
 

 

 
 
 

 
 

UNIVERSITY 
OF TRENTO 

 DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL'INFORMAZI ONE 
  

38100 Povo – Trento (Italy), Via Sommarive 14 
http://www.disi.unitn.it 
 
 
 
 
 
 
 
 
 
 
 
 
 
Modeling and Analyzing  Contextual Requirements 
 
 
Raian Ali, Anders Franzen, Alberto Griggio, and Paolo Giorgini 
  
 
 
 
 
April  2009 
 
Technical Report # DISI-09-019 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints Research

https://core.ac.uk/display/11829881?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 



Modeling and Analyzing Contextual Requirements

Raian Ali, Anders Franzen, Alberto Griggio, and Paolo Giorgini

University of Trento - DISI, 38100, Povo, Trento, Italy
{raian.ali, franzen, alberto.griggio, paolo.giorgini}@disi.unitn.it

Abstract. The relation between contexts and requirements can be very complex
to analyze. A context can motivate a requirement, a requirement can be satisfied
only in a specific context, and a context can influence the quality of each possi-
ble alternative of satisfying a requirement. To capture and deeply understand this
relation, we need to start from the reasons of a requirement, namely stakeholders
goals, and analyze at this level the system variability with respect to the context.
In this paper, we propose a goal-based approach to model and analyze contextual
requirements. We adopt Tropos goal modeling framework where we introduce
contextual variation points and provide a set of constructs to hierarchically ana-
lyze contexts. We also articulate a new problem, the context interaction problem;
we study its influence on both monitoring and functional requirements, and we
finally provide a SAT-based approach to deal with it. We show the process for
creating our models and illustrate our approach on a museum-guide scenario.

1 Introduction

There is a continuous need for adaptive systems with a degree of autonomy to take
decisions by themselves with the minimum intervention of humans. In other words,
it becomes more and more important to reduce the human intervention in readjusting
the system configuration, or even worst stopping, redesigning, updating and starting
again the system. As a baseline, we need to identify during the analysis the parameters
that may introduce the need of changing the behavior of the system at run-time, what
alternatives the system may have to accommodate variations of such parameters, and
how the system can decide among them.

Although the notion of context [1] has been adopted and currently considered in the
software engineering literature as a main stimulus for changes of the system behavior,
the relation between context and system requirements has not deeply investigated and
it still leaves many open research problems. We believe that to fully understand the
role of the context in the behavior of a system, context has to be considered along with
stakeholders goals since the very early phases of the analysis.

Goal analysis (i* [2], Tropos [3], and KAOS [4]), provides a way to analyze high
level goals and then to discover and represent alternative sets of the tasks that can be
adopted to achieve such goals. Goal models – a mainstream technique in requirements
engineering – are used to represent the rationale of both humans and software systems,
and help representing software design alternatives [5]. These features are also important
for self-contextualizable software that must allow for alternatives and have a rationale
to reflect users and software adaptation to the context in order to adopt one useful exe-
cution course [6].



In [7, 8] 1, we have introduced the self-contextualizable Tropos goal model where
contexts are defined and associated to variation points of a goal model. The model,
however, can become easily very complex and it may introduce redundancy and/or
inconsistency problems in both functional and monitoring requirements. The relations
between contexts, namely the implications, can cause what we call context interaction
problem, that is analogous to and complex as the feature interaction problem [9].

In this paper, we build on and extend our previous work ([7, 8, 10, 11]) to provide an
engineering framework for self-contextualizable requirements. We describe our contex-
tual goal model that captures the relation between requirements and context and helps
to identify the monitoring requirements together with the functional ones. We define
the context interaction problem and argue about its generality for self-contextualizable
systems. We show the importance of context interaction problem by studying its influ-
ence on functional and monitoring requirements, and provide a SAT-based automated
reasoning technique to handle with it. We also show the methodological activities for
building our set of models, and explain the whole approach on a running example of a
system for assisting visitors of museums.

The paper is structured as follows: in Section 2, we explain our contextual goal
model. In Section 3, we study the context interaction problem, and in Section 4, we
provide an automated reasoning that treats the redundancy, triviality, and inconsistency
in a context. In Section 5, we outline a set of activities that produce our proposed mod-
els. We discuss the related work in Section 6, and conclude our work in Section 7.

2 Contextual Goal Model

We believe that a contextualizability study has to start at the requirements level, where
stakeholders goals are identified and analyzed, and where the system behaviors can
differ according to the context. The idea is to integrate goal analysis, as an early re-
quirements phase, and context analysis in order to systematically derive contextualized
goal satisfaction alternatives. In turn, as we introduced in [7, 8], context itself needs to
be modeled and analyzed. Thus, as shown in Fig. 1, goal analysis provides constructs
to hierarchically analyze goals and discover alternative sets of tasks the system can ex-
ecute to satisfy such goals, while context analysis provides constructs to hierarchically
analyze context and discover alternative sets of facts the system has to monitor to verify
a context and then act accordingly.

Fig. 2 represents a Tropos goal model for an information system that is intended to
assist visitors of a museum and interact with them and assistance staff, mainly through
their PDAs. The model represents the different alternatives of satisfying the main goal
of the system of giving information to visitors about the pieces of art in the museum.
To make it self-contextualizable, we need to explicitly represent the relation between
the possible alternatives and the context. Contexts, that are labeled as C1..C8 on Fig. 2,
can be related to the following variation points of the goal model:

1. Or-decomposition: is the basic goal variability relation where we can specify the
context in which each alternative goal/task is adopted. E.g., to provide information

1 The papers are to appear, you can get them from http://disi.unitn.it/∼ali/



how

to

reach

how

to

verify

why

to

do

what to do what to monitor

context to verifygoal to reach

where/when

why to

monitor

Fig. 1. The analogy between Goal and Context Analysis

about a piece of art, a visitor can be directed to a dedicated terminal when such
terminal is free and close to the visitor and he/she is able to use and interact with
it (C2); the visitor’s PDA can be alternatively used to show information when the
piece of the art information are not so complicated, and the visitor has the ability
and the knowledge to use PDAs (C3), while getting information through an assis-
tance staff requires that the visitor is not able to use PDA and not familiar with
terminals, or that the visitor is classified as an important visitor (C4).

2. Goal/Task activation: depending on the context, an actor might decide to satisfy a
goal / execute a task. E.g., to initiate the goal “visitor gets informed about a piece of
art”, the system needs to verify if the visitor is interested in the piece, if the visitor
does not already know about it, and if there is still time to explain about it (C1).

