

UNIVERSITY
OF TRENTO

 DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.disi.unitn.it

P2P CONCEPT SEARCH: SOME PRELIMINARY RESULTS

Fausto Giunchiglia, Uladzimir Kharkevich and S.R.H Noori

March 2009

Technical Report # DISI-09-018

Also: short version is accepted as a poster at the Semantic Search 2009
workshop (SemSearch2009) co- located with
the 18th Int. World Wide Web Conference WWW2009

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Unitn-eprints Research

https://core.ac.uk/display/11829864?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

.

P2P Concept Search: Some Preliminary Results

Fausto Giunchiglia
Department of Information

Engineering
and Computer Science

University of Trento, Italy
fausto@disi.unitn.it

Uladzimir Kharkevich
Department of Information

Engineering
and Computer Science

University of Trento, Italy
kharkevi@disi.unitn.it

S.R.H Noori
Department of Information

Engineering
and Computer Science

University of Trento, Italy
noori@disi.unitn.it

ABSTRACT
Concept Search extends syntactic search, i.e., search based
on the computation of string similarity between words, with
semantic search, i.e., search based on the computation of
semantic relations between complex concepts. It allows us
to deal with ambiguity of natural language. P2P Concept
Search extends Concept Search by allowing distributed se-
mantic search over structured P2P network. The key idea is
to exploit distributed, rather than centralized, background
knowledge and indices.

1. INTRODUCTION
The current web is a huge repository of documents, dis-
tributed in a network of autonomous information sources
(peers). The number of these documents keeps growing sig-
nificantly from year to year making it increasingly difficult
to locate relevant documents while searching on the web.
In addition to the massiveness, the web is also a highly dy-
namic system. Peers are continually joining and leaving the
network, new documents are created on peers, and exist-
ing ones are changing their content. The search problem
becomes even more complex.

Conventional search engines implement search for documents
by using syntactic search, i.e., words or multi-word phrases
are used as atomic elements in document and query rep-
resentations. The search procedure, in syntactic search, is
essentially based on the syntactic matching of document and
query representations. Search engines, exploiting syntactic
search, are known to suffer in general from low precision
while being good at recall. Concept Search [3] (CSearch in
short) extends syntactic search with semantics. The main
idea is to keep the same machinery which has made syntactic
search so successful, but to modify it so that, whenever pos-
sible, syntactic search is substituted with semantic search,
thus improving the system performance. As a special case,
when no semantic information is available, CSearch reduces
to syntactic search, i.e., the results produced by CSearch
and syntactic search are the same.

Nowadays, the major search engines are based on a central-
ized architecture. They attempt to create a single index for
the whole Web. But the size, dynamics, and distributed na-
ture of the Web make the search problem extremely hard,
i.e., a very powerful server farm is required to have complete
and up-to-date knowledge about the whole network to index
it. The peer-to-peer (P2P) computing paradigm appeared
as an alternative to centralized search engines for search-
ing web content. Each peer in the P2P network organizes
only a small portion of the documents in the network, while
being able to access the information stored in the whole net-
work. Robustness and scalability are major advantages of
the P2P architecture over the centralized architecture. Also,
as the requirements for computational and storage resources
of each peer in a P2P network are much lighter than for a
server in a centralized approach, a peer’s search engine can
employ much more advanced techniques for search, e.g. se-
mantic search.

In this paper, we propose an approach called P2P Concept
Search which extends CSearch allowing semantic search on
top of distributed hash table (DHT) [12, 16, 14, 21]. In
P2P Concept Search, centralized document index is replaced
by distributed index build on top of DHT. The reasoning
with respect to a single background knowledge is extended
to the reasoning with respect to the background knowledge
distributed among all the peers in the network.

The remainder of the paper is organized as follows. In Sec-
tion 2, we describe the semantic continuum, a space of ap-
proaches lying between purely syntactic search and fully
semantic search. We first discuss the syntactic search ap-
proach and then we describe different dimensions where se-
mantics can be enabled in syntactic search. In Section 3,
we briefly describe CSearch and show how it is positioned
within the semantic continuum. In Section 4, we discuss
how syntactic search can be implemented on top of DHT.
In Section 5, we describe how P2P CSearch is implemented
using DHT technology. In Section 6, we compare our ap-
proach with other related approaches. Section 7 concludes
the paper.

2. THE SEMANTIC CONTINUUM
The goal of an information retrieval (IR) system is to map a
natural language query q (in a query set Q), which specifies
a certain user information needs, to a set of documents d in
the document collection D which meet these needs, and to
order these documents according to their relevance. IR can

A small baby dog runs after a huge white cat. D1:

A laptop computer is on a coffee table. D2:

A little dog or a huge cat left a paw mark on a table. D3:

Babies and dogs Q1:

Computer table Q3: Carnivores Q4:

Paw printQ2:

Documents:

Queries:

The canine population is growing fast. D4:

Figure 1: Queries and a document collection

therefore be represented as a mapping function:

IR : Q → D (1)

Conventional search engines implement the mapping func-
tion in Equation 1 by exploiting syntactic search. A word
or a multi-word phrase is used as an atomic element (term)
in document and query representations. A syntactic match-
ing of words (match) is used for matching document and
query terms. Syntactic matching is implemented as search
for equivalent words, words with common prefixes, or words
within a certain edit distance with a given word.

