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into quasi-local kernels

that improve SVM accuracy
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Abstract

Motivated by the crucial role that locality plays in various learning approaches, we
present, in the framework of kernel machines for classification, a novel family of operators
on kernels able to integrate local information into any kernel obtaining quasi-local kernels.
The quasi-local kernels maintain the possibly global properties of the input kernel and
they increase the kernel value as the points get closer in the feature space of the input
kernel, mixing the effect of the input kernel with a kernel which is local in the feature
space of the input one. If applied on a local kernel the operators introduce an additional
level of locality equivalent to use a local kernel with non-stationary kernel width. The
operators accept two parameters that regulate the width of the exponential influence of
points in the locality-dependent component and the balancing between the feature-space
local component and the input kernel. We address the choice of these parameters with
a data-dependent strategy. Experiments carried out with SVM applying the operators
on traditional kernel functions on a total of 43 datasets with different characteristics and
application domains, achieve very good results supported by statistical significance.

1 Introduction

Support Vector Machines [1] (SVM) are state-of-the-art classifiers and are now widely used
and applied over a wide range of domains. Reasons for SVM’s success are multiple, including
the presence of an elegant bound on generalization error [2], the fact that SVM is based on
kernel functions k(·, ·) representing the scalar product of the sample mapped in a Hilbert space
and the relative lightweight computational cost of the model in the evaluation phase. For a
review on SVM and kernel methods the reader can refer to [3].

Locality in classification plays a crucial role [4]. In the framework of statistical learning
theory, in fact, selecting the local influence of the training points used to classify a test point
(i.e. the level of locality of the classifier), allows one to find a lower minimization of the
guaranteed risk (i.e. a bound on the probability of classification error) with respect to “global”
approaches as shown in [5]. Local learning algorithms [4, 6] are based on this theoretical
consideration and they locally adjust the separating surface considering the characteristics of
each region of the training set, the assumption being that the class of a test point can be more
precisely determined by the local neighbors rather than by the whole training set especially for
non-evenly distributed datasets. Notice that one of the most popular classification methods,
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the K-Nearest Neighbors (KNN)1 algorithm, is deeply based on the notion of locality. In kernel
methods, locality has been introduced with two meanings: i) as local relationship between the
features, i.e. local feature dependence, adding prior information reflecting it, ii) as distance
proximity between points, i.e. local points dependence, enhancing the kernel values for points
that are close to each other and/or penalizing the points that are far from each other. The
first meaning has been exploited by locality-improved kernels, the second by local kernels and
local SVM.

Locality-improved kernels [3] take into account prior knowledge of the local structure in data
such as local correlation between pixels in images. The way the prior information is integrated
into the kernel depends on the specific task but, in general, the kernel increases similarity and
correlation of selected features that are considered locally related. Locality-improved kernels
were successfully applied on image processing [7] and on bioinformatics tasks [8] [9].

Local kernels are kernels such that, when the distance between a test point and a training
point tends to infinity, the value of the kernel is constant and independent of the test point [10]
[11]; if this condition is not respected the kernel is said to be global. A popular local kernel is
the radial basis function (RBF) kernel that tends to zero for points whose distance is high with
respect to a width parameter that regulates the degree of locality. On the other hand, distant
points influence the value of global kernels (e.g. linear, polynomial and sigmoidal kernels).
Local kernels and in particular the RBF kernel show very good classification capability but
they can suffer from the curse of dimensionality problem [12] and they can fail with datasets
that require non-linear long-range extrapolation. In this case, even if the tuning of the width
parameter allows for the contribution of distant points, global kernel reflecting a particular
conformation of the separating surface are generally preferred and permits better accuracies.
An attempt to mix the good characteristics of local and global kernels is reported in [11] where
RBF and polynomial kernels are considered for SVM regression.

Local SVM is a local learning algorithm and was independently proposed by Blanzieri and
Melgani [13] [14] and by Zhang et al. [15] and applied respectively to remote sensing and
visual recognition tasks. Other successful applications of the approach are detailed in [16] for
general real datasets, in [17] for spam filtering and in [18] for noise reduction. The main idea
of local SVM is to build at prediction time a sample-specific maximal marginal hyperplane
based on the set of K-neighbors. In [13] it is also proved that the local SVM has chance to
have a better bound on generalization with respect to SVM. However, local SVM suffers from
the high computational cost of the testing phase that comprises for each sample the selection
of the K nearest neighbors and the computation of the maximal separating hyperplane, and
from the problem of tuning the K parameter. Although the first drawback prevents the
scalability of the method for large datasets, some approximations of the approach have been
proposed in order to improve the computational performances in [19] and [20]. In particular
the approach we presented in [20] is asymptotically faster than SVM especially for non high-
dimensional datasets basically maintaining the classification capabilities of KNNSVM, whereas
the approach of [19] remains much slower than SVM and builds only local linear models.

Other ways of including locality in the learning process are based on the work of Amari and
Wu [21] that modify the Riemannian geometry induced by the kernel in the input space intro-
ducing a quasi-conformal transformation on the kernel metric with a positive scalar function.
Particular choices of such scalar functions permitted in [21] to increasing the margin of the
separating hyperplane through a two steps SVM training under the empirical assumption that
the support vectors (detected with a primary SVM training) are located mainly in proximity of
the hyperplane. In the bioinformatics field, a different particular choice of the scalar function

1From now on, for notational reasons, we refer to the K parameter of KNN based methods with upper-case
K, reserving lower-case k for denoting kernel functions.
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permitted to the authors of [22] to reach high accuracy in classification of tissue samples from
their microarray gene expression levels through a KNN based scheme. Locality has been also
used as the key factor to combine multiple kernel functions using a non-stationary (i.e. non-
global) fashion as detailed in [23].

In this work we present a family of operators that transform an arbitrary input kernel
into a kernel which has a component that is local and universal in the feature space of the
input kernel. This resulting new family of kernels, opportunely tuned, maintains the original
kernel behaviour for non-local regions, while increasing the values of the kernel for pairs of
points that fall in a local region. In this way we aim to take advantage of both locality
information and the long-range extrapolation ability of global kernels, alleviating also the
curse of dimensionality problem of the local kernels and balancing the compromise between
interpolation and generalization capability. The operators systematically map the input kernel
functions into kernels that maintain the positive definite property and exploit the locality in
the feature space which is a generalization of the standard locality meaning and it is central
in the notion of quasi-local kernels. In such a way we are able to introduce the power of
local learning techniques in the standard kernel methods framework modifying only the kernel
functions and thus overcoming the computational limitation of the original formulation of local
SVM. In particular, if the operators are applied on a local kernel, it turns out that the new
kernel has a conceptually different meaning of locality, basically similar to a local kernel with
variable kernel width. We give a practical way of estimating the optimal additional parameters
introduced in the resulting kernel functions starting from the optimized input kernel and the
penalty parameter of SVM.

Although we are focusing here on the classification task, our operators on kernels can be
theoretically applied for every kernel-based technique in which locality plays a crucial role. It
is the case of many kernel-based subspace analysis techniques like dimensionality reduction,
manifold learning and feature selection techniques which are gaining importance in the last few
years. Some of the most popular techniques are intrinsically based on locality such as Local
Learning Embedding (LLE) [24] which has a kernel-based version [25] and it is equivalent
to kernel principal component analysis (kernel PCA) [26] for a particular kernel choice and
kernel Local Discriminant Embedding (kernel LDE) [27]. Other non naturally local techniques,
have their local counterparts: Fisher Discriminative Analysis (FDA) [28] and its kernel-based
version [29] with Local Fisher Discriminative Analysis (LFDA) [30], Generalized Discriminant
Analysis (GDA) [31] with locally linear discriminant analysis (LLDA) [32]. Global techniques
such as ISOMAP [33,34] can adopt their kernel version using a local kernel to include locality.
Other approaches are based on developing and learning kernels subject to local constraints,
as for example in [35]. An interesting discussion on local and global approaches for non-linear
dimensionality reduction fall beyond the kernel methods field and it is addressed in [36].

The paper is organized as follows. After recalling in section 2 some preliminaries on SVM,
kernel functions and local SVM, in section 3 we present the new family of operators that
produces quasi-local kernels. The artificial example presented in section 4 illustrates intuitively
how the quasi-local kernels work. In section 5 we propose a first experiment on 23 datasets
with the double purpose of investigating the classification performance and of identifying the
most suitable quasi-local operators. The most promising quasi-local kernels are applied in the
experiment of section 6 to 20 large classification datasets. Finally, in section 7, we draw some
conclusions.
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2 SVM and kernel methods preliminaries

Support vector machines (SVMs) are classifiers with sound foundations in statistical learning
theory [2]. The decision rule of an SVM is SVM(x) = sign(〈w, Φ(x)〉F + b) where Φ(x) :
Rp → F is a mapping in some transformed feature space F with inner product 〈·, ·〉F . The
parameters w ∈ F and b ∈ R are such that they minimize an upper bound on the expected
risk while minimizing the empirical risk. The minimization of the complexity term is achieved
by minimizing the quantity 1

2 · ‖w‖2, which is equivalent to maximizing the margin between
the classes. The empirical risk term is controlled through the following set of constraints:

yi (〈w, Φ(xi)〉F + b) ≥ 1− ξi with ξi ≥ 0 and i = 1, . . . , N (1)

where yi ∈ {−1,+1} is the class label of the i -th nearest training sample. Such constraints
mean that all points need to be either on the borders of the maximum margin separating
hyperplane or beyond them. The margin is required to be 1 by a normalization of distances.
The presence of the slack variables ξi allows the search for a soft margin, i.e. a separation with
possibly some training set misclassification, necessary to handle noisy data and non-completely
separable classes. By reformulating such an optimization problem with Lagrange multipliers
αi (i = 1, . . . , N), and introducing a positive definite kernel function k(·, ·) that substitutes
the scalar product in the feature space 〈Φ(xi), Φ(x)〉F the decision rule can be expressed as:

SVM(x) = sign

(
N∑

i=1

αiyik(xi, x) + b

)

where training points with nonzero Lagrange multipliers are called support vectors. The
introduction of the positive definite (PD) kernels avoids the explicit definition of the feature
space F and of the mapping Φ [3] [37], through the so-called kernel trick. A kernel is PD if it
is the scalar product in some Hilbert space, i.e. the kernel matrix is symmetric and positive
definite2.