3. Means-end: goals can be ultimately satisfied by means of specific executable pro-
cesses (tasks). The adoptability of each task in means-end analysis might depend
on the context. E.g., the visitor can be notified about the availability of information
terminals through a voice message when he/she puts the headphones on, and is not
talking to somebody or using his/her PDA for a call (C5), while notifying him/her
by SMS can be adopted in the opposite context (¬C5)

4. Actors dependency: in some contexts, an actor might attain a goal / get a task exe-
cuted by delegating it to another actor. E.g., the dependency between the two system
actors for providing the information to a visitor through an assistance staff requires
a staff that is close to and talks a language common to the visitor, and knows enough
about the considered piece of art comparing to the visitor knowledge (C6).

5. And-decomposition: a sub-goal/sub-task might (or might not) be needed in a certain
context, that is some sub-goals / sub-tasks are not always mandatory to fulfil the
top-level goal/task in an And-decomposition. E.g., guiding the assistance staff to
the visitor place is not needed if the visitor stays around and can be seen directly
by the assistance staff (C8).

6. Contribution to softgoals: softgoals [2] are qualitative objectives for their satisfac-
tion there is no clear cut criteria, and they can be contributed either positively or
negatively by goals and tasks. The contributions to softgoals can vary from one
context to another. We need to specify the relation between the context and the
value of the contribution. E.g., giving the information in person is comfortable to
the assistance staff if the visitor is in the same room as the assistant (C7), while it
is not comfortable when they are in different rooms.



Goal

Task

Actor

Actor boundary

Softgoal

Means-ends link

Decomposition link

Dependency link

Legend

visitor [v] gets informed
about a piece of art [p] in

museum [m]

[v] gets info
through [m] 

service staff [s]

prepare [p]
detailed

information

prepare [p]
brief simple
information

or

[v] gets info via
his/her PDA

Visitor
Assista

nce
System

C1

[v] gets info.
via terminal [t]

Staff
Assista

nce
System

[p] info suitable
to [v] is prepared

[p] info is
presented

to [v]

and

[p] info is
presented to 
[v] via video

[v] info is
presented to

[v] interactively

staff is more
comfortable

visitor well
informed

[v] gets info through
[m] service staff [s]

[s] is alerted
[s] gives [p]
info to [v]

and

[s] gives [p] info
to [v] by call

[s] gives [p] info
to [v] in person

make video
call between

[s] and [v]

make voice
call between

[s] and [v]

direct [s] to
[v] place

show [v]
picture

direct [s]
to [v]
place

and
send [s] a

voice
command

alert [s] via
PDA vibration

and SMS

or
[s] is alerted

through public call
[s] is alerted

through [s]’s PDA

or

make a call
through speakers
in [s] current room

[s] is alerted
via ringing

tone and SMS

and

[v] know how to 
use [t]

[v] arrives to [t]

show demo to [v]
how to use [t]

[v] is notified for 
the service

through [v]’s PDA

direct [v] to [t]
place

send [v] a 
voice

command alert [v] via
PDA vibration

and SMS

+/-

+ +

-

+

Contribution link

C2
C3

C4

C6

C5
¬C5

¬C8

C7

Fig. 2. Tropos goal model for the museum assistance system

We need to analyze context to discover, represent, and agree on how it can be veri-
fied. Differently from the other research in context modeling (for a survey see [12]), we
do not provide an ontology or a modeling language for representing context, but model-
ing constructs to hierarchically analyze context. Moreover and to clarify the domain of
discourse, i.e. the elements of the environment under discussion, along goal and context
analysis, we parameterize the goal and context models. Taking the parameterized root
goal “visitor[v] get informed about a piece of art [p]”, the analysis of its activation
context (C1) is shown in Fig. 3.

Here we explain the set of modeling constructs we provide to analyze a high level
context and identify the atomic verifiable facts that give its truth value.

Definition 1 (Fact) a boolean predicate specifying a current or a previous context,
whose truth value can be computed objectively.

The objective method to compute a fact truth value requires monitoring some charac-
teristics and/or history of a set of relevant environment elements. Facts are graphically
represented as parallelograms as in Fig. 3.



[v] historically
interested in [p]

[p] is interesting
to [v]

[v] behaviorally
Interested in [p]

[v] does not already
know about [p]

visitor [v] is interested in knowing 
about piece of art [p] in museum [m]
and there is time to give explanation

there is still time to accomplish
explanation  about [p] to [v]

[v] is not in a
hurry

[v] never got
info of [p] by
[m] means

there is time to explain
[p] to [v] before [m] 

closing time

[v] does not
have to work

[v] behaves in
calm way

[v] is
retired

It is a 
holiday in 
[m] region

[v] walks
slowly

> 30 minutes 
until  [m] 
closes

[v] looks
much
to [p]

[v] attended
[p] gallery
opening

[v] usually asks
about pieces of

[p] profile

has the
same artist

belong to 
the same
art genre

[p] was
created
after [v]
last visit

still early to
[v] visit slot

end

[v] looks at
[p] for long

time

[v] had a
look so

often on [p]

[v] is in a place  where
[p] can be still of interest

[v] is close to [p] 
room & not inside

another room

[v] place
is close
[p] room

[v] is in the 
corridor of 

[p] floor

Fact Decomposition linkStatement Help link
Legend

[v] is in the
same room

of [p]

Fig. 3. The context analysis hierarchy for C1

Definition 2 (Statement) a boolean predicate specifying a current or a previous con-
text, whose truth value can not be computed objectively.

Statement verification could not be objectively done because the system is not able to
monitor and get all the data needed to compute the truth value of a statement, or because
there could be no consensus about the way of knowing the truth value of a statement.
To handle such problem we adopt a relaxed confirmation relation between facts, which
are objectively computable by definition, and statements, in order to assign truth values
to statements. We call this relation “help” and define it as following:

Definition 3 (Help) Let f be a fact, s be a statement. help(f, s) ⇐⇒ f → s

The relation help is strongly subjective, since different stakeholders could define differ-
ent help relations for the same statement, e.g., one stakeholder could say help(f1, s) ∧
help(f2, s), whereas another one could say helps(f2, s) ∧ help(f3, s). Statements are
graphically represented as shadowed rectangles, and the relation help is graphically
represented as a filled-end arrow between a fact and a related statement as in Fig.3.

