...|(αn.Pn)kn|R

So, we can consider Q ≡ (αi.Pi)
ki+1|Q+. Because P ≈wh Q and ki + 1 ≤ w′ + 1 ≤ w, we

obtain that P ≡ αi.P
′
1|...|αi.P ′ki+1|P ′ with P ′j ≈wh−1 Pi for any j = 1..ki + 1.

But Pi ≤ (h′ − 1, w′) < (h − 1, w), consequently we can use the inductive hypothesis and
obtain P ′j ≡ Pi for any j = 1..ki + 1.
Hence P ≡ (αi.Pi)

ki+1|P ′′ which is impossible because we supposed that P ≡ (α1.P1)k1|...|(αn.Pn)kn

with αi.Pi 6≡ αj.Pj for i 6= j.
Concluding, R ≡ 0 and Q ≡ (α1.P1)k1|...|(αn.Pn)kn , i.e. Q ≡ P . 2

Theorem 5.10 If P ≡ R|P ′, P ≈wh Q and R < (h,w) then
Q ≡ R|Q′.

Proof Suppose that R = (h′, w′) < (h,w). Because P ≡ R|P ′ and P ≈wh Q, us-
ing theorem 5.5, we obtain that exists Q1, Q2 such that Q ≡ Q1|Q2 and R ≈w′+1

h Q1 and
P ′ ≈w−(w′+1)

h Q2. Further, as R ≈w′+1
h Q1 and R = (h′, w′) < (h,w′ + 1) we obtain, by using

theorem 5.9, that Q1 ≡ R, hence Q ≡ R|Q2. 2

Theorem 5.11 Let P ≈wh Q. If P ≡ α.P ′|P ′′ then Q ≡ α.Q′|Q′′ and P ′|P ′′ ≈w−1
h−1 Q

′|Q′′

Proof As P ≈wh Q and P ≡ α.P ′|P ′′, we obtain that, indeed, Q ≡ α.Q′|Q′′ with P ′ ≈wh−1

Q′. We will prove that P ′|P ′′ ≈w−1
h−1 Q

′|Q′′. Consider any i = 1..w − 1 and β ∈ A such that:

P ′|P ′′ ≡ β.P1|...|β.Pi|P ? (1)

We can suppose, without loos of generality that for some k ≤ i we have

P ′ ≡ β.P1|...|β.Pk|P+

P ′′ ≡ β.Pk+1|...|β.Pi|P−
P ? ≡ P+|P−

Because P ′ ≈wh−1 Q′ and k ≤ i ≤ w − 1, we obtain that Q′ ≡ β.Q1|...|β.Qk|Q+ with
Pj ≈wh−2 Qj for j = 1..k. Further we distinguish two cases:

• if α 6= β then we have

P ≡ β.Pk+1|...|β.Pi|(P−|α.P ′)

and because P ≈wh Q, we obtain

Q ≡ β.Rk+1|...|β.Ri|R? with Rj ≈wh−1 Pj for j = k + 1..i

14

But Q ≡ α.Q′|Q′′ and because α 6= β, we obtain Q′′ ≡ β.Rk+1|...|β.Ri|R+ that gives us
in the end

Q′|Q′′ ≡ β.Q1|...|β.Qk|β.Rk+1|...|β.Ri|(R+|Q+)

with Pj ≈wh−2 Qj for j = 1..k (hence Pj ≈w−1
h−2 Qj) and Pj ≈wh−1 Rj for j = k + 1..i

(hence Pj ≈w−1
h−2 Rj).

• if α = β then we have

P ≡ α.Pk+1|...|α.Pi|α.P ′|P−

and as P ≈wh Q and i ≤ w − 1, we obtain

Q ≡ α.Rk+1|...|α.Ri|α.R′|R?

with Rj ≈wh−1 Pj for j = k + 1..i and R′ ≈wh−1 P
′. Because P ′ ≈wh−1 Q

′ and ≈wh is
an equivalence relation, we can suppose that R′ ≡ Q′ (Indeed, if α.Q′ is a subprocess
of R? then we can just substitute R′ with Q′; if α.Q′ ≡ α.Rs, then Q′ ≈wh−1 Ps and as
Q′ ≈wh−1 P

′ and P ′ ≈wh−1 R
′ we derive R′ ≈wh−1 Ps and Q′ ≈wh−1 P

′, so we can consider
this correspondence). So

Q ≡ α.Rk+1|...|α.Ri|α.Q′|R?

that gives

Q′′ ≡ α.Rk+1|...|α.Ri|R?

which entails further

Q′|Q′′ ≡ α.Q1|...|α.Qk|α.Rk+1|...|α.Ri|(R?|Q+)

with Pj ≈wh−2 Qj for j = 1..k (hence Pj ≈w−1
h−2 Qj) and Pj ≈wh−1 Rj for j = k + 1..i

(hence Pj ≈w−1
h−2 Rj).

All these prove that P ′|P ′′ ≈w−1
h−1 Q′|Q′′ (as we can develop a symmetric argument starting in

(1) with Q|Q′). 2

The next theorem proves that the structural bisimulation is preserved by transitions with
the price of decreasing the size.

Theorem 5.12 (Behavioral simulation) Let P ≈wh Q.
1. If P α−→ P ′ then it exists a transition Q α−→ Q′ such that P ′ ≈w−1

h−1 Q
′.

2. If R < (h,w) and P R:α−→ P ′ then it exists a transition Q R:α−→ Q′ such that P ′ ≈w−1
h−1 Q

′.

Proof If P α−→ P ′ then P ≡ α.R′|R′′ and P ′ ≡ R′|R′′. But P ≈wh Q gives, using theorem
5.11 that Q ≡ α.S ′|S ′′ and R′|R′′ ≈w−1

h−1 S ′|S ′′. And because Q α−→ S ′|S ′′, we can take
Q′ ≡ S ′|S ′′. 2

15

5.4 Bound pruning processes
In this subsection we prove the bound pruning theorem, stating that for a given process P and a
given size (h,w), we can always find a processQ having the size at most equal with (h,w) such
that P ≈wh Q. Moreover, in the proof of the theorem we will present a method for constructing
such a process from P , by pruning its syntactic tree to the given size.

Theorem 5.13 (Bound pruning theorem) For any process P ∈ P and any (h,w) exists a
process Q ∈ P with P ≈wh Q and Q ≤ (h,w).

Proof We construct 4 Q inductivelly on h.
Case h = 0: we take Q ≡ 0, as P ≈w0 Q and 0 = (0, 0).
Case h+ 1: suppose P ≡ α1.P1|...|αn.Pn.

Let P ′i be the result of pruning Pi by (h,w) (the inductive step of construction) and P ′ ≡
α1.P

′
1|...|αn.P ′n. As for any i = 1..n we have Pi ≈wh P ′i (by the inductive hypothesis),

we obtain, using Theorem 5.4, that αi.Pi ≈wh+1 αi.P
′
i , hence P ≈wh+1 P ′. Consider now

P ′ ≡ (β1.Q1)k1|...|(βm.Qm)km . Let li = min(ki, w) for i = 1..m. Further we define
Q ≡ (β1.Q1)l1|...|(βm.Qm)lm . Obviously Q ≈wh+1 P

′ and as P ≈wh+1 P
′, we obtain P ≈wh+1 Q.

By construction, Q ≤ (h+ 1, w). 2

Definition 5.10 For a process P and a tuple (h,w) we denote by P(h,w) the process obtained
by pruning P to the size (h,w) by the method described in the proof of theorem 5.13.

Theorem 5.14 If P ≡ Q then P(h,w) ≡ Q(h,w).

Proof Because a process is unique up to structural congruence, the result can be derived
trivially, following the construction in the proof of theorem 5.13. 2

Theorem 5.15 P ≤ (h,w) iff P(h,w) ≡ P .

Proof (⇒) If P ≤ (h,w), then, by construction, P(h,w) ≤ (h,w) and P ≈wh P(h,w), we can
use theorem 5.8 and obtain P(h,w) ≡ P .

(⇐) Suppose that P(h,w) ≡ P . Suppose, in addition that P > (h,w). By construction,
P(h,w) ≤ (h,w), hence P(h,w) ≤ (h,w) < P , i.e. P(h,w) 6= P . But this is impossible, because
the size of a process is unique up to structural congruence, see remark ??. 2

Example 5.3 Consider the process P ≡ α.(β.(γ.0|γ.0|γ.0) | β.γ.0) | α.β.γ.0.
Observe that P = (3, 3), hence P(3,3) ≡ P . For constructing P(3,2) we have to prune the
syntactic tree of P such that to not exist, in any node, more than two bisimilar branches. Hence
P(3,2) = α.(β.(γ.0|γ.0) | β.γ.0) | α.β.γ.0
If we want to prune P on the size (3, 1), we have to prune its syntactic tree such that, in any
node, there are no bisimilar branches. The result is P(3,1) = α.β.γ.0.
For pruning P on the size (2, 2), we have to prune all the nodes on depth 2 and in the new
tree we have to let, in any node, a maximum of two bisimilar branches. As a result of these
modifications, we obtain P(2,2) = α.(β.0|β.0) | α.β.0. Going further we obtain the smaller
processes P(0,0) = 0, P(1,1) = α.0, P(1,2) = α.0|α.0, P(2,1) = α.β.0.

4This construction is not necessarily unique.

16

5.5 Substitutions
For the future constructs is also useful to introduce the substitutions of actions in a process.

Definition 5.11 (The set of actions of a process) We define inductively, for any process P ,
its set of actions Act(P) ⊂ A:

1. Act(0)
def
= ∅ 2. Act(α.P)

def
= {α} ∪ Act(P) 3. Act(P |Q)

def
= Act(P) ∪ Act(Q)

For M ⊂ P we define Act(M)
def
=

⋃
P∈M Act(P).

Definition 5.12 Let A ⊂ A. We define

PA
(h,w)

def
= {P ∈ P | Act(P) ⊂ A, P ≤ (h,w)}

Theorem 5.16 If A ⊂ A is finite, then PA
(h,w) is finite5.

Proof We will prove more, that if we denote by n = (w + 1)card(A), then

card(PA
(h,w)) =

1 if h = 0

nn
n...

n︸ ︷︷ ︸
h

if h 6= 0

We prove this by induction on h.
The case h = 0: we have Q = (0, w) iff Q ≡ 0, so PA

(0,w) = {0} and card(PA
(0,w)) = 1.

The case h = 1: let Q ∈ P(1,w). Then

Q ≡ (α1.Q1)k1|...|(αs.Qs)
ks with Qi ∈ PA

(0,w) and αi.Qi 6≡ αj.Qj for i 6= j.

But Qi ∈ PA
(0,w) means Qi ≡ 0, hence

Q ≡ (α1.0)k1|...|(αs.0)ks

Since Q ≤ (1, w) we obtain that ki ≤ w. The number of guarded processes α.0 with α ∈ A is
card(A) and since ki ∈ 0..w, the number of processes in PA

(1,w) is (w + 1)card(A) = n1.
The case h+ 1: let Q ∈ PA

(h+1,w). Then

Q ≡ (α1.Q1)k1|...|(αs.Qs)
ks with Qi ∈ PA

(h,w) and αi.Qi 6≡ αj.Qj for i 6= j.

SinceQ ≤ (h+1, w) we obtain that ki ≤ w. The number of guarded processes α.Rwith α ∈ A
and R ∈ PA

(h,w) is card(A) × card(PA
(h,w)) and since ki ∈ 0..w, the number of processes in

PA
(h+1,w) is (w + 1)card(A)×card(PA

(h,w)
) = ((w + 1)card(A))card(PA

(h,w)
) = ncard(PA

(h,w)
). But the

inductive hypothesis gives card(PA
(h,w)) = nn

n...
n︸ ︷︷ ︸

h

, so card(PA
(h+1,w)) = nn

n...
n︸ ︷︷ ︸

h+1

. 2

Definition 5.13 (Action substitution) We call action substitution any mapping σ : AtoA. We
extend it, syntactically, to processes, σ : PtoP, by

1. σ(0)
def
= 0 2. σ(P |Q)

def
= σ(P)|σ(Q) 3. σ(α.P)

def
= σ(α).σ(P)

ForM ⊂ P let σ(M)
def
= {σ(P) | P ∈M}. We also useMσ, P σ for denoting σ(M) and σ(P).

The set of actions of σ, act(σ), is defined as act(σ)
def
= {α, β ∈ A | α 6= β, σ(α) = β}.

5We count the processes up to structural congruence.

17

6 Maximal consistency
Anticipating the logic, in this section we define some special sets of processes that will play
an essential role in proving the finite model property. Due to their logical properties that will
be reveal later, we call these sets maximal consistent sets of processes. Intuitively, a maximal
consistent set of processes is a set that whenever contains a process contains also any future
state of the process (i.e. all the unfolding) and the ”point of view” of any observer of this pro-
cess (we recall that an observer can see a subprocess). Syntactically this means that whenever
we have a process in a maximal consistent set, we will also have all the processes that can be
obtained by arbitrarily pruning the syntactic tree of our process.

Definition 6.1 For M,N ⊂ P and α ∈ A we define:
α.M

def
= {α.P | P ∈M} M |N def

= {P |Q | P ∈M,Q ∈ N}.

We associate to each process P the set π(P) of all processes obtained by arbitrarily pruning
the syntactic tree of P .

Definition 6.2 For P ∈ P we define π(P) ⊂ P inductively by:

1. π(0)
def
= {0} 2. π(α.P)

def
= {0} ∪ α.π(P) 3. π(P |Q)

def
= π(P)|π(Q)

We extend the definition of π to sets of processes M ⊂ P by

π(M)
def
=

⋃
P∈M

π(P).

Theorem 6.1 The next assertions hold:

1. P ∈ π(P) 2. 0 ∈ π(P) 3. P ∈ π(P |Q) 4. P(h,w) ∈ π(P)

Proof 1. We prove it by induction on P

• if P ≡ 0 then π(P) = {0} 3 0 ≡ P

• if P ≡ α.Q then π(P) = {0} ∪ α.π(Q). But the inductive hypothesis gives Q ∈ π(Q),
hence α.Q ∈ α.π(Q) ⊂ π(P).

• if P ≡ Q|R then π(P) = π(Q)|π(R). The inductive hypothesis provide Q ∈ π(Q) and
R ∈ π(R), hence P ≡ Q|R ∈ π(Q)|π(R) = π(P).

2. We prove it by induction on P .

• if P ≡ 0 we have, by definition, π(P) = {0} 3 0

• if P ≡ α.Q then π(P) = {0} ∪ α.π(Q) 3 0.

• if P ≡ Q|R then π(P) = π(Q)|π(R). The inductive hypothesis provide 0 ∈ π(Q) and
0 ∈ π(R), hence 0 ≡ 0|0 ∈ π(Q)|π(R) = π(P).

18

3. We have π(P |Q) = π(P)|π(Q). But P ∈ π(P) and 0 ∈ π(Q), hence P ≡ P |0 ∈
π(P)|π(Q) = π(P |Q).
4. We prove the theorem by induction on the structure of P .

• if P ≡ 0: we have P(h,w) ≡ 0 ∈ {0} = π(P) for any (h,w).

• if P ≡ α.Q: we distinguish two more cases:
if w = 0 then P(h,0) ≡ 0 ∈ π(P)
if w 6= 0 then (α.Q)(h,w) ≡ α.Q(h−1,w) by the construction of the adjusted processes. If
we apply the inductive hypothesis we obtain that Q(h−1,w) ∈ π(Q), hence (α.Q)(h,w) ∈
α.π(Q) ⊂ π(P).

• if P ≡ (α.Q)k: we have P(h,w) ≡ (α.Q(h−1,w))
l where l = min(k, w), by the construc-

tion of the adjusted processes. The inductive hypothesis gives Q(h−1,w) ∈ π(Q), hence
α.Q(h−1,w) ∈ α.π(Q) ⊂ π(α.Q). But because 0 ∈ π(α.Q) and

P(h,w) ≡ α.Q(h−1,w)|...|α.Q(h−1,w)︸ ︷︷ ︸
l

| 0|...|0︸ ︷︷ ︸
k−l

we obtain
P(h,w) ∈ π(α.Q)|...|π(α.Q)︸ ︷︷ ︸

k

= π(P)

• if P ≡ (α1.P1)k1|...|(αn.Pn)kn with n ≥ 2: we split it in two subprocesses Q ≡
(α1.P1)k1|...|(αi.Pi)ki and R ≡ (αi+1.Pi+1)ki+1 |...|(αn.Pn)kn . By the way we split the
process P we will have P(h,w) ≡ Q(h,w)|R(h,w) and using the inductive hypothesis on Q
and R we derive P(h,w) ≡ Q(h,w)|R(h,w) ∈ π(Q)|π(R) = π(P).

2

Theorem 6.2 1. Act(π(P)) ⊆ Act(P) 2. If P toQ then Act(Q) ⊆ Act(P).

