
Technical Report CoSBi 11/2006

DNA Splicing: Computing by Observing

Matteo Cavaliere

Microsoft Research – University of Trento,
Centre for Computational and Systems Biology,

Trento, Italy

cavaliere@cosbi.eu

Nataša Jonoska

Department of Mathematics
University of South Florida,

Tampa, FL 33620, USA

jonoska@math.usf.edu

Peter Leupold

Research Group on Mathematical Linguistics,
Rovira i Virgili University,

Tarragona, Spain

klauspeter.leupold@estudiants.urv.es

This is the preliminary version of a paper that will appear in
Natural Computing, 8,1, 2009

available at
http://www.springerlink.com

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Unitn-eprints Research

https://core.ac.uk/display/11829954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Motivated by several techniques for observing molecular processes in real-
time we introduce a computing device that stresses the role of the observer
in biological computations and that is based on the observed behavior of a
splicing system. The basic idea is to introduce a marked DNA strand into a
test tube with other DNA strands and restriction enzymes. Under the action
of these enzymes the DNA starts to splice. An external observer monitors and
registers the evolution of the marked DNA strand. The input marked DNA
strand is then accepted if its observed evolution follows a certain expected
pattern. We prove that using simple observers (finite automata), applied on
finite splicing systems (finite set of rules and finite set of axioms), the class of
recursively enumerable languages can be recognized.

1 Introduction: (Bio)Accepting Devices

Several techniques for monitoring the dynamics and changes of a single DNA molecule
within a given biomolecular process have been developed recently. For instance, a well
established methodology is the FRAP, fluorescent recovery after photobleaching. Other
known methodologies are FRET, fluorescence resonance energy transfer, and fluorescent
correlation spectroscopy FCS [17]. A survey on observation techniques for biomolecular
dynamics with their advantages and disadvantages can be found in [12]. Usually these
techniques can be used to observe only three different colors in fluorescent microscope,
but it is possible to obtain more colors by multiplexing, as suggested in [11].

One of the recent ways to mark (and then, to observe) single DNA molecules is repre-
sented by quantum dots; with this technique it is possible to tag individual DNA molecules;
in other words they can be used like fluorescent biological labels, as suggested by [2, 8].
A more current review on the use of quantum dots in vivo imaging can be found in [14].

In many techniques the study of biomolecular dynamics is divided in two separate
phases (see for ex. [12]): registration of the dynamics (on a special support like channels
of data) and then investigation of the collected data. Inspired by these techniques we
present a theoretical computational model using an “observer” and a “decider” as two
independent devices. A variation of this evolution/ observation strategy, was initially
introduced [6] in a formal computing model inspired by the functioning of living cells,
known as membrane systems.

Since then, the evolution/observation idea has been considered in different formal
models of biological systems [1, 4, 7]. In all these consideratioins the underlying idea is
that a generative device is constructed by using two systems: a mathematical model of a
biological system that “lives” (evolves) and an observer that watches the entire evolution
of this system and translates it into a readable output.

The main idea of this approach is that the computation is obtained by observing
the entire evolution (in time) of a biological system. In [5], the evolution/observation
strategy is used to construct an accepting device. There, it is suggested that it is possible
to imagine any biological system as an accepting device. This is achieved by taking a
model of a biological system, introducing an input to such a system and observing its
evolution. If the evolution of the system is of an expected type, (for example follows a
regular predetermined pattern) the input is accepted by the (bio)system, otherwise it can
be considered rejected.

An external observer is fundamental in extracting a more abstract, formal behavior
from the evolution of the biological system. A decider is the machine that checks whether

1

the behavior of the biological system is of the expected type.
Splicing systems belong to a formal model of recombination of double stranded DNA

molecules (for simplicity we call them DNA strands) under the action of a ligase and
restriction enzymes (endonucleases), [10]. The main purpose of this paper is to illustrate
the accepting strategy of observer/decider to splicing systems. For the motivations and
background on splicing systems we refer to the original paper [10] or to the corresponding
chapter in [16].

In [4] an observer was associated to splicing systems to construct a generative device.
Here we construct an accepting device by joining a decider to the observer of the splicing
system. We call such a system Splicing Recognizer (in short, SR). A schematic view of the
model is depicted in Figure 1.

The SR works in the following way. An input marked DNA strand (represented by a
string w) is inserted in a test tube. Due to the presence of restriction enzymes, the input
strand changes, as it starts to recombine with other DNA strands in the test tube. A
sequence of intermediate marked DNA strands is generated. This constitutes the evolution
of the input marked DNA strand. Schematically this is presented with the sequence of
w,w′, w′′, w′′′ in Figure 1.

The external observer associates to each intermediate marked strand a certain label
(i.e., a meaning) taken from a finite set of possible labels. It writes these labels onto
an output tape in their chronological order. In Figure 1 this corresponds to the string
a1a2a3a4. This string represents a code of the obtained evolution. When the marked
strand becomes of a certain predetermined “type” the observation stops.

observer

1a 2a 3a 4a

4a3a2a1a

input marked
string

evolution
step

(splice)

observer observer observer

decider
YES

NO

w

w(accepted)

w(rejected)

w

compile

symbol
output

w’ w’’ w’’’

Figure 1: The splicing/observer architecture.