Definition 4 (And-decomposition) Let {s, s1, . . . , sn}, n ≥ 2 be statements (facts).
and decomposed(s, {s1, . . . , sn}) ⇐⇒ s1 ∧ . . . ∧ sn → s

Definition 5 (Or-decomposition) Let {s, s1, . . . , sn}, n ≥ 2 be statements (facts).
or decomposed(s, {s1, . . . , sn}) ⇐⇒ ∀i ∈ {1, . . . , n}, si → s

Decomposition is graphically represented as a set of directed arrows from the sub-
statements (sub-facts) to the decomposed statement (fact) and labeled by And or Or
as in Fig. 3. Let us illustrate the above context analysis constructs by examples:

– “the piece of art [p] artist [a] has lived in the visitor’s [v] city of birth” is a fact
the system can verify through checking the profile of the artist and the city of birth
of the registered visitor.



– “the visitor [v] is interested in the piece of art [p]” is a statement since the system
can not objectively compute its truth value. This statement can be Or-decomposed
into “[v] is behaviorally interested in [p]” and “[v] is historically interested in
[p]” substatements. The system can get some evidence of the first substatement
through the help of the fact “[v] looks at [p] much” that is Or-decomposed into the
fact “[v] looks at [p] for long time”, and the fact “[v] comes to [p] area and has
a look at [p] so often”. The second substatement can be verified through the fact
“[v] usually asks for pieces from the [p] art genre” or the fact “[v] usually asks
for pieces made by the same [p] artist”.

– “visitor [v] does not already know about the piece of art [p]” is a statement that
can be verified through the fact “[p] is created after the last visit of [v] to the mu-
seum”, or the fact ”[v] never got information of [p] by any of the museum means”.
However both facts do not ensure that the visitor does not know about the piece
(e.g., the system cannot verify if the visitor has been told about it by a friend or
read an article about it somewhere).

As discussed in [1], context is the reification of the environment in which the sys-
tem is supposed to operate. Each single fact and statement is a context, and our proposed
reification hierarchy relates different subcontexts into one more abstract. Moreover, and
considering that context is the reification of the environment, our context analysis is mo-
tivated by the need for constructs to analyze context to discover the relevant atomic data
that represent that environment, i.e. the data the system has to monitor. For example,
and taking the leaf facts of the statement “piece of art [p] is interesting to visitor [v]”
(ST1) of Fig. 3, the analyst could elicit the data conceptual model of Fig. 4, and we
can look at facts and statements as views (reifications) over it.

Our proposed hierarchical context analysis helps to make a context (i) more under-
standable for the stakeholders, (ii) more modifiable as it is not given as one monolithic
block, and (iii) more reusable as parts of the analysis hierarchy can be also used for
other variation points or other stakeholders context specifications. Moreover, the analy-
sis justifies why the monitoring system has to capture environmental data (like the data
of Fig. 4), as such data are needed to verify leaf facts that propagatively confirm or dis-
approve the context needed to make a decision at the goal model. However, the context
hierarchy, representing either direct or accumulated context, suffers of interaction prob-
lems that can make a context trivial, redundant, or even inconsistent as we are going to
explain in the next section.

Visitor Piece_of_Art

Artist Art_Genre

Asks

+w hen

made_by

Gallery

Opening_event

attended

part_of

hadLooks_at

+starts_time

+stop_time

belong_to

Fig. 4. The conceptual model of data needed to verify ST1 leaf facts



3 Context Interaction Problem

In this section, we articulate the problem of context interaction, show its importance,
and argue about its generality and complexity. The context hierarchial analysis we pro-
posed, is easily transformable into a propositional formula consists of the leaf facts
as atomic predicates (variables). The relations, namely the implications, between these
facts can make the context formula redundant, trivial, or even inconsistent. Here we give
the definition of redundant context and its two extremes: the trivial and the inconsistent.

Definition 6 (Redundant Context) given the implications between its facts, a context
is redundant iff some facts has no effect on its validity.

Definition 7 (Trivial Context) given the implications between its facts, a context is
trivial iff it is always reduced to true.

Definition 8 (Inconsistent Context) given the implications between its facts, a context
is inconsistent iff it is always reduced to false.

Context redundancy makes the context representation more complex without jus-
tification and leads to a useless monitoring of facts that have no effect on its validity.
Context redundancy motivates us to optimize monitoring requirements. Let us take the
two facts f1 = “the visitor is inside a museum room” and f2 = “there is enough light
at the location of the visitor”. Consider a context C = f1∧f1; if the system is going to
operate in a museum that its rooms are well illuminated then f1 → f2 and C is reduced
to f1 which means that there is no need to install sensors to capture the level of light in
the museum. Alternatively, if C = f1 ∨ f2 then C is reduced to f2 and there will be
no need for installing a positioning system to decide if the visitor is inside a museum
room. Some base reductions rules are shown in the following table:

Assured Implication (Assumptions) A ∨B ↔ A ∧B ↔
A → B B A
A → ¬B AxorB false
A ↔ ¬B true false

While the redundancy of context implies a redundancy in monitoring requirements;
context inconsistency adds to that a redundancy in the software functionalities. Besides
the uselessness of monitoring their facts, inconsistent contexts deny the adoptability of
the software functionalities preconditioned by them. E.g., if a functionality is precondi-
tioned by the context C = f1 ∧ f2, and if the museum rooms are not well illuminated
for some decorating reasons or to conserve the pieces of art, i.e. f1 → ¬f2, then such
functionality is never adoptable since C is inconsistent.

After showing its influence, now we argue about the generality of the context in-
teraction problem and that it is not tied to or caused by our context analysis and goal
model. We expect any contextual system to monitor several pieces of information that
could be also combined through logical relations to conform logical expressions. As-
suring some implications between these pieces might reveal a problem of redundancy,
triviality, or inconsistency. Let us take the following generic pseudo code that reflects,
or can be part of, any contextual decision model (including our contextual goal model):



1: if (A ∨B) ∧ C then
2: if D ∧ E then
3: adopt alternative set of actions (action set 1)
4: else
5: if F ∨G then
6: adopt another set of actions (action set 2)
7: end if
8: end if
9: end if

The three contexts boolean abstractions we have here are (A ∨ B) ∧ C, D ∧ E,
and F ∨ G, that involve monitoring the set of facts S = {A,B, C,D, E, F, G}. The
model has two alternative set of actions action set 1 and action set 2 each fitting to a
certain context. When we assure the implication C → A then (A ∨ B) ∧ C can be
reduced to just C and therefore there will be no need to monitor A and B. If there is
no implication between D and E then D ∧ E alone is not redundant, but this does not
mean that action set 1 is adoptable or D and E are not redundant; suppose we have the
implication C → ¬E, then the accumulated context at line 2, which is C ∧ D ∧ E,
is inconsistent and reduced to false, and the action set 1 is not adoptable. In case we
assure that C → ¬G then the accumulated context at line 5, C ∧ (F ∨ G), can be
reduced to C ∧ F which means that G is redundant and has no effect on the validity of
the accumulated ontext.