Proof 1. We prove it by induction on P .
if P ≡ 0 then Act(π(P)) = Act(∅) = ∅ ⊆ Act(P).
if P ≡ α.Q then Act(π(P)) = Act({0} ∪ α.π(Q)) = Act(α.π(Q)) = {α} ∪ Act(π(Q)). By
inductive hypothesis, Act(π(Q)) ⊆ Act(Q), hence Act(π(P)) ⊆ {α} ∪ Act(Q) = Act(P).
if P ≡ Q|R then Act(π(P)) = Act(π(Q)|π(R)) = Act(π(Q)) ∪ Act(π(R)). Using the
inductive hypothesis, Act(π(Q)) ⊆ Act(Q) and Act(π(R)) ⊆ Act(R), hence Act(π(P)) ⊆
Act(Q) ∪ Act(R) = Act(Q|R) = Act(P).
2. If P toQ then P ≡ α.Q1|Q2 and Q ≡ Q1|Q2. Then Act(Q) = Act(Q1) ∪ Act(Q2) ⊆
{α} ∪ Act(Q1) ∪ Act(Q2) = Act(P). 2

Theorem 6.3 π(π(P)) = π(P).

19

Proof We prove it by induction on P .
The case P ≡ 0: π(π(0)) = π({0}) = π(0)
The case P ≡ α.Q: π(π(α.Q)) = π({0}∪α.π(Q)) = π(0)∪π(α.π(Q)) = {0}∪α.π(π(Q)).
Now we can use the inductive hypothesis and we obtain π(π(Q)) = π(Q). Hence π(π(α.Q)) =
{0} ∪ α.π(Q) = π(α.Q) = π(P).
The case P ≡ Q|R: π(π(P)) = π(π(Q|R)) = π(π(Q)|π(R)) = π(π(Q))|π(π(R)). Now we
ca apply the inductive hypothesis on Q and R and obtain π(π(P)) = π(Q)|π(R) = π(Q|R) =
π(P). 2

Theorem 6.4 If Q ∈ π(P) then π(Q) ⊂ π(P).

Proof Q ∈ π(P) implies π(Q) ⊂ π(π(P)), and applying the theorem 6.3, we obtain
π(Q) ⊂ π(P). 2

Theorem 6.5 If σ is a substitution, then π(σ(P)) = σ(π(P)).

Proof We prove it by induction on P .
The case P ≡ 0: π(σ(P)) = π(0) = {0} = σ({0}) = σ(π(P)).
The case P ≡ α.Q: π(σ(P)) = π(σ(α).σ(Q)) = {0} ∪ σ(α).π(σ(Q)). But the inductive
hypothesis gives π(σ(Q)) = σ(π(Q)), hence

π(σ(P)) = {0} ∪ σ(α).σ(π(Q))

from the other side, σ(π(P)) = σ({0} ∪ α.π(Q)) = {0} ∪ σ(α).σ(π(Q)).
The case P ≡ Q|R: π(σ(Q|R)) = π(σ(Q)|σ(R)) = π(sigma(Q))|π(σ(R)). But the in-
ductive hypothesis gives π(σ(Q)) = σ(π(Q)) and π(σ(R)) = σ(π(R)). Hence π(σ(P)) =
σ(π(Q))|σ(π(R)) = σ(π(Q)|π(R)) = σ(π(P)). 2

Definition 6.3 A set of processesM⊆ P is maximal consistent if it satisfies the conditions
1. if P ∈M and P −→ P ′ then P ′ ∈M 2. if P ∈M then π(P) ⊂M.

Theorem 6.6 IfM is a maximal consistent set of processes and σ is a substitution, thenMσ

is maximal consistent.

Proof Let P ∈ Mσ. Then it exists a process Q ∈ M such that σ(Q) ≡ P . Then
π(P) = π(σ(Q)), and using theorem 6.5 we derive π(P) = σ(π(Q)). But Q ∈ M implies
π(Q) ⊂M, thus σ(π(Q)) ⊂Mσ. Then π(P) ⊂Mσ.
Let P ∈Mσ and P toP ′. Then it exists Q ∈M such that σ(Q) ≡ P . Suppose that

Q ≡ α1.Q1|...|αk.Qk

then
P ≡ σ(Q) ≡ σ(α1).σ(Q1)|...|σ(αk).σ(Qk)

20

But then P toP ′ gives that it exists i = 1..k such that

P ′ ≡ σ(α1).σ(Q1)|...|σ(αi−1).σ(Qi−1) | σ(Qi) | σ(αi+1).σ(Qi+1)|...|σ(αk).σ(Qk)

and if we define
Q′ ≡ α1.Q1|...|αi−1.Qi−1 | Qi | αi+1.Qi+1|...|αk.Qk

we obtain QtoQ′ (i.e. Q′ ∈M) and σ(Q′) ≡ P ′. Hence P ′ ∈Mσ. 2

Now we introduce a structural bisimulation-like relation on maximal consistent sets of
processes.

Definition 6.4 LetM,N ⊂ P be maximal consistent sets of processes. We writeM ≈wh N
iff

1. for any P ∈M there exists Q ∈ N with P ≈wh Q
2. for any Q ∈ N there exists P ∈M with P ≈wh Q

We write (M, P) ≈wh (N , Q) for the case when P ∈M, Q ∈ N , P ≈wh Q andM≈wh N .

Theorem 6.7 (Antimonotonicity over contexts) If M ≈wh N and (h′, w′) ≤ (h,w) then
M≈w′h′ N .

Proof For any process P ∈M there exists a process Q ∈ N such that P ≈wh Q and using
theorem 5.3 we obtain P ≈w′h′ Q. And the same if we start from a process Q ∈ N . These
proves thatM≈w′h′ N . 2

Definition 6.5 (System of generators) We say that M ⊂ P is a system of generators forM
ifM is the smallest maximal consistent set of processes that contains M . We denote this by
M =M.

Definition 6.6 For any maximal consistent set of processesM and any (h,w) we define

M(h,w)
def
= {P(h,w) | P ∈M}.

Theorem 6.8 For any contextM, and any size (h,w) we haveM(h,w) ≈hwM.

Definition 6.7 Let A ⊂ A. We denote by MA
(h,w) the set of all maximal consistent sets gener-

ated by the systems of generators with the size at most (h,w) and with the actions in A:

MA
(h,w)

def
= {M ⊂ P | Act(M) ⊆ A, M ≤ (h,w)}.

Theorem 6.9 If A ⊂ A is a finite set of actions, then the following hold:
1. IfM∈MA

(h,w) thenM is a finite maximal consistent set of processes.
2. MA

(h,w) is finite.

21

Proof 1.: If M ∈ MA
(h,w) then M = M , M ≤ (h,w) and Act(M) ⊂ A. Thus M ⊂

PA
(h,w). But PA

(h,w) is finite, by theorem 5.16. Thus M =M is a finite maximal consistent set.
2.: As PA

(h,w) is finite by theorem 5.16, the set of its subsets is finite, and as all the elements
of MA

(h,w) are generated by subsets of PA
(h,w), we obtain that MA

(h,w) is finite. 2

The previous theorem shows that for a given finite signature A and for a given dimension
(h,w) there exists only a finite set of maximal consistent sets of processes. Further we will
prove even more: that having a maximal consistent setMwith actions fromA and a dimension
(h,w) we can always find, in the finite set MA

(h,w), a maximal consistent set N structural
bisimilar withM at the dimension (h,w). This result will be further used for proving the finite
model property for our logic.

Theorem 6.10 For any maximal consistent set M, and any size (h,w) we have M(h,w) ≈hw
M.

Proof Denote by
M = {P(h,w) | P ∈M}

Let P ∈M. Then it exists a processQ ∈M(h,w), more exactlyQ ≡ P(h,w) such that P ≈hw Q.
Let Q ∈ M(h,w). Since M is the smallest maximal consistent set containing M , and because,
by construction, M ⊆ M we derive that M ⊆ M. Hence, for any process Q ∈ M there is a
process P ∈M, more exactly P ≡ Q such that P ≈hw Q (since P ≡ Q implies P ≈hw Q). 2

Theorem 6.11 For any maximal consistent setM and any size (h,w) we haveAct(M(h,w)) ⊆
Act(M).

Proof As P(h,w) ∈ π(P) for any process P ∈M and any (h,w), by theorem 6.1, we obtain,
by applying theorem 6.2, Act(P(h,w)) ⊆ Act(M), hence Act({P(h,w) | P ∈ M}) ⊆ Act(M).
Further applying again theorem 6.2, we trivially derive the desired result. 2

Theorem 6.12 (Bound pruning theorem) Let M be a maximal consistent set of processes.
Then for any (h,w) there is a maximal consistent set N ∈M

Act(M)
(h,w) such thatM≈wh N .

Proof The maximal consistent setN =M(h,w) fulfills the requirements of the theorem, by
construction. Indeed, it is maximal consistent, and it is generated by the set N = {P(h,w) | P ∈
M}. Moreover N ≤ (h,w) and, by theorem 6.11, Act(M(h,w)) ⊆ Act(M). Hence N ∈
M

Act(M)
(h,w) . 2

7 The Logic LA
A

In this section we introduce the logic multimodal logic LA
A with modal operators indexed by

an “epistemic” signature A and a “dynamic” signature A. On A we will have defined an
algebraical structure homomorphic with CCS.

22

7.1 Epistemic Agents
Definition 7.1 Consider a set A and its extension A+ generated by the next grammar for
α ∈ A

A := a ∈ A | α.A | A|A

Suppose, in addition, that on A+ it is defined the smallest congruence relation ≡ for which
| is commutative and associative. We call the ≡-equivalence classes of A+ epistemic agents
and we call atomic agents the classes corresponding to elements of A. Hereafter we will use
A,A′, A1, ... to denote arbitrary epistemic agents.

Definition 7.2 We call society of epistemic agents any set A ⊆ A+, closed to ≡, satisfying
the conditions

1. if A1|A2 ∈ A then A1, A2 ∈ A 2. if α.A ∈ A then A ∈ A

7.2 Syntax of LA
A

Definition 7.3 Let A be a society of epistemic agents defined for the set A of actions. We
define the language FA

A of LA
A, for A ∈ A and α ∈ A, by:

φ := 0 | > | ¬φ | φ ∧ φ | φ|φ | 〈α〉φ | 〈A : α〉φ | KAφ.

Definition 7.4 (Derived operators) In addition to the classical boolean operators, we intro-
duce some derived operators6:

1
def
= ¬((¬0) | (¬0))

〈!α〉ψ def
= (〈α〉ψ) ∧ 1

[a]φ
def
= ¬(〈a〉(¬φ))

∼
KAφ

def
= ¬KA¬φ.

We convey that the precedence order of the operators in the syntax ofLA
A is¬, KA, 〈 a〉, |,∧ ,∨ ,→

where ¬ has precedence over all the other operators.

7.3 Process semantics
A formula of FA

A will be evaluated to processes in a given maximal consistent set of processes,
by mean of a satisfaction relationM, P |= φ.

Definition 7.5 (Models and satisfaction) A model of LA
A is a couple (M, I) where M is a

maximal consistent set of processes and I : (A, |, α.)to(M, |, α.) a homomorphism7 of struc-
tures such that I(A) = 0 iff A ∈ A.

We convey to denote P
I(A):α

to Q by P
A:α
toQ.

We define the satisfaction relation, for P ∈M, by:
M, P |= > always

6We recall that we use a to range over A∗, while α is used to refer to arbitrary objects of A.
7The function I associates to each agent the process it observes. An atomic agent sees always the process 0.

23

M, P |= 0 iff P ≡ 0
M, P |= ¬φ iffM, P 2 φ
M, P |= φ ∧ ψ iffM, P |= φ andM, P |= ψ
M, P |= φ|ψ iff P ≡ Q|R andM, Q |= φ,M, R |= ψ
M, P |= 〈α〉φ iff there exists a transition P α−→ P ′ such thatM, P ′ |= φ

M, P |= 〈A : α〉φ iff there exists a transition P A:α−→ P ′ such thatM, P ′ |= φ
M, P |= KAφ iff P ≡ I(A)|R and for all I(A)|R′ ∈M we haveM, I(A)|R′ |= φ

The semantics of the derived operators will be:
M, P |= [a]φ iff for any transition P a−→ P ′ (if any) we haveM, P ′ |= φ
M, P |= 1 iff P ≡ 0 or P ≡ α.Q
M, P |= 〈!α〉φ iff P ≡ α.Q andM, Q |= φ

M, P |=
∼
KAφ iff either P 6≡ I(A)|R for any R, or ∃I(A)|S ∈M such thatM, I(A)|S |=

φ

Remark the interesting semantics of the operators KA and
∼
KA for A ∈ I−1(0):

M, P |= KAφ iff ∀Q ∈M we haveM, Q |= φ

M, P |=
∼
KAφ iff ∃Q ∈M such thatM, Q |= φ

HenceKAφ and
∼
KAφ for an atomic agentA encode, in syntax, the validity and the satisfiability

with respect to a given model.

7.4 Bounded finite model property
Definition 7.6 (Size of a formula) We define the sizes of a formula, φ (height and width),

w.r.t. the homomorphism I , inductively on the structure of formula. Suppose that φ = (h,w),
ψ = (h′, w′) and I(A) = (hA, wA).

1. 0 = > def
= (0, 0) 5. 〈α〉φ def

= (1 + h, 1 + w)

2. ¬φ def
= φ 6. 〈A : α〉φ = (1 +max(h, hA), 1 +max(w,wA))

3. φ ∧ ψ def
= (max(h, h′),max(w,w′)) 7. KAφ

def
= (1 +max(h, hA), 1 +max(w,wA))

4. φ|ψ def
= (max(h, h′), w + w′)

The next theorem states that φ is “sensitive” via satisfaction only up to size φ. In other words,
the relationM, P |= φ is conserved by substituting the couple (M,P) with any other couple
(N,P) structurally bisimilar to it at the size φ.

Theorem 7.1 If φ = (h,w),M, P |= φ and (M, P) ≈wh (N , Q) then N , Q |= φ.

Proof We prove it by induction on the syntactical structure of φ.

• The case φ = 0: φ = (1, 1).
M, P |= 0 implies P ≡ 0.
As P ≈1

1 Q we should have Q ≡ 0 as well, because else Q ≡ α.Q′|Q′′ asks for P ≡
α.P ′|P ′′ for some P ′, P ′′, but this is impossible because P ≡ 0.
So Q ≡ 0 ∈ N and we have N , Q |= 0, q.e.d.

24

• The case φ = >: is a trivial case as N , Q |= > always.

• The case φ = φ1 ∧ φ2: denote by (hi, wi) = φi for i = 1, 2. Then we have φ =
(max(h1, h2),max(w1, w2)).

M, P |= φ is equivalent withM, P |= φ1 andM, P |= φ2.

Because (M, P) ≈max(w1,w2)
max(h1,h2) (N , Q) we obtain, by using theorem 6.7, that (M, P) ≈w1

h1

(N , Q) and (M, P) ≈w2
h2

(N , Q).

Now (M, P) ≈w1
h1

(N , Q) andM, P |= φ1 give, by inductive hypothesis, N , Q |= φ1,
while (M, P) ≈w2

h2
(N , Q) andM, P |= φ2 give, by inductive hypothesis N , Q |= φ2.

Hence N , Q |= φ1 ∧ φ2, q.e.d.

• The case φ = ¬φ′: φ = φ′ = (h,w).

We haveM, P |= ¬φ′ and (M, P) ≈wh (N , Q).

If N , Q 6|= ¬φ′, then N , Q |= ¬¬φ′, i.e. N , Q |= φ′.
Because (M, P) ≈wh (N , Q) andN , Q |= φ′, the inductive hypothesis gives thatM, P |=
φ′, which combined withM, P |= ¬φ′ givesM, P |= ⊥ - impossible. Hence N , Q |=
¬φ′.

• The case φ = φ1|φ2: suppose that φi = (hi, wi) for i = 1, 2. Then φ = (max(h1, h2), w1+
w2).

Further,M, P |= φ1|φ2 requires P ≡ P1|P2, withM, P1 |= φ1 andM, P2 |= φ2.

As (M, P) ≈w1+w2

max(h1,h2) (N , Q) we obtain P ≈w1+w2

max(h1,h2) Q. Than, from P ≡ P1|P2,
using theorem 5.5, we obtain Q ≡ Q1|Q2 and Pi ≈wimax(h1,h2) Qi for i = 1, 2. Hence,
using theorem 6.7,
(M, Pi) ≈wimax(h1,h2) (N , Qi). Further, using again theorem 6.7, we obtain (M, Pi) ≈wihi
(N , Qi), and using the inductive hypothesis,
N , Q1 |= φ1 and N , Q2 |= φ2. Hence N , Q |= φ.

• The case φ = 〈α〉φ′: suppose that φ′ = (h′, w′). We have 〈α〉φ′ = (1 + h′, 1 + w′).