There are several problems which may negatively affect the
performance of syntactic search. Let us discuss these prob-
lems on the example queries and the document collection
shown in Figure 1.

Polysemy. The same word may have multiple meanings
and, therefore, query results, computed by a syntactic search
engine, may contain documents where the query word is used
in a meaning which is different from what the user had in
mind. For instance, a document D1 (in Figure 1) which
talks about baby in the sense of a very young mammal is
irrelevant if the user looks for documents about baby in the
sense of a human child (see query Q1 in Figure 1).

Synonymy. Two different words can express the same
meaning in a given context and, therefore, query results,
computed by a syntactic search engine, may miss documents
where the meaning of a query word is expressed by a differ-
ent word. For instance, a document D3 (in Figure 1) which
contains word mark is relevant to the query Q2 (in Fig-
ure 1) which contains word print, because both words mark
and print are synonymous when used in the sense of a visible
indication made on a surface.

Complex concepts. Syntactic search engines fall short
of taking into account complex concepts formed by natural
language phrases and in discriminating among them. Con-
sider, for instance, document D2 (in Figure 1). This docu-
ment describes two concepts: a laptop computer and a coffee
table. Query Q3 (in Figure 1) denotes concept computer ta-
ble which is quite different from both concepts described in
D2, whereas a syntactic search engine is likely to return D2
in response to Q3, because both words computer and table
occur in this document.

Related concepts. Syntactic search does not take into ac-
count concepts which are semantically related to the query
concepts. For instance, a user looking for carnivores (see

NL2FL

W2P

+Noun Phrase

+Lexical

knowledge

+Verb Phrase

…
C-Search

(0, 0, 0)

Pure Syntax

NL

 (FL)

1

Word

String

Similarity

+Statistical

Knowledge

1

(Complete

 Ontological

 Knowledge)

…

1 (Free Text)

KNOW

+Descriptive Phrase

NL&FL

Full Semantics

(1, 1, 1)

Figure 2: Semantic Continuum

query Q4 in Figure 1) might not only be interested in doc-
uments which talk about carnivores but also in those which
talk about the various kinds of carnivores such as dogs and
cats (e.g., documents D1, D3, and D4 in Figure 1)).

In order to address the problems of syntactic search, we ex-
tend syntactic search with semantics. The three-dimensional
space contained in the cube (see Figure 2) represents the
semantic continuum where the origin (0,0,0) is a purely syn-
tactic search, the point with coordinates (1,1,1) is a fully
semantic search, and all points in between represent search
approaches in which semantics is enabled to different ex-
tents. In the following, we briefly discuss different dimen-
sions of the Semantic Continuum (for more details see [3]).

From natural language to formal language (NL2FL-
axis in Figure 2). To solve the problems related to the ambi-
guity of natural language, namely, the problems of polysemy
and synonymy, we need to move from words, expressed in
a natural language, to concepts (word senses), expressed in
an unambiguous formal language.

From words to phrases (W2P-axis in Figure 2). To solve
the problem related to complex concepts, we need to ana-
lyze natural language phrases, which denote these concepts.
Concepts can be expressed as noun phrases, verb phrases,
or, in general, a free text.

From string similarity to semantic similarity (KNOW-
axis in Figure 2). The problem with related concepts can
be solved by incorporating knowledge about term related-
ness (what we call the “Background Knowledge” (BK)). For
instance, it can be statistical knowledge about word co-
occurrence, lexical knowledge about synonyms and related
words, or ontological knowledge about classes, individuals,
and their relationships. It is not realistic to assume that
a single user can have a complete BK for all the possible
domains, therefore, reasoning in the continuum is always
performed with respect to an incomplete BK. See [6] for the
problems which can appear when a part of the knowledge is
missing.

3. CONCEPT SEARCH
C-Search can be positioned anywhere in the semantic con-
tinuum with syntactic search being its base case. In fact,
CSearch reuses retrieval models (Model) and data structures

2

3

laptop-1 computer-1

carnivore-1 computer-1 table-1

paw-1 print-3baby-1

paw-1 mark-4leavehuge-1 cat-1little-4 dog-1 D3:

Q1:

Q3: Q4:

Q2:

2 31 4 5

AND dog-1

Documents:

Queries:

coffee-1 table-1beD2: 41 on 3

afterrunsmall-4 baby-3 dog-1 D1: 21 4 huge-1 white-1 cat-1

…
fast-1growcanine-2 population-4 D4: 1 2 3

Figure 3: Document and Query Representations

(Data Structure) of syntactic search with the only difference
in that now words (W) are substituted with complex con-
cepts (C) and syntactic matching of words (WMatch) is
extended to semantic matching of concepts (SMatch). This
idea is schematically represented in the equation below:

Syntactic Search
T erm(W→C),Match(W Match→SMatch)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ CSearch

Below we briefly describe how the words in W are converted
into the complex concepts in C and also how the semantic
matching SMatch is implemented in CSearch. We refer the
interested reader to [3] for a complete account.