At this point the decider checks if the entire evolution of the input marked DNA strand
described by the string a1a2a3a4 has followed a certain pattern, i.e. if it is in a certain
language. If this is true, the input string w is accepted by the SR; otherwise it is consid-
ered to be rejected.

2

In this paper we show that using this strategy, it is possible to obtain computationally
universal accepting systems even in the case when simple components are used.

For instance, we show that having just a finite state automaton as observer of the
evolution of a finite splicing system (with a finite set of splicing rules) is already enough to
simulate a Turing machine. This is a remarkable jump in acceptance power since it is well
known that a finite splicing system by itself can generate only a subclass of the class of
regular languages. The results are not surprising, since by putting extra control with the
decider, the computational power of the whole system increases. Similar results, but in
the generative sense, were obtained without the decider in [4] but these required a special
observation of a right-most evolution, which is not the case with the results presented
here.

The general idea of the evolution/observation strategy outlined above recalls what was
already discussed by G. Rozenberg and A. Salomaa [18], who remarked that the result of a
computation is already present in nature – we only need to look (in an appropriate way) at
it. While in their case the observation is made by applying a gsm machine to the language
obtained using the (biologically inspired) twin-shuffle operation, in our framework the
observer (as well as the decider) is not applied to the final result, but rather to the entire
evolution of the system.

2 Splicing Recognizer: Definition

In what follows we use basic concepts from formal language theory. For more details on
this subject the reader should consult the standard books in the area, for instance, [19, 20].

Briefly, we fix the notations used here. We denote a finite set (the alphabet) by
V , the set of words over V by V ∗. By REG, CF , CS, and RE we denote the classes of
languages generated by regular, context-free, context-sensitive, and unrestricted grammars
respectively.

2.1 Splicing and marked strings

As an underlying biological system we consider a splicing system (more precisely an H
scheme, following the terminology used in [16]).

First we recall some basic notions concerning splicing systems. However, in what fol-
lows, we suppose the reader is already familiar with this subject, as for instance, presented
in [16].

Consider an alphabet V (splicing alphabet) and two special symbols # and $ not in V .
A splicing rule (over V) is a string of the form u1#u2$u3#u4, where u1, u2, u3, u4 ∈ V ∗.

For a splicing rule r = u1#u2$u3#u4 and strings x, y, z1, z2 ∈ V ∗ we write (x, y) =⇒r

(z1, z2) iff x = x1u1u2x2, y = y1u3u4y2, z1 = x1u1u4y2, z2 = y1u3u2x2. We refer to z1

(z2) as the first (second) string obtained by applying the splicing rule r.
An H scheme is a pair σ = (V,R) where V is an alphabet, and R ⊆ V ∗#V ∗$V ∗#V ∗ is

a set of splicing rules. For a given H scheme σ = (V,R) and a language L ⊆ V ∗ we define
σ(L) = {z1, z2 ∈ V ∗ | (x, y) =⇒r (z1, z2), for some x, y ∈ L, r ∈ R}.

When restriction enzymes (and a ligase) are present in a test tube, their action does not
terminate after a single cut and paste operation, but it continues such that the content of
the tube is changed iteratively. Hence, given an initial language L ⊆ V ∗ and an H scheme
σ = (V,R) we define the iterated splicing as: σ0(L) = L, σi+1(L) = σi(L)∪σ(σi(L)), i ≥
0.

3

We are interested in observing the evolution of an input marked string until the string
does not belong to a specific target language. A sequence of marked strings for an initial
language L, a target language Lt ⊆ V ∗, an input marked string w ∈ L,w /∈ Lt, and an H
scheme σ, is any sequence of strings 〈w0, w1, · · · , wk〉, k > 0, wi ∈ V ∗, 0 ≤ i ≤ k, such
that:

• w0 = w; the first string of the sequence is the input marked string.

• For 0 ≤ i ≤ k − 1, there is y ∈ σi(L) such that (wi, y) =⇒r (wi+1, z), r ∈ R or
(y, wi) =⇒r (wi+1, z), r ∈ R, z ∈ V ∗; each new marked string is obtained by splicing
the previous marked string.

• wk ∈ Lt and for 0 ≤ i < k, wi /∈ Lt; the sequence ends as soon as the current marked
string is in the target language.

Note that for 0 ≤ i ≤ k, we have that wi ∈ σi(L). Moreover, we always consider that
each result of splicing two words consists of an ordered pair of words and we take the first
string from this pair as the new marked string.

Because of the non-determinism in applying splicing rules, it is possible to have different
sequences of marked strings for a given initial language L, an input marked string w, a
target marked language Lt, and an H scheme σ. The collection of all the possible sequences

of evolution of a marked string w is denoted by σ(w,L,Lt).

Radius of a splicing system

For a splicing rule r = u1#u2$u3#u4 we denote by rad(r) the length of the longest
string u1, u2, u3, u4; we say that this is the radius of r. The radius of an H scheme is the
maximal radius of its rules.