The maximal separating hyperplane defined by SVM has been shown to have important
generalization properties and nice bound on the VC dimension [2]. In particular we refer to
the following theorem:

Theorem 1 (Vapnik [2] p.139). The expectation of the probability of test error for a maximal
separating hyperplane is bounded by

EPerror ≤ E

{
min

(
m

l
,
1
l

[
R2

∆2

]
,
p

l

)}

where l is the cardinality of the training set, m is the number of support vectors, R is the radius
of the sphere containing all the samples, ∆ = 1/|w| is the margin, and p is the dimensionality
of the input space.

Theorem 1 states that the maximal separating hyperplane can generalize well as the ex-
pectation on the margin is large (since a large margin minimizes the R2

∆2 ratio).

2.1 Local and global basic kernels

Kernel functions can be divided in two classes: local and global kernels [11]. Following [10] we
define the locality of a kernel as:

2In the present work, we frequently refer to PD kernels simply as kernels.
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Definition 1 (Local kernel). A PD kernel k is a local kernel if, considering a test point x
and a training point xi, we have that

lim
‖x−xi‖→∞

k(x, xi) → ci (2)

with ci constant and not depending on x. If a kernel is not local, it is considered to be global.

This definition captures the intuition that, in a local kernel, only the points that are enough
close each other influences the kernel value. This does not directly implicate that the higher
peak of the kernel value is in correspondence of points in the same position, although the most
popular local kernel functions have this additional characteristic. In contrast, in a global kernel
function, all the points are able to influence the kernel value regardless of their proximity.

In this work we will consider as baseline and as inputs of the operators we will introduce
in the next section, the linear kernel klin, the polynomial kernel kpol, the radial basis function
kernel krbf and the sigmoidal kernel ksig. We refer to these four kernels as reference input
kernels and we recall here their definitions:

klin(x, x′) = 〈x, x′〉 kpol(x, x′) = (γpol · 〈x, x′〉+ rpol)d

krbf (x, x′) = exp(−γrbf · ||x− x′||2) ksig(x, x′) = tanh(γsig · 〈x, x′〉+ rsig)

with γpol, γrbf , γsig > 0, rpol, rsig ≥ 0 and d ∈ N.
It is simple to show that, among the four input kernel listed above, the only local kernel

is krbf since for ‖x − xi‖ → ∞ we have that krbf (x, xi) → 0 (i.e. a constant that does not
depend on x), whereas klin, kpol and ksig are global.

For the radial basis function kernel krbf it is reasonable to set the parameter γrbf with the
inverse of the squared median of the of ‖xi − xj‖, namely the Euclidean distances between
every pair of samples xi [38]. This because krbf (x, x′) can be written explicitly introducing
the kernel width as exp

(
− ||x−x′||2

2·σrbf 2

)
and in this way the distances are weighted with a value

that is likely to be in same order of magnitude. More precisely, denoting with qh[‖x − x′‖Z ]
the h percentile of the distribution of the distance in the Z space between every pair of points
x, x′ in the training set, γrbf can be chosen as γrbf

h = 1/(2 · q2
h[‖x− x′‖Rp

]). For h reasonable
choices can be 10, 50 (i.e. the median) or 90 that should be in the same order of magnitude
of the median, and 1 which enhances the local behaviour.

It is known that the linear, polynomial and radial basis function kernels are valid kernels
since they are PD. It has been shown, however, that the sigmoidal kernel is not PD [3];
nevertheless it has been successfully applied in a wide range of domains as discussed in [39].
In [40] is showed that the sigmoidal kernel can be conditionally positive definite (CPD) for
certain parameters and for specific inputs. Since CPD kernels can be safely used for SVM
classification [41], the sigmoidal kernel is suitable for SVM only on a subset of the parameters
and input space. In this work we use the sigmoidal kernel being aware of its theoretical
limitations, which can be reflected in non-optimal solutions and convergence problems in the
maximal margin optimization.

2.2 Local SVM

The method [13, 14] combines locality and searches for a large margin separating surface by
partitioning the entire transformed feature space through an ensemble of local maximal margin
hyperplanes. It can be seen as a modification of the SVM approach in order to obtain a local
learning algorithm [4, 5] able to locally adjust the capacity of the training systems. The local
learning approach is particularly effective for uneven distributions of training set samples in
the input space. Although KNN is the simplest local learning algorithm, its decision rule
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based on majority voting overlooks the geometric configuration of the neighbourhood. For
this reason the adoption of a maximal margin principle for neighbourhood partitioning can
result in a good compromise between capacity and number of training samples [42].

In order to classify a given point x′ of the p-dimensional input feature space, we need first
to find its K nearest neighbors in the transformed feature space F and, then, to search for an
optimal separating hyperplane only over these K nearest neighbors. In practice, this means
that an SVM classifier is built over the neighborhood of each test point x′. Accordingly, the
constraints in (1) become:

yrx(i)

(
w · Φ(xrx(i)) + b

) ≥ 1− ξrx(i), with i = 1, . . . , K

where rx′ : {1, . . . , N} → {1, . . . , N} is a function that reorders the indexes of the N training
points defined recursively as:





rx′(1) = argmin
i=1,...,N

‖Φ(xi)− Φ(x′)‖2

rx′(j) = argmin
i=1,...,N

‖Φ(xi)− Φ(x′)‖2 with i 6= rx′(1), . . . , rx′(j − 1) for j = 2, . . . , N

In this way, xrx′ (j) is the point of the set X in the j-th position in terms of distance from x′

and the following holds: j < K ⇒ ‖Φ(xrx′ (j))− Φ(x′)‖ ≤ ‖Φ(xrx′ (K))− Φ(x′)‖ because of the
monotonicity of the quadratic operator. The computation of the distance in F is expressed in
terms of kernels as:

||Φ(x)− Φ(x′)||2 = Φ2(x) + Φ2(x′)− 2〈Φ(x),Φ(x′)〉F =
= 〈Φ(x),Φ(x)〉F + 〈Φ(x′), Φ(x′)〉F − 2〈Φ(x), Φ(x′)〉F = k(x, x) + k(x′, x′)− 2k(x, x′). (3)

If the kernel is krbf or any polynomial kernels with degree 1, the ordering function is equivalent
to use the Euclidean metric. For non-linear kernels (other than krbf ) the ordering function
can be different from that produced using the Euclidean metric.

The decision rule associated with the method is:

KNNSVM(x) = sign

(
K∑

i=1

αrx(i)yrx(i)k(xrx(i), x) + b

)
.

For K = N , the KNNSVM method is the usual SVM whereas, for K = 2, the method imple-
mented with the linear kernel corresponds to the standard 1-NN classifier. Conventionally, in
the following, we assume that also 1-NNSVM is equivalent to 1-NN.

The method can be seen as a KNN classifier implemented in the input or in a transformed
feature space with a SVM decision rule or as a local SVM classifier. In this second case the
bound on the expectation of the probability of test error becomes:

EPerror ≤ E

{
min

(
m

K
,

1
K

[
R2

∆2

]
,

p

K

)}

where m is the number of support vectors. Whereas the SVM has the same bound with
K = N , apparently the three quantities increase due to K < N . However, in the case of
KNNSVM the ratio R2

∆2 decreases because: 1) R (in the local case) is smaller than the radius
of the sphere that contains all the training points; and 2) the margin ∆ increases or at least
remains unchanged. The former point is easy to show, while the second point (limited to the
case of linear separability) is stated in the following theorem [14].

Theorem 2. Given a set of N training points X = {xi ∈ Rp}, each associated with a label
yi ∈ {−1, 1}, over which is defined a maximal margin separating hyperplane with margin ∆X ,
if for an arbitrary subset X ′ ⊂ X there exists a maximal margin hyperplane with margin ∆X′

then the inequality ∆X′ ≥ ∆X holds.
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Sketch of the proof. Observe that for X ′ ⊂ X the convex hull of each class is contained in the
convex hull of the same class in X. Since the margin can be seen as the minimum distance
between the convex hulls of different classes and since given two convex hulls H1,H2 the
minimum distance between them cannot be lower than the minimum distance between H ′

1

and H2 with H ′
1 ⊆ H1, we have the thesis. For an alternative and rigourous proof see [14].

As a consequence of Theorem 2 the KNNSVM has the potential of improving over both
KNN and SVM as empirically shown in [13] for remote sensing, in [15] for visual applications,
in [16] on 13 benchmark datasets, in [17] for spam filtering and in [18] for noise removal.

Apart from the SVM parameters (C and the kernel parameters), the only parameter of
KNNSVM that needs to be tuned is the number of neighbors K. K can be estimated on
the training set among a predefined series of natural numbers (usually a subset of the odd
numbers between 1 and the total number of points) choosing the value that shows better
predictive accuracy with a 10-fold cross validation approach. In this work, when we refer to
the KNNSVM classifier we assume that K is estimated in this way.

3 Operators that transform kernels into quasi-local kernels

In this section we define the operators we use to integrate the locality information into existing
kernels obtaining quasi-local kernels. We first introduce the framework of operators on kernel,
then the quasi-local operators discussing their properties, definition, intuitive meaning and
strategies to select their parameters.

3.1 Operators on kernels

An operator on kernels, generically denoted as O, is a function that accepts a kernel as input
and transforms it into another kernel, i.e. O is an operator on kernels if O k is a kernel
(supposing that k is a kernel). More formally:

Definition 2 (Operators on kernels). Denoting with lp a (possibly empty) list of parameters
that can be real constants and real-valued functions and with lk a (possibly empty) a-priori
fixed-length list of PD kernels, Olp is an operator on kernels if k(x, x′) = (Olp lk)(x, x′) with
x, x′ ∈ X is positive definite for every choice of PD kernels in lk.