The implications between facts can be absolute or dependent on the characteris-
tics of the system environment. Absolute implications are applied wherever the system
has to operate, e.g., f3 → ¬(f4 ∧ f5) where f3 =“piece of art [p] is always ex-
clusive to museum [m]”, f4 =“visitor is visiting the museum [m] for the first time”
and f5=“visitor has seen [p] some date before today”. Other implications depend on
the nature of the environment the system is going to operate in, like the mentioned
implication between the light level and being inside a museum room. Moreover, the
environment itself assures that some contexts are always true or false, so we have to
consider a special kind of dependent implications between the system environment and
context analysis facts, i.e. Env → facts formula. E.g., if the museum opens only in
holidays, so the fact “the day is holiday in museum region” is always true.

Facts verification has costs; costs are those related to the facts verification process
itself and to getting the data (e.g., the one of Fig. 4) needed to make the verification
possible, such as installing physical equipments like sensors, inserting data by human
operators, having enough storage, processing time and so on. When we have more than
one possibility to reduce contexts, we select the one that minimizes the costs.

After the above explanation of the context interaction problem, we now explain the
two main sub-problems that we need to face in order to solve it:

– Optimizing monitoring and functional requirements: checking and fixing the redun-
dancy, triviality, and inconsistency of contexts lead to minimizing the costs of the
system as it avoids us sensing, storing, processing data to verify facts that have no
effect on any decision, and developing software functionalities that are precondi-
tioned by inconsistent contexts until such inconsistencies are fixed.



Let us consider the contextual goal model of Fig. 5. Whenever the analyst defines
a direct context at each variation point (C1, C2, C3, C4, C5, C6), the automated
reasoning has to check if this direct context alone and if the accumulated context
(C1, C1 ∧ C2, C1 ∧ C3, C1 ∧ C4, C1 ∧ C5, C1 ∧ C3 ∧ C6 respectively) are
consistent and non trivial, and notify the analyst to fix any error before repeating
the check and proceeding with the next contexts. However, this check has also to
be done progressively for the accumulated context on the alternatives in the goal
model to know if they can be adopted together, e.g., if C1∧C2∧C5 is inconsistent
then the root goal satisfaction alternative G5, G3, G8 is never adopted.
After defining contexts at all of the variation points and passing the consistency and
triviality check, we can start to optimize the monitoring requirements. Optimization
takes the set of all contexts associated to the different root goal satisfaction alterna-
tives and softgoals, i.e. A1C, A2C, A3C, A4C, and SG1C and gives equivalent
reduced contexts A1C ′, A2C ′, A3C ′, A4C ′, and SG1C ′ that can be verified on a
sub-set of facts with minimum monitoring costs. The analyst has to study the set of
facts of the resulted formulas and elicit the data that the monitoring system has to
obtain like the one we showed in Fig. 4.

G7

and

or

- SG1

+
or

C1 G1

G4G3G2

G8G6G5

C2 C3

C6

C4 C5

G7

and

or

C1 G1

G4G3G2

G5

C2 C4

and

C1 G1

G4G3G2

G8G5

C2 C5

and

C1 G1

G4G3G2

G8G6

C3 C5

G7

and

C1 G1

G4G3G2

G6

C3 C4

A1C= C1 and C2 and C4

A2C= C1 and C2 and C5

A3C= C1 and C3 and C4

A4C= C1 and C3 and C5

SG1C=C1 and C3 and C6

A1 A2

A3 A4

Fig. 5. The accumulated context for the root goal satisfaction alternatives and softgoals

The automated reduction has to minimize the total cost of monitoring all the re-
duced contexts facts, as doing it separately for each context of A1C, A2C, A3C,
A4C, and SG1C does not guarantee, in the general case, having the minimal total
monitoring costs. The problem of optimizing a set of contexts together to reduce the
overall cost is highly expensive as we explain later. In the next section, we provide
an algorithm, based on SAT techniques and greedy algorithms, that takes a con-
text formula together with the implications between facts (assumptions), checks its
consistency and redundancy, and produces an equivalent formula with less costs.

– Efficient specification of implications: when the number of facts is big, it will be
hard for the analyst to specify even the binary implications between facts. More-
over, the specified implications themselves might be wrong and inconsistent. De-
signing a supporting tool that helps the analyst to correctly specify, with a minimum
number of interactions, the implications between facts is another main problem. We
expect such tool to make a kind of facts analysis and asks the analyst to specify the
relation where the probability of implication is high.



4 SAT-based Redundancy Elimination

In this section we describe our algorithm for determining whether a context is inconsis-
tent or trivial, and for identifying redundant facts in a context. The algorithm is based
on propositional satisfiability (SAT), and in particular on SAT-based techniques for the
enumeration of all the models of a propositional formula. Before describing the algo-
rithm, we recall some necessary definitions and notions from propositional logic.

Definition 9 (Model, Satisfiability, Equivalence) Let ϕ be a propositional formula,and
V (ϕ) be the set of its atomic predicates. Let µ be a function µ : V (ϕ) → {0, 1}, and
let ν be a function from propositional formulas to the set {0, 1} defined as: 2

ν(P ) = µ(P ), P ∈ V (ϕ) ν(¬φ) = 1− ν(ϕ) ν(φ ∧ ψ) = min(ν(φ), ν(ψ))

µ is a model for ϕ if ν(ϕ) = 1. ϕ is satisfiable if it has at least one model, unsatisfiable
otherwise.

Two formulas φ and ψ are equivalent if and only if they have the same models. A
formula φ entails another formula ψ, denoted as φ |= ψ, if all the models of φ are also
models of ψ, but not vice versa.

In what follows, we might denote a model µ as a set of literals µS , such that for each
variable P , if µ(P ) = 1 then P ∈ µS , and if µ(P ) = 0 then ¬P ∈ µS . Analogously,
we might denote µ as a formula µF which is the conjunction of the literals in µS .3

Example 1. Let ϕ be the formula (P∨Q)∧(R∨¬S)∧(S∨P ). Then µ := {P, Q,¬R,¬S}
is a model for ϕ.

Definition 10 (Equivalence under assumptions) Let ξ and ϕ be two formulas. Then
a formula ϕ′ s.t. ξ |= ϕ ↔ ϕ′ is said to be equivalent to ϕ under the assumption of ξ.