M, P |= 〈α〉φ′ means that P α−→ P ′ andM, P ′ |= φ′.

Now (M, P) ≈1+w′

1+h′ (N , Q) gives P ≈1+w′

1+h′ Q, and using theorem 5.12, we obtain that
Q

α−→ Q′ and P ′ ≈w′h′ Q′.
But (M, P) ≈1+w′

1+h′ (N , Q) gives alsoM ≈w′+1
h′+1 N , so using theorem 6.7,M ≈w′h′ N .

Hence (M, P ′) ≈w′h′ (N , Q′).

Now from M, P ′ |= φ′ and (M, P ′) ≈w′h′ (N , Q′), we obtain, by using the inductive
hypothesis, that N , Q′ |= φ′, and as Q α−→ Q′, we obtain further that N , Q |= φ.

• The case φ = KRφ
′ with R ∈ S: suppose that φ′ = (h′, w′) and R = (hR, wR).

Then KRφ
′ = (1 +max(h′, hR), 1 +max(w′, wR)).

NowM, P |= KRφ
′ gives P ≡ R|P ′ and for any R|S ∈M we haveM, R|S |= φ′.

25

As (M, P) ≈1+max(w′,wR)
1+max(h′,hR) (N , Q) then P ≈1+max(w′,wR)

1+max(h′,hR) Q and because P ≡ R|P ′ and
R = (hR, wR) < (1 + max(h′, hR), 1 + max(w′, wR)), we obtain, using theorem 5.9,
that Q ≡ R|Q′.

Let R|S ′ ∈ N be an arbitrary process. BecauseM ≈1+max(w′,wR)
1+max(h′,hR) N we obtain that ex-

ists a process P ′′ ∈M such that P ′′ ≈1+max(w′,wR)
1+max(h′,hR) R|S ′. ButR < (1+max(h′, hR), 1+

max(w′, wR)), so, using theorem 5.9, P ′′ ≡ R|S ′′.
ThenM, R|S ′′ |= φ′, asM, R|S |= φ′ for any R|S ∈M.

From the other side, (M, P) ≈1+max(w′,wR)
1+max(h′,hR) (N , Q) gives, using theorem 6.7, (M, P) ≈w′h′

(N , Q) where from we obtainM≈w′h′ N .

Also R|S ′′ ≈1+max(w′,wR)
1+max(h′,hR) R|S ′ gives R|S ′′ ≈w′h′ R|S ′, i.e. (M, R|S ′′) ≈w′h′ (N , R|S ′).

NowM, R|S ′′ |= φ′ and (M, R|S ′′) ≈w′h′ (N , R|S ′) give, using the inductive hypothesis,
that N , R|S ′ |= φ′.

Concluding, we obtained that Q ≡ R|Q′ and for any R|S ′ ∈ N we have N , R|S ′ |= φ′.
These two give N , Q |= KRφ

′ q.e.d.

2

Using this theorem, we conclude that if a process satisfies φ w.r.t. a given maximal consistent
set of processes, then by pruning the process and the maximal consistent set on the size φ, we
preserve the satisfiability for φ. Indeed the theorems 5.13 and 6.10 prove that if φ = (h,w)
then (M, P) ≈hw (Mφ, Pφ). HenceM, P |= φ impliesMφ, Pφ |= φ.

Theorem 7.2 IfM, P |= φ thenMφ, Pφ |= φ.

Proof Let φ = (h,w). By theorem 6.12, we have M ≈hw M(h,w). By process pruning
theorem 5.13, we have P ≈hw P(h,w) and P(h,w) ∈M(h,w). Hence (M, P) ≈hw (M(h,w), P(h,w)).
Further lemma 7.1 establishesM(h,w), P(h,w) |= φ q.e.d. 2

Definition 7.7 We define the set of actions of a formula φ, act(φ) ⊂ A, inductively by:

1. act(0) = act(>)
def
= ∅ 4. act(φ ∧ ψ) = act(φ|ψ)

def
= act(φ) ∪ act(ψ)

2. act(〈α〉φ)
def
= {α} ∪ act(φ) 5. act(〈A : α〉φ) = act(KAφ)

def
= Act(I(A)) ∪ act(φ)

3. act(¬φ) = act(φ)

The next result states that a formula φ does not reflect properties that involves more then
the actions in its syntax. Thus if M, P |= φ then any substitution σ having the elements of
act(φ) as fix points preserves the satisfaction relation, i.e.Mσ, P σ |= φ.

Theorem 7.3 IfM, P |= φ and σ is a substitution with act(σ)
⋂
act(φ) = ∅ thenMσ, P σ |=

φ.

Proof We prove, simultaneously, by induction on φ, that

26

1. ifM, P |= φ then σ(M), σ(P) |= φ

2. ifM, P 6|= φ then σ(M), σ(P) 6|= φ

The case φ = 0:

1. M, P |= 0 iff P ≡ 0. Then σ(P) ≡ 0 and σ(M), σ(0) |= 0 q.e.d.

2. M, P 6|= 0 iff P 6≡ 0, iff σ(P) 6≡ 0. Hence σ(M), σ(P) 6|= 0.

The case φ = >:

1. M, P |= > implies σ(M), σ(P) |= >, because this is happening for any context and
process.

2. M, P 6|= > is an impossible case.

The case φ = ψ1 ∧ ψ2:

1. M, P |= ψ1∧ψ2 implies thatM, P |= ψ1 andM, P |= ψ2. Because act(σ)∩act(φ) = ∅
we derive that act(σ) ∩ act(ψ1) = ∅ and act(σ) ∩ act(ψ2) = ∅. Further, applying
the inductive hypothesis, we obtain Mσ, P σ |= ψ1 and Mσ, P σ |= ψ2 that implies
Mσ, P σ |= ψ1 ∧ ψ2.

2. M, P 6|= ψ1 ∧ ψ2 implies that M, P 6|= ψ1 or M, P 6|= ψ2. But, as argued before,
act(σ) ∩ act(ψ1) = ∅ and act(σ) ∩ act(ψ2) = ∅, hence we can apply the inductive
hypothesis that entailsMσ, P σ 6|= ψ1 orMσ, P σ 6|= ψ2. ThusMσ, P σ 6|= ψ1 ∧ ψ2.

The case φ = ¬ψ:

1. M, P |= ¬ψ is equivalent with M, P 6|= ψ and because act(σ) ∩ act(φ) = ∅ guar-
antees that act(σ) ∩ act(ψ) = ∅, we ca apply the inductive hypothesis and we obtain
σ(M), σ(P) 6|= ψ which is equivalent with σ(M), σ(P) |= ¬ψ.

2. M, P 6|= ¬ψ is equivalent with M, P |= ψ and applying the inductive hypothesis,
σ(M), σ(P) |= ψ, i.e. σ(M), σ(P) 6|= ¬ψ.

The case φ = ψ1|ψ2:

1. M, P |= ψ1|ψ2 implies that P ≡ Q|R, M, Q |= ψ1 and M, R |= ψ2. As act(σ) ∩
act(φ) = ∅ we have act(σ) ∩ act(ψ1) = ∅ and act(σ) ∩ act(ψ2) = ∅. Then we can
apply the inductive hypothesis and obtain σ(M), σ(Q) |= ψ1 and σ(M), σ(R) |= ψ2.
But σ(P) ≡ σ(Q)|σ(R), hence σ(M), σ(P) |= φ.

2. M, P 6|= ψ1|ψ2 implies that for any decomposition P ≡ Q|Rwe have eitherM, Q 6|= ψ1

or M, R 6|= ψ2. But, as before, from act(σ) ∩ act(φ) = ∅ guarantees that act(σ) ∩
act(ψ1) = ∅ and act(σ) ∩ act(ψ2) = ∅. Hence, we can apply the inductive hypothesis
and consequently, for any decomposition P ≡ Q|R we have either σ(M), σ(Q) 6|= ψ1

or σ(M), σ(R) 6|= ψ2.
Consider any arbitrary decomposition σ(P) ≡ P ′|P ′′. By theorem ??, there exists P ≡
Q|R such that σ(Q) ≡ P ′ and σ(R) ≡ P ′′. Thus either σ(M), P ′ 6|= ψ1 or σ(M), P ′′ 6|=
ψ2. Hence σ(M), σ(P) 6|= ψ1|ψ2.

27

The case φ = 〈γ〉ψ:

1. M, P |= 〈γ〉ψ means that there is a transition P
γ

toQ andM, Q |= ψ. Because act(σ) ∩
act(〈γ〉ψ) = ∅ implies act(σ) ∩ act(ψ) = ∅. We can apply the inductive hypothesis and

derive σ(M), σ(Q) |= ψ. As P
γ

toQ we have P ≡ γ.P ′|P ′′ and Q ≡ P ′|P ′′. This mean
that σ(P) ≡ σ(γ).σ(P ′)|σ(P ′′). Now act(σ)∩act(〈γ〉ψ) = ∅ ensures that σ(γ) = γ. So

σ(P) ≡ γ.σ(P ′)|σ(P ′′) and σ(Q) ≡ σ(P ′)|σ(P ′′). Hence σ(P)
γ

toσ(Q). Now because
σ(M), σ(Q) |= ψ, we derive σ(M), σ(P) |= 〈γ〉ψ.

2. M, P 6|= 〈γ〉ψ implies one of two cases: either there is no transition of P by γ, or there

is such a transition and for any transition P
γ

toQ we haveM, Q 6|= ψ.
If there is no transition of P by γ then P ≡ α1.P1|...|αk.Pk with αi 6= γ for each
i 6= 1..k. Because σ(P) ≡ σ(α1).σ(P1)|...|σ(αk).σ(Pk), and because γ 6= αi, and
γ 6∈ act(σ), we can state that γ 6= σ(αi), hence σ(P) cannot perform a transition by γ.
Thus σ(M), σ(P) 6|= 〈γ〉ψ.

If there are transitions of P by γ, and for any such a transition P
γ

toQwe haveM, Q 6|= ψ:
then, because from act(σ) ∩ act(〈γ〉ψ) = ∅ we can derive act(σ) ∩ act(ψ) = ∅, the
inductive hypothesis can be applied and we obtain σ(M), σ(Q) 6|= ψ. But because

γ 6∈ act(σ) we obtain σ(γ) = γ and σ(P)
γ

toσ(Q). Hence σ(M), σ(P) 6|= 〈γ〉ψ.

The case φ = KRψ:

1. M, P |= KRψ implies P ≡ R|S and for any R|S ′ ∈ M we haveM, R|S ′ |= ψ. From
act(σ)∩act(φ) = ∅we derive act(σ)∩act(ψ) = ∅ and act(σ)∩Act(R) = ∅. So, we can
apply the inductive hypothesis that gives Mσ, σ(R|S ′) |= ψ and, because σ(R) ≡ R,
Mσ, R|σ(S ′) |= ψ.
Consider an arbitrary process R|S ′′ ∈ Mσ. There exists a process Q ∈ M such that
σ(Q) ≡ R|S ′′. Thus, by theorem ??, Q ≡ R′|S ′′′ with σ(R′) = R and σ(S ′′′) = S ′′.
But Act(R)∩ act(σ) = ∅ implies Act(R)∩ obj(σ) = ∅, so applying the theorem ??, we
derive R ≡ R′. Thus Q ≡ R|S ′′′ and becauseMσ, R|σ(S ′) |= ψ for any S ′, we derive
Mσ, R|S ′′ |= ψ.

Because R|S ′′ ∈ Mσ was arbitrarily chosen, and because σ(P) = σ(R|S) = R|σ(S),
we obtainMσ, P σ |= KRψ.

2. M, P 6|= KRψ implies that either P 6≡ R|S for any S, or P ≡ R|S for some S and there
exists a process R|S ′ ∈M such thatM, R|S ′ 6|= ψ.
If P 6≡ R|P ′, because act(σ) ∩Act(R) = ∅ implies obj(σ) ∩Act(R) = ∅ we derive, by
theorem ??, that σ(P) 6≡ R|S for any S. Hence, we can state thatMσ, P σ 6|= KRψ.
If P ≡ R|S for some S and there exists a process R|S ′ ∈ M such thatM, R|S ′ 6|= ψ,
then the inductive hypothesis givesMσ, σ(R)|σ(S ′) 6|= ψ. But σ(R)|σ(S ′) ≡ R|σ(S ′),
and σ(P) ≡ R|σ(S) thus σ(M), R|σ(S ′) 6|= ψ implies σ(M), σ(P) 6|= KRψ.

2

28

We suppose to have defined on A a lexicographical order�. So, for a finite set A ⊂ A we
can identify a maximal element that is unique. Hence the successor of this element is unique as
well. We convey to denote by A+ the set obtained by adding to A the successor of its maximal
element.

Theorem 7.4 (Finite model property) IfM, P |= φ then ∃N ∈ M
act(φ)+
φ and Q ∈ N such

that N , Q |= φ.

Proof Consider the substitution σ that maps all the actions α ∈ A\act(φ) in the successor
of the maximum element of act(φ) (it exists as act(φ) is finite). Obviously act(σ)∩act(φ) = ∅,
hence, using theorem 7.3 we obtainMσ, P σ |= φ. Further we take N = Mσ

(h,w) ∈ M
act(φ)+

(h,w)

and Q = P σ
(h,w) ∈M

act(φ)+

(h,w) , and theorem 7.1 proves the finite model property. 2

Because act(φ) is finite, implying act(φ)+ finite, Theorem 6.9 proves that M
act(φ)+
φ is finite

and any maximal consistent setM∈M
act(φ)+
φ is finite as well. Thus we obtain the finite model

property for our logic. A consequence of theorem 7.4 is the decidability for satisfiability,
validity and model checking against the process semantics.

Theorem 7.5 (Decidability) For LA
A validity, satisfiability and model checking are decidable

against the process semantics.

7.5 Characteristic formulas
In this subsection we use the peculiarities of the dynamic and epistemic operators to define
characteristic formulas for processes and finite maximal consistent sets of processes. Such for-
mulas will be useful in providing an appropriate axiomatic system for our logic and, eventually,
for proving its completeness.

Definition 7.8 (Characteristic formulas for processes) We define a class of logical formulas
(fP)P∈P, indexed by (≡-equivalence classes of) processes, inductively by:

1. f0
def
= 0 2. fP |Q

def
= fP |fQ 3. fα.P

def
= 〈!α〉fP

We denote by FP this class. Obviously FP ⊂ FA
A .

We will prove latter that fP is a characteristic formula for P . Similarly, we can characterize
the agents by the process they can see.

Definition 7.9 (Characteristic formulas for agents) Similarly we introduce a class of logi-
cal formulas (fA)A∈A, on epistemic agents

1. fA
def
= 0 for atomic agents A ∈ A 2. fA1|A2

def
= fA1|fA2 3. fα.A

def
= 〈!α〉fA

We denote by FA this class. Obviously FA ⊂ FA
A .

Definition 7.10 (Characteristic formulas for finite sets of processes) Let Φ ⊂ FA be a fi-
nite set of formulas and A ∈ A an atomic agent. We define the derived operator

∆Φ
def
= KA(

∨
φ∈Φ

φ) ∧ (
∧
φ∈Φ

∼
KAφ)

29

Observe thatM, P |= ∆Φ iff for any Q ∈ M there exists φ ∈ Φ such thatM, Q |= φ and
for any φ ∈ Φ there exists Q ∈ M such that M, Q |= φ. Observe also that it is irrelevant
which atomic agent A we choose to define ∆, as the epistemic operators of any atomic agent
can encode validity and satisfiability.

Further we exploit the semantics of this operator for defining characteristic formulas for
finite maximal consistent sets of processes.

Definition 7.11 (Characteristic formulas for finite maximal consistent sets) If M is a fi-
nite maximal consistent set of processes, we define fM

def
= ∆{fP | P ∈M}.

8 Axiomatic system
Consider the subset of logical formulas introduced by the next syntax and defined for α ∈ A

f := 〈!α〉0 | 〈!α〉f | f |f

We denote the class of these formulas by F . By construction, F ⊂ FA
A . Hereafter we use

f, g, h for denoting arbitrary formulas from F , while φ, ψ, ρ will be used for formulas in FA
A .

Theorem 8.1 F ∪ {0} = FP.

Hereafter is proposed a Hilbert-style axiomatic system for LA
A. We assume the axioms and

the rules of propositional logic. In addition we will have a set of spatial axioms and rules, of
dynamic axioms and rules and of epistemic axioms and rules. We will also have a class of
mixed axioms and rules that combine different operators.