2.2 Observer

The observer is a device mapping arbitrarily long strings into just one symbol. As in [7]
we use a special variant of finite automata with some feature known from Moore machines:
the set of states is labelled with the symbols of an output alphabet Σ. Any computation of
the automaton produces as output the label of the state it halts in (we are not interested in
accepting / not-accepting computations and therefore also not interested in the presence
of final states). The observation of a certain string should always lead to a fixed result, so
only deterministic and complete automata are considered.

Formalizing this, a monadic transducer is a tuple O = (Z, V,Σ, z0, δ, l) with state set
Z, input alphabet V , initial state z0 ∈ Z, and a complete deterministic transition function
δ as known from conventional finite automata; further there is the output alphabet Σ and
a labelling function l : Z → Σ. The output of the monadic transducer is the label of the
state it stops in. For a string w ∈ V ∗ and a transducer O we then write O(w) for this
output; for a sequence 〈w1, . . . , wn〉 of n ≥ 1 strings over V ∗ we write O(w1, . . . , wn) for
the string O(w1) · · ·O(wn).

For simplicity, in what follows, we present only the regular partitions defined by the
observers without giving detailed implementations for them.

4

2.3 Decider

The Decider is a devices accepting a language over the output alphabet Σ of the corre-
sponding observer as just introduced. For this we rely on conventional finite automata
with input alphabet Σ. The output of the decider consists of a simple yes or no. For
decider D, and input word u ∈ Σ∗, the output is denoted with D(u).

2.4 Splicing Recognizer

Putting together the components just defined in the way informally described in the Intro-
duction, a splicing recognizer (in short SR) is a quintuple Ω = (σ,O,D,L,Lt); σ = (V,R)
is a finite H scheme, O is an observer (Z, V,Σ, z0, δ, l), D is a decider with input alphabet
Σ, L and Lt are finite languages, respectively, the initial and the target marked language
for σ.

The language accepted by SR Ω is the set of all words w ∈ V ∗ for which there exists a
sequence s ∈ σ(w,L,Lt) such that D(O(s)) = yes; formally

L(Ω) := {w ∈ V ∗ | ∃s ∈ σ(w,L,Lt) [D(O(s)) = yes] }.

Radius of a splicing recognizer

Given an SR Ω = (σ,O,D,L,Lt) the radius of Ω is the radius of the employed H
scheme σ.

3 Going over Regular

It is well-known that the family of languages generated by splicing systems using only a
finite set of splicing rules and a finite initial language is strictly included in the family of
regular languages (see, e.g., [16]).

In the following theorem we show that an SR composed by an H scheme with a finite
set of rules, finite initial language, finite target marked language and finite state automata
as observer and decider, can recognize non regular languages.

Theorem 3.1 There is an SR Ω of radius ≤ 2 such that L(Ω) is a non regular, context-

free language.

Proof.
We construct an SR recognizing the language {ola

nbnor | n ≥ 0} that is known to be
non-regular. The SR Ω = (σ,O,D,L,Lt) is defined as follows: the H scheme is σ = (V,R),
with

V = {ol, or, a, b, a′, b′, X1, Y1, X2, Y2} and
R = { r1 : #bor$X2#b′or,

r2 : ola
′#Y2$ola#,

r3 : #b′or$X1#or,
r4 : ol#Y1$ola

′#}

.

The symbols ol, or indicate the left and the right beginning of the string that is to be
accepted, the symbols a′, b′ are help symbols such that the splicing would remove the
appearance of a’s and b’s one at the time and ones after the other, and in that fashion
check whether the count of a’s and b’sis the same. The symbols X1, X2, Y1, Y2 are symbols
that appear in words of the initial language such that the splicing is facilitated.

5

The initial language has four words: L = {X2b
′or, ola

′Y2, X1or, olY1} such that only
one rule can be applied to each string. The target marked language is Lt = {olor}.

The observer O has input alphabet V and output alphabet Σ = {l0, l1, l2, l3,⊥} and
implements the following mapping:

O(w) =

l0 if w ∈ ola
∗b∗or,

l1 if w ∈ ola
∗b∗b′or,

l2 if w ∈ ola
′a∗b∗b′or,

l3 if w ∈ ola
′a∗b∗or,

⊥ else.

The decider D is a finite state automaton, with input alphabet Σ, that gives a positive
answer exactly if a word belongs to the regular language l0(l1l2l3l0)

∗. Note that the first
word in the splicing evolution (marked string) has to be in ol(a

∗b∗)or as l0 is the first
symbol of every string accepted by D. If w 6∈ ol(a

∗b∗)or then the SR does not accept w
i.e., w 6∈ L(Ω).

The observer checks whether the splicing rules are applied in the order r1, r2, r3, r4,
and this corresponds to remove, in an alternating way, a b from the right and an a from
the left of the input marked string. Rule r1 changes the suffix bor of w into b′or. Then rule
r2 changes the prefix ola into ola

′ and rules r3 and r4 remove b′ and a′ respectively. In this
way, at least one of the evolutions of the input marked string is of the kind accepted by
the decider if, and only if, the input marked string is in the language {ola

nbnor | n ≥ 0}.
To clarify the operation of the SR Ω we show the acceptance of the input marked string

w0 = olaabbor. For simplicity, we only show the evolution of the input marked string and
the output of the observer, step by step.