Example 2. Let P and Q be predicates. Given the definition of equivalence under as-
sumptions, P ∧ Q is equivalent to P under the assumption P → Q since P → Q |=
(P ∧Q) ↔ P . There are other formulas which will be equivalent, e.g. P ∧Q is trivially
equivalent to itself.

By substituting every fact (a predicate) in a context with a fresh propositional vari-
able (fact variable) we obtain the boolean abstraction of a context. In the same way, we
can obtain the boolean abstraction of the assumptions which are known to be true in a
context. Given the boolean abstraction for a context ϕ and the corresponding assump-
tions ξ we can express the problem of reducing redundancy of contexts as the problem
of finding an equivalent context ϕ′ which is equivalent to ϕ under the assumptions ξ.

In order to obtain such a ϕ′, we exploit SAT solvers, and in particular techniques
for generating all the models of a boolean formula. The pseudo-code of our algorithm
is reported in Fig. 6. The algorithm enumerates the models of the boolean abstraction
ϕ of the context, and for each such model µ it checks whether µ is compatible with the
assumptions ξ (which express the known implications between facts). If µ is compatible

2 We define ν only for the connectives ¬,∧ since they are enough to express all the others.
3 Moreover, we shall drop the subscripts S and F when they are clear from the context.



Input: context ϕ, assumptions ξ
Output: reduced context ϕ′

1: ϕ′ ← ⊥
2: for all models µ of ϕ do
3: if Is Satisfiable(µ ∧ ξ) then
4: for all literals l ∈ µ do
5: µ′ ← µ \ {l}
6: if not Is Satisfiable(µ′ ∧ ξ ∧ ¬ϕ) then
7: µ ← µ′

8: end if
9: end for

10: ϕ′ ← ϕ′ ∨ µ
11: end if
12: end for
13: return ϕ′

Fig. 6. Pseudo-code of the context reduction algorithm.

with the assumptions, the algorithm tries to reduce µ by removing literals from it as long
as it is still a model for ϕ under the given assumptions, that is, as long as µ ∧ ξ |= ϕ,
or in other words as long as µ ∧ ξ ∧ ¬ϕ is unsatisfiable. Then, the reduced context is
given by taking the disjunction of all the reduced models that are compatible with the
assumptions.

Theorem 1. Let ξ and ϕ be two formulas, and let ϕ′ be the result of applying the
algorithm of Fig. 6 to ϕ and ξ. Then ϕ′ is equivalent to ϕ under the assumptions ξ.

Proof. We have to show that:

1. every model of ϕ that is compatible with ξ is also a model of ϕ′; and
2. for each model µ of ϕ′, all its extensions to all the variables in V (ϕ) \ V (ϕ′) that

are compatible with ξ are models of ϕ.

1. Let µ be a model of ϕ compatible with ξ (that is, µ ∧ ξ is satisfiable). Then, by
construction (lines 4-10 of the algorithm) ϕ′ contains a subset of µ as a disjunct.
Therefore, µ is a model for ϕ′.

2. Let µ be a model of ϕ′ compatible with ξ. Since ϕ′ is a disjunction of conjunctions
of literals, µ must be a superset of the set of literals σ in one of such conjunctions.
We can assume w.l.o.g. that σ is the smallest such set, because clearly if µ satisfies
ψ ∧ l, then µ satisfies also ψ. Moreover, the variables occurring in µ are a subset
of the variables of ϕ. Consider any extension µ′ of µ to all the variables of ϕ, such
that µ′ is compatible with ξ, and suppose that µ′ is not a model for ϕ. Then µ′ can
be turned into a model for ϕ by flipping 4 some of the literals in µ′ \ σ, since by
construction the literals in σ occur in a model of ϕ compatible with ξ (lines 3-10 of
the algorithm). Let η be a minimal set of literals to flip to obtain a model µ′′ of ϕ
from µ′. By construction, µ′′ ∧ ξ ∧¬ϕ is unsatisfiable, and for all the literals l in η,

4 Flipping a literal here means replacing l with ¬l or vice versa.



(µ′′ \ {l}) ∧ ξ ∧ ¬ϕ is satisfiable. 5 But then, none of the literals in η would have
been removed from µ′′ by the algorithm (lines 4-9) when processing µ′′ (which
must have been processed since it is a model of ϕ), and so η must be a subset of σ,
which is a contradiction. Therefore, µ′ is a model for ϕ.

ut
Example 3. Let the context be ϕ = (P ∧ Q) ∨ R, and we wish to reduce this formula
under the assumption ξ = (P → ¬Q) ∧ (P → R)

To obtain a reduced context we can enumerate all models of ϕ and reduce given the
assumption in this way:

1. We set up the algorithm by setting ϕ′ ← ⊥
2. ϕ is satisfiable, and the first model returned is e.g. µ = {¬P,¬Q,R}

(a) ¬P ∧ ¬Q ∧R ∧ ((P → ¬Q) ∧ (P → R)) is satisfiable (line 3), so the model
is compatible with the assumptions.

(b) Since R∧ (P → ¬Q)∧ (P → R)∧¬((P ∧Q)∨R) is unsatisfiable, both ¬P
and ¬Q are redundant in this model, so they are removed from µ′ in lines 4-9
of the algorithm.

(c) Update ϕ′ ← R
3. the second model of ϕ returned is e.g. µ = {P, Q,¬R}

(a) As P ∧Q∧¬R∧ ((P → ¬Q)∧ (P → R)) is unsatisfiable (line 3), the model
is not compatible with the assumptions, so we skip lines 4-10.

4. the other two models returned are µ = {P,¬Q,R} and µ = {¬P, Q, R}. As above,
they can be reduced to {R} only, since R∧(P → ¬Q)∧(P → R)∧¬((P∧Q)∨R)
is unsatisfiable (line 6).

The resulting reduced context becomes ϕ′ = R, and we have found that P and Q are
redundant for this context.

We remark that the above algorithm can be used also to detect inconsistent or trivial
contexts: in the former case, none of the models will be compatible with ξ, so ϕ′ will be
always equal to⊥; in the latter case, ξ∧¬ϕ will be always unsatisfiable, so in the loop of
lines 8-10 all the literals would be removed from µ, which will therefore be reduced to
>. However, for efficiency reasons it might be preferable to check for inconsistency and
triviality before entering the main loop of lines 2-12, by checking the unsatisfiability of
the formulas ξ ∧ ϕ and ξ ∧ ¬ϕ respectively.

Efficiency of the algorithm The algorithm enumerates all models, and in the worst
case there are an exponential number of them. For each model, we solve a number of
SAT problems. So in the worst case, we need to solve an exponential number of NP-
complete problems.