Spatial axioms
` >|⊥ → ⊥
` φ|0↔ φ
` φ|ψ → ψ|φ
` (φ|ψ)|ρ→ φ|(ψ|ρ)
` φ|(ψ ∨ ρ)→ (φ|ψ) ∨ (φ|ρ)
` (f ∧ φ|ψ)→

∨
f↔g|h(g ∧ φ)|(h ∧ ψ)

Spatial rules
If ` φ→ ψ then ` φ|ρ→ ψ|ρ

Axiom E8 states the propagation of the inconsistency from a subsystem to the upper system.
Axioms E8, E8 and E8 depict the structure of abelian monoid projected by the parallel

operator on the class of processes.
Concerning axiom E8, observe that the disjunction involved has a finite number of terms,

as we considered the processes up to structural congruence level. The theorem states that if
system has a property expressed by parallel composition of specifications, then it must have
two parallel complementary subsystems, each of them satisfying one of the specifications.

Rule ER8 states a monotony property for the parallel operator.

30

Dynamic axioms
` 〈α〉φ|ψ → 〈α〉(φ|ψ)
` [α](φ→ ψ)→ ([α]φ→ [a]ψ)
` 0 ∨ 〈!α〉> → [β]⊥, for α 6= β
` 〈!α〉φ→ [α]φ

Dynamic rules
If ` φ then ` [α]φ

If ` φ→ [α]φ′ and ` ψ → [α]ψ′ then ` φ|ψ → [α](φ′|ψ ∨ φ|ψ′).
The first dynamic axiom, axiom E8, presents a domain extrusion property for the dynamic

operator. It expresses the fact that if an active subsystem of a bigger system performs the action
a, then the bigger system performs it as a whole.

Axiom E8 is just the (K)-axiom for the dynamic operator.
Axiom E8 states that an inactive system cannot perform any action.
Given a complex process that can be exhaustively decomposed in n parallel subprocesses,

each of them being able to perform one action only, αi, for i = 1..n, axiom E8.2 ensures us
that the entire system, as a whole, cannot perform another action β 6= αi for i = 1..n.

Recalling that the operator 〈!α〉 describes processes guarded by α, axiom E8 states that a
system described by a guarded process can perform one and only one action, the guarding one.

Rule ER8 is the classic necessity rule used for the dynamic operator.
Rule ER8 is, in a sense, a counterpart of axiom E8 establishing the action of the operator

[a] in relation to the parallel operator.

Epistemic axioms
` KA> ↔ fA|>
` KAφ ∧KA(φ→ ψ)→ KAψ
` KAφ→ φ
` KAφ→ KAKAφ.
` KA> → (¬KAφ→ KA¬KAφ)

Axioms involving atomic agents
If A′ is an atomic agent and A is any agent then
` KAφ↔ (KA> ∧KA′(KA> → φ))
` KA′φ ∧ ψ|ρ→ (KA′φ ∧ ψ)|(KA′φ ∧ ρ)
` KA′φ→ [a]KA′φ
` KA′φ→ (KA> → KAKA′φ)

Epistemic rules
If ` φ then ` KA> → KAφ.

31

Axiom E8 is the classical (K)-axiom stating that our epistemic operator is a normal one.
This is an expected axiom as all the epistemic logics have it.

The same remark on axiom E8 which is just the axiom (T) - necessity axiom, for the
epistemic operator.

Also axiom E8 is well known in epistemic logics. It states that our epistemic agents satisfy
the positive introspection property, i.e. if A knows something then it knows that it knows that
thing.

Axiom E8 states a variant of the negative introspection, saying that if an agent A is active
and if it doesn’t know φ, then it knows that it doesn’t know φ. The novelty in our axiom is the
precondition KA> of the negative introspection. This precondition guarantees that the agent
really exists, i.e. it is active. Such a precondition does not appear in the other epistemic logics
for the reason that, in those cases, the agents exists always and they knows, always, at least the
tautologies.

Axiom E8 provides a full description of the knowledge of any agent A based on the knowl-
edge of any atomic agent.

Axioms E8, E8 and E8 present KA′φ as a syntactic encryption of validity.
Rule ER8 states that any active agent knows all the tautologies. As in the case of the

negative introspection, we deal with a well known epistemic rule, widely spread in epistemic
logics, but our rules work under the assumption that the agent is active.

Mixed axioms
` 〈A : α〉> → KA>.
` fA → (〈α〉φ↔ 〈A : α〉φ)
` 〈A : α〉φ ∧ 〈A|A′ : α〉> → 〈A|A′ : α〉φ

Mixed rules
If `

∨
M∈M

act(φ)+
φ

fM → φ then ` φ.

Rule ER8 comes as a consequence of the finite model property and provides a rule that
characterizes, in a finite manner, the validity of a formula. Observe that the disjunction in the
first part of the rule has a finite number of terms.

Theorem 8.2 If β 6= αi for i = 1..n then ` 〈!α1〉>|...|〈!αn〉> → [β]⊥

Theorem 8.3 IfM3 P is a finite context and ` cM ∧ cP → K0φ then ` cM → φ.

sectionSoundness of the system LA
A

In this section we will motivate the choice of the axioms by proving the soundness of our
system with respect to process semantics. In this way we will prove that everything expressed
by our axioms and rules about the process semantics is correct and, in conclusion, using our
system, we can derive only theorems that can be meaningfully interpreted.

Theorem 8.4 (Soundness) The system LA
A is sound w.r.t. process semantics.

32

Proof The soundness of LA
A will be sustained by the soundness of all spatial, dynamic and

epistemic axioms and rules. 2

Soundness of the spatial axioms and rules
We start with proving the soundness of the spatial axioms and rules.

[Soundness of axiom E8] |= >|⊥ → ⊥
Proof Suppose that it exists a maximal consistent setM and a process P ∈ M such that

M, P |= >|⊥. Then P ≡ Q|R with M, Q |= > and M, R |= ⊥; i.e. M, R 6|= >. But
this is not possible. Hence, there is no maximal consistent setM and process P ∈ M such
thatM, P |= >|⊥, i.e. for any maximal consistent setM and any process P ∈ M we have
M, P |= ¬(>|⊥), i.e.M, P |= >|⊥ → ⊥. 2

[Soundness of axiom E8] |= φ|0↔ φ.
Proof M, P |= φ|0 iff P ≡ Q|R,M, Q |= φ andM, R |= 0. Then R ≡ 0, so P ≡ Q,

henceM, P |= φ.
IfM, P |= φ, becauseM, 0 |= 0 and P ≡ P |0 ∈M we obtain thatM, P |= φ|0. 2

[Soundness of axiom E8] |= φ|ψ → ψ|φ.
Proof M, P |= φ|ψ means that P ≡ Q|R,M, Q |= φ andM, R |= ψ. But P ≡ R|Q ∈

M, henceM, P |= ψ|φ. 2

[Soundness of axiom E8] |= (φ|ψ)|ρ→ φ|(ψ|ρ).
Proof M, P |= (φ|ψ)|ρ implies that P ≡ Q|R, M, Q |= φ|ψ and M, R |= ρ. Then

Q ≡ S|V withM, S |= φ andM, V |= ψ. But P ≡ (S|V)|R ≡ S|(V |R), whereM, S |= φ
andM, V |R |= ψ|ρ. HenceM, P |= φ|(ψ|ρ). 2

[Soundness of axiom E8] |= φ|(ψ ∨ ρ)→ (φ|ψ) ∨ (φ|ρ)
Proof M, P |= φ|(ψ ∨ ρ) means that P ≡ Q|R, M, P |= φ and M, R |= ψ ∨ ρ, i.e.

M, R |= ψ orM, R |= ρ. HenceM, P |= φ|ψ orM, P |= φ|ρ. SoM, P |= (φ|ψ) ∨ (φ|ρ).
2

Now we prove that the formulas fP defined before are characteristic formulas.

Theorem 8.5 If P ∈M, thenM, P |= fP .

Proof We prove it by induction on the structure of the process P .
The case P ≡ 0:M, 0 |= f0, because 0 ∈M, f0 = 0 andM, 0 |= 0.
The case P ≡ Q|R: we have Q,R ∈ M and fP = fQ|fR. By the inductive hypothesis
M, Q |= fQ andM, R |= fR, soM, Q|R |= fQ|fR. HenceM, P |= fP .
The case P ≡ α.Q: we have P α−→ Q, hence Q ∈ M. Moreover, fP = 〈α〉fQ ∧ 1. By the
inductive hypothesisM, Q |= fQ. Because P α−→ Q, we obtainM, P |= 〈α〉fQ, and because
P ≡ α.Q is a guarded process, we have alsoM, P |= 1. HenceM, P |= fP . 2

33

Theorem 8.6 M, P |= fQ iff P ≡ Q.

Proof (⇐) We prove it by verifying thatM, P |= fQ for any P,Q involved in the equiva-
lence rules.

• if P = R|S and Q = S|R, we haveM, R|S |= fR|fS and using the soundness of axiom
E8, we obtainM, R|S |= fS|fR, i.e.M, P |= fQ

• if P = (R|S)|U and Q = R|(S|U) we haveM, P |= (fR|fS)|fU . Using the soundness
of axiom E8, we obtain M, P |= fQ. Similarly M, Q |= fP , using the soundness of
axioms E8 and E8.

• if P = Q|0 thenM, P |= fQ|0, i.e., by using the soundness of axiom E8,M, P |= fQ.
Similarly reverse, form M, Q |= fQ we derive, by using the soundness of axiom E8,
M, Q |= fQ|0, i.e.M, Q |= fP .

• if P = P ′|R and Q = Q′|R with P ′ ≡ Q′ andM, P ′ |= fQ′ , becauseM, R |= fR, we
obtain thatM, P |= fQ′ |fR, i.e.M, P |= fQ.

• if P = α.P ′ and Q = α.Q′ with P ′ ≡ Q′ andM, P ′ |= fQ′ , as P α−→ P ′, thenM, P |=
〈α〉fQ′ . ButM, P |= 1, because P is a guarded process, henceM, P |= 〈α〉fQ′ ∧ 1, i.e.
M, P |= fQ.

(⇒) We prove the implication in this sense by induction on the structure of Q.

• if Q ≡ 0, thenM, P |= f0, meansM, P |= 0. Hence P ≡ 0.

• if Q ≡ R|S then M, P |= fQ is equivalent with M, P |= fR|fS . So P ≡ U |V ,
M, U |= fR andM, V |= fS . By the inductive hypothesis we obtain that U ≡ R and
V ≡ S. Hence P ≡ Q.

• if Q ≡ α.R, thenM, P |= fQ is equivalent withM, P |= 〈α〉fR ∧ 1. So P α−→ P ′ with
M, P ′ |= fR. By the inductive hypothesis, P ′ ≡ R. And becauseM, P |= 1 we obtain
that P ≡ α.R, i.e. P ≡ Q.

2

[Soundness of axiom E8] |= (f ∧ φ|ψ)→
∨
f↔g|h(g ∧ φ)|(h ∧ ψ)

Proof Suppose thatM, S |= f ∧ φ|ψ. Then there exists a process P such that f = fP .
Hence S ≡ P (by theorem 8.6) and S ≡ S1|S2 withM, S1 |= φ andM, S2 |= ψ.
ButM, S1 |= fS1 andM, S2 |= fS2 , by theorem 8.5.
HenceM, S1 |= φ ∧ fS1 andM, S2 |= ψ ∧ fS2 .
And because P ≡ S ≡ S1|S2, we obtain M, P |= (φ ∧ fS1)|(ψ ∧ fS2), hence M, P |=
(f ∧ φ|ψ)→

∨
f↔g|h(g ∧ φ)|(h ∧ ψ), q.e.d. 2

[Soundness of rule ER8] If |= φ→ ψ then |= φ|ρ→ ψ|ρ
Proof IfM, P |= φ|ρ then P ≡ Q|R,M, Q |= φ andM, R |= ρ. But from the hypothesis,

M, Q |= φ→ ψ, henceM, Q |= ψ. ThenM, P |= ψ|ρ, so |= φ|ρ→ ψ|ρ. 2

34

Soundness of the dynamic axioms and rules
We prove now the soundness for the class of dynamic axioms and rules.

[Soundness of axiom E8] |= 〈a〉φ|ψ → 〈a〉(φ|ψ).
Proof IfM, P |= 〈a〉φ|ψ, then P ≡ R|S,M, R |= 〈a〉φ andM, S |= ψ. So ∃R a−→ R′

andM, R′ |= φ. So ∃P ≡ R|S a−→ P ′ ≡ R′|S andM, P ′ |= φ|ψ. HenceM, P |= 〈a〉(φ|ψ).
2

[Soundness of axiom E8] |= [a](φ→ ψ)→ ([a]φ→ [a]ψ)
Proof LetM, P |= [a](φ → ψ) andM, P |= [a]φ. If there is no P ′ such that P a−→ P ′,

thenM, P |= [a]ψ. Suppose that exists such P ′. Then for any such P ′ we haveM, P ′ |= φ→
ψ andM, P ′ |= φ. HenceM, P ′ |= ψ, i.e.M, P |= [a]ψ. 2

[Soundness of axiom E8] For α 6= β we have

|= 0 ∨ 〈!α〉> → [β]⊥.

Proof IfM, P |= 0 then P ≡ 0 and there is no transition 0
β−→ P ′, henceM, P 6|= 〈β〉>,

i.e.M, P |= [β]⊥.
Suppose thatM, P |= 〈!α〉>. Then necessarily P ≡ α.P1. But if α 6= β, there is no transition

α.P1
β−→ P ′.

HenceM, P 6|= 〈β〉>, i.e.M, P |= [β]⊥. 2

[Soundness of axiom E8] |= 〈!α〉φ→ [α]φ
Proof Suppose thatM, P |= 〈!α〉φ, thenM, P |= 1 andM, P |= 〈α〉φ. Then necessarily

P ≡ α.P ′ andM, P ′ |= φ. But there is only one reduction that P can do, P α−→ P ′. So, for
any reduction P α−→ P ′′ (because there is only one), we haveM, P ′′ |= φ, i.e. M, P |= [α]φ

2

[Soundness of rule ER8] If |= φ then |= [a]φ.
Proof LetM be a maximal consistent set and P ∈ M a process. If there is no P ′ such

that P a−→ P ′, thenM, P |= [a]φ. Suppose that exists such P ′ (obviously P ′ ∈M). Then for
any such P ′ we haveM, P ′ |= φ, due to the hypothesis |= φ. HenceM, P |= [a]φ. 2

[Soundness of rule ER8]

If |= φ→ [a]φ′ and |= ψ → [a]ψ′ then |= φ|ψ → [a](φ′|ψ ∨ φ|ψ′)

Proof Suppose thatM, P |= φ|ψ, then P ≡ Q|R,M, Q |= φ andM, R |= ψ. Because
|= φ → [a]φ′ and |= ψ → [a]ψ′, we derive M, Q |= [a]φ′ and M, R |= [a]ψ′. We analyze
some cases:

35

• if P cannot perform a transition by a, thenM, P |= [a]⊥, and using the soundness of
axiom E8 and rule ER8 we derive

|= [a]⊥ → [a](φ′|ψ ∨ φ|ψ′)

hence, we obtain in the endM, P |= [a](φ′|ψ ∨ φ|ψ′).

• if Q
a

toQ′ and R cannot perform a transition by a, then Q|R
a

toQ′|R and the transitions of
P ≡ Q|R by a have always this form.
ButM, Q |= [a]φ′, so for any such Q′ we haveM, Q′ |= φ′, thusM, Q′|R |= φ′|ψ, i.e.
M, Q′|R |= (φ′|ψ ∨ φ|ψ′).

Hence for any transition P
a

toP ′ we haveM, P ′ |= (φ′|ψ∨φ|ψ′). In conclusion,M, P |=
[a](φ′|ψ ∨ φ|ψ′).

• if Q cannot perform a transition by a and R
a

toR′, similarly as in the previous case, we
can deriveM, P |= [a](φ′|ψ ∨ φ|ψ′).

• if Q
a

toQ′ and R
a

toR′ then P
a

toP ′ has either the form Q|R
a

toQ′|R or Q|R
a

toQ|R′. But
M, Q′|R |= φ′|ψ, hence M, Q′|R |= (φ′|ψ ∨ φ|ψ′) and M, Q|R′ |= φ|ψ′, hence

M, Q|R′ |= (φ′|ψ ∨ φ|ψ′). Thus, for any transition P
a

toP ′ we haveM, P ′ |= (φ′|ψ ∨
φ|ψ′), i.e.M, P |= [a](φ′|ψ ∨ φ|ψ′).

So, in any caseM, P |= [a](φ′|ψ ∨ φ|ψ′), that concludes the proof. 2

Soundness of the epistemic axioms and rules
Hereafter we prove the soundness for the epistemic axioms and rules.