An example of operator with an empty list of kernels that we can define is (Omul
f )(x, x′) :=

f(x)f(x′) which is a PD kernel for every real-valued function f . Also the identity function can
be thought of as an operator on kernel such that (I k)(x, x′) = k(x, x′). Another example is the
exponentiation operator defined as (Oe k)(x, x′) := exp(k(x, x′)). Although the focus in this
work is on the class of operators for quasi local kernels, notice that, defining operators based
on known properties of kernel, it is possible to prove the PD property of a kernel rewriting it
starting from known PD kernels applying only operators on kernels.

3.2 Operators for quasi-local kernels

Our operators produce kernels that we call quasi-local kernels, combining the input kernel
with another kernel based on the distance in the feature space of the input kernel. The formal
definition of quasi-locality will be discussed in subsection 3.6 but basically the class of quasi-
local kernels comprises those kernels that combine an input kernel with a kernel which is local
in the feature space of the input kernel. In the case of a global kernel as input of the operators,
the intuitive effect of the quasi-locality of the resulting kernels is that they are not local for
definition 1 but at the same time the kernel score is significantly increased for samples that are
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close in the feature space of the input kernel. In this way the kernel can take advantage from
both the locality in the feature space and the long-range extrapolation ability of the global
input kernel.

We first construct a kernel to capture the locality information of any kernel function; such
a family of kernels takes inspiration from the RBF kernel, substituting the Euclidean distance
with the distance in the feature space.

kexp(x, x′) = exp
(
−||Φ(x)− Φ(x′)||2

σ

)
σ > 0

where Φ is a mapping between the input space Rp and the feature space F . The feature space
distance ||Φ(x)− Φ(x′)||2 is dependent on the choice of kernel (see (3)):

||Φ(x)− Φ(x′)||2 = k(x, x) + k(x′, x′)− 2 · k(x, x′).

The kexp kernel can be obtained with the first operator, named Eσ, that accepts a positive
parameter σ applied on a kernel k producing Eσ k = kexp. Explicitly, the Eσ operator is defined
as:

(Eσ k)(x, x′) = exp
(−k(x, x)− k(x′, x′) + 2k(x, x′)

σ

)
σ > 0. (4)

Note that Eσ klin = krbf so as a special case we have the RBF kernel. However, the kernels
obtained with Eσ consider only the distance in the feature space without including explicitly
the input kernel. For this reason Eσ k is not a quasi-local kernel.

In order to overcome the limitation of Eσ which completely drops the global information,
the idea is to weight the input kernel with the local information to obtain a real quasi-local
kernel. So we include explicitly the input kernel in the output of the following operator:

(Pσ k)(x, x′) = k(x, x′) · (Eσk)(x, x′) σ > 0. (5)

Observing that the Eσ k kernel can assume values only between 0 and 1 (since it is an expo-
nential with negative exponent) and that the higher the distance in the feature space between
samples the lower the value of the Eσ k kernel, the idea of Pσ is to exponentially penalize the
basic kernel k with respect to the feature space distance between x and x′.

An opposite possibility is to amplify the values of input kernels in the cases in which the
samples contain local information. This can be done simply by adding the Eσ k kernel to the
input one.

(Sσ k)(x, x′) = k(x, x′) + (Eσk)(x, x′) σ > 0. (6)

However, since Eσ gives kernels that can assume at most the value of 1 while the input kernel in
the general case does not have an upper bound, it is reasonable to weight the Eσ operator with
a constant reflecting the order of magnitude of the values that the input kernel can assume in
the training set. We call this parameter η and the new operator is:

(Sσ,η k)(x, x′) = k(x, x′) + η · (Eσk)(x, x′) σ > 0, η ≥ 0. (7)

A different formulation of the Pσ operator that maintains the product form but adopts the
idea of amplifying the local information is:

(PSσ k)(x, x′) = k(x, x′)
[
1 + (Eσk)(x, x′)

]
σ > 0, η ≥ 0. (8)

Also in this case the parameter η that controls the weight of the Eσ k kernel is introduced:

(PSσ,η k)(x, x′) = k(x, x′)
[
1 + η · (Eσk)(x, x′)

]
σ > 0, η ≥ 0. (9)
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The quasi-local kernels produced by the operators defined in Eq. 5 6, 7, 8, 9 are more com-
plicated then the corresponding input kernels, since it is necessary to evaluate k(x, x), k(x′, x′),
k(x, x′) and to perform a couple of addition/multiplication operation and an exponentiation
instead of the evaluation of k(x, x′) only. However, this is a constant computational overhead
in the kernel evaluation phase, that does not affect the complexity of the SVM algorithm
either in the training or in the testing phase. Moreover, it is possible to implement a variant
of the dot product that computes 〈x, x〉, 〈x′, x′〉, 〈x, x′〉 with only one traversing of x and x′

vectors, or precompute and store 〈x, x〉 for each sample in order to enhance the computational
performances of the operators.

Intuitively all the kernels produces by Sσ, Sσ,η, PSσ and Sσ,η (Eq. 5 6, 7, 8, 9) are quasi-
local since they combine the original kernel with the locality information in its feature space.
We will formalise this in subsection 3.6, while in the following subsection we will prove that
the operators preserve the PD property of the input kernel.

3.3 The operators for quasi-local kernels preserve the PD property of the
input kernels

We recall three well-known properties of PD kernels (for a comprehensive discussion of PD
kernels refer to [3] or [37]):

Proposition 1 (Some properties of PD kernels).

(i) the class of PD kernels is a convex cone, i.e. if α1, α2 ≥ 0 and k1, k2 are PD kernels then
α1k1 + α2k2 is a PD kernel;

(ii) the class of PD kernels is closed under pointwise convergence, i.e. if k(x, x′) := limn→∞
kn(x, x′) exists for all x, x′, then k is a PD kernel;

(iii) the class of PD kernels is closed under pointwise product, i.e. if k1, k2 are PD kernels,
then (k1k2)(x, x′) := k1(x, x′) · k2(x, x′) is a PD kernel.

The introduced operators preserve the PD property of the kernels on which they are applied,
as stated in the following theorem.

Theorem 3. If k is a PD kernel, then O k with O ∈ {Eσ, Pσ, Sσ, Sσ,η, PSσ, PSσ,η} is a PD
kernel.

Proof. It is straightforward to see that, for a PD kernel k, all the kernels resulting from the
introduced operators can be obtained using properties (i) and (iii) of Proposition 1, provided
that Eσ k is a PD kernel. So the only thing that remains to prove is that Eσ k is PD. Decom-
posing the definition of (Eσ k)(x, x′) into three exponential functions we obtain:

(Eσ k)(x, x′) = exp
(

2k(x,x′)
σ

)
exp

(−k(x,x)
σ

)
exp

(−k(x′,x′)
σ

)

that can be written as:

(Eσ k)(x, x′) = (Oe 2k/σ)(x, x′) · f(x)f(x′)

where Oe 2k/σ is the exponentiation of the 2k/σ kernel, and f is a real valued function such
that f(x) = exp(−k(x, x)/σ). The first term is the exponentiation of a kernel multiplied by
a non-negative constant and, since the kernel exponentiation can be seen as the limit of the
series expansion of the exponential function which is the infinite sum of polynomial kernels, for
property (ii) we conclude that Oe 2k/σ is a PD kernel. Moreover, recalling from the definition
of PD kernels, that the product f(x)f(x′) is a PD kernel for all the real-valued functions f
defined in the input space [37] we conclude that Eσ k is a PD kernel.
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Obviously, if the input of Eσ is not a PD kernel, also the resulting function cannot be, in
the general case, a PD kernel since the exponentiation operator maintains the PD property
only for PD kernels. So, in the case of the sigmoidal kernel as input kernel, the resulting kernel
is still not ensured to be PD.

3.4 Properties of the operators

In order to understand how the operators modify the original feature space of the input
kernel we study the distances in the feature space of the quasi-local kernels. The new feature
space introduced by kernels produced by the operators is denoted with FO, the corresponding
mapping function with ΦO and the distance between two input points mapped in FO with
distFO(x, x′) = m(ΦO(x),ΦO(x′)) where m is a metric in FO. Applying the kernel trick for
distances, we can express the squared distances in FO as:

dist2FO(x, x′) = ‖ΦO(x)− ΦO(x′)‖2 = (O k)(x, x) + (O k)(x′, x′)− 2(O k)(x, x′). (10)

For O = Eσ, since it is clear that distF (x, x) = 0 for every x, we can derive distFEσ
as follows:

dist2FEσ
(x, x′) = exp

(
−dist2F (x,x)

σ

)
+ exp

(
−dist2F (x′,x′)

σ

)
− 2 exp

(
−dist2F (x,x′)

σ

)
=

= 2
[
1− exp

(
−dist2F (x,x′)

σ

)]
.

(11)

Note that dist2FEσ
(x, x′) ≤ 2 for every pair of samples, and so the distances in FEσ are bounded

even if they are not bounded in F .
Substituting Pσ, Sσ,η and PSσ,η in Eq. 10, an taking into account Eq. 11, the distances in

FO for the quasi-local kernels are:

dist2FPσ
(x, x′) = dist2F (x, x′) + k(x, x′) dist2FEσ

(x, x′);
dist2FSσ,η

(x, x′) = dist2F (x, x′) + η · dist2FEσ
(x, x′);

dist2FPSσ,η
(x, x′) = (1 + η) dist2F (x, x′) + η · k(x, x′) dist2FEσ

(x, x′) =
= dist2F (x, x′) + η · dist2FPσ

(x, x′).

(12)

We can notice that the distances in FEσ and in FSσ,η do not contain explicitly the kernel
function but they are based only on the distances in F . So we can further analyse the behaviour
of the distances in FEσ and FSσ,η with the following proposition.

Proposition 2. The operators Eσ and Sσ,η preserve the ordering on distances in F . Formally

distF (x, x′) < distF (x, x′′) ⇒ distFO(x, x′) < distFO(x, x′′)

for O ∈ {Eσ,Sσ,η} and for every sample x, x′, x′′.