Step splicing rule applied new marked string observer map

0 w0 = olaabbor O(w0) = l0
1 (olaabbor, X2b

′or) =⇒r1
(olaabb′or, X2bor) w1 = olaabb′or O(w1) = l1

2 (olaabb′or, ola
′Y2) =⇒r2

(ola
′abb′or, olaY2); w2 = ola

′abb′or O(w2) = l2
3 (ola

′abb′or, X1or) =⇒r3
(ola

′abor, X1b
′or); w3 = ola

′abor O(w3) = l3
4 (ola

′abor, olY1) =⇒r4
(olabor, ola

′Y1); w4 = olabor O(w4) = l0
5 (olabor, X2b

′or) =⇒r1
(olab′or, X2bor); w5 = olab′or O(w5) = l1

6 (olabb′or, ola
′Y2) =⇒r2

(ola
′b′or, olaY2); w6 = ola

′b′or O(w6) = l2
7 (ola

′b′or, X1or) =⇒r3
(ola

′or, X1b
′or); w7 = ola

′or O(w7) = l3
8 (ola

′or, olY1) =⇒r4
(olor, ola

′Y1); w8 = olor O(w7) = l0

Obviously the entire observed evolution l0l1l2l3l0l1l2l3l0 belongs to the language ac-
cepted by the decider D, so the string w0 is accepted by the SR Ω.

2

4 Going over Context-Free

An SR can accept even non context-free languages as stated in the following theorem. The
trick used here consists in the rotation of symbols in the input marked string, during its
evolution. The regular observer controls whether this kind of rotation is done in a correct
way. In this case the radius of the system is ≤ 3.

Theorem 4.1 There is an SR Ω of radius ≤ 3 such that L(Ω) is a non context-free,

context-sensitive language.

6

Proof. We construct an SR Ω accepting the non context-free language
{olwor | w ∈ {a, b, c}+, |w|a = |w|b = |w|c}. The idea is similar to the one used in Theorem
3.1.

The SR Ω = (σ,O,D,L,Lt) is defined as follows: the H scheme is σ = (V,R), with
V = {a, b, c, ol , or, X1, X2, X3, X4, X5, X6, Xa, X

′

a, Xb, X
′

b, Xc, X
′

c}. As above, the symbols
ol and or are the left and the right “end of string” indicators. Symbols X1 – X6 are
symbols used in the words of the initial language that initiate the splicing, and symbols
Xa – X ′

c are symbols that are used to search for appearances of a, b and c and then to
remove (by splicing) these symbols one by one.

The set of splicing rules of R is divided in two groups, according to their use. The first
group consists rules that rotate the marked string.
r1 : {d#or$X1#Xaor | d ∈ {a, b, c}},
r2 : {#dXeor$X2#XdXeor | e, d ∈ {a, b, c}, e 6= d}
r3 : {olX

′

e#X3$ol#d, | e, d ∈ {a, b, c}}
r4 : {#XdXeor$X4#Xeor | e, d ∈ {a, b, c}, e 6= d}
r5 : {ole#X5$olX

′

e# | e ∈ {a, b, c}}.
The second group of splicing rules is used to remove one of the symbols a, b, or c from

the marked string.
r6 : #aXaor$X6#Xbor,
r7 : #bXbor$X6#Xcor,
r8 : #cXcor$X6#Xaor.

The initial language of the SR is L = {X1Xeor, olX
′

eX3, X4Xeor, oleX5 | e ∈ {a, b, c}}∪
{X2XdXeor | d, e ∈ {a, b, c}, e 6= d} ∪ {X6Xbor, X6Xcor, X6Xaor}. Notice the language is
finite. The target marked language is Lt = {olXaor}.

The observer O has input alphabet V and output alphabet Σ = {l0,⊥}∪{le,1, le,2, le,3, le,4 |
e ∈ {a, b, c}}.

The mapping implemented by the observer is

O(w) =

l0 if w ∈ ol{a, b, c}+or,
le,1 if w ∈ ol{a, b, c}+Xeor, e ∈ {a, b, c}
le,2 if w ∈ ol{a, b, c}∗XdXeor, e, d ∈ {a, b, c}
le,3 if w ∈ olX

′

d{a, b, c}∗XdXeor, e, d ∈ {a, b, c}
le,4 if w ∈ olX

′

d{a, b, c}∗Xeor, e, d ∈ {a, b, c}
λ if w ∈ {olXaor}
⊥ else.

The decider D is a finite state automaton, with input alphabet Σ, that gives a positive
answer exactly if and only if, a word belongs to the regular language
l0(la,1(la,2la,3la,4la,1)

∗lb,1(lb,2lb,3lb,4lb,1)
∗lc,1(lc,2lc,3lc,4lc,1)

∗)+.
At the beginning of the computation the input marked string is of the kind ol{a, b, c}+or

and it is mapped by the observer to l0. If the input marked string is not of this type, then
the observer outputs something different than l0, and the entire evolution is not accepted
by the decider D. In the first step, the splicing rule d#or$X1#Xaor from r1 is used, and
in this way a new marked string of the type ol{a, b, c}+Xaor is obtained and mapped by
the observer to la,1. The introduced symbol Xa indicates that we want to search (and
then to remove) a symbol a from the obtained marked string. This searching is done by
rotating the marked string, until a symbol a becomes the symbol immediate to the left of
Xa. The rotation of the string is done by using the splicing rules given in the first group.