[Soundness of axiom E8] |= fA|> ↔ KA>
Proof If M, P |= fA|> then P ≡ R|S, with M, S |= fA. Then P ≡ I(A)|R. And

because for any I(A)|R′ ∈M we haveM, I(A)|R′ |= >, we deriveM, P |= KA>.
Suppose now the reverse, i.e. thatM, P |= KA>. Then P ≡ I(A)|R. ButM, P |= fP , hence
M, P |= fA|fR.
Because |= fA → >, using the soundness of rule ER8, we derive |= fA|fR → fA|> from
where we conclude thatM, P |= fA|>. 2

[Soundness of axiom E8] |= KAφ ∧KA(φ→ ψ)→ KAψ
Proof Suppose thatM, P |= KAφ and thatM, P |= KA(φ → ψ). Then P ≡ I(A)|R

and for any S such that S|I(A) ∈ M we haveM, S|I(A) |= φ andM, I(A)|S |= φ → ψ.
Hence for any such I(A)|S we haveM, I(A)|S |= ψ and because P ≡ I(A)|R we obtain that
M, P |= KAψ. 2

[Soundness of axiom E8] |= KAφ→ φ.
Proof IfM, P |= KAφ then P ≡ I(A)|R and for any I(A)|S ∈Mwe haveM, I(A)|S |=

φ, i.e.M, I(A)|R |= φ, soM, P |= φ. 2

36

[Soundness of axiom E8] |= KAφ→ KAKAφ.
Proof Suppose thatM, P |= KAφ, then P ≡ I(A)|R and for any I(A)|S ∈ M we have

M, I(A)|S |= φ. Let I(A)|S ′ ∈ M be arbitrarily chosen. As for any I(A)|S ∈ M we have
M, I(A)|S |= φ, we derive thatM, I(A)|S ′ |= KAφ. But I(A)|S ′ has been arbitrarily chosen,
so for any I(A)|S ∈ M we haveM, I(A)|S |= KAφ, and because P ≡ I(A)|R we obtain
M, P |= KAKAφ. 2

[Soundness of axiom E8] |= KA> → (¬KAφ→ KA¬KAφ)
Proof Suppose thatM, P |= KA> andM, P |= ¬KAφ. Then P ≡ I(A)|R and ∃S such

thatM, S|I(A) |= ¬φ. But then for any U such that U |I(A) ∈ M we haveM, U |I(A) |=
¬KAφ. HenceM, P |= KA¬KAφ. 2

In the next lemmas of this subsection we will denote by A′ an atomic agent.
[Soundness of axiom E8]

|= KAφ↔ (KA> ∧KA′(KA> → φ)).

Proof Suppose thatM, P |= KAφ. Then P ≡ I(A)|R and for any I(A)|S ∈ M we have
M, I(A)|S |= φ. From P ≡ I(A)|R, because for any I(A)|S ∈M we haveM, I(A)|S |= >,
we deriveM, P |= KA>. Consider now an arbitrary process S ∈ M. IfM, S 6|= KA>, then
M, S |= KA> → φ.
IfM, S |= KA> we derive that S ≡ I(A)|S ′, henceM, S |= φ.
So, for an arbitrarily chosen S ∈M we haveM, S |= KA> → φ.
Because P ≡ P |0 and for any process S ≡ S|0 ∈M we have
M, S |= KA> → φ, we derive thatM, P |= KA′(KA> → φ). Hence |= KAφ → (KA> ∧
KA′(KA> → φ)).

Suppose now that M, P |= KA> ∧ KA′(KA> → φ). From M, P |= KA> we derive
P ≡ I(A)|R.
BecauseM, P |= KA′(KA> → φ), we obtain that for any process S ∈ M we haveM, S |=
KA> → φ. Hence, for any process S|I(A) ∈ M we have M, S|I(A) |= φ (because
M, S|I(A) |= KA>). And because P ≡ I(A)|R, we deriveM, P |= KAφ. 2

[Soundness of axiom E8]

|= KA′φ ∧ ψ|ρ→ (KA′φ ∧ ψ)|(KA′φ ∧ ρ).

Proof Suppose thatM, P |= KA′φ ∧ ψ|ρ thenM, P |= KA′φ andM, P |= ψ|ρ.
M, P |= KA′φ gives that for any R ∈M we haveM, R |= φ.
M, P |= ψ|ρ gives that P ≡ P ′|P ′′ andM, P ′ |= ψ,M, P ′′ |= ρ. Because P ′, P ′′ ∈ M and
because for any R ∈M,M, R |= φ we derive thatM, P ′ |= KA′φ andM, P ′′ |= KA′φ.
Hence M, P ′ |= ψ ∧ KA′φ and M, P ′′ |= ρ ∧ KA′φ. As P ≡ P ′|P ′′, we obtain further
M, P |= (KA′φ ∧ ψ)|(KA′φ ∧ ρ). 2

[Soundness of axiom E8] |= KA′φ→ [a]KA′φ

37

Proof Suppose thatM, P |= KA′φ, then for any R ∈M we haveM, R |= φ.
If P cannot perform a transition by a, we haveM, P |= [a]KA′φ.

If P can perform such transitions, then for any P
a

toP ′ we have
M, P ′ |= KA′φ (as for any R ∈M we haveM, R |= φ). This meansM, P |= [a]KA′φ. 2

[Soundness of axiom E8] |= KA′φ→ (KA> → KAKA′φ)
Proof Suppose thatM, P |= KA′φ andM, P |= KA>.

M, P |= KA′φ gives that for any R ∈M we haveM, R |= φ.
M, P |= KA> means that P ≡ I(A)|S. Because for any R ∈ M we haveM, R |= φ, we
obtain that for any I(A)|S ′ ∈ M we haveM, I(A)|S ′ |= KA′φ, and because P ≡ I(A)|S we
obtainM, P |= KAKA′φ. 2

[Soundness of rule ER8] If |= φ then |= KA> → KAφ
Proof If |= φ then for any maximal consistent setM and any process P ∈ M we have

M, P |= φ. Suppose now that M, P |= KA>. Then P ≡ I(A)|R. Because M, S |= φ
for each S ∈ M, we derive that for any S|I(A) ∈ M we have M, S|I(A) |= φ. Hence
M, P |= KAφ. 2

Soundness of the mixed axioms and rules
[Soundness of axiom E+8]

|= 〈A : α〉> → KA>

Proof Suppose thatM, P |= 〈A : α〉> then there exists a reduction

P
A:α

toP ′, hence P ≡ I(A)|R. Now, because for any I(A)|S ∈ M we haveM, I(A)|S |= >
we derive thatM, P |= KA>. 2

[Soundness of axiom E+8]

|= fA → (〈α〉φ↔ 〈A : α〉φ)

Proof IfM, P |= fA∧〈α〉φ then P ≡ I(A) andM, I(A) |= 〈α〉φ. So, there is a transition

I(A)
α

toR withM, R |= φ. But I(A)
α

toR is equivalent with I(A)
A:α

toR. HenceM, P |= 〈A :
α〉φ.
Reverse, if M, P |= fA ∧ 〈A : α〉φ then P ≡ I(A) and M, I(A) |= 〈A : α〉φ. So, there

is a transition I(A)
A:α

toR withM, R |= φ. But I(A)
A:α

toR is equivalent with I(A)
α

toR. Hence
M, P |= 〈α〉φ. 2

[Soundness of axiom E+8]

|= 〈A1 : α〉φ ∧ 〈A1|A2 : α〉> → 〈A1|A2 : α〉φ

38

Proof Suppose thatM, R |= 〈A1 : α〉φ ∧ 〈A1|A2 : α〉>.
ThenM, R |= 〈A1 : α〉φ andM, R |= 〈A1|A2 : α〉>.

But M, R |= 〈A1 : α〉φ means that it exists the reduction R
A1:α

to R′ and M, R′ |= φ, i.e.

R ≡ I(A1)|S, I(A1)
α

toP and R′ ≡ P |S.
M, R |= 〈A1|A2 : α〉> means that R ≡ I(A1)|I(A2)|V , i.e. S ≡ I(A2)|V .

But I(A1)
A1:α

to P gives I(A1)|I(A2)
A1|A2:α

to P |I(A2), hence R
A1|A2:α

to R′ and M, R′ |= φ, that
meansM, R |= 〈A1|A2 : α〉φ. 2

[Soundness of rule ER8] If |=
∨
M∈M

act(φ)+
φ

fM → φ then |= φ.

Proof Suppose that |=
∨
M∈M

act(φ)+
φ

fM → φ but it exists a modelN and a processQ ∈ N
with N , Q 6|= φ. Then N , Q |= ¬φ.
Further, using the finite model property, theorem 7.4, we obtain that it exists a maximal con-
sistent set N ′ ∈M

act(φ)+
φ and a process R ∈ N ′ with N ′, R |= ¬φ.

But φ = ¬φ, and act(φ) = act(¬φ) so it exists a maximal consistent set N ′ ∈ M
act(φ)+
φ

and a process R ∈ N ′ with N ′, R |= ¬φ. Because N ′, R |= fN ′ , we derive N ′, R |=∨
M∈M

act(φ)+
φ

fM.

But |=
∨
M∈M

act(φ)+
φ

fM → φ implies N ′, R |=
∨
M∈M

act(φ)+
φ

fM → φ, hence N ′, R |= φ.

As we also have N ′, R |= ¬φ, we obtain N ′, R |= ⊥ - impossible!
Then, for any model N and any process P ∈ N we have N , P |= φ, i.e. |= φ. 2

9 Some theorems
Theorem 9.1 If P 6≡ Q then ` fP → ¬fQ.

Proof We prove it by induction on P .

• the case P ≡ 0: as P 6≡ Q we obtain that Q ≡ α.R|S. So fQ = 〈α〉fR ∧ 1|fS
that implies, using theorem 9.10, ` fQ → 〈α〉fR|fS , and applying axiom E8, ` fQ →
〈α〉(fR|fS).
But ` fR|fS → > and applying theorem 9.13, we obtain
` 〈α〉(fR|fS)→ 〈α〉>.
Hence, ` fQ → 〈α〉>. Then ` ¬〈α〉> → ¬fQ.
Axiom E8 gives ` 0→ ¬〈α〉> hence, in the end, ` 0→ ¬fQ, i.e. ` fP → ¬fQ.

• the case P ≡ P ′|P ′′: we have fP = fP ′ |fP ′′ . Because P 6≡ Q, we obtain that for any
decomposition Q ≡ Q′|Q′′ we have either P ′ 6≡ Q′ or P ′′ 6≡ Q′′. Using the inductive
hypothesis, we derive that either ` fQ′ → ¬fP ′ or ` fQ′′ → ¬fP ′′ . Because this is
happening for any decomposition of Q, we can apply theorem 9.12 and we obtain
` fQ → ¬(fP ′|fP ′′), i.e. ` fQ → ¬fP . Hence ` fP → ¬fQ.

39

• the case P ≡ α.P ′: fP = 1 ∧ 〈α〉fP ′ , so ` fP → 1 ∧ 〈α〉>.
But axiom E8.2 gives ` 〈α〉> ∧ 1→ ¬〈β〉> for any β 6= α.
Hence, for any β 6= α we have ` fP → ¬〈β〉>.

– if Q ≡ 0 we already proved that ` fQ → ¬fP (because P 6≡ 0), so ` fP → ¬fQ
– if Q ≡ β.Q′|Q′′ for some β 6= α, then ` fQ → 〈β〉>, hence ` ¬〈β〉> → ¬fQ. But

we proved that ` fP → ¬〈β〉>. Hence ` fP → ¬fQ.

– if Q ≡ α.Q1|...|α.Qk for k > 1, then ` fQ → ¬0|¬0 (as ` 0 → ¬fα.Q1 and
` 0→ ¬fα.Q2|...|α.Qk). Then ` fQ → ¬1, i.e.
` 1→ ¬fQ. But ` fP → 1. Hence ` fP → ¬fQ.

– if Q ≡ αQ′: then P 6≡ Q gives P ′ 6≡ Q′. For this case we can use the inductive
hypothesis and we obtain ` fQ′ → ¬fP ′ . Further, applying theorem 9.14, we obtain
` [α]fP ′ → [α]¬f ′Q, i.e.
` [α]fP ′ → ¬〈α〉fQ′ that gives, because fQ = 1 ∧ 〈α〉fQ′ ,
` [α]fP ′ → ¬fQ.
Now, using axiom E8, ` 1 ∧ 〈α〉fP ′ → [α]fP ′ , so ` fP → [α]fP ′ , and, combining
it with the previous result, we derive ` fP → ¬fQ.

2

Theorem 9.2 If P ≡ Q then ` fP ↔ fQ.

Proof We prove it verifying the congruence rules:

• if P = R|S and Q = S|R then ` fR|fS ↔ fS|fR from theorem 9.7, i.e. ` fP ↔ fQ

• if P = (R|S)|U and Q = R|(S|U) then theorem 9.8 we have
` (fR|fS)|fU ↔ fR|(fS|fU), i.e. ` fP ↔ fQ

• if P = Q|0 then axiom E8 gives ` fQ|0↔ fQ, i.e. ` fP ↔ fQ.

• if P = P ′|R and Q = Q′|R with P ′ ≡ Q′ and ` fP ′ ↔ fQ′ then rule ER8 gives
` fP ′|fR ↔ fQ′ |fR. Hence ` fP ↔ fQ.

• if P = α.P ′ and Q = α.Q′ with P ′ ≡ Q′ and ` fP ′ ↔ fQ′ then theorem 9.13 gives
` 〈α〉fP ′ ↔ 〈α〉fQ′ , so ` (〈α〉fP ′ ∧ 1)↔ (〈α〉fQ′ ∧ 1). Hence ` fP ↔ fQ.

2

We prove now that the intuition behind the definition of characteristic formulas for finite
maximal consistent sets is correct and, indeed, fM can be used to characterizeM.

Theorem 9.3 IfM is a finite maximal consistent set and P ∈M thenM, P |= fM.

40

Proof ObviouslyM, P |= fP , henceM, P |=
∨
Q∈M fQ.

Similarly, for any R ∈ M we haveM, R |=
∨
Q∈M fQ, and because R ≡ R|0 and P ≡ P |0,

we deriveM, P |= K0(
∨
Q∈M fQ).

As for anyR ∈M there exists a process U ∈M (more exactly U = R) such thatM, U |= fR,
we obtain that for each R ∈M we have
M, P |=

∼
K0fR, henceM, P |=

∧
Q∈M

∼
K0fQ. 2

IfM is a finite maximal consistent set and P ∈M then

M, P |= fM ∧ fP .

Theorem 9.4 IfM, P |= fN then N =M.

Proof Suppose that M, P |= fN , then M, P |= K0(
∨
Q∈N fQ), i.e. for any R ∈ M

we have M, R |=
∨
Q∈N fQ. Hence, for any R ∈ M there exists a process Q ∈ N with

M, R |= fQ, or equivalently, R ≡ Q.

NowM, P |=
∧
Q∈N

∼
K0fQ gives that for any Q ∈ N we have

M, P |=
∼
K0fQ, i.e. there exists a process R ∈ M such that M, R |= fQ, or equivalently,

R ≡ Q.
Hence, we proved that for any R ∈ M there exists Q ∈ N such that R ≡ Q, and for any
Q ∈ N there exists R ∈ M such that R ≡ Q. Because we identify processes up to structural
congruence, we decide that M = N . 2

Spatial results
We start with the results that can be proved on the basis of the spatial theorems and rules only.
They reflect the behavior of the parallel operator in relation to the operators of the classical
logic.

Theorem 9.5 ` >|> ↔ >

Proof Obviously ` >|> → >. As ` 0 → >, using rule ER8, we obtain ` >|0 → >|>.
Further axiom E8 gives us ` > → >|>. 2

Theorem 9.6 If ` φ then ` θ|ρ→ φ|ρ

Proof Because ` φ implies ` θ → φ, using rule ER8 we obtain the result. 2

Theorem 9.7 ` φ|ψ ↔ ψ|φ

Proof We use axiom E8 in both directions. 2

41

Theorem 9.8 ` (φ|ψ)|ρ↔ φ|(ψ|ρ)

Proof We use axiom E8 and theorem 9.7. 2

Theorem 9.9 ` φ|(ψ ∨ ρ)↔ (φ|ψ) ∨ (φ|ρ)

Proof ` ψ → ψ∨ρ so, using rule ER8, ` φ|ψ → φ|(ψ∨ρ). Similarly, ` φ|ρ→ φ|(ψ∨ρ).
Hence ` (φ|ψ) ∨ (φ|ρ)→ φ|(ψ ∨ ρ). The other direction is stated by axiom E8. 2

Theorem 9.10 ` φ|(ψ ∧ ρ)→ (φ|ψ) ∧ (φ|ρ)

Proof Because ` ψ∧ρ→ ψ, by applying rule ER8, we have ` φ|(ψ∧ρ)→ φ|ψ. Similarly
` φ|(ψ ∧ ρ)→ φ|ρ. 2

The next result proves a strong version of monotonicity of the parallel composition.

Theorem 9.11 If ` φ→ ρ and ` ψ → θ then ` φ|ψ → ρ|θ.