Proof. It follows directly from the observations that distFEσ
(x, x′) and distFSσ,η

(x, x′) are
defined with strictly increasing monotonic functions, Eq. 11 and the second equation in Eq. 12
respectively, and that distF is always non-negative.

This means that Eσ k kernel determines the same neighborhoods as k and that the Eσ k
exploits the locality information weighting the influence of the neighbors of a point in the
feature space of k maintaining the property that points at distance d in the feature space of k
influence the Eσ k kernel score more than any other more distant points. In other words Eσ k
modifies the influence of the points using the features space distances but the ordering on the
weights is the same of the ordering on distances in the input space.
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The Eσ k kernel has also an interesting property regarding the class of universal kernels.
Roughly speaking, universal kernels, introduced in [43] and further discussed in [44–46], are
kernels that permits to optimally approximate the Bayes decision rule or, equivalently, to learn
an arbitrary continuous function uniformly on any compact subset of the input space. Applying
Proposition 8 and Corollary 10 in [43], it turns out that Eσ k is universal in the feature space
of k. Intuitively this happens because Eσ k builds an krbf kernel, which is universal, in the
feature space of k. This means that, regardless of the universality of the input kernel, the Eσ

always finds a space on which the resulting kernel is universal.

3.5 Connections between Eσ krbf and krbf with variable kernel width

Since krbf is a local kernel, a question that naturally arises concerns the behaviour of Eσ krbf ,
i.e. the quasi-local transformation of a local kernel. In particular the point is to understand
if krbf and Eσ krbf exploit the same notion of locality. If it is the case, this would mean that
Eσ krbf and krbf are basically equivalent and identify the same features space, possibly under
certain parameter settings. This question is addressed by the following Proposition.

Proposition 3. There not exist two constant σ, γrbf ∈ R with σ > 0 and γ ≥ 0, such that,
for every x, x′ ∈ X with X with at least 3 distinct points, the following holds:

krbf (x, x′) = (Eσ krbf )(x, x′) (13)

Proof. Suppose, by contradiction, that there exist σ, γrbf ∈ R such that, for every x, x′ ∈ X,
Eq. 13 holds. It can be rewritten as:

exp(−γrbf · ‖x− x′‖2) =

= exp
(
−exp(−γrbf · ‖x− x‖2) + exp(−γrbf · ‖x′ − x′‖2)− 2 · exp(−γrbf · ‖x− x′‖2)

σ

)

Since exp(−γrbf · ‖x− x‖2) = 1, we can obtain:

−γrbf · ‖x− x′‖2 =
−2 + 2 · exp(−γrbf · ‖x− x′‖2)

σ
,

from which we have

exp(−γrbf · ‖x− x′‖2) = 1− γrbfσ

2
· ‖x− x′‖2

that can be written as:

krbf (x, x′) = 1− γrbfσ

2
· ‖x− x′‖2.

Since, with respect to the square of the Euclidean distance ‖x−x′‖2, krbf (x, x′) is a negative
exponential function, whereas 1− ‖x− x′‖2 · γrbf σ

2 is a non-increasing linear function, the two
function can have no more than 2 points in common. Because σ and γrbf are constant, while
‖x−x′‖2 is not constant, it is straightforward to conclude that krbf (x, x′) 6= 1−‖x−x′‖2 · γrbf σ

2
at least for some x, x′ ∈ X. In this way we get a contradiction thus proving the proposition.

From this proposition we can conclude that Eσ krbf cannot be emulated by krbf and thus
it introduces an higher degree of locality. Intuitively an increased level of locality can be
introduced locally adjusting the local parameters. In the specific case of krbf this intuition
can be applied permitting to the width parameter (1/γrbf ) to be locally adaptive, as proposed
for example in [47]. The following proposition demonstrate that Eσ krbf is equivalent to krbf

with variable kernel width.
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Proposition 4. There exists a real-valued function f(σ, γrbf , ‖x−x′‖) such that the following
holds for each x, x′ ∈ X:

exp
(
− ‖x− x′‖2

f(σ, γrbf , ‖x− x′‖)
)

= (Eσ krbf )(x, x′) (14)

Proof. We can easily find such function f isolating it from Eq. 14:

exp
(
− ‖x− x′‖2

f(σ, γrbf , ‖x− x′‖)
)

= exp
(−2 + 2 · exp(−γrbf · ‖x− x′‖2)

σ

)

obtaining:

f(σ, γrbf , ‖x− x′‖) =
σ

2
· ‖x− x′‖2

1− exp(−γrbf · ‖x− x′‖2)
. (15)

We thus found the function regulating the variable krbf width. It can be shown that Eq. 15
has always positive derivative, meaning that it always grows as the distance between samples
grows. This causes the kernel width to be lower for close points and higher for distant points,
thus permitting to alleviate the tradeoff between over- and under-fitting on which a uniform
kernel width is based. The variable kernel width is particularly crucial in presence of data
with uneven densities.
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(a) The whole two spiral dataset
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(b) The two spiral dataset zoomed.

Figure 1: The behaviour of krbf (the dotted line) and Eσ krbf (the filled line) on the two
spiral problem (the samples of the two classes are denoted by + and ¯ symbols). The model
parameters are obtained with 20-fold CV. The best training set accuracy is 0.823 for krbf and
0.907 for Eσ krbf .

We illustrate these considerations with the application of krbf and Eσ krbf on the two
spirals artificial dataset shown in Figure 1. Both krbf and Eσ krbf are applied with the best
parameters obtained with a grid search 20-fold CV on C, γrbf , σ ∈ {2−10, 2−9, . . . , 29, 210}. The
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best training accuracy of krbf is 0.823 whereas Eσ krbf reaches 0.907, meaning that the quasi-
local kernel approach is able to find a better decision function. This is evident also graphically,
in fact, while in the peripheral regions of the datasets (see Figure 1(a)) both classifiers find a
good decision function, whereas in the central region (see Figure 1(b)) krbf starts to clearly
underfit the data.

3.6 Quasi-local kernels

In this section, we formally introduce the notion of quasi-local kernels, and we show that
kernels produced by the Sσ, Sσ,η, PSσ and Sσ,η are quasi-local kernels. Firstly, we introduce
the concept of locality with respect to a function:

Definition 3. Given a PD kernel k with implicit mapping function Φ : Rp 7→ F (namely
k(x, x′) = 〈Φ(x), Φ(x′)〉), and a function Ψ : Rp 7→ FΨ, k is local with respect to Ψ if there
exists a function Ω : FΨ 7→ F such that the following holds:

1. 〈Φ(x),Φ(xi)〉 = 〈Ω(Ψ(x)),Ω(Ψ(xi))〉 for all x, xi ∈ Rp

2. lim
‖u−vi‖FΨ

→∞
〈Ω(u),Ω(vi)〉 = ci with u = Ψ(x), vi = Ψ(xi) for some x, xi ∈ Rp and ci

constant and not depending on u.

In other terms, the notion of locality referred to samples in input space (Definition 1), is
modified here in order to consider the locality in any space accessible from the input space
through a corresponding mapping function. Notice that, as particular cases, we have that
every local kernel is local with respect to the identity function and with respect to its own
implicit mapping function.

With the next theorem we see that the Eσ formally respect the idea of producing kernels
that are local with respect to the feature space of the input kernel.

Theorem 4. If k is a PD kernel with the implicit mapping function Φ : Rp 7→ F , then Eσ k
is local with respect to Φ.

Proof. We have already shown that Eσ k is a PD kernel given that k is a PD kernel (see
Theorem 3). It remains to show that Eσ k is local with respect to Φ.

First we need to show that (Definition 3 point 1), denoted with Φ′ : Rp 7→ F ′ the implicit
mapping function of Eσ k, there exists a function Ω : F 7→ F ′ such that Φ′(x) = Ω(Φ(x)).
Taking as Ω : F 7→ F ′ the implicit mapping of the kernel exp

(
−‖u−vi‖

σ

)
with u = Φ(x),

vi = Φ(xi) with x, xi ∈ Rp we have

〈Ω(u),Ω(vi)〉 = exp
(
−‖u− vi‖

σ

)
. (16)

Using the hypothesis on u and vi it becomes:

exp
(
−‖Φ(x)− Φ(xi)‖

σ

)
= 〈Ω(Φ(x)), Ω(Φ(xi))〉. (17)

The implicit mapping function of Eσ k is Φ′ and so

〈Φ′(x), Φ′(xi)〉 = (Eσ k)(x, xi) (18)

Moreover since (Eσ k)(x, xi) = exp
(
−‖Φ(x)−Φ(xi)‖

σ

)
for definition of Eσ (see Eq. 4), substituting

Eq. 17 into Eq. 18 we conclude that

〈Φ′(x),Φ′(xi)〉 = 〈Ω(Φ(x)),Ω(Φ(xi))〉.
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Second, we need to show that (Definition 3 point 2) 〈Ω(u), Ω(vi)〉 → ci with ci constant
for ‖Ω(u)− Ω(vi)‖ → ∞. From the Eq. 16, it is clear that, as the distance between u = Φ(x)
and vi = Φ(xi) tend to infinity, the kernel value is equal to the constant 0 regardless of x.

Now we can define the quasi-locality property of a kernel.

Definition 4 (Quasi-local kernel). A PD kernel k is a quasi-local kernel if k = f(kinp, kloc)
where kinp is a PD kernel with implicit mapping function Φ : Rp 7→ F , kloc is a PD kernel
which is local with respect to Φ and f is a function involving legal and non trivial operations
on PD kernels.

For legal operations on kernels we mean operations preserving the PD property. For non
trivial operations we intend operations that always maintain the influence of all the input
kernels in the output kernel; more precisely a function f(k1, k2) does not introduce trivial
operations if there exists two kernels k′ and k′′ such that f(k′, k2) 6= f(k1, k2) and f(k1, k

′′) 6=
f(k1, k2). Notice that the kinp kernel of the definition corresponds to the input kernel of the
operator that produces the quasi-local kernel k.

Theorem 5. If k is a PD kernel, then Sσ k, Sσ,η k, PSσ k and Sσ,η k are quasi-local kernels.