7

A rotation of the string consists in moving the symbol immediately to the left of Xa,
to the right of ol; one rotation is done by applying, in a consecutive way, a rule from r2,
from r3, from r4 and finally from r5 (the precise rules to apply depend on the symbol to
move during the rotation). The sequence of marked strings obtained during a rotation is
mapped by the observer to the string la,2la,3la,4la,1. The ∗ present in the regular expression
describing the decider language, indicates the possibility to have 0, or more consecutive
rotations before a symbol a comes to be the symbol immediately to the left of Xa.

The observer checks that each rotation is made in a correct way; that is, the symbol
removed from the left of Xa by using a rule from r4, is exactly the same symbol introduced
to the right of ol, by using the corresponding rule in r3. This condition is checked in the
fourth line of the observer mapping; if this regular condition is not respected, then the
observer outputs ⊥ and the entire evolution of the input marked string is not accepted by
the decider D.

Once a symbol a becomes the symbol immediately to the left of Xa, rotation stops. It
is deleted by using the splicing rule r6. When rule r6 is applied, the new marked string
obtained belongs to ol{a, b, c}+Xbor and is mapped by the observer to lb,1. The inserted
symbol Xb, indicates that now we search the symbol b.

In a similar way, by using consecutive rotations, a symbol b is placed immediately to
the left of Xb and is being removed by rule r7. In this case, the required sequence of
marked strings obtained during each rotation is mapped by the observer to lb,2lb,3lb,4lb,1.
Once rule r7 is applied, the new marked string obtained belongs to ol{a, b, c}+Xcor and is
mapped by the observer to lc,1.

Analogously, the symbol c is searched for and then deleted by using rule r8. In this
case, the required sequence of marked strings obtained during each rotation is mapped by
the observer to the string lc,2lc,3lc,4lc,1. At this point the entire process can be iterated.
By searching and removing a new symbol a, and then again a b, and again a c, until the
marked string olXaor, from the target language is reached. This string is obtained when
all symbols a, b and c, have been deleted from the input marked string. Note that at each
step the current marked string is spliced with a string from the initial language.

With this argument we show that all strings from the language {w ∈ ol{a, b, c}+or :
|w|a = |w|b = |w|c} can indeed be accepted by Ω. The fact that only such strings can
be accepted is controlled by the particular form of sequences accepted by the decider in
combination with the very specific form of the observed strings leading to such a sequence.

2

5 Computational Completeness

In this section we prove that SRs with radius ≤ 4 have computational power equivalent
to a general Turing machine. Informally, it is possible to simulate an accepting Turing

machine by observing, with a simple observer, the evolution of a simple splicing system.
The universality is not unexpected since, H systems with observer and decider are

similar to splicing systems with regular target languages, known to be universal [15].
The proof follows the idea used in Theorem 4.1.

Theorem 5.1 For each RE language L over the alphabet A there exists an SR Ω of radius

≤ 4 such that Ω accepts the language {o′lwo′r | w ∈ L}, with o′l, o
′

r /∈ A.

8

Proof. Utilizing Church-Turing thesis we only show that, for any Turing machine, an
equivalent SR system Ω can be constructed. In this proof we use off-line Turing machines
with only a single combined input/working tape. The set δ of Turing machine transitions
is a function form Q × A → Q × A × {+,−}, where Q is the set of states, A the tape
alphabet, and + or − denotes a move to the right or left, respectively. An input word is
accepted, if and only if, the Turing machine stops in a state that belongs to F ⊂ Q of final
states. Without loss of generality, we suppose that the machine M accepts the input, if
and only if it reaches a configuration where the tape is entirely empty, and M is in a state
that belongs to F . The initial state of M is q0 ∈ Q. The special letter � ∈ A denotes an
empty tape cell.

We construct an SR Ω simulating M . Before giving the formal details, we outline the
basic idea of the proof. The input string to the Turing machine is inserted as input marked
string to the SR Ω, delimited by two external markers o′l, o

′

r. This does not restrict the
generality of the theorem, because these two symbols could be added to any input string in
two beginning steps by the SR. However, we want to spare ourselves the technical details
of this.

Initially, an arbitrary number of empty tape cells � is added to the left and to the
right of the input marked string. When this phase is terminated, some new markers ol

and or are added to the left and right of the produced marked string; starting from this
step, the transitions of the Turing machine M are simulated on the current marked string;
the marked string contains, at any time, the content of the tape of M , the current state
and the position of the head of M over the tape. To read the entire tape of M the
marked string is rotated using a procedure very similar to the one described in the proof
of Theorem 4.1; like there, the observer can check that the rotations are done in a correct
way. The computation of Ω stops when the target marked string is reached, that is when
a marked string representing an empty tape is obtained.