Proof If ` φ → ρ then rule ER8 gives us ` φ|ψ → ρ|ψ. If ` ψ → θ, then the same rule
gives ` ρ|ψ → ρ|θ. Hence ` φ|ψ → ρ|θ. 2

The next result speaks about the negative parallel decomposition of a specification. It states
that, given two specifications, φ and ψ, if considering any parallel decomposition of our system
(process) P ≡ Q|R, we obtain that either Q doesn’t satisfy φ or R doesn’t satisfy ψ, then our
system P does not satisfy the parallel composition of the two specifications, φ|ψ.

Theorem 9.12 If for any decomposition P ≡ Q|R we have ` fQ → ¬φ or ` fR → ¬ψ then
` fP → ¬(φ|ψ).

Proof ` fQ → ¬φ is equivalent with ` fQ ∧ φ → ⊥ and because ` fR ∧ ψ → >, we
obtain, by theorem 9.11 ` (fQ ∧ φ)|(fR ∧ ψ)→ ⊥|>. And using axiom E8, we derive

` (fQ ∧ φ)|(fR ∧ ψ)→ ⊥

Similarly, from ` fR → ¬ψ we can derive

` (fQ ∧ φ)|(fR ∧ ψ)→ ⊥

Hence, the hypothesis of the theorem says that for any decomposition P ≡ Q|R we have
` (fQ ∧ φ)|(fR ∧ ψ)→ ⊥, i.e.

`
∨

P≡Q|R

(fQ ∧ φ)|(fR ∧ ψ)→ ⊥

42

But axiom E8 gives
` (fP ∧ φ|ψ)→

∨
P≡Q|R

(fQ ∧ φ)|(fR ∧ ψ)

hence
` (fP ∧ φ|ψ)→ ⊥, i.e. ` fP → ¬(φ|ψ).

2

Related to the same topic of the relation between negation and the parallel operator, observe
that the negation is not distributive with respect to parallel. This is the reason why, in the
previous theorem, we had to ask in the premises that the condition ` fQ → ¬φ or ` fR → ¬ψ
be fulfilled by all the possible decompositions of P . If only a decomposition P ≡ Q|R exists
such that ` fQ → ¬φ or ` fR → ¬ψ, this is not enough to deriveM, P |= ¬(φ|ψ). Indeed
suppose thatM, Q |= φ butM, Q 6|= ψ andM, R |= ψ butM, R 6|= φ. Then fromM, Q |= φ
andM, R |= ψ we deriveM, P |= φ|ψ. It is not the case that, from the additional information
M, Q 6|= ψ andM, R 6|= φ,M, P |= ¬(φ|ψ) to be derived. All we can derive from the unused
information is thatM, P |= ¬φ|¬ψ, which does not contradictM, P |= φ|ψ.

9.1 Dynamic results
Now we focus of the theorems that derive from the class of dynamic axioms and rules. Remark
the modal behaviors of the dynamic operators.

The next result states the monotonicity of the diamond operator.

Theorem 9.13 (Monotonicity) If ` φ→ ψ then ` 〈a〉φ→ 〈a〉ψ.

Proof ` φ→ ψ implies ` ¬ψ → ¬φ. Using rule ER8 we obtain
` [a](¬ψ → ¬φ) and axiom E8 gives ` [a]¬ψ → [a]¬φ. This is equivalent with ` ¬〈a〉ψ →
¬〈a〉φ, i.e. ` 〈a〉φ→ 〈a〉ψ. 2

Theorem 9.14 If ` φ→ ψ then ` [a]¬ψ → [a]¬φ.

Proof If ` φ→ ψ then, by theorem 9.13, ` 〈a〉φ→ 〈a〉ψ, hence
` ¬〈a〉ψ → ¬〈a〉φ, that gives ` [a]¬ψ → [a]¬φ. 2

The next theorems confirm the intuition that the formulas fP , in their interrelations, mimic
the transitions of the processes (the dynamic operators mimic the transition labeled by the
action it has as index).

Theorem 9.15 If P cannot do any transition by α then ` fP → [α]⊥.

43

Proof We prove it by induction on the structure of P .
The case P ≡ 0: axiom E8 implies ` 0→ [α]⊥ which proves this case, because f0 = 0.
The case P ≡ α1.P1|...|αn.Pn: as P cannot perform α we have α 6= αi for i = 1..n. We
have fP = (〈α1〉fP1 ∧ 1)|...|(〈αn〉fPn ∧ 1). From ` fPi → > we derive, using theorem 9.13,
` (〈αi〉fPi ∧ 1)→ (〈αi〉> ∧ 1). Further, we apply theorem 9.11 and obtain ` fP → (〈α1〉> ∧
1)|...|(〈αn〉> ∧ 1). Axiom E8.2 gives that for α 6= αi, ` (〈α1〉> ∧ 1)|...|(〈αn〉> ∧ 1)→ [α]⊥.
Hence ` fP → [α]⊥. 2

Theorem 9.16 ` fP → [α]
∨
{fQ | P

α−→ Q}

Proof We prove it by induction on P .
The case P 6≡ α.P ′|P ′′ for some P ′, P ′′: then P cannot preform a transition by α, hence,

by theorem 9.15, ` fP → [α]⊥. But
` ¬

∨
{fQ | P

α−→ Q} → >, and using theorem 9.14, we derive

` [α]⊥ → [α]
∨
{fQ | P

α−→ Q}

Combining this with ` fP → [α]⊥, we derive

` fP → [α]
∨
{fQ | P

α−→ Q}

The case P ≡ α.P ′: then {fQ | P
α−→ Q} = {fP ′} and fP = 〈α〉fP ′ ∧ 1. Applying axiom

E8 we obtain ` fP → [α]fP ′ . Hence

` fP → [α]
∨
{fQ | P

α−→ Q}

The case P ≡ α.P ′|P ′′ with P ′′ 6≡ 0: we apply the inductive hypothesis to α.P ′ and P ′′

respectively, and we obtain

` fα.P ′ → [α]
∨
{fQ′ | α.P ′

α−→ Q′}

and
` fP ′′ → [α]

∨
{fQ′′ | P ′′

α−→ Q′′}

We apply rule ER8 and obtain

` fP → [α](fα.P ′|
∨
{fQ′′ | P ′′

α−→ Q′′} ∨
∨
{fQ′ | α.P ′

α−→ Q′}|fP ′′)

Using theorem 9.9, we obtain this result equivalent with

` fP → [α]
∨
{fQ | P

α−→ Q}

2

Theorem 9.17 If `
∨
{fQ | P

α−→ Q} → φ then ` fP → [α]φ

44

Proof If `
∨
{fQ | P

α−→ Q} → φ then rule ER8 gives

` [α](
∨
{fQ | P

α−→ Q} → φ)

and further axiom E8 gives ` [α]
∨
{fQ | P

α−→ Q} → [α]φ. But theorem 9.16 gives ` fP →
[α]

∨
{fQ | P

α−→ Q}, hence ` fP → [α]φ. 2

Theorem 9.18 ` 〈A : α〉> ↔ fA|>.

Epistemic results
We begin by stating that an atomic agent is always active: it always performs its “inactivity”
expressed by 0. Hereafter, in this section, we use A′ to denote an arbitrary atomic agent, even
if this it will not be specified.

Theorem 9.19 ` KA′>.

Proof Trivial consequence of axiom E8 and axiom E8. 2

The next result states that an agent knows something only if it is active.

Theorem 9.20 ` KAφ→ KA>.

Proof Trivial consequence of axiom E8. 2

Further we prove another obvious property of knowledge: if A knows φ and A knows ψ, this
is equivalent with A knows φ ∧ ψ.

Theorem 9.21 ` KAφ ∧KAψ ↔ KA(φ ∧ ψ)

Proof ` φ→ (ψ → (φ ∧ ψ)). Using rule ER8, we obtain

` KA> → KA[φ→ (ψ → (φ ∧ ψ))]

We apply axiom E8 twice, and obtain

` KA> → [KAφ→ (KAψ → KA(φ ∧ ψ))]

i.e.
` KA> ∧KAφ→ [KAψ → KA(φ ∧ ψ)]

But ` KAφ→ KA>, hence ` KAφ→ [KAψ → KA(φ ∧ ψ)], i.e.

` KAφ ∧KAψ → KA(φ ∧ ψ)

Reverse, we apply rule ER8 to ` φ ∧ ψ → ψ and then axiom E8, and obtain ` KA> →
(KA(φ ∧ ψ)→ KAφ). But ` KA(φ ∧ ψ)→ KA>, hence ` KA(φ ∧ ψ)→ KAφ.
Similarly ` KA(φ ∧ ψ)→ KAψ. 2

The knowledge is redundant and introspective: if Q knows φ this is equivalent with the fact
that Q knows that Q knows φ.

45

Theorem 9.22 ` KAKAφ↔ KAφ.

Proof Axiom E8 gives ` KAφ→ KAKAφ, and axiom E8 gives ` KAKAφ→ KAφ. 2

Theorem 9.23 (Monotonicity of knowledge)

If ` φ→ ψ then ` KAφ→ KAψ

Proof Because ` φ→ ψ, we can use rule ER8 and obtain
` KA> → KA(φ→ ψ). But theorem 9.20 gives ` KAφ→ KA>, hence ` KAφ→ KA(φ→
ψ) where from we derive

` KAφ→ (KAφ ∧KA(φ→ ψ))

This entails, using axiom E8, ` KAφ→ KAψ. 2

The existence of an agent entails the existence of its active sub-agents, as proved further.
This is a knowledge-like description of the ontological topology of agents. It relies on to be is
to know.

Theorem 9.24 ` KA1|A2> → KA1>.

Proof Axiom E8 gives ` KA1|A2> ↔ fA1|fA2|> and ` KA1> ↔ fA1|>. But ` fA2 → >
and applying rule ER8, we obtain ` fA1|fA2|> → fA1 |>. Hence ` KA1|A2> → KA1>. 2

The knowledge of an agent is consistent: if it knows ¬φ (it knows that φ is false) then it
cannot know φ as well. This is proved in the next two theorems.

Theorem 9.25 ` KA¬φ→ ¬KAφ.

Proof Axiom E8 gives ` KA¬φ → ¬φ and ` KAφ → φ. The last is equivalent with
` ¬φ→ ¬KAφ, and combined with the first entails ` KA¬φ→ ¬KAφ. 2

Theorem 9.26 (Consistency theorem) ` KAφ→ ¬KA¬φ.

Proof By using the negative form of theorem 9.25 2

Theorem 9.27 ` KA′φ→ (KA> → KAφ)

Proof Axioms E8 gives ` KA′φ → φ and applying the monotonicity of knowledge, `
KAKA′φ→ KAφ.
Now axiom E8 provides ` KA′φ ∧KA> → KAKA′φ. Thus ` KA′φ ∧KA> → KAφ, that is
equivalent with ` KA′φ→ (KA> → KAφ). 2

Theorem 9.28 `
∼
KA′φ↔ KA′

∼
KA′φ

46

Proof By definition, we have `
∼
KA′φ ↔ ¬KA′¬φ, and because ` KA′>, we derive

`
∼
KA′φ→ (¬KA′¬φ ∧KA′>).

But axiom E8 entails ` (¬KA′¬φ ∧KA′>)→ KA′¬KA′¬φ, i.e.

` (¬KA′¬φ ∧KA′>)→ KA′
∼
KA′φ

Hence `
∼
KA′φ→ KA′

∼
KA′φ.

We have also ` KA′
∼
KA′φ→

∼
KA′φ, by applying axiom E8. 2

Theorem 9.29 `
∼
KA′φ ∧ ψ|ρ→ (

∼
KA′φ ∧ ψ)|(

∼
KA′φ ∧ ρ)

Proof Axiom E8 instantiated with φ =
∼
KA′φ gives

` KA′
∼
KA′φ ∧ ψ|ρ→ (KA′

∼
KA′φ ∧ ψ)|(KA′

∼
KA′φ ∧ ρ)

Further, using theorem 9.28, we obtain the wanted result. 2

Theorem 9.30 `
∼
KA′φ→ [α]

∼
KA′φ

Proof Axiom E8 instantiated with φ =
∼
KA′φ gives

` KA′
∼
KA′φ→ [α]KA′

∼
KA′φ

Further, using theorem 9.28, we obtain the wanted result. 2

Theorem 9.31 `
∼
KA′φ→ (KA> → KA

∼
KA′φ)

Proof Axiom E8 instantiated with φ =
∼
KA′φ gives

` KA′
∼
KA′φ→ (KA> → KAKA′

∼
KA′φ)

Further, using theorem 9.28, we obtain the wanted result. 2

47

Theorems referring to maximal consistent sets
In this section we focus on results that involve the characteristic formulas of finite maximal
consistent sets. We try to show, in this way, how sensitive our system is with respect to maximal
consistent sets. Further, these results will be used in proving the completeness.

Theorem 9.32 IfM is a finite maximal consistent set and R 6∈ M then ` fM → ¬fR.

Proof Because fM = KA′(
∨
P∈M fP) ∧ (

∧
P∈M

∼
KA′fP) we derive that

` fM → KA′(
∨
P∈M

fP)

But from axiom E8 ` KA′(
∨
P∈M fP) →

∨
P∈M fP , so ` fM →

∨
P∈M fP . Further theorem

9.1 gives ` fP → ¬fR (asR 6∈ M and P ∈M impliesR 6≡ P) which implies `
∨
P∈M fP →

¬fR. But we proved that ` fM →
∨
P∈M fP . Hence ` fM → ¬fR. 2

Theorem 9.33 IfM is a finite maximal consistent set then

` (fM ∧ φ|ψ)→ (fM ∧ φ)|(fM ∧ ψ)

Proof Observe that, by applying axiom E8, we obtain

` (KA′θ1 ∧
∼
KA′θ2 ∧

∼
KA′θ3) ∧ φ|ψ → (

∼
KA′θ2 ∧

∼
KA′θ3) ∧ (KA′θ1 ∧ φ)|(KA′θ1 ∧ ψ) (2)

If, further, we apply theorem 9.29 once, we obtain

` (
∼
KA′θ3 ∧

∼
KA′θ2) ∧ (KA′θ1 ∧ φ)|(KA′θ1 ∧ ψ)→

∼
KA′θ3 ∧ (

∼
KA′θ2 ∧KA′θ1 ∧ φ)|(

∼
KA′θ2 ∧KA′θ1 ∧ ψ)

Hence

` (KA′θ1 ∧
∼
KA′θ2 ∧

∼
KA′θ3) ∧ φ|ψ →

∼
KA′θ3 ∧ (

∼
KA′θ2 ∧KA′θ1 ∧ φ)|(

∼
KA′θ2 ∧KA′θ1 ∧ ψ)

If we apply again theorem 9.29 we obtain

`
∼
KA′θ3 ∧ (

∼
KA′θ2 ∧KA′θ1 ∧ φ)|(

∼
KA′θ2 ∧KA′θ1 ∧ ψ)→

(
∼
KA′θ3 ∧

∼
KA′θ2 ∧KA′θ1 ∧ φ)|(

∼
KA′θ3 ∧

∼
KA′θ2 ∧KA′θ1 ∧ ψ)

hence

` (KA′θ1 ∧
∼
KA′θ2 ∧

∼
KA′θ3) ∧ φ|ψ →

(
∼
KA′θ3 ∧

∼
KA′θ2 ∧KA′θ1 ∧ φ)|(

∼
KA′θ3 ∧

∼
KA′θ2 ∧KA′θ1 ∧ ψ)

48

Because fM = KA′(
∨
Q∈M fQ) ∧ (

∧
Q∈M

∼
KA′fQ), we can use the same idea, applying

theorem 9.29 once for each process inM (being finite) and we obtain

` (fM ∧ φ|ψ)→ (fM ∧ φ)|(fM ∧ ψ)

2

Theorem 9.34 IfM is a finite maximal consistent set then ` (fM ∧ φ|ψ)→ (fM ∧ φ)|ψ

Proof From the previous theorem, 9.33, we have

` (fM ∧ φ|ψ)→ (fM ∧ φ)|(fM ∧ ψ)

Theorem 9.10 gives

(fM ∧ φ)|(fM ∧ ψ)→ ((fM ∧ φ)|fM) ∧ ((fM ∧ φ)|ψ))

Hence ` (fM ∧ φ|ψ)→ (fM ∧ φ)|ψ. 2

Theorem 9.35 IfM is a finite maximal consistent set then ` fM → [α]fM

Proof Observe that, by applying axiom E8, we obtain

` KA′θ1 ∧
∼
KA′θ2 ∧

∼
KA′θ3 → (

∼
KA′θ2 ∧

∼
KA′θ3) ∧ [α]KA′θ1

If, further, we apply theorem 9.30 once, we obtain

` (
∼
KA′θ3 ∧

∼
KA′θ2) ∧ [α]KA′θ1 →

∼
KA′θ3 ∧ [α]

∼
KA′θ2 ∧ [α]KA′θ1, i.e.