Proof. Theorem 4 already states that Eσ k is a PD kernel which is local with respect to the
implicit mapping function Φ of the kernel k which is PD for hypothesis. It is easy to see that
all the kernels resulting from the introduced operators can be obtained using properties (i)
and (iii) of Proposition 1 starting from the two PD kernels k and Eσ k, and thus Sσ k, Sσ,η k,
PSσ k and Sσ,η k are PD kernels obtained with legal operations. Moreover, the properties (i)
and (iii) of Proposition 1 introduce multiplications and sums between kernels and between
kernels and constant. The sums introduced by the operators are always non trivial because
they always consider positive addends, and so it is for the multiplications because they never
consider null factors (the introduced constants are non null for definition).

Both quasi-local kernels and KNNSVM classifiers are based on the notion of locality in
the feature space. However, two main theoretical differences can be found between them.
The first is that in KNNSVM locality is included directly, considering only the points that
are close to the testing point, while for the quasi-local kernels the information of the input
kernel is balanced with the local information. The second consideration concerns the fact that
KNNSVM has a variable but hard boundary between the local and non local points, while Sσ,η

and PSσ,η produce kernels whose locality decreases exponentially but in a continuous way.

3.7 Parameter choice and empirical risk minimization for quasi-local kernels

There are two parameters for the operators on kernels through which we obtain the quasi-local
kernels: σ, which is present in Eσ and consequently in all the operators, and η, which is present
in Sσ,η and PSσ,η (Sσ and PSσ can be seen as special cases of Sσ,η and PSσ,η with η = 1).

The role of these two parameters will be better illustrated in the next section. Here
we propose a strategy for choosing their values. The idea is that a quasi-local operator is
applied on an already optimized kernel in order to further enhance the classification capability
introducing locality. Notice that, in general, it would be possible to estimate the input kernel
parameters, the SVM penalty parameter C and the operator parameters at the same time,
but this is in contrast with the above idea. Ideally the operators can accept a kernel matrix
without knowledge about the kernel function from which it is generated. So the approach we
adopt here is to apply the operators on a kernel for which the parameters are already set, thus
requiring only one parameter optimization (for Eσ, Pσ and PSσ) or two (for Sσ,η and PSσ,η).
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Figure 2: The separating hyperplanes for a two-feature hand-built artificial datasets defined
by the application of the SVM (all with C = 3) with (a) linear kernel klin and RBF ker-
nel krbf (with γrbf = 150), (b) the Sσ,η klin quasi-local kernel with fixed σ (σ = 1/150 =
1/γrbf ) and variable η (η = 106, 50, 10, 1, 0.5, 0.1, 0.05, 0.03, 0.01, 0.005, 0.001, 0.000001),
and (c) the Sσ,η klin quasi-local kernel with fixed η (η = 0.05) and variable σ (σ =
1/5000, 1/2000, 1/1000, 1/500, 1/300, 1/150, 1/100).

Moreover, we provide some data-dependent estimations of σ η permitting the reduction of the
number of parameters values that need to be optimized (3 for η and 4 for σ).

The dataset-dependent estimation of σ take inspiration from the γrbf estimation, since
σ and γrbf play a similar role of controlling the width of the kernel. However, differently
from the krbf kernel, the Eσ operator uses distances in the feature space F (except for the
special case k = klin). More precisely, remembering that the data-dependent values of γrbf are
obtained with γrbf

h = 1/(2 · q2
h[‖x− x′‖Rp

]) where qh[‖x− x′‖Z ] denotes the h percentile of the
distribution of the distance in the Z space between every pair of points x, x′, the σ parameter
can be estimated using σh = 2 · q2

h[‖x− x′‖F ] with h ∈ {1, 10, 50, 90} as for the γrbf case. For
η we adopt ηh = qh[‖x− x′‖F ] with h ∈ {10, 50, 90}.

We thus have a total of 12 quasi-local parameter configurations, meaning that the model
selection for quasi-local kernels in this scenario requires no more than 12 cross-validation runs
to choose the best parameters. Notice that, comparing the cross-validation best values of the
input kernel and quasi-local kernels, we implicitly test also the η = 0 case. Since Sσ,η k and
PSσ,η k with η = 0 are equivalent to k, Sσ,η k and PSσ,η k have the possibility to reduce to
k as a special case. In our empirical evaluation we will highlight the cases in which η = 0 is
selected.
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4 Intuitive behaviour of quasi-local kernels

The operators on kernels defined in the previous section aim to modify the behaviour of an
input kernel k in order to produce a kernel more sensitive to local information in the feature
space, maintaining however the original behaviour for regions in which the locality is not
important. In addition the η and σ parameters control the balance between the input kernel
k and its local reformulation Eσ k, in other words the effects of the local information.

These intuitions are highlighted in Figure 2 with an example that illustrates the effects
of the Sσ,η operator on the linear kernel klin using a two-feature hand-built artificial dataset.
Notice that this example is not limited to the combination of klin and krbf , because it represents
the intuition of what happens in the feature space of the original kernel applying the Sσ,η

operator. The transformed kernel is:

(Sσ,η klin)(x, x′) = klin(x, x′) + η · (Eσ klin)(x, x′) = klin(x, x′) + η · krbf (x, x′) (19)

with γrbf = 1/σ. So the Sσ,η operator on the klin kernel gives a linear combination of klin and
krbf . Figure 2(a) show the separate behaviours of the global term klin alone and of the local
term Eσ klin = krbf alone. Figure 2(b) illustrates what happens when the local and the global
terms are combined with different values of η and a fixed σ. Figure 2(c) shows the behaviour
of the separating hyperplane with a fixed balancing factor η but varying the σ parameter.

The η parameter regulates the influence on the separating hyperplane of the local term of
the quasi-local kernel. In fact, in Figure 2(b), we see that all the planes lie between the input
kernel (klin, obtained with η → 0 from Sσ,η klin) and the local reformulation of the same kernel
(obtained with η = 106 from Sσ,η klin which behaves as krbf since the high value of η partially
hides the effect of the global term). Moreover, since σ is low, the modifications induced by
different values of η are global, influencing all the regions of the separating hyperplane.

We can observe in Figure 2(c), on the other hand, that σ regulates the magnitude of the
distortion from the linear hyperplane for the region containing points close to the plane itself.
The σ parameter in the Eσ klin term of Sσ,η klin has a similar role to the K parameter in the
local SVM approach (i.e. it regulates the range of the locality), even though K defines an
hard boundary between local and non local points instead of a negative exponential one. It
is important to emphasize that in the central region of the dataset the separating hyperplane
remains linear, highlighting that the kernel resulting from the Sσ,η operator differs from the
input kernel only where the information is local.

The example simply illustrates the intuition behind the proposed family of quasi-local
kernels, and in particular how the input kernel behaviour in the feature space is maintained
for the regions in which the information is not local, so it is not important here to analyse the
classification accuracy. However, kernels that are sensitive to important local information but
retain properties of global input kernels, can also be obtained from very elaborated and well
tuned kernels defined on high-dimensionality input spaces. In the following two sections we
investigate the accuracy performances of the quasi-local kernels in a number of real datasets
using a data-dependent method of choosing η and σ parameters.

5 Experiment 1

The goal of the first experiment is to compare the accuracy of SVM with quasi-local kernels
against SVM with traditional kernels and kNNSVM. The evaluation is carried out on 23 non-
large datasets.
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Table 1: The 23 datasets for Experiment 1 ordered by training set size.
Name brief description # classes train. size # features

leukemia Cancer classification, originally from [49] 2 38 7129
iris A well known pattern recognition dataset 3 150 4

wine wine recognition from chemical data, preproc. as [50] 3 178 13
sonar discrimination between different sonar signals 2 208 60
glass types of glass classification 6 214 9
heart heart disease prediction, originally from Statlog [51] 2 270 13
liver liver disorders prediction from alcohol consumption data 2 345 6

ionosphere classification of radar signals from the ionosphere 2 351 34
bioinf (or svmguide2 ) bioinformatics data originally from [52] 3 391 20
vowel automatic recognition of British English vowels 11 528 10
breast Wisconsin breast cancer data 2 683 10

australian australian credit approval, originally from Statlog [51] 2 690 14
diabetes Pima indians diabetes data 2 768 8
vehicle vehicle recognition [50], originally from Statlog [51] 4 846 18

fourclass a 4 class problem [53] transformed to a 2 class problem 2 862 2
splice primate splice-junction gene sequences data 2 1000 60

numer German credit risk data, originally from Statlog [51] 2 1000 24
vehicle2 (or svmguide3 ) vehicle data originally from [52] 2 1243 21

a1a Adult dataset preprocessed as done by [54] 2 1605 123
dna DNA problem preprocessed as done in [55] 3 2000 180

segment image segmentation data originally from Statlog [51] 7 2310 19
w1a web page classification, originally from [54] 2 2477 300

astro (or svmguide1 ) astroparticle application from [52] 2 3089 4

5.1 Experimental procedure

Table 1 lists the 23 datasets from different sources and scientific fields used in this experiment;
we took all the freely available datasets from the LibSVM repository [48] with training set
with no more than 3500 samples. Some datasets are multiclass and the number of features
ranges from 2 to 7129.

The reference input kernels for the quasi-local operators considered are the linear kernel
klin, the polynomial kernel kpol, the radial basis function kernel krbf and the sigmoidal kernel
ksig. The quasi-local kernels we tested are those resulting from the application of the Eσ, Pσ,
Sσ,η, PSσ,η operators on the reference input kernels. We also evaluated the accuracy of the
KNNSVM classifier with the same reference input kernels.

The methods are evaluated using 10-fold cross validation. The assessment of statistical
significant difference between two methods on the same dataset is performed with the two-
tailed paired t-test (α = 0.05) on the two sets of fold accuracies. Although the count of
positive and negative significative difference can be used to establish if a method performs
better than another on multiple datasets, it has been shown [56] that the Wilcoxon signed-
ranks test [57] is a theoretically safer (with respect to parametric tests it does not assume
“normal distributions or homogeneity of variance” ) and empirically stronger test. For this
reason the final assessment of statistical significance difference on the 23 datasets is performed
with the Wilcoxon signed-ranks test (in case of ties, the rank is calculated as the average rank
between them).