Despite this, the cost of the calls to a SAT procedure can be greatly reduced by
using an incremental SAT solver such as MiniSat [13]. The call on line 3 will use the
same formula ξ in every iteration of the outer loop, only varying the model µ. In this

5 Because ((µ′′ \ {l})∪ {¬l})∧ ξ 6|= ϕ, so ((µ′′ \ {l})∪ {¬l})∧ ξ ∧¬ϕ is satisfiable, and so
also (µ′′ \ {l}) ∧ ξ ∧ ¬ϕ is satisfiable.



case, one single solver instance containing ξ can be reused from one iteration to the
next. In the same way, the call on line 6 uses the same formula ξ ∧¬φ in each call, only
varying the model µ. A single SAT solver instance can be reused for all these calls.
The advantage of using an incremental SAT solver for each of these three cases is that
everything learnt from the formulas in one iteration of the outer loop can be reused for
all following iterations and will not have to be rediscovered. Lastly, enumerating all
models can be done with an efficient algorithm for the all-SAT problem.

Further optimizations are possible. E.g. the number of iterations in the loop enumer-
ating all models on line 2 can be reduced by blocking clauses gained from the reduction.
We can conjunct the negation of the reduced model µ computed on lines 4–9 to the for-
mula φ after each iteration. In example 3 above, this improvement would remove the
two last iterations.

4.1 Greedy Strategies for Cost Reduction

In the problem of reducing contexts, we wish to remove redundant facts from the con-
text. This corresponds to producing a formula ϕ′ with less variables than ϕ. In fact, we
want to reduce the cost of monitoring facts in a context. If we associate a cost (a real
number) to each fact variable in the boolean abstraction of a context, our aim is that of
finding a ϕ′ such that the sum of the costs of the variables occurring in ϕ′ is smaller
than the sum of the costs of the variables occurring in ϕ.

As presented, our context reduction algorithm does not take costs into account. One
simple possibility to make it aware of costs is to apply some greedy strategies when
determining the order in which variables are eliminated from the current model (line
4 of Fig. 6). For example, one strategy could be to sort the variables in the model µ
according to their cost, to try to eliminate more expensive variables first. A more so-
phisticated strategy could also consider whether a variable already occurs in the current
ϕ′ constructed so far, to try to keep the set of variables V (ϕ′) as small as possible.

Example 4. Consider the following context formula ϕ and assumptions ξ:

ϕ = ((¬P ∨ ¬R) ∧ (¬Q ∨ ¬S)) ∨ (¬P ∧ S)
ξ = (P ↔ Q) ∧ (R ↔ S) ∧ (S → Q)

Suppose that the cost of P is 3, that of Q is 1, that of R is 5 and that of S is 4. Moreover,
suppose that the first model found by the algorithm of Fig. 6 that is compatible with ξ
is µ1 = {P, Q,¬R,¬S}.

If the algorithm does not consider costs, µ1 might get reduced in lines 4-9 to {¬R}.
Therefore, after the first iteration of the loop of lines 2-12, ϕ′ = ¬R. The only other
model of ϕ that is compatible with ξ is µ2 = {¬P,¬Q,¬R,¬S}. In this case, µ2 might
get reduced to {¬P}, and thus the resulting reduced context ϕ′ would be ¬P ∨ ¬R,
whose cost is 8.

However, if costs are considered, in the process of reducing µ1 and µ2 the algorithm
would try to eliminate first the more expensive variables, resulting in the reduced mod-
els {¬S} and {¬Q} respectively. Therefore, in this case the reduced context ϕ′ would
be ¬S ∨ ¬Q, whose cost is 5.



Input: context ϕ, assumptions ξ
Output: reduced context ϕ′

1: ϕ′ ← ϕ
2: for all subsets S of variables V (ϕ) do
3: for all formulas ψ(S) over S do
4: if ξ |= ψ(S) ↔ ϕ then
5: if cost of ψ(S) is lower than cost of ϕ′ then
6: ϕ′ ← ψ(S)
7: break
8: end if
9: end if

10: end for
11: end for
12: return ϕ′

Fig. 7. Naive algorithm for finding the context with minimum cost.

Finally, if the algorithm takes into account also the presence of variables in the
current ϕ′, in the process of reducing µ2 the order in which literals are processed in the
loop of lines 4-9 would be ¬R,¬P,¬Q,¬S, as S is already in ϕ′ (because of µ1). With
this order, also µ2 would be reduced to {¬S}, and so in this case the final ϕ′ would be
¬S, whose cost is only 4.

Efficiency of the algorithm The algorithm has the same complexity as the algorithm
without costs, since we are only modifying the order in which we try to eliminate vari-
ables. We can therefore expect similar performance.

4.2 Finding an Optimal Solution and Reducing Multiple Dependent Contexts

The algorithm of Fig. 6 (and its greedy variant) computes one reduction for the in-
put context formula, but it does not find (in general) the reduction with minimum cost.
Clearly, finding such optimal context wrt. costs would be very desirable. However, solv-
ing this problem is far from trivial. A naive algorithm/solution for it is shown in Fig.7.

This algorithm works by enumerating up to all the formulas ψ(S) that are equivalent
to the context formula ϕ under the assumptions ξ, and picking the one with minimum
cost. Such exhaustive enumeration is prohibitively costly: the outer loop of lines 2-10 is
executed 2|V (ϕ)| times, and, since the number of different boolean formulas over k vari-
ables is 22k

, the inner loop of lines 3-9 is executed up to 22|S| times. Moreover, checking
whether ψ(S) and ϕ are equivalent under the assumptions ξ (line 4) is an NP-complete
problem. Therefore, the naive algorithm would require to solve up to

∑
S∈2V (ϕ) 22|S|

NP-complete problems.
In practice, the algorithm can be improved by performing a branch-and-bound search

[14] (on the sum of costs of the variables) instead of enumerating all the subsets of vari-
ables, thus avoiding to enumerate (and check) formulas over variables whose cost is
known to be higher than the best solution found so far. However, in the worst case the
complexity would not improve.



The situation is even more complex if mutual dependencies among different con-
texts are taken into account when searching for the globally-optimal solution. As we
observed in Section 3, in general reducing each context individually does not lead to a
globally-optimal monitoring cost, and thus it would be desirable to reduce each context
by taking the others into account. However, this would be very costly. A naive solution
would be to collect all the possible reductions for each individual context (computed
with the algorithm of Fig. 7), and then try all the possible combinations to pick the
best one: if Φ1 . . . Φn are the sets of all the reductions of the contexts ϕ1 . . . ϕn under
assumptions ξ1 . . . ξn, this would mean to try all the

∏n
i=1 |Φi| possible combinations.