` (
∼
KA′θ3 ∧

∼
KA′θ2) ∧ [α]KA′θ1 →

∼
KA′θ3 ∧ [α](

∼
KA′θ2 ∧KA′θ1)

Hence
` (KA′θ1 ∧

∼
KA′θ2 ∧

∼
KA′θ3)→

∼
KA′θ3 ∧ [α](

∼
KA′θ2 ∧KA′θ1)

If we apply again theorem 9.30 we obtain

`
∼
KA′θ3 ∧ [a](

∼
KA′θ2 ∧KA′θ1)→ [α](

∼
KA′θ3 ∧

∼
KA′θ2 ∧KA′θ1)

hence
` (KA′θ1 ∧

∼
KA′θ2 ∧

∼
KA′θ3)→ [α](

∼
KA′θ3 ∧

∼
KA′θ2 ∧KA′θ1)

As fM = KA′(
∨
Q∈M fQ) ∧ (

∧
Q∈M

∼
KA′fQ), we can use the same idea, applying theorem

9.30 once for each process inM (being finite) and we obtain

` fM → [α]fM

2

49

Theorem 9.36 IfM is a finite maximal consistent set then ` fM → (KA> → KAfM)

Proof Observe that, by applying axiom E8, we obtain

` KA′θ1 ∧
∼
KA′θ2 ∧

∼
KA′θ3 → (

∼
KA′θ2 ∧

∼
KA′θ3) ∧ (KA> → KAKA′θ1)

If, further, we apply theorem 9.31 once, we obtain

` (
∼
KA′θ3 ∧

∼
KA′θ2) ∧ (KA> → KAKA′θ1)→

∼
KA′θ3 ∧ (KA> → KA

∼
KA′θ2) ∧ (KA> → KAKA′θ1), i.e.

` (
∼
KA′θ3 ∧

∼
KA′θ2) ∧ (KA> → KAKA′θ1)→

∼
KA′θ3 ∧ (KA> → (KA

∼
KA′θ2 ∧KAKA′θ1))

i.e., using 9.21,

` (
∼
KA′θ3 ∧

∼
KA′θ2) ∧ (KA> → KAKA′θ1)→

∼
KA′θ3 ∧ (KA> → KA(

∼
KA′θ2 ∧KA′θ1))

Hence

` (KA′θ1 ∧
∼
KA′θ2 ∧

∼
KA′θ3)→

∼
KA′θ3 ∧ (KA> → KA(

∼
KA′θ2 ∧KA′θ1))

If we apply again the theorems 9.31 and 9.21 we obtain

` [
∼
KA′θ3 ∧ (KA> → KA(

∼
KA′θ2 ∧KA′θ1))]→ [KA> → KA(

∼
KA′θ3 ∧

∼
KA′θ2 ∧KA′θ1)]

hence

` (KA′θ1 ∧
∼
KA′θ2 ∧

∼
KA′θ3)→ [KA> → KA(

∼
KA′θ3 ∧

∼
KA′θ2 ∧KA′θ1)]

Because fM = KA′(
∨
Q∈M fQ) ∧ (

∧
Q∈M

∼
KA′fQ), we can use the same idea, applying

theorem 9.31 once for each process inM (being finite) and we obtain

` fM → (KA> → KAfM)

2

Theorem 9.37 IfM is a finite maximal consistent set and ` fM → (φ → ψ) then ` fM →
(φ|ρ→ ψ|ρ).

Proof ` fM → (φ → ψ) implies ` (fM ∧ φ) → ψ where we apply rule ER8 and obtain
` (fM ∧ φ)|ρ→ ψ|ρ. But theorem 9.34 gives ` (fM ∧ φ|ρ)→ (fM ∧ φ)|ρ. Combining these
two results we obtain
` (fM ∧ φ|ρ)→ ψ|ρ, i.e. ` fM → (φ|ρ→ ψ|ρ). 2

50

Theorem 9.38 If for a finite maximal consistent setM3 P and any decomposition P ≡ Q|R
we have

` fM → (fQ → ¬φ) or ` fM → (fR → ¬ψ) then ` fM → (fP → ¬(φ|ψ)).

Proof If ` fM → (fQ → ¬φ) then we have, equivalently, ` fM ∧ fQ → ¬φ, i.e.
` fQ → (fM → ¬φ), hence ` fQ → ¬(fM ∧ φ).
Similarly ` fM → (fR → ¬ψ) gives ` fR → ¬(fM ∧ ψ).

Hence the hypothesis of the theorem can be rewritten as: for any decomposition P ≡ Q|R
we have

` fQ → ¬(fM ∧ φ) or ` fR → ¬(fM ∧ ψ).

Then we can apply theorem 9.12 and we obtain

` fP → ¬((fM ∧ φ)|(fM ∧ ψ)) (3)

But theorem 9.33 entails ` fM∧φ|ψ → (fM∧φ)|(fM∧ψ), hence ` ¬((fM∧φ)|(fM∧ψ))→
¬(fM ∧ φ|ψ), and applying this result to (3), we obtain

` fP → ¬(fM ∧ φ|ψ) that is equivalent with ` fM → (fP → ¬(φ|ψ))

2

Further we prove a maximal consistent set-sensitive version of rule ER8.

Theorem 9.39 If ` fM → φ then ` fM → [α]φ.

Proof If we apply rule ER8 to ` fM → φ we obtain ` [α](fM → φ). But axiom E8
gives ` [α](fM → φ)→ ([α]fM → [α]φ), hence ` [α]fM → [α]φ. Theorem 9.35 proves that
` fM → [α]fM which gives further ` fM → [α]φ. 2

The next result is a maximal consistent set-sensitive variant of rule ER8.

Theorem 9.40 If ` fM → φ then ` fM → (KA> → KAφ).

Proof If we apply rule ER8 to ` fM → φ, we obtain

` KQ> → KQ(fM → φ)

But axiom E8 gives further ` KQ(fM → φ)→ (KQfM → KQφ). Hence ` KQ>∧KQfM →
KQφ that is equivalent with

` KQfM → (KQ> → KQφ)

Now, theorem 9.36 ensures that ` fM → (KA> → KQfM).
Hence ` fM → (KA> → KAφ). 2

51

Theorem 9.41 If ` fM → (KQψ → φ) then ` fM → (KQψ → KQφ).

Proof We apply theorem 9.40 to ` fM → (KQψ → φ) and we obtain
` fM → (KQ> → KQ(KQψ → φ)), i.e. ` (fM ∧KQ>)→ KQ(KQψ → φ).
But axiom E8 gives ` KQ(KQψ → φ) → (KQKQψ → KQφ). Now if we use theorem 9.22
we obtain further

` KQ(KQψ → φ)→ (KQψ → KQφ)

All these proved that ` (fM ∧KQ>)→ (KQψ → KQφ), i.e.

` fM → (KQ> → (KQψ → KQφ))

which is equivalent with ` fM → (KQ> ∧KQψ → KQφ).
Theorem 9.20 proved that ` KQψ → KQ>, result which, combined with the previous one,
gives further ` fM → (KQψ → KQφ). 2

Theorem 9.42 If Q|R ∈M then ` fM → (fQ|fR → ¬φ) implies ` fM → ¬KQφ.

Proof Because ` fR → >, rule ER8 gives ` fQ|fR → fQ|> that gives further ` fM →
(fQ|fR → fQ|>). Combining this result with the hypothesis of the theorem, ` fM →
(fQ|fR → ¬φ), we obtain

` (fM ∧ fQ|fR)→ (fQ|> ∧ ¬φ), i.e. ` fM → (fQ|fR → (fQ|> ∧ ¬φ))

But ` (fQ|> ∧ ¬φ)↔ ¬(fQ|> → φ), hence

` fM → (fQ|fR → ¬(fQ|> → φ)) (4)

Axiom E8 ensure that ` K0(fQ|> → φ)→ (fQ|> → φ) or, equivalently, ` ¬(fQ|> → φ)→
¬K0(fQ|> → φ), that, used in (4) gives

` fM → (fQ|fR → ¬K0(fQ|> → φ)) (5)

But theorem 9.19 gives ` K0>, that can be used in (5) providing

` fM → (fQ|fR → (K0> ∧ ¬K0(fQ|> → φ))) (6)

The negative introspection, axiom E8, infers

` (K0> ∧ ¬K0(fQ|> → φ))→ K0¬K0(fQ|> → φ) (7)

Combining (6) and (7) we obtain

` fM → (fQ|fR → K0¬K0(fQ|> → φ)) (8)

But (8) is equivalent with ` (fM ∧ fQ|fR) → K0¬K0(fQ|> → φ), and because Q|R ∈ M,
we can apply rule ER8.3 and obtain

52

` fM → ¬K0(KQ> → φ) (9)

But from axiom E8 we derive ` KQφ→ K0(KQ> → φ), hence

` ¬K0(KQ> → φ)→ ¬KQφ (10)

Combining (9) with (10) we obtain ` fM → ¬KQφ, q.e.d. 2

The next result is a maximal consistent set-sensitive version of theorem 9.11.

Theorem 9.43 If ` fM → (φ→ ψ) and ` fM → (ρ→ θ) then ` fM → (φ|ρ→ ψ|θ).

Proof To ` fM → (φ → ψ) we can apply theorem 9.37 and we obtain ` fM → (φ|ρ →
ψ|ρ), i.e. ` (fM ∧ φ|ρ)→ ψ|ρ which implies

` (fM ∧ φ|ρ)→ (fM ∧ ψ|ρ) (11)

The same theorem 9.37 can be applied to ` fM → (ρ→ θ) giving ` fM → (ψ|ρ→ ψ|θ), i.e.

` (fM ∧ ψ|ρ)→ ψ|θ (12)

Further, combining (11) and (12) we derive ` (fM ∧ φ|ψ) → ψ|θ, hence ` fM → (φ|ψ →
ψ|θ). 2

Theorem 9.44 If ` fM → (φ→ ψ) then ` fM → (〈α〉φ→ 〈α〉ψ).

Proof ` fM → (φ→ ψ) implies ` fM → (¬ψ → ¬φ) where, applying theorem 9.39, we
obtain ` fM → [α](¬ψ → ¬φ). But axiom E8 gives ` [α](¬ψ → ¬φ)→ ([α]¬ψ → [α]¬φ).
Hence ` fM → ([α]¬ψ → [α]¬φ), i.e. ` fM → (¬〈α〉ψ → ¬〈α〉φ). Concluding, ` fM →
(〈α〉φ→ 〈α〉ψ). 2

The next result is a variant of theorem 9.17, but sensitive to the maximal consistent set.

Theorem 9.45

If ` fM → (
∨
{fQ | P

α−→ Q} → φ) then ` fM → (fP → [α]φ)

Proof If ` fM → (
∨
{fQ | P

α−→ Q} → φ) then theorem 9.39 gives ` fM →
[α](

∨
{fQ | P

α−→ Q} → φ) and further axiom E8 gives

` fM → ([α]
∨
{fQ | P

α−→ Q} → [α]φ)

But theorem 9.16 gives
` fP → [α]

∨
{fQ | P

α−→ Q}

hence ` fM ∧ fP → [α]φ, i.e. ` fM → (fP → [α]φ). 2

53

10 Completeness of LA
A against process semantics

Further we state the completeness of LA
A with respect to process semantics. The intuition is

that, because fP and fM are characteristic formulas, we should have an equivalence between
M, P |= φ and ` fM ∧ fP → φ (of course for finite maximal consistent sets) as both can be
read as the process P ∈M has the property φ.

The completeness ensures that everything that can be derived in the semantics can be proved
in the syntax. In this way we have the possibility to syntactically verify (prove) properties of
processes.

IfM is a finite maximal consistent set thenM, P |= φ iff ` fM ∧ fP → φ.
Proof (=⇒) We prove it by induction on the syntactical structure of φ.

• The case φ = 0: M, P |= 0 implies P ≡ 0. But fA′ = 0 and ` 0 → 0, hence
` 0 ∧ fM → 0. This gives ` fM ∧ fP → φ.

• The case φ = >: we have alwaysM, P |= > and ` fP ∧fM → >, hence ` fP ∧fM →
φ.

• The case φ = φ1 ∧ φ2:M, P |= φ iffM, P |= φ1 andM, P |= φ2.
Further, using the inductive hypothesis, we obtain ` fM∧fP → φ1 and ` fM∧fP → φ2.
Hence ` fM ∧ fP → (φ1 ∧ φ2), i.e. ` fM ∧ fP → φ.

• The case φ = φ1|φ2:M, P |= φ iff P ≡ Q|R,M, Q |= φ1 andM, R |= φ2.
Using the inductive hypothesis,
` fM ∧ fQ → φ1 and ` fM ∧ fR → φ2, i.e.
` fM → (fQ → φ1) and ` fM → (fR → φ2).
Hence, using theorem 9.43 we obtain ` fM → (fQ|fR → φ1|φ2), i.e. ` fM ∧ fP → φ.

• The case φ = KA>:M, P |= KA> iff P ≡ I(A)|R, iff fP = fA|fR.
Using rule ER8 we obtain ` fA|fR → fA|>, further using axiom E8 ` fA|fR → KA>,
i.e. ` fP → KA>. Hence ` fM ∧ fP → φ.

• The case φ = KAψ: M, P |= KAψ, and because ` KAψ → KA> (by theorem 9.20),
using the soundness, we obtain thatM, P |= KA>. Now, we apply the previous case
that gives

` fM ∧ fP → KA> (13)

M, P |= KAψ is equivalent with P ≡ I(A)|R and for any I(A)|S ∈ M we have
M, I(A)|S |= ψ. Then the inductive hypothesis gives

for any I(A)|S ∈M we have ` (fM ∧ fA|fS)→ ψ (14)

Consider now a process I(A)|S 6∈ M. BecauseM is finite, we apply theorem 9.32 and
obtain ` fM → ¬(fA|fS) or equivalent,
` fM ∧ (fA|fS)→ ⊥. But ` ⊥ → ψ, hence

for any I(A)|S 6∈ M we have ` (fM ∧ fA|fS)→ ψ (15)

54

Now (14) and (15) together give

for any S ∈M we have ` (fM ∧ fA|fS)→ ψ (16)

i.e., using theorem 9.9,
` (fM ∧ fA|

∨
S∈M

fS)→ ψ (17)

But
` KA′(

∨
S∈M

fS)→
∨
S∈M

fS, hence ` fM →
∨
S∈M

fS

Now, we can apply rule ER8 and obtain

` fA|fM → fA|
∨
S∈M

fS, hence ` (fA|fM ∧ fM)→ (fA|
∨
S∈M

fS ∧ fM)

In this point, using (17) we obtain

` (fA|fM ∧ fM)→ ψ (18)

We have ` fM → (> → fM) and ` fM → (fA → fA) where from, applying theorem
9.37, we can derive ` fM → (fA|> → fA|fM), i.e. ` fM ∧ fA|> → fA|fM and further

` (fM ∧ fA|>)→ (fM ∧ fA|fM)

Using this result together with (18), we obtain further

` (fM ∧ fA|>)→ ψ, i.e. ` fM → (fA|> → ψ)

where we can apply axiom E8 that gives

` fM → (KA> → ψ)

applying theorem 9.41, we obtain

` fM → (KA> → KAψ), i.e. ` (fM ∧KA>)→ KAψ (19)

But (13) gives

` fM ∧ fP → KA> where from ` (fM ∧ fP)→ (fM ∧KA>)

and using this in (19),

` (fM ∧ fP)→ KAψ i.e. ` (fM ∧ fP)→ φ.

55

• The case φ = 〈α〉ψ: M, P |= 〈α〉ψ means that exists P ′ ∈ M such that P α−→ P ′ and
M, P ′ |= ψ. Then the inductive hypothesis gives

` fM ∧ fP ′ → ψ

P
α−→ P ′ means that P ≡ α.R|S and P ′ ≡ R|S, so fP = (〈α〉fR ∧ 1)|fS and fP ′ =

fR|fS . So ` fM ∧ fR|fS → ψ, i.e. ` fM → (fR|fS → ψ) and using theorem 9.44

` fM → (〈α〉(fR|fS)→ 〈α〉ψ) (20)

theorem 9.10 gives ` fP → 〈α〉fR|fS ∧ 1|fS , hence

` fP → 〈α〉fR|fS (21)

Axiom E8 gives
` 〈α〉fR|fS → 〈α〉(fR|fS) (22)

Hence, from (20), (21) and (22) we derive

` fM → (fP → 〈α〉ψ), i.e. ` (fM ∧ fP)→ 〈α〉ψ

• The case φ = 〈A : α〉ψ:M, P |= 〈A : α〉ψ ensures us that α is active.