The model selection is performed on each fold with a inner 5-fold cross validation as follows.
For all the methods tested, the regularization parameter C is chosen in {2−5, 2−4, . . . , 29, 210}.
For the polynomial kernel we adopt the widely used homogeneous polynomial kernel (γpol = 1,
rpol = 0), selecting a degree non higher than 5. The choice of γrbf for the RBF kernel is
done adopting γrbf

h where h is chosen among {1, 10, 50, 90ua} as described in 2.1. For the
sigmoidal kernel, rsig is set to 0, whereas γsig is chosen among {2−7, 2−6, . . . , 2−1, 20}. For the
quasi-local kernels we use the C and kernel parameters found by the model selection described
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above for each input kernel, whereas σ is chosen using σFh with h ∈ {1, 10, 50, 90} and η
using ηF.h with h ∈ {10, 50, 90} and (implicitly) η = 0 as described in Section 3.7 through
a 5-fold cross validation on the same folds used for model selection on the input kernels.
Finally, the value of K for KNNSVM is automatically chosen on the training set between
K = {1, 3, 5, 7, 9, 11, 15, 23, 39, 71, 135, 263, 519, 1031} (the first 5 odd natural numbers followed
by the ones obtained with a base-2 exponential increment from 9) as described in section 2.2.

We used LibSVM library [48] version 2.84 for SVM training and testing, extending it
with a object-oriented architecture for kernel calculation and specification. For the quasi-
local kernels we store the values of 〈x, x〉 for each sample in order to obtain the quasi-local
kernel value computing only one scalar product, i.e. 〈x, x′〉, instead of three. The KNNSVM
implementation is based on the same version of LibSVM. The experiments are carried out on
multiple Intel R© Xeon

TM
CPU 3.20GHz systems, setting the kernel cache dimension to 1024Mb

and interrupting the experiments that are not terminated after 72 hours.

5.2 Results

Table 2 reports the 10-fold cross validation accuracy of SVM with the four considered input
kernels, SVM with the quasi-local kernels obtained applying the Eσ, Pσ, Sσ,η, PSσ,η operators
and KNNSVM. Some KNNSVM results are missing due to the computational effort of the
method, corresponding to the cases in which KNNSVM does not terminates within 72 hours.
The + and − denotes quasi-local kernel and KNNSVM results that are significatively better
(and worse) than the corresponding input kernels according to the two-tailed paired t-test
(α = 0.05). The total number of datasets in which quasi-local kernels and KNNSVM perform
better (and worse) than the corresponding input kernels are reported, with the number of
significative differences in parenthesis. The last row reports the Wilcoxon signed-ranks tests
to assess the significant improvements of quasi-local kernels over corresponding input kernels
on all the datasets (for KNNSVM only on the datasets for which the results are present). The
cases in which, for Sσ,η, PSσ,η, the model selection chose η = 0 for all the 10 folds thus giving
the same results of the input kernels, are underlined. In bold, are highlighted the best 10-fold
cross validation accuracy achieved for a specific dataset among all the methods and kernels.

5.3 Discussion

The KNNSVM results basically confirm the earlier assessment [16], although the model selec-
tion is performed here differently; KNNSVM is able to improve, according to the Wilcoxon
signed-rank test, the classification generalization accuracy of SVM with the klin kernel (10 two-
tailed paired t-test significant improvements, 1 deteriorations) and ksig kernel (8 two-tailed
paired t-test significant improvements, 1 deteriorations). Instead we do not have evidence
of improved generalization accuracy on the benchmark datasets for the kpol kernel and krbf

kernel, although we showed in [16] that, for krbf , there are scenarios in which KNNSVM can
be particularly indicated.

Eσ k seems to perform significantly better than k for ksig and for klin (although without
statistical evidence), whereas there are no overall improvement for krbf , and for kpol the
accuracies are deteriorated. These results are probably due to the choice of not re-performing
model selection for Eσ k in particular for the C parameter. In fact Eσ is the only operator
that does not contain the input kernel explicitly in the resulting one, and thus the optimal
parameters can be very different. This is confirmed by the fact that Eσ klin is equivalent to
krbf but their results, as reported in Table 2, appears to be are very different.

The results of Pσ k are slightly better than Eσ k. According to the Wilcoxon signed-rank
test, it is better than k for k = ksig and k = krbf , but not for krbf and kpol. In total, the
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Table 2: Experiment 1. 10-fold CV accuracy of SVM with the input and quasi-local kernels
and of KNNVM.

dataset
k = klin k = krbf

k Eσk Pσk Sσ,ηk PSσ,ηk KNNSVM k Eσk Pσk Sσ,ηk PSσ,ηk KNNSVM

leukemia .947 .763− .947 .947 .947 .921 .947 .895 .921 .947 .947 .895
iris .967 .960 .960 .973 .973 .960 .960 .953 .960 .973 .967 .973

wine .972 .972 .978 .978 .978 .966 .972 .972 .978 .978 .972 .966
sonar .745 .755 .880+ .870+ .894+ .899+ .894 .899 .904 .894 .894 .865−

glass .640 .692 .710+ .687 .701+ .710+ .682 .668 .678 .715+ .706+ .734+

heart .833 .822 .811 .826 .826 .811 .819 .822 .807 .822 .819 .815
liver .687 .722 .713 .733+ .722 .733+ .719 .733 .725 .725 .728 .725

ionosphere .883 .943+ .943+ .929 .949+ .940+ .940 .954 .954 .946 .952 .943
bioinf .818 .841 .821 .834 .826 .841 .831 .836 .841 .831 .839 .854
vowel .848 .989+ .989+ .992+ .991+ .996+ .992 .994 .994 .996 .996 .996
breast .958 .966 .965 .966 .962 .971 .969 .969 .968 .971 .972 .971

australian .848 .848 .839 .846 .848 .864 .843 .851 .843 .852 .848 .851
diabetes .766 .766 .754 .772 .775 .779 .772 .763 .770 .766 .762 .768
vehicle .800 .849+ .853+ .855+ .859+ .866+ .857 .856 .849 .849 .857 .853

fourclass .774 .987+ .922+ .988+ .950+ 1.00+ 1.00 .998 .999 1.00 1.00 .999
splice .800 .774 .872+ .848+ .884+ - .885 .882 .882 .881 .880 -

numer .769 .747 .698− .765 .770 - .760 .757 .750− .761 .765 .757
vehicle2 .829 .846 .841 .847+ .848 .828 .843 .849 .838 .845 .846 .840

a1a .833 .800− .802− .831 .832 - .828 .831 .827 .831 .827 -
dna .952 .558− .960+ .953 .959+ .936− .958 .960 .962 .959 .959 -

segment .959 .971+ .972+ .975+ .971 .975+ .972 .972 .976 .973 .975 -
w1a .981 .973+ .979 .981 .981 .979 .981 .981 .981 .980 .980 -

astro .955 .967+ .968+ .967+ .969+ .971+ .966 .967 .968 .969+ .969+ -
# pos. diff. 12(7) 15(10) 18(9) 19(9) 13(10) 11(0) 10(0) 15(2) 13(2) 9(1)
# neg. diff. 8(2) 7(2) 4(0) 2(0) 7(1) 9(0) 11(1) 4(0) 4(0) 8(1)

Wsr test X X X X X X
dataset

k = kpol k = ksig

k Eσk Pσk Sσ,ηk PSσ,ηk KNNSVM k Eσk Pσk Sσ,ηk PSσ,ηk KNNSVM

leukemia .947 .711− .763+ .947 .947 .947 .711 .711 .711 .658 .658 .789
iris .973 .960 .960 .947 .947 .960 .960 .967 .953 .960 .960 .960

wine .961 .961 .978 .966 .961 .966 .972 .983 .989 .972 .978 .966
sonar .851 .716− .861 .846 .846 .885 .750 .899+ .880+ .894+ .870+ .885+

glass .701 .701 .701 .706 .696 .720 .626 .678+ .664 .682+ .696+ .738+

heart .819 .785 .796 .833 .822 .811 .830 .811 .815 .833 .830 .819
liver .725 .690 .716 .728 .722 .730 .672 .733+ .716 .739+ .704 .722+

ionosphere .900 .766− .926 .923 .926 .934 .872 .943+ .946+ .949+ .954+ .943+

bioinf .821 .770 .818 .818 .824 .857+ .829 .795 .836 .831 .839 .852
vowel .973 .987 .987 .991+ .992+ .994+ .799 .991+ .991+ .991+ .992+ .996+

breast .963 .962 .960 .958 .960 .956 .975 .975 .978 .972 .969 .958−

australian .851 .854 .843 .851 .851 .852 .849 .849 .854 .851 .848 .868+

diabetes .767 .760 .779 .766 .763 .766 .758 .768 .773 .759 .767 .779+

vehicle .846 .818 .833 .846 .839 - .787 .852+ .839+ .851+ .830+ -
fourclass .799 .997+ .964+ .995+ .959+ .998+ .776 1.00+ .911+ 1.00+ .818+ .999+

splice .862 .828 .878 .862 .876 - .805 .876+ .865+ .867+ .841+ -
numer .766 .741 .723 .767 .771 - .766 .734− .751 .766 .755 .758

vehicle2 .850 .797− .844 .851 .850 - .822 .845 .846+ .846+ .826 -
a1a .828 .814 .809 .827 .830 - .833 .828 .826 .822 .822 -
dna .958 .910 .958 .958 .958 - .949 .960+ .959+ .956+ .956 -

segment .970 .966 .973 .972 .972 - .947 .974+ .972+ .972+ .975+ -
w1a .980 .974− .981 .980 .980 - .981 .980 .980 .979 .979 -

astro .968 .967 .965 .965 .968 .969 .954 .967+ .968+ .971+ .970+ -
# pos. diff. 6(1) 10(2) 10(2) 10(2) 10(3) 15(11) 17(10) 16(12) 15(9) 10(8)
# neg. diff. 15(5) 12(0) 7(0) 8(0) 4(0) 5(1) 5(0) 4(0) 6(0) 4(1)