Formally, the SR Ω = (σ,O,D,L,Lt) is constructed in the following way.
The H scheme σ = (V,R) has alphabet V = {or, ol, o

′

r, o
′

l, X1, X2, · · · , X12} ∪ A′ ∪
{Xe, X

′

e | e ∈ A′} where A′ = A ∪ (A × Q).
The splicing rules present in R are divided in groups, according to their use.
Initialization

r1 : {o′l(a, q0)#X1$o
′

la# | a ∈ (A − {�})};
r2 : {#o′r$X2#�o′r};
r3 : {o′l�#X3$o

′

l#};
r4 : {#o′r$X4#or};
r5 : {ol#X5$o

′

l#};

Rotations

r6 : {a#eor$X6#Xeor | e ∈ A′, a ∈ A};
r7 : {olX

′

e#X7$ol#f | e, f ∈ A′};
r8 : {a#Xeor$X8#or | e ∈ A′, a ∈ A};
r9 : {ole#X9$olX

′

e#f | e, f ∈ A′};

Transitions

r10 : {#(a, q1)bor$X10#c(b, q2)or | q1, q2 ∈ Q, a, b, c ∈ A, (q1, a) → (q2, c,+) ∈ δ };
r11 : {#b(a, q1)dor$X11#(b, q2)cdor | q1, q2 ∈ Q, a, b, c, d ∈ A, (q1, a) → (q2, c,−) ∈ δ};

Halting phase

9

r12 : {ol#$X12#or}.
The initial language L is the finite language containing the strings used by the men-

tioned splicing rules; in particular, L = {o′l(a, q0)X1 | a ∈ (A − {�})}
∪{X2o

′

r, o
′

l�X3, X4or, olX5, X8or, X12or}∪{X6Xeor, olX
′

eX7, oleX9 | e ∈ A′}∪{X10c(b, q2)or |
q2 ∈ Q, c, b ∈ A} ∪ {X11(b, q2)cdor | b, c, d ∈ A, q2 ∈ Q}.

The target marked language is Lt = {olor}. The observer has input alphabet V and
output alphabet Σ = {l0, l1, · · · , l8, lf ,⊥}.

The mapping implemented by the observer is

O(w) =

l0 if w ∈ o′l(A − {�})+o′r,
l1 if w ∈ o′l(a, q0)(A − {�})∗o′r, a ∈ (A − {�}),
l2 if w ∈ o′l(A

′ − {�})+(�)+o′r,
l3 if w ∈ o′l(�)+(A′ − {�})+(�)+o′r,
l4 if w ∈ {o′lw

′or | w′ ∈ (�)∗(A′ − {�})+(�)∗, length(w′) ≥ 3},
l5 if w ∈ (ol(A

′)+or − {w | w ∈ E}),
l6 if w ∈ ol(A

′)∗Xeor, e ∈ A′,
l7 if w ∈ olX

′

e(A
′)∗Xeor, e ∈ A′,

l8 if w ∈ olX
′

e(A
′)∗or, e ∈ A′,

lf if w ∈ E,
⊥ else.

where E = ol(�)∗(�, q)(�)+or ∪ ol(�)+(�, q)(�)∗or ∪ ol(�)+(�, q)(�)+or, q ∈ Q.
The decider is a finite state automaton, with input alphabet Σ that accepts the regular

language E1 ∪ E2, where E1 = l0l1(l2)
+(l3)

∗l4(l5 ∪ l5l5)(l6l7l8(l5 ∪ l5l5))
∗lf and E2 =

l0l1l4(l5 ∪ l5l5)(l6l7l8(l5 ∪ l5l5))
∗lf .

The main point of the proof is to show that, given an input marked string w, at least
one of its (observed) evolutions is of the type accepted by the decider if and only if the
string w is accepted by the Turing machine M .

We now describe the (observed) evolution of a correct input marked string; from this,
we believe it will be clear that non correct strings will not have an evolution of the kind
accepted by the decider, and, therefore will not be accepted by the SR Ω. The reader can
compare the observed evolution of the input marked string with the language accepted by
the decider.

Actually we introduce in the system Ω not the string w but a string of the type o ′

lwo′r
where o′l, o

′

r are left and right delimiters. In general the input marked string will be of the
type o′l(A − {�})+o′r and is mapped by the observer to l0. The pairs in Q × A are used
to indicate in the string the state and the position of the head of M . Initially the head is
positioned on the leftmost symbol of the input marked string, starting in state q0 (by using
a rule in r1); the obtained marked string is of the kind o′l(a, q0)(A−{�})∗o′r, a ∈ (A−{�})
mapped to l1 by the observer.

Then empty cells � are added to the right and to the left of the marked string using
rules in r2 and in r3, respectively. The marked string obtained at the end of this phase
will be of the kind o′l(�)+(A′−{�})+(�)+o′r mapped to l3 by the observer. This phase is
optional, and therefore the language of the decider is described by the union of E1 where
the adding of spaces is used and E2, where no spaces are added, i.e., l2 and l3 are missing.