5 Modeling Activities

We outline now the activities needed to create our proposed set of models:

– Goal analysis: in this activity, a context independent goal model is constructed.
The purpose of goal analysis is to define goals and the interdependencies between
system actors and to refine goals and elicit alternative sets of tasks that are executed
in order to satisfy the high level goals. Moreover, in this activity the quality of each
satisfaction alternative is studied and represented through its contribution to a set
of non-functional requirements (softgoals).

– Deciding contextual variation points: we have already defined six context depen-
dent variation points in Tropos goal model; variation points are the places where
the relation between the goal and context models has to be specified. In this activity,
the context dependent variation points of the goal model have to be decided, i.e. a
decision if the point is context free or context dependent has to be taken.

– Parameterizing goal model: Tropos goal model does not provide constructs to
specify the domain of discourse of goals, softgoals, and tasks. Since we need this
specification to explicitly define what is common, and what is not, along different
goals, softgoals, tasks, statement and/or facts, we propose the use of parameters
to define and keep track of the domain of discourse of goal and context analysis.
Deciding parameters is expected to get feedback from the analysis of the context
and to be, therefore, iterative.

– Context analysis: in this activity, we need to top-down scan the goal model and
define the context hierarchy at each contextual variation point. Checking the con-
sistency and triviality can be done on the direct and accumulated contexts imme-
diately, while optimization needs knowing the overall set of contexts to decide the
less expensive set of facts that is sufficient to validate all contexts as we explained.
This activity involves the analyst to specify the implications between leaf facts and
running iteratively the automated reasoning we already explained. We still need
supporting tools and more efficient reasoning for this activity, especially for spec-
ifying the implications, and optimizing the overall costs and not only the cost for
each context aside as we provided.

– Simulation and refinement in this activity, we need to show the system alterna-
tives in different contexts in order to agree with stakeholders on and to better un-
derstand the resulted contextual goal model. Given the set of all true leaf facts and



given the prioritarization over the softgoals, we just need to evaluate contexts to
instantiate a traditional goal model, and then rank the resulted possible alternatives
according to their contributions to the prioritized softgoals as already done in [15].
As an example from the goal model of Fig. 2, suppose that the current context al-
lows for both of the alternatives for satisfying the goal “assistance staff [s] gives
piece of art [p] info to visitor [v]”, and suppose that the context C7 is not valid (i.e.
assistance staff is not in the same room as the visitor), and therefore the contextual
contribution to the softgoal “staff is more comfortable” is negative. If the softgoal
“visitor is well informed” is more preferred than the softgoal “staff is more com-
fortable”, then the alternative “[s] gives [p] info to [v] by call” will be excluded,
while “[s] gives [p] info to [v] in person” is excluded in the opposite preference.

– Extracting conceptual data model: in this activity, and after having the final
agreed upon contextual goal model, and the set of reduced and consistent con-
text formulas, the analyst has to extract the conceptual data model by analyzing the
facts of all of these context formulas. We need to keep the link between each fact
and the data model fragment needed to verify it to allow for tracking the changes
in the data model that result from any modification of the contextual goal model.

6 Related Work

The research in context modeling, (e.g., [16]), concerns finding modeling constructs to
represent software and user context, but there is still a gap between the context model
and software behavior model, i.e. between context and its use. We tried to reduce such
gaps at the goal level and allow for answering questions like: “how do we decide the
relevant context?”, “why do we need context?” and “how does context influence soft-
ware and user behavior adaptation?”. Salifu et al. [17] investigate the use of problem
descriptions to represent and analyze variability in context-aware software; the work
recognizes the link between software requirements and context information as a basic
step in designing context aware systems.

Software variability modeling, mainly feature models [18, 19], concerns modeling
a variety of possible configurations of the software functionalities to allow for a sys-
tematic way of tailoring a product upon stakeholders choices, but there is still a gap
between each functionality and the context where this functionality can or has to be
adopted, the problem we tried to solve at the goal level. Furthermore, our work is in
line, and has the potential to be integrated, with the work in [20] and the FARE method
proposed in [21] that show possible ways to integrate features with domain goals and
knowledge to help for eliciting and justifying features.

Requirements monitoring is about insertion of a code into a running system to gather
information, mainly about the computational performance, and reason if the running
system is always meeting its design objectives, and reconcile the system behavior to
them if a deviation occurs [6]. The objective is to have more robust, maintainable, and
self-evolving systems. In [22], a GORE (goal-oriented requirements engineer) frame-
work KAOS [4] was integrated with an event-monitoring system (FLEA [23]) to pro-
vide an architecture that enables the runtime automated reconciliation between system
goals and system behavior with respect to a priori anticipated or evolving changes of the



system environment. Differently, we propose model-driven framework that concerns an
earlier stage, i.e. requirements, with the focus on identifying requirements together with
context, and eliciting the monitoring data.

Customizing goal models to fit to user skills and preferences was studied in [15,
24]. The selection between goal satisfaction alternatives is based on one dimension
of context, i.e. user skills, related to the atomic goals (executable tasks) of the goal
hierarchy, and on user preferences which are expressed over softgoals. Lapouchnian et
al. [25] propose techniques to design autonomic software based on an extended goal
modeling framework, but the relation with the context is not focused on. Liaskos et
al [26], study the variability modeling under the requirements engineering perspective
and propose a classification of the intentional variability when Or-decomposing a goal.
We focused on context variability, i.e. the unintentional variability, which influences
the applicability and appropriateness of each goal satisfaction alternative. Reasoning
with Tropos goal model has been already studied in [27]; adding context to goal models
creates the need to integrate between reasoning with context and that with the goal
model.

7 Conclusions and Future Work

In this paper, we have proposed a goal-oriented framework for modeling and analyzing
contextual requirements. We adopted Tropos goal analysis to identify requirements and
proposed the association between its variation points and context. In turn, context is
defined through a hierarchial analysis that elicits alternative sets of facts the system
has to verify on monitorable data so as to confirm the high level contexts. Analyzing
facts will also lead to identify the data conceptual model the monitoring system has to
instantiate to enable facts verification. We have also shown a set of activities that are
followed to build our proposed set of models.

The direct and accumulated contexts at the contextual goal model might be eas-
ily redundant, which implies a redundancy in the monitoring requirements, or even
inconsistent which furthermore denies the adoptability of the software functionalities
preconditioned by them. We have articulated the context interaction problem, that is
analogous to and complex as feature interaction problem [9], showed its effects and
main difficulties, and proposed a SAT-based reasoning to check the consistency, trivial-
ity, and producing an equivalent context with reduced cost.