Wsr test X X X X X
• + and - denotes quasi-local kernel and KNNSVM results that are significatively better (or worse) than the

corresponding input kernels according to the two-tailed paired t-test (α = 0.05);

• # pos. diff. and # neg. diff. denote, for each quasi-local kernel and KNNSVM methods, the number of
datasets in which they perform better (or worse) than the corresponding input kernels. In parenthesis are reported
the statistically significative differences;

• Wsr test marks the cases in which the Wilcoxon signed-ranks tests states that the improvements of quasi-local
kernels over corresponding input kernels on all the datasets are significant (α = 0.05);

• underlined are the cases in which, for Sσ,η and PSσ,η, the lowest empirical risk is achieved with η = 0 for all the
10 folds;

• in bold, are highlighted the best 10-fold cross validation accuracies achieved for a specific dataset among all
methods and kernels.
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kernels obtained with Pσ achieve the best accuracies for 8 datasets, meaning that this operator
is able to reach very good results but the improvements are not systematic for all the input
kernels. It is possible to notice that the classification results of Pσ k are very similar to the
kNNSVM ones (both improve significantly over SVM with the klin and ksig but not for krbf

and kpol).
The best results are clearly achieved by the Sσ,η and PSσ,η operators without significa-

tive differences between them. According to the Wilcoxon signed-rank test they significantly
improve the generalization accuracy for klin, krbf and ksig. Moreover, they are the only opera-
tors that never cause significant 10-fold CV losses according to the statistical two-tailed paired
t-test, while the number of improvements are impressive at least for klin and ksig. The only
kernel that seems not to take a decisive advantage from the two operators is kpol that, together
with the results noticed for KNNSVM with the same input kernel, lead us to argue that, at
least for non-large datasets, locality is not a crucial point for the polynomial kernels. Com-
paring Sσ,η k and PSσ,η with KNNSVM we can notice that the operator approach performs
better in terms of 10-fold CV accuracies (especially for krbf ).

We do not discuss directly the computational performances of the operators in this ex-
periment. However, we can notice that they are much faster, as expected, than KNNSVM
since, in total, 25 KNNSVM results are missing due to computational difficulties (the compu-
tation does not finish within 72 hours) whereas SVM with input and quasi-local kernels always
terminate in a reasonable time.

6 Experiment 2

The second experiment applies the SVM with the quasi-local kernels that, in the exploratory
Experiment 1, seem to achieve better accuracy values, i.e. Sσ,η k and PSσ,η k. The aim of
this experiment is to verify if these kernels are able to improve the input kernel classifica-
tion accuracy in a considerable number of large datasets without worsening dramatically the
computational performances.

6.1 Experimental procedure

The 20 datasets used in the second experiment are summarized in Table 3; they are all the
datasets with more than 3500 samples available on the LibSVM repository [48] (except the
mushrooms dataset for which perfect classification is already easily achievable for all the input
kernels) and the UCI datasets for classification with only numerical values, available test labels,
and more than 3500 training samples. The datasets are quite large and for this reason kernels
resulting from the four chosen operators with the four input kernels are simply trained on the
training set and tested on the testing set. If no separate testing sets are provided we use 75%
of available data (randomly selected) for training and the remaining 25% for testing, apart for
the covertype from which we randomly selected 100000 samples leaving the remaining 481012
in the testing set for computational reasons. We normalized the data in the range [0, 1]. With
this approach the t-tests are not suitable, and the best way to assess statistical significance is
the Wilcoxon signed rank test as detailed in [57].

The model selection is performed with 10-fold CV with the same approach of Experiment
1 and with the same ranges of parameter values. We do not test the KNNSVM classifier
because of the computational weight of the method.
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Table 3: The 20 datasets for Experiment 2 ordered by training set size.
Name brief description # classes train. size test. size # features

optdigit optical recognition of handwritten digits 10 3823 1797 64
blocks segmented page blocks classification 5 4107 1368 10

satimage Landsat satellite data, orig. from Statlog [51] 6 4435 2000 36
musk2 musks/non-musks molecule prediction, ver. 2 2 4949 1649 166
isolet spoken letter prediction 26 6238 1559 617
usps handwritten text recognition 10 7291 2007 256

magic high energy gamma particles detection 2 14265 4755 10
letter letter recognition, orig. from Statlog [51] 26 15000 5000 16

news20 newsgroup classification, preproc. as [58] 20 15935 3993 62061
protein protein classification task 3 17766 6621 357

rcv1 two class version of Reuters Corpus Vol. I 2 20242 677399 47236
mnist1 handwritten digits bloblem, preproc. as [59] 10 21000 49000 780

a9a Adult dataset preprocessed as done by [54] 2 32561 16281 123
shuttle the shuttle dataset, orig. from Statlog [51] 7 43500 14500 9

w8a web page classification, orig. from [54] 2 49749 14951 300
ijcnn1 IJCNN 2001 challenge, preproc. as [59] 2 49990 91701 22

connect4 connect4 result prediction (binary encoding) 3 50668 16889 126
acoustic vehicle classification from acoustic sensors 3 78823 19705 50
acoustic vehicle classification from seismic sensors 3 78823 19705 50

covertype two classes forest cover type prediction 2 100000 481012 54

Table 4: Experiment 2. Generalization accuracy of SVM with the input and quasi-local kernels.
dataset

k = klin k = krbf k = kpol k = ksig

k Sσ,ηk PSσ,ηk k Sσ,ηk PSσ,ηk k Sσ,ηk PSσ,ηk k Sσ,ηk PSσ,ηk
optdigit .9672 .9777 .9855 .9816 .9816 .9816 .9750 .9750 .9822 .9666 .9839 .9800

blocks .9678 .9715 .9715 .9635 .9635 .9635 .9671 .9722 .9759 .9591 .9686 .9686
satimage .8580 .9150 .9180 .9190 .9230 .9210 .8880 .9120 .9105 .8570 .9215 .9135

musk2 .9551 .9982 .9982 .9970 .9976 .9988 .9970 .9970 .9964 .9260 .9951 .9715
isolet .9596 .9609 .9673 .9666 .9679 .9679 .9628 .9628 .9686 .8012 .8518 .8621
usps .9357 .9472 .9522 .9527 .9547 .9557 .9397 .9422 .9452 .9243 .9532 .9507

magic .7868 .8694 .8751 .8755 .8763 .8755 .8776 .8763 .8776 .7865 .8700 .8574
letter .8512 .9774 .9766 .9748 .9776 .9778 .9556 .9692 .9708 .8516 .9768 .9740

news20 .8550 .8550 .8550 .8257 .8257 .8257 .7626 .7744 .7626 .8610 .8610 .8610
protein .6865 .6868 .7041 .7026 .7005 .6987 .6919 .6926 .6919 .6865 .6981 .6874

rcv1 .9605 .9570 .9637 .9455 .9426 .9405 .9545 .9478 .9545 .9604 .9542 .9622
mnist1 .9367 .9525 .9747 .9735 .9749 .9754 .9708 .9710 .9733 .9044 .9547 .9530

a9a .8498 .8511 .8498 .8502 .8509 .8502 .8477 .8479 .8477 .8498 .8498 .8496
shuttle .9794 .9993 .9992 .9990 .9992 .9992 .9987 .9993 .9988 .9757 .9991 .9988

w8a .9868 .9944 .9945 .9910 .9914 .9919 .9924 .9944 .9924 .9858 .9909 .9886
ijcnn1 .9218 .9787 .9748 .9758 .9814 .9824 .9676 .9665 .9676 .9203 .9786 .9631

connect4 .7591 .8421 .8600 .8623 .8623 .8623 .8441 .8441 .8588 .7476 .8074 .7939
acoustic .7024 .7997 .8001 .7987 .7999 .8004 .7984 .7986 .7993 .7020 .7988 .7845
seismic .7281 .7694 .7697 .7698 .7698 .7698 .7658 .7658 .7658 .6976 .7701 .7486

covertype .7629 .9098 .9121 .9077 .9202 .9187 - - - .6286 .8732 .8629
# pos. diff. 18 18 13 11 14 10 17 18
# neg. diff. 1 0 2 2 3 1 1 1

Wsr test X X X X X X X X
avg rank 9.70 5.35 3.70 5.50 3.88 3.88 8.10 7.05 6.55 10.60 5.75 7.95

• + and - denoting statistical significance on single datasets are not present here (differently from Table 2) because,
due to the dimension of the problems of this experiment, we have single testing sets and thus t-test are not
applicable;

• # pos. diff. and # neg. diff. denote, for each quasi-local kernel, the number of datasets in which they perform
better (or worse) than the corresponding input kernels;

• Wsr test marks the cases in which the Wilcoxon signed-ranks tests states that the improvements of quasi-local
kernels over corresponding input kernels on all the datasets are significant (α = 0.05);

• underlined are the cases in which, for Sσ,η and PSσ,η, the lowest empirical risk is achieved with η = 0;

• in bold, are highlighted the best generalization accuracies achieved for a specific dataset among all methods and
kernels;

• missing values correspond to kernels for which model selection was not completed because for some parameter
values the training time for a single fold takes more than 72 hours.