Then, by using rules in r4 and in r5 the delimiters o′l and o′r are changed into ol and
or, respectively. When a rule in r4 is applied, the marked string obtained is of the kind
o′lw

′or, w
′ ∈ (�)∗(A′ − {�})+(�)∗ mapped to l4 if the size of the string w′ (possibly,

10

including empty cells) is at least of 3 symbols; this condition is useful during the following
phases of rotations and does not imply a loss of generality.

When a rule in r5 is applied, also o′l is removed and the marked string obtained is
mapped to l5 by the observer. This means that the symbol indicating the head of M ,
(a, q1), is exactly one symbol away from or, then a splicing rule in r10 or in r11 is applied.
The one symbol left between the symbol representing the head and the delimiter or is
useful in case of the simulation of a right-moving transition. The rule sets r10 and r11

correspond to transitions moving right and left, respectively.
Once a transition is simulated, the obtained marked string is again of the type mapped

to l5 by the observer (this is why it is possible to have in the language of the decider the
substring l5l5). At any rate it is not possible to have immediately another transition after
a transition, because the symbol corresponding to the head of M is moved. At least one
rotation must be first executed.

In case the symbol representing the head of M is not exactly one symbol away from or,
then the marked string is rotated until this condition is not true any more. The rotation of
one symbol in the string (i.e., moving the symbol present to the left of or, to the immediate
right of ol) is done by applying, in this order, splicing rules from r6, r7, r8 and from r9.
The marked strings obtained during this phase are mapped by the observer to l6, l7, l8
and finally l5. At the end of a rotation a transition can be simulated; more consecutive
rotations can be done until the necessary condition to simulate a transition is reached.
This explains why (l6l7l8(l5 ∪ l5l5))

∗ forms part of the decider language.
When, after a transition, the marked string obtained represents the empty tape of M ,

then the computation of the SR stops. The marked strings representing an empty tape
are the ones in the language E and they are mapped by the observer to lf . After the
observer has output lf , the splicing rule in r12 can be applied and the unique string in
the target marked language olor can be reached. If the rule in r12 is applied before the
observer outputs lf , then the entire evolution is not accepted by the decider. Notice that
during the entire computation the marked string can be spliced only with a string from
the initial language.

From the above explanation, it follows that an input marked string written in the form
o′lwo′r is accepted by Ω, if and only if, w is accepted by the Turing machine M . 2

6 Perspectives and Concluding Remarks

Although the components within a splicing recognizer are elementary (finite H scheme
and finite state automata), the computational power of the model is not surprising. The
biomolecular evolution of the marked molecule through splicing is potentially rather com-
plex. However, our model first filters out the unwanted behavior (requirement of the target
language) then maps the chosen behavior into a string (observer) and finally filters out one
more time those strings that are not acceptable (decider). It is well known that the class
of finite splicing systems cannot generate languages with complexity higher than regular.
The computational power of the splicing recognizer increases dramatically by following
the whole process of splicing through additional controls provided with the observer and
the decider,.

The proposed approach suggests several interesting problems.
For instance, the process of observation as defined here is non-deterministic; meaning,

the initial marked DNA strand is accepted if at least one of its observed evolution follows

11

an expected pattern, while there might be several possible evolutions of this DNA strand
since there might be several different ways to splice the strand. It would be interesting
to see if by increasing the complexity of the observer and/or the decider, a (“more”)
deterministic way of generating the splicing evolution can be employed.

We recall that in the model presented here the observers and deciders are simple
devices, i.e., finite state automata. Moreover, in the model presented here it is supposed
that the observer is able to catch, in the molecular soup, every single change of the marked
DNA strand. In practice, it is very questionable whether every step of the evolution can
be observed. It should be assumed that only some particular types of changes, within a
certain time-interval can be observed (see [12]). Therefore another variant of SR needs to
be, at least theoretically, investigated in which an observer with “realistic” limitations on
the ability of observation is considered. For instance the observer might be able to watch
only a window or a scattered subword of the entire evolution.

There are a variety of technical problems that can be considered. For example, the
universal computational power has been obtained by using an SR of radius ≤ 4. We
conjecture that it is possible to decrease the radius, hence the question arises: what is
the minimum radius that provides universal computation. Moreover what is the power of
SRs of radius 1: is it enough to obtain a class larger than regular? (i.e., can the result of
Theorem 3.1 be improved?)

It remains also to investigate SRs using simpler and more restricted variants of H
schemes, like the ones with simple splicing [13], and semi-simple splicing rules [9]. Note
that from a pure theoretical point of view, observer and decider could be joined in a unique
finite state automaton, which may provide a better framework for theoretical investigation.
In this paper we prefer to leave the two “devices” separated since this situation can be
envisioned to be closer to reality.

Moreover, we can interpret a given H scheme with an observer as a device computing
a function, by considering as input the input marked string, and as output its (observed)
evolution. What kind of functions can be computed in this way?