– the subcase ψ = >: M, P |= 〈A : α〉> gives P ≡ I(A)|R, hence fP = fA|fR.
But ` fR → > and, using rule E+

R8, ` fA|fR → fA|>. Now using theorem 9.18
we obtain

` fP → 〈A : α〉>, hence ` fM ∧ fP → 〈A : α〉>

– the subcase ψ 6= >: M, P |= 〈A : α〉ψ implies P ≡ I(A)|R, exists Q ∈ M such
that I(A)

α−→ Q andM, Q|R |= ψ. Using the inductive hypothesis we obtain

` fM ∧ fQ|R → ψ

But I(A)
α−→ Qmeans that I(A) ≡ α.Q′|S andQ ≡ Q′|S. Then ` fM∧fQ|R → ψ

means ` fM ∧ fQ′ |fS|fR → ψ, i.e.

` fM → (fQ′|fS|fR → ψ)

Further we obtain

` fM → (〈α.Q′ : α〉(fQ′|fS|fR)→ 〈α.Q′ : α〉ψ)

while axiom E+8 gives

` 〈α.Q′ : α〉fQ′ |fS|fR → 〈α.Q′ : α〉(fQ′|fS|fR),

hence
` fM → (〈α.Q′ : α〉fQ′|fS|fR → 〈α.Q′ : α〉ψ)

56

and because ` fP → 〈α.Q′ : α〉fQ′ |fS|fR, due to axiom E+8, we derive further

` fM → (fP → 〈α.Q′ : α〉ψ) (23)

But M, P |= 〈A : α〉ψ gives M, P |= 〈A : α〉> (because from ` ψ → > we
derive ` 〈A : α〉ψ → 〈A : α〉>). But, from the previous case,M, P |= 〈A : α〉>
is equivalent with ` fM ∧ fP → 〈A : α〉>. Hence

` fM → (fP → 〈α.Q′|S : α〉>) (24)

Axiom E+8 gives

` 〈α.Q′ : α〉ψ ∧ 〈α.Q′|S : α〉> → 〈α.Q′|S : α〉ψ

and as (23) and (24) give

` fM → (fP → 〈α.Q′ : α〉ψ ∧ 〈α.Q′|S : α〉>)

we obtain further
` fM ∧ fP → 〈A : α〉ψ

• The case φ = ¬ψ: we argue by induction on the syntactical structure of ψ.

– the subcase ψ = 0: M, P |= ¬0 means that P 6≡ 0. Then we can apply theorem
9.1 and obtain ` fP → ¬0.
So ` fM ∧ fP → ¬0.

– the subcase ψ = >: is an impossible one as we cannot haveM, P |= ⊥.

– the subcase ψ = ψ1 ∧ ψ2: M, P |= ¬(ψ1 ∧ ψ2) is equivalent with M, P |=
¬ψ1 ∨ ¬ψ2, i.e. M, P |= ¬ψ1 or M, P |= ¬ψ2. By the inductive hypothesis,
` fM ∧ fP → ¬ψ1 or ` fM ∧ fP → ¬ψ2, where from we obtain ` fM ∧ fP → ψ

– the subcase ψ = ¬ψ1: M, P |= ¬ψ is equivalent with M, P |= ¬¬ψ1, i.e.
M, P |= ψ1 where we can use the inductive hypothesis ` fM ∧ fP → ψ1 which is
equivalent with ` fM ∧ fP → φ.

– the subcase ψ = ψ1|ψ2: M, P |= ¬(ψ1|ψ2) means that for any parallel decom-
position of P ≡ Q|R, M, Q |= ¬ψ1 or M, R |= ¬ψ2. These imply, using the
inductive hypothesis, that for any decomposition P ≡ Q|R we have

` fM → (fQ → ¬ψ1) or ` fM → (fR → ¬ψ2)

then we can apply theorem 9.38 that gives

` fM ∧ fP → ¬ψ.

– the subcase ψ = KA′ψ1, A′ is atomic agent: M, P |= ¬KA′ψ1 means ∃R ∈ M
such thatM, R |= ¬ψ1. Using the inductive hypothesis,
` fM ∧ fR → ¬ψ1, i.e. ` fM → (fR|f0 → ¬ψ1). Now theorem 9.42 gives
` fM → ¬KA′ψ1, hence ` fM ∧ fP → ¬KA′ψ1.

57

– the subcase ψ = KAψ1, A is not atomic agent: we distinguish two cases

∗ the sub-subcase ψ1 = >: M, P |= ¬KA> implies that I(A) is not a subpro-
cess of P . Then for any R ∈ M we have P 6≡ I(A)|R. Then theorem 9.1
gives us ` fA|fR → ¬fP . From here we can infer

` fA|
∨
S∈M

fS → ¬fP (25)

But
` KA′(

∨
S∈M

fS)→
∨
S∈M

fS, hence ` fM →
∨
S∈M

fS

Now, we can apply rule ER8 and obtain

` fA|fM → fA|
∨
S∈M

fS

In this point, using (25) we obtain

` fA|fM → ¬fP (26)

We have ` fM → (> → fM) and ` fM → (fA → fA) where from, applying
theorem 9.37, we can derive ` fM → (fA|> → fA|fM), i.e. ` fM ∧ fA|> →
fA|fM Using this result together with (26), we obtain further

` (fM ∧ fA|>)→ ¬fP , i.e. ` fM ∧ fP → ¬(fA|>)

and axiom E8 gives
` fM ∧ fP → ¬KA>.

∗ the sub-subcase ψ1 6= >: we distinguish two more cases M, P |= ¬KA>
andM, P |= KA>.
· ifM, P |= ¬KAψ1 andM, P |= ¬KA>, we have
` fM ∧ fP → ¬KA> (proved before). Moreover, because ` KAψ1 →
KA> (theorem 9.20) we have
` ¬KA> → ¬KAψ1 which gives ` fM ∧ fP → ¬KAψ1.
· ifM, P |= ¬KAψ1 andM, P |= KA>, ∃I(A)|S ∈MwithM, I(A)|Q |=
¬ψ1. Using the inductive hypothesis we obtain ` fM → (fS|fA → ¬ψ1)
and from theorem 9.42 that ` fM → ¬KAψ1. Hence ` fM ∧ fP →
¬KAψ1.

– the subcase ψ = 〈a〉ψ1:M, P |= ¬〈a〉ψ1 is equivalent withM, P |= [a]¬ψ1.
If there is a process Q ∈ M such that P a−→ Q, then for any Q ∈ M such that
P

a−→ Q we haveM, Q |= ¬ψ1. Using the inductive hypothesis we obtain that for
any Q ∈M such that P a−→ Q we have ` fM ∧ fQ → ¬ψ1, i.e.

` fM ∧
∨
{fQ | P

a−→ Q} → ¬ψ1

58

or equivalently
` fM → (

∨
{fQ | P

a−→ Q} → ¬ψ1)

Using theorem 9.45, we obtain ` fM ∧ fP → [a]¬ψ1.

If there is no process Q ∈ M such that P
a

toQ then theorem 9.15 gives ` fP →
[a]⊥. But ` ψ1 → >, hence ` [a]⊥ → [a]¬ψ1. So, also in this case we have
` fM ∧ fP → [a]¬ψ1.

(⇐=) Let ` fM ∧ fP → φ. Suppose thatM, P 6|= φ. ThenM, P |= ¬φ. Using the reversed
implication we obtain ` fM ∧ fP → ¬φ, thus
` fM∧fP → ⊥. But from corollary 9 we haveM, P |= fM∧fP which, using the soundness,
givesM, P |= ⊥ impossible!
HenceM, P |= φ. 2

We recall the definitions of provability, consistency, satisfiability and validity.

Definition 10.1 (Provability and consistency) We say that a formula φ ∈ FA
A is provable in

LA
A (or LA

A-provable for short), if φ can be derived, as a theorem, using the axioms and the
rules of LA

A. We denote this by ` φ.
We say that a formula φ ∈ FA

A is consistent in LA
A (or LA

A-consistent for short) if ¬φ is not
LA

A-provable.

Definition 10.2 (Satisfiability and validity) We call a formula φ ∈ FA
A satisfiable if there

exists a maximal consistent setM and a process P ∈M such thatM, P |= φ.
We call a formula φ ∈ FA

A validity if for any maximal consistent set M and any process
P ∈M we haveM, P |= φ. In such a situation we write |= φ.
Given a maximal consistent setM, we denote byM |= φ the situation when for any P ∈ M
we haveM, P |= φ.

φ is satisfiable iff ¬φ is not a validity, and vice versa, φ is a validity iff ¬φ is not satisfiable.
If φ is LA

A-consistent then exists a maximal consistent setM and a process P ∈ M such
thatM, P |= φ.

Proof Suppose that for any maximal consistent setM and any process P ∈M we do not
haveM, P |= φ, i.e. we haveM, P |= ¬φ. Hence, for any finite maximal consistent setM
and any process P ∈M we haveM, P |= ¬φ. Using lemma 10, we obtain ` fM∧ fP → ¬φ.
Hence ` fM ∧

∨
P∈M fP → ¬φ. But ` fM →

∨
P∈M fP which, combined with the previous

result, implies ` fM → ¬φ.
Thus for each finite maximal consistent set M we have ` fM → ¬φ. But then for each
maximal consistent set M ∈ M

act(¬φ)+
¬φ we have ` fM → ¬φ. As M

act(¬φ)+
¬φ is finite, we

can infer further `
∨
M∈M

act(¬φ)+
¬φ

fM → ¬φ. Now, applying rule ER8, we obtain ` ¬φ. This

contradicts with the hypothesis of consistency of φ. Hence, it exists a maximal consistent set
M and a process P ∈M such thatM, P |= φ. 2

Theorem 10.1 (Completeness) The LA
A system is complete with respect to process semantics.

59

Proof Suppose that φ is a valid formula with respect to our semantics, but φ is not provable
in the system LA

A. Then neither is ¬¬φ, so, by definition, ¬φ is LA
A-consistent. It follows, from

lemma 10, that ¬φ is satisfiable with respect to process semantics, contradicting the validity of
φ. 2

11 Concluding remarks
In this paper we developed a special type of dynamic-epistemic logic, LA

A, designed for se-
mantics built on process calculi. This logic is meant to be used for expressing properties of
multiagent distributed systems. In this respect the society of agents A came with an alge-
braical structure that depicts the distribution of the modules of a system which are observed
by the epistemic agents. In expressing this we used operators from spatial logics together with
operators characteristic for dynamic-epistemic logics.

Our logic is expressive enough for describing the two levels of evolution of the multiagent
systems, i.e. it can express the evolution of the system as well as the evolution of the epistemic
status of the agents. Validity and satisfiability in a model can be expressed in our syntax,
and this feature, combined with the possibility to characterize processes and finite maximal
consistent sets argue on utility of our logic.

In the context of decidability, our sound and complete axiomatic system provides a power-
ful tool for making predictions on the evolution of the concurrent distributed systems.

With respect to dynamic-epistemic logics, our logic came with the expressivity given by the
algebraical semantics. Also the ontology of the agents is more complex than in the classical
approaches. We can speak about the knowledge of agents A′, A′′ but also about the knowledge
of the agent A′|A′′ which subsumes the knowledge of A′, of A′′, and the knowledge derived
from the fact that what A′ and A′′ see are modules running in parallel as parts of the same
system. Similarly the knowledge of α.A is the knowledge of an agent that, in a future moment,
might became the agent A. All these aspects are new for epistemic logics and important in
applications.

With respect to the logics of processes, our logic can be seen as an extension of Hennessy-
Milner logic with the parallel operator and with epistemic operators. The lasts can be also used
to express global properties over unknown contexts. In this respect the epistemic operators
can be considered as alternative to the guarantee operator of the classical spatial logics that
eventually produces a logic adequately expressive and decidable. In spatial logic the guarantee
operator is introduced, as the adjoint of parallel operator, by the following semantics
M, P |= φ . ψ iff for any P ′ ∈ M such that M, P ′ |= φ and P |P ′ ∈ M we have

M, P |P ′ |= ψ.
Our logic is more expressive than guarantee-free dynamic spatial logic, as the first can express
global properties, but less expressive than the classic spatial logic. Indeed, using the guarantee
operator and the characteristic formulas, we can express our epistemic operators in classic
spatial logic, while guarantee operator cannot be expressed by using our logic:

KAφ
def
= fA|> ∧ (¬(fA|> → φ) .⊥).

60

Our approach has also a theoretical relevance on the direction of introduction a class of
equational-coequational logics for process algebraical semantics. As underlined before, such
logics would be able to encode properties involving the program constructors as well as prop-
erties concerning the transition systems or observational equivalences. All these are directly
related with important applications of distributed systems.

References
[1] A. Baltag, A Logic for Suspicious Players: Epistemic Actions and Belief Updates in

Games. Bulletin Of Economic Research vol. 54(1), 2002

[2] A. Baltag and L.S. Moss. Logics for Epistemic Programs, Synthese vol. 139(2) (Spe-
cial Section: Knowledge, Rationality and Action). Ed. J. Symons, J. Hintikka, Springer
Science-Business Media B.V. ISSN: 0039-7857, 2004

[3] A. Baltag and L.S. Moss and S. Solecki. The Logic of Public Announcements. Common
Knowledge and Private Suspicions, CWI Technical Report SEN-R9922, 1999

[4] J. F. A. K. van Benthem. Logic for information update, In Proc. of TARK01, 2001

[5] S. D. Brookes and C. A. R. Hoare and A. W. Roscoe, A Theory of Communicating Se-
quential Processes, Journal of ACM vol.31(3), 1984

[6] C. Calcagno, L. Cardelli and A. D. Gordon, Deciding validity in a spatial logic for trees,
In Proc. of ACM Workshop on Types in Language Design and Implementation, 2003

[7] L. Caires and E. Lozes, Elimination of Quantifiers and Decidability in Spatial Logics for
Concurrency, In Proc. of CONCUR’2004, LNCS vol.3170, 2004

[8] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part II), In Proc. of CON-
CUR’2002, LNCS vol.2421, 2002

[9] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I), Information and
Computation vol. 186/2, 2003

[10] L. Cardelli and A. D. Gordon. Anytime, Anywhere: Modal Logics for Mobile Ambients,
In Proc. 27th ACM Symposium on Principles of Programming Languages, 2000

[11] L. Cardelli and A. D. Gordon, Mobile Ambients, In Proc. of FOSSACS ’98, 1998

[12] M. Dam, Relevance Logic and Concurrent Composition, In Proc. of Third Annual Sym-
posium on Logic in Computer Science, IEEE Computer Society, 1988

[13] M. Dam, Model checking mobile processes, Information and Computation vol.129(1),
1996

[14] H. van Ditmarsch, Knowledge games, Bulletin of Economic Research vol.53(4), 2001

61

[15] R. Fagin et al. Reasoning about Knowledge, MIT Press, 1995

[16] M. Gabbay and A. Pitts, A New Approach to Abstract Syntax Involving Binders, Formal
Aspects of Computing, to appear

[17] J. Gerbrandy and W. Groeneveld, Reasoning about information change, Journal of Logic,
Language and Information vol.6, 1997

[18] D. Harel et al. Dynamic Logic, MIT Press, 2000

[19] M. Hennessy and R. Milner, Algebraic laws for Nondeterminism and Concurrency, Jour-
nal of JACM vol. 32(1), 1985

[20] J. Hintikka: Knowledge and Belief, Ithaca, N.Y.: Cornell University Press, 1962

[21] A. Kurz and D. Pattinson, Coalgebras and Modal Logic for Parameterised Endofunctors,
CWI Technical Report, SEN-R0040, 2002

[22] A. Kurz and J. Rosicky, Modal Predicates and Coequations, In Proc. of CMCS’02,
ENTCS vol.65.1, 2002

[23] R. Mardare. Logical analysis of Complex Systems. Dynamic Epistemic Spatial Logics,
Ph.D. thesis, DIT, University of Trento, 2006

[24] R. Mardare and C. Priami. Decidable extensions of Hennessy-Milner Logic, In Proc.
FORTE’06, LNCS vol.4229, 2006

[25] R. Mardare and C. Priami. Dynamic Epistemic Spatial Logics, Technical Report, 03/2006,
Microsoft Research Center for Computational and Systems Biology, Trento, Italy, 2006,
available from http://www.cosbi.eu

[26] R. Mardare. Dynamic-Epistemic reasoning on distributed systems, Technical Report,
2007, Microsoft Research Center for Computational and Systems Biology, Trento, Italy,
2006, available from http://www.cosbi.eu

[27] R. Milner, A Calculus of Communicating Systems, Springer-Verlag New York, Inc., 1982

[28] R. Milner, Communicating and Mobile Systems: the Pi-Calculus, Cambridge University
Press, 1999

[29] R. Milner, J. Parrow and D. Walker, Modal logics for mobile processes, TCS vol.114,
1993

[30] D. Sangiorgi, Extensionality and Intensionality of the Ambient Logics, In Proc. of the
28th ACM Annual Symposium on Principles of Programming Languages, 2001

[31] D. Sangiorgi and D. Walker, The Pi-calculus. A Theory of Mobile Processes, Cambridge
University Press, 2001

[32] C. Stirling, Modal and temporal properties of processes, Springer-Verlag New York, Inc.,
2001

62