• avg rank reports the average rank of the methods.
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Table 5: Experiment 2. Training times (in seconds) of SVM with the input and quasi-local
kernels.

dataset
k = klin k = krbf k = kpol k = ksig

k Sσ,ηk PSσ,ηk k Sσ,ηk PSσ,ηk k Sσ,ηk PSσ,ηk k Sσ,ηk PSσ,ηk

optdigit 1 1 1 2 2 2 1 1 1 1 3 3
blocks 1 1 1 1 1 1 2 1 1 1 2 2

satimage 1 2 2 3 3 4 9 2 2 2 6 4
musk2 16 5 4 4 4 4 5 7 4 8 7 8
isolet 27 32 53 50 61 70 31 32 59 123 71 72
usps 9 14 11 11 15 17 7 10 20 12 39 13

magic 164 129 138 99 146 154 3867 2360 6666 63 99 99
letter 12 12 14 14 24 28 13 12 23 21 46 37

news20 284 325 407 359 436 435 561 639 668 271 430 472
protein 354 377 431 440 499 532 410 460 552 424 611 590

rcv1 108 124 189 165 196 208 269 296 337 129 214 219
mnist1 93 99 131 124 153 174 94 101 155 213 185 203

a9a 220 290 460 196 263 270 219 280 970 259 590 547
shuttle 79 6 5 6 6 6 27 4 8 101 30 69

w8a 1292 84 81 59 90 95 40 131 53 55 157 124
ijcnn1 189 109 102 95 85 93 298 267 634 290 282 388

connect4 1219 1380 2419 1608 2469 3225 2913 3255 2985 1403 2074 2194
acoustic 7794 10972 10120 3143 4180 5398 2661 3459 3741 4544 8296 5689
seismic 10045 19704 21466 4160 5909 7144 5670 7190 8340 3958 8992 6164

covertype 19106 36914 97532 15506 22319 24694 2745 6283 5546

# pos. diff. 5(3) 5(3) 1(0) 1(0) 6(2) 4(2) 5(1) 3(0)
# neg. diff. 12(0) 13(1) 14(0) 15(0) 12(1) 14(1) 15(1) 16(0)
• # pos. diff. and # neg. diff. denote, for each quasi-local kernel, the number of datasets in which they are

faster (or slower) than the corresponding input kernels. In parenthesis are reported the differences greater than 3
times;

• in bold, are the cases in which the quasi-local kernels are at least three times faster than the corresponding input
kernel;

• in italic, are the cases in which the quasi-local kernels are at least three times slower than the corresponding in
put kernel;

• missing values correspond to kernels for which model selection was not completed because for some parameter
values the training time for a single fold takes more than 72 hours.

6.2 Results

Table 4 shows the generalization accuracy results of the input kernels k and of the quasi-local
kernels Sσ,ηk and PSσ,ηk on all the 20 datasets listed in Table 3. We report the number
of datasets in which quasi-local kernels perform better (or worse) than the corresponding
input kernels, the Wilcoxon signed rank test to asses the statistical significance of differences
between them, and the average rank of each method. The cases for which model selection for
quasi-local kernels chooses η = 0 thus obtaining the same model of the SVM with the input
kernel are underlined. In bold are highlighted the best generalization accuracies achieved for
each dataset. Notice that the results regarding the covertype dataset with the Kpol kernel
are missing because of its excessive computational weight (especially for high degrees of the
kernel) causes the model selection to take more than 72 hours to be completed.

The training and testing times, expressed in seconds, are reported in Table 5 and Table 6
respectively. We point out the number of times SVM with quasi local kernels are faster and
slower than the corresponding input kernels and (in parenthesis) the number of times SVM
with quasi local kernels are three times faster and slower than the corresponding input kernels
(these big variations are highlighted in bold and italic).

6.3 Discussion

Quasi-local kernels perform better than the corresponding input kernels in terms of general-
ization accuracy with statistical significance as reported in Table 4, for all the input kernels
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Table 6: Experiment 2. Testing times (in seconds) of SVM with the input and quasi-local
kernels.

dataset
k = klin k = krbf k = kpol k = ksig

k Sσ,ηk PSσ,ηk k Sσ,ηk PSσ,ηk k Sσ,ηk PSσ,ηk k Sσ,ηk PSσ,ηk

optdigit 1 1 1 1 1 2 1 1 1 1 3 2
blocks 1 1 1 1 1 1 1 1 1 1 1 1

satimage 1 1 2 2 3 2 1 1 2 2 4 4
musk2 1 2 1 1 1 1 1 1 2 3 3 2
isolet 20 22 25 26 28 29 21 21 26 40 35 35
usps 4 8 6 6 6 8 4 5 7 5 15 7

magic 7 6 7 7 6 7 4 8 7 15 25 28
letter 15 17 19 19 25 26 10 19 22 27 45 42

news20 56 64 72 69 77 77 71 81 82 60 90 94
protein 107 117 125 125 142 150 119 133 151 130 189 188

rcv1 3355 3893 5932 5194 6195 6558 8142 9038 10284 4055 6827 6978
mnist1 419 451 533 529 617 667 368 398 552 820 763 787

a9a 64 89 93 84 107 107 64 89 98 117 238 238
shuttle 14 1 1 1 1 1 1 1 1 34 6 20

w8a 2 18 20 12 20 22 4 26 11 6 34 24
ijcnn1 239 156 103 166 162 160 28 50 26 456 443 700

connect4 280 273 235 237 274 306 187 222 291 371 559 596
acoustic 589 542 540 534 618 627 461 586 580 854 1134 1256
seismic 546 566 567 561 662 673 477 608 670 791 1195 1279

covertype 6813 4619 4129 4643 5076 4926 7982 17135 18469

# pos. diff. 6(1) 5(1) 2(0) 1(0) 0(0) 1(0) 4(1) 4(0)
# neg. diff. 11(1) 11(1) 13(0) 14(0) 13(1) 15(0) 14(1) 15(1)
• # pos. diff. and # neg. diff. denote, for each quasi-local kernel, the number of datasets in which they are

faster (or slower) than the corresponding input kernels. In parenthesis are reported the differences greater than 3
times;

• in bold, are the cases in which the quasi-local kernels are at least three times faster than the corresponding input
kernel;

• in italic, are the cases in which the quasi-local kernels are at least three times slower than the corresponding in
put kernel;

• missing values correspond to kernels for which model selection was not completed because for some parameter
values the training time for a single fold takes more than 72 hours.

taken into account. The number and the magnitude of the improvements are particularly large
for the klin and ksig input kernels. This because they are global kernels that in general (a part
for klin in presence of a high-dimensional problems) are not able to achieve very high accuracy
results, and thus the addition of the local information is almost always crucial. We can notice
that, for these large datasets, the operators are able to improve the generalization accuracies
also for he kpol kernel differently from Experiment 1. Looking at the average ranks of all the
methods, we can see that the methods achieving the best results are PSσ,η klin, PSσ,η krbf

and Sσ,η krbf . On the other hand, apart krbf whose average rank is near the mean position
(6), the other three input kernels have the worst average ranks. Looking at the best result for
each dataset (bold values in Table 4), we can notice that PSσ,η krbf is the kernel that permits
the highest number of best generalization accuracies (about for one third of datasets), whereas
the input kernels rarely achieve the best results. Compared to Sσ,η, PSσ,η seems to be a more
“extreme” approach in the sense that it achieves the best results more frequently but at the
same time there are more cases in which η = 0 is selected meaning that the input kernel has
an higher training set accuracy. For this reason we can hypothesize that PSσ,η introduces an
higher level of locality than Sσ,η. From the above considerations, we can conclude that the Sσ,η

and PSσ,η operators are able to significantly improve the generalization ability of traditional
kernels, and, in particular, the kernels that show the best accuracies and can be thus indicated
as good candidate kernels for general classification problems, are PSσ,η klin, PSσ,η krbf and
Sσ,η krbf .

Observing the computational performances of quasi-local kernels in Table 5 and Table 6,
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we can notice that both the training and testing times are slightly higher than input kernels.
This is not surprising as the quasi-local transformation introduce inevitably and systematically
a considerable overhead in kernel computation. However, there is a consistent number of cases
in which quasi-local kernels are faster than the corresponding input kernel. This is due to the
fact that quasi-local kernels can have more discriminative power and thus they can execute
the SVM margin maximization with a smaller number of optimization steps. In general, from
the results, we can conclude that the quasi-local kernels are very rarely more than three times
slower in comparison with the input kernels, and in few cases they are more than three times
faster. This means that although they introduce a certain overhead on kernel computation,
the SVM performances are not dramatically deteriorated by the quasi-local transformation of
kernel functions.

7 Conclusions

In this paper, we have presented a novel family of operators on kernels that add locality
information to the input kernel. The resulting kernels are called quasi-local kernels since they
balance the global information of the original kernel (if it is a non-local kernel) with the local
kernel with respect to the distance in the feature space. The intuition is that the resulting
kernels are able to maintain the original kernel behaviour for regions in which the information
is not local, adapting instead the separating hyperplane following the local distribution of the
data. We formally characterize the class of quasi-local kernels, showing that they are assured
to be positive-definite. Moreover, we showed that the Eσ operator, on which the quasi-local
kernels are based, defines the same neighborhoods as the input kernel, that, applied to the
krbf its behaviour is equivalent to a krbf with variable kernel width and we detailed a data-
dependent strategy to choose the operator parameters.

The empirical evaluation on a total of 43 datasets carried out transforming the optimized
input kernel performing a reduced model selection (no more than 12 parameter choices), showed
that the quasi-local kernel are able to significantly improve the classification accuracies of
the input kernels. In particular, (Sσ,η k)(x, x′) = k(x, x′) + η · exp

(−k(x,x)−k(x′,x′)+2k(x,x′)
σ

)

and (Pσ,η k)(x, x′) = k(x, x′) ·
(
1 + η · exp

(−k(x,x)−k(x′,x′)+2k(x,x′)
σ

))
showed solid statistical

evidence of improved generalization capability over input kernels especially for large datasets.
Considering the klin, krbf , kpol and ksig input kernels, the present work suggests that the best
classification accuracies are achieved by Pσ,η krbf , Pσ,η klin and Sσ,η krbf . We also showed that
the computational performances of quasi-local kernels are not dramatically deteriorated with
respect to the corresponding input kernels.

Generally speaking, the idea highlighted in this work is that, especially for large and
complex problems, the true class boundary reflects a global behaviour that can be estimated
using a proper kernel function but is very likely to have local adaptations and modifications.
These local anomalies can be detected and introduced in the learning process mainly relying
on the sample distribution of the subregions. Combining global and high-level information
with local and data-dependent analysis can be seen as a strategy that aims to “attack complex
worlds” which is, according to a recent interview with prof. Vapnik3, the main challenge
machine learning still has to address.
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