On other hand, in this paper we have supposed that, to get a specified Turing ma-
chine, one has to construct a specified splicing system (bio-system) and a specified ob-
server/decider of such bio-system. Actually, in nature the majority of biological systems
cannot be easily “programmed” and changed; these bio-systems have their own rules, fixed
by nature, and they just live (evolve) according to such rules (this is true also for splicing
systems; some of them are easier to implement than others). On the other hand, it is
possible to observe the evolution of a bio-system by using different observers. Therefore
it is natural to ask what are the limitations of the observe while keeping the underlying
bio-system fixed. For instance, in the presented framework, is it possible to simulate every
Turing machine, by keeping the underlying splicing system fixed and changing only the
observer and the decider?

The answer to this problem may be actually true, considering that in [3] it has been
proven that every (generative) Turing machine can be simulated by observing a fixed
context-free grammar, by only choosing the “right” observer. If this is confirmed in our
framework, this may mean that any computing device can be constructed by finding the
right observer and the right decider for a fixed underlying splicing system.

These are only a few of the possible directions of investigation that arise from the
presented approach. We believe that some of these directions may provide useful conditions
for using recombinant DNA for computing.

12

Acknowledgments

The authors want to thank Peter R. Cook for providing extremely useful references.
P. Leupold has been supported by the FPU grant of the Spanish Ministry of Science
and Education. N. Jonoska has been supported in part by NSF Grants CCF #0432009
and CCF#0523928. The paper is based on the work presented at the 11th International
Meeting on DNA Based Computers held in London, Canada, June 2005.

References

[1] A. Alhazov, M. Cavaliere, Computing by Observing Bio-Systems: the Case of Sticker
Systems. Proceedings of DNA 10 - Tenth International Meeting on DNA Computing,
Lecture Notes in Computer Science, 3384 (C. Ferretti, G. Mauri, C. Zandron eds.),
Springer, 2005, pp. 1–13.

[2] M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alavisatos, Semiconductor
Nanocrystals as Fluorescent Biological Labels. Science, 281, 1998, pp. 2013-2016.

[3] M. Cavaliere, P. Frisco, H.J. Hoogeboom, Computing by Only Observing. Proceed-

ings Tenth International Conference on Developments in Language Theory, DLT06,
Lecture Notes in Computer Science, 4036, Springer, 2006, pp. 304–314.

[4] M. Cavaliere, N. Jonoska, (Computing by) Observing Splicing Systems. Manuscript
2004.

[5] M. Cavaliere, P. Leupold, Observation of String-Rewriting Systems. Fundamenta

Informaticae 74(4), 2006, pp. 447–462.

[6] M. Cavaliere, P. Leupold, Evolution and Observation – A New Way to Look at Mem-
brane Systems. Membrane Computing, Lecture Notes in Computer Science, 2933 (C.
Mart́ın-Vide, G. Mauri, Gh. Păun, G. Rozenberg, A. Salomaa eds.), Springer, 2004,
pp. 70–88.

[7] M. Cavaliere, P. Leupold, Evolution and Observation – A Non-Standard Way to
Generate Formal Languages. Theoretical Computer Science, 321, 2004, pp. 233-248.

[8] W.C.W. Chan, S. Nie, Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic
Detection. Science, 281, 1998, pp. 2016-2018.

[9] E. Goode, D. Pixton, Semi-Simple Splicing Systems. Where Mathematics, Computer

Science, Linguistics and Biology Meet (C. Martin-Vı́de, V. Mitrana eds.), Kluwer
Academic Publisher, 2001, pp. 343 – 352.

[10] T. Head, Formal Language Theory and DNA: An Analysis of the Generative Capac-
ity of Specific Recombinant Behaviors. Bulletin of Mathematical Biology 49, 1987,
pp. 737-759.

[11] J.M. Levsky, S.M. Shenoy, R.C. Pezo, R.H. Singer, Single-Cell Gene Expression
Profiling. Science, 297, 2002, pp. 836–40.

[12] J. Lippincott-Schwartz, E. Snapp, A. Kenworthy, Studying Protein Dynamics in
Living Cells. Nature Rev. Mol. Cell. Biol., 2, 2001, pp. 444–456.

13

[13] A. Mateescu, Gh. Păun, G. Rozenberg, A. Salomaa, Simple Splicing Systems. Dis-

crete Applied Mathematics, 84, 1998, pp. 145–163.

[14] X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sun-
daresan, A.M. Wu, S.S. Gambhir, S. Weiss, Quantum Dots for Live Cells, in Vivo
Imaging and Diagnostic. Science, 307, 2005, www.sciencemag.org.

[15] Gh. Păun, Splicing Systems with Targets are Computationally Universal. Informa-

tion Processing Letters, 59, 1996, pp. 129-133.

[16] Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing - New Computing

Paradigms. Springer-Verlag, Berlin, 1998.

[17] R. Rigler, E.S. Elson, Fluorescent Correlation Spectroscopy. Springer, New-York,
2001.

[18] G. Rozenberg, A. Salomaa, Watson-Crick Complementarity, Universal Computa-

tions and Genetic Engineering. Technical Report 96-28, Dept. of Computer Science,
Leiden University, 1996.

[19] G. Rozenberg, A. Salomaa (eds.), Handbook of Formal Languages. Springer-Verlag,
Berlin, 1997.

[20] A. Salomaa, Formal Languages. Academic Press, New York, 1973.

14