Extending and optimizing the reasoning we have proposed and integrating it with
the previous work in reasoning on traditional Tropos goal model in [27] is a goal we will
try to reach. We also want to develop a supporting tool for our framework that assists the
analysts for building correctly our proposed models and simulating the system behavior.
Moreover, we will work on complex case studies in order to better validate the proposed
framework and refine it and make it more feasible.

Acknowledgement

This work has been partially funded by EU Commission, through the SERENITY, and
COMPAS projects, and by the PRIN program of MIUR under the MEnSA project. We
would also like to thank Prof. Jaelson Brelaz de Castro, Prof. Roberto Sebastiani, and
Prof. Alex Borgida for the valuable discussion we had about this work.



References

1. Finkelstein, A., and Savigni, A.: A framework for requirements engineering for context-aware
services. In: Proceedings of the 1st Int. Workshop on From Software Requirements to Archi-
tectures (STRAW), 2001

2. Yu, E.: Modelling strategic relationships for process reengineering. Ph.D. Thesis, University
of Toronto (1995)

3. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-
oriented software development methodology. Autonomous Agents andMulti-Agent Systems
8(3) (2004) 203-236

4. Dardenne, A., Van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Sci-
ence of computer programming 20(1-2) (1993) 350

5. Mylopoulos, J., Chung, L., Yu, E. From object-oriented to goal-oriented requirements analy-
sis. Commun. ACM, ACM, 1999, 42, 31-37

6. Fickas, S., Feather, M.: Requirements monitoring in dynamic environments. In: Proceedings
of the Second IEEE International Symposium on Requirements Engineering, IEEE Computer
Society Washington, DC, USA (1995) 140

7. Ali, R., Dalpiaz, F., Giorgini, P.: Goal-Based Self-Contextualization. In Proc. of the Forum of
the 21st International Conference on Advanced Information Systems (CAiSE09 - Forum).

8. Ali, R., Dalpiaz, F., Giorgini, P.: A Goal Modeling Framework for Self-Contextualizable Soft-
ware. In the 14th Intl. Conf. on Exploring Modeling Methods in Systems Analysis and Design
(EMMSAD09). LNBIP 29-0326, pp. 326–338. Springer (2009).

9. Cameron, E.J., Griffeth, N., Lin, Y.-J., Nilson, M.E., Schnure, W.K., Velthuijsen, H.: ”A
feature-interaction benchmark for IN and beyond,” Communications Magazine, IEEE , vol.31,
no.3, pp.64-69, Mar 1993

10. Ali, R., Dalpiaz, F., Giorgini, P.: Location-based variability for mobile information systems.
In: Bellahs‘ene, Z., Leonard,M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 575-578. Springer,
Heidelberg (2008)

11. Ali, R., Dalpiaz, F., Giorgini, P.: Location-based software modeling and analysis: Tropos-
based approach. In: Li, Q., Spaccapietra, S., Yu, E., Olive, A. (eds.) ER 2008. LNCS, vol.
5231, pp. 169-182. Springer, Heidelberg (2008)

12. Strang, T., Linnhoff-Popien, C. A context modeling survey. Workshop on Advanced Context
Modelling, Reasoning and Management as part of UbiComp, 2004

13. Eén, N., Sörensson, N.: An Extensible SAT-solver. In Giunchiglia, E., Tacchella, A., eds.:
Theory and Applications of Satisfiability Testing, 6th International Conference, SAT 2003.
Volume 2919 of Lecture Notes in Computer Science., Springer (2004) 502–508

14. Hillier, F. S., Lieberman, G. J.: Introduction to Operations Research. McGraw-Hill: Boston
MA; 8th. (International) Edition, 2005.

15. Hui, B., Liaskos, S., Mylopoulos, J.: Requirements analysis for customizable software goals-
skills- preferences framework. In: RE, IEEE Computer Society (2003) 117-126

16. Henricksen, K., Indulska, J.: A software engineering framework for context-aware pervasive
computing. In: Proc. Second IEEE Intl. Conference on Pervasive Computing and Communi-
cations (PerCom04). (2004) 77

17. Salifu, M., Yu, Y., Nuseibeh, B. Specifying Monitoring and Switching Problems in Context
Proc. 15th Intl. Conference on Requirements Engineering (RE’07), 2007, 211-220

18. Pohl, K., Bockle, G., van der Linden, F.: Software Product Line Engineering: Foundations,
Principles, and Techniques. Springer (2005)

19. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: Form: A feature-oriented reuse
method with domain-specific reference architectures. Ann. Softw. Eng. 5 (1998) 143168



20. Yu, Y., do Prado Leite, J.C.S., Lapouchnian, A., Mylopoulos, J.: Configuring features with
stakeholder goals. In: SAC 08: Proceedings of the 2008 ACM symposium on Applied com-
puting, New York, NY, USA, ACM (2008) 645649

21. Ramachandran, M., Allen, P.: Commonality and variability analysis in industrial practice for
product line improvement. Software Process: Improvement and Practice 10(1) (2005) 3140

22. Feather, M. S., Fickas, S., Lamsweerde, A. V., Ponsard, C. Reconciling System Require-
ments and Runtime Behavior. Proceedings of the 9th international workshop on Software
specification and design IWSSD ’98, IEEE Computer Society, 1998, 50

23. Cohen, D., Feather, M. S., Narayanaswamy, K., Fickas, S. S. Automatic monitoring of soft-
ware requirements ICSE ’97: Proceedings of the 19th international conference on Software
engineering, ACM, 1997, 602-603

24. Liaskos, S., McIlraith, S., Mylopoulos, J.: Representing and reasoning with preference re-
quirements using goals. Technical report, University of Toronto (2006).

25. Lapouchnian, A., Yu, Y., Liaskos, S., Mylopoulos, J.: Requirements-driven design of auto-
nomic application software. In: Proc. 2006 conference of the Center for Advanced Studies on
Collaborative research (CASCON 06), ACM (2006) 7

26. Liaskos, S., Lapouchnian, A., Yu, Y., Yu, E., Mylopoulos, J.: On goal-based variability acqui-
sition and analysis. In: Proc. 14th IEEE Intl. Requirements Engineering Conference (RE06).
(2006) 76-85

27. Giorgini, P.,Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Reasoning with goal models. In
Spaccapietra, S., March, S.T., Kambayashi, Y., eds.: ER 2002. Volume 2503 of Lecture Notes
in Computer Science., Springer (2002) 167181


	TechReport.pdf
	MACR Technical.pdf