3.1 From Words To Complex Concepts
In CSearch, search is implemented by using complex con-
cepts expressed in a propositional Description Logic (DL)
language [4] (i.e., a DL language without roles). Complex
concepts are computed by analyzing meaning of the words
and phrases.

Single words are converted into atomic concepts uniquely
identified as lemma-sn, where lemma is the lemma of the
word, and sn is the sense number in BK (e.g., WordNet).
For instance, the word dog used in the sense of a domestic
dog, which is the first sense in the BK, is converted into
the atomic concept dog-1. The conversion of words into
atomic concepts is performed as follows. First, we look up
and enumerate all meanings of the word in the BK. Next,
we perform word sense filtering, i.e., we discard word senses
which are not relevant in the given context (see [3, 19] for
more details).

Noun phrases are translated into the logical conjunction
of atomic concepts corresponding to the words. For in-
stance, the noun phrase A little dog is translated into the
concept little-4 u dog-1. Descriptive phrase, defined as a
set of noun phrases connected by coordinating conjunction
OR, are translated into logical disjunction of formulas cor-
responding to the noun phrases. For instance, phrase A
little dog or a huge cat is translated into concept (little-4 u
dog-1)t (huge-1u cat-1). In general case, complex concepts
(C) can be represented as disjunctions (t) of conjunctions
(u) of atomic concepts (A) without negation:

C ≡ t uAd (2)

In CSearch, every document is represented as an enumer-
ated sequence of conjunctive components uAd possibly con-
nected by symbol “t”. For example, in Figure 3 we show
the sequences of uAd extracted from documents in Figure 1.
Rectangles in Figure 3 represent either conjunctive compo-
nents uAd or the disjunction symbol “t”, a number in a

cat-1 lion-1

carnivore-1

canine-2 feline-1

dog-1 wolf-1

is a subsumption relation

Figure 4: Terminological knowledge base T

square at the left side of a rectangle represents the position
of the rectangle in the whole sequence. Note, that sym-
bol “t” is used to specify that conjunctive components uAd

connected by this symbol form a single disjunctive concept
t u Ad. For example, the first three positions in the se-
quence for document D3 in Figure 3 represent the concept
(little-4 u dog-1) t (huge-1 u cat-1).

3.2 From Word to Concept Matching
In CSearch, we can search for documents describing complex
concepts which are semantically related to complex concepts
in the user query. We assume that, when a user is searching
for a concept, she is also interested in more specific concepts
(this assumption can be easily generalized to any “suitable”
notion of semantic proximity). Formally a query answer
QA(Cq, T), in CSearch, is defined as follows:

QA(Cq, T) = {d | ∃Cd ∈ d, s.t. T |= Cd v Cq} (3)

where Cq is a complex query concept extracted from the
query q, Cd is a complex document concept extracted from
the document d, and T is a terminological knowledge base
(i.e., the BK) which is used in order to check if Cd is more
specific then Cq. A small fragment of T is represented in
Figure 4. T can be thought of as an acyclic graph, where
links represent subsumption axioms in the form Ai v Aj ,
with Ai and Aj atomic concepts.

Query answer QA(Cq, T), defined in Equation 3, is com-
puted by using a positional inverted index. In a positional
inverted index, as used in syntactic search, there are two
parts: the dictionary, i.e., a set of terms (t) used for index-
ing; and a set of posting lists P(t). A posting list P(t) is a
list of all postings for term t:

P (t) = [〈d, freq, [position]〉]
where 〈 d, freq, [position]〉 is a posting consisting of a doc-
ument d associated with term t, the frequency freq of t in
d, and a list [position] of positions of t in d.

In CSearch, we adopt a positional inverted index to index
conjunctive components uAd by all more general or equiv-
alent atomic concepts from T . For example, in Figure 5
we show a fragment of the positional inverted index cre-
ated by using the document representations in Figure 3.
The inverted index dictionary, in CSearch, consists of atomic
concepts from T (e.g., concepts baby-3 and canine-2 in Fig-
ure 5), and symbol “t” (e.g., the first term in Figure 5). The
posting list P (A) for an atomic concept A stores the posi-
tions of conjunctive components uAd, such that, uAd v A.
For instance, P(canine-2) = [〈D1, 1, [1]〉; 〈D3, 1, [1]〉; 〈D4, 1,
[1]〉], which means that at first position in documents D1,

Dictionary (t) Posting lists (P(t))
t 〈D3, 1, [2]〉

baby-3 〈D1, 1, [1]〉
canine-2 〈D1, 1, [1]〉; 〈D3, 1, [1]〉; 〈D4, 1, [1]〉

carnivore-1 〈D1, 2, [1, 4]〉; 〈D3, 2, [1, 3]〉; 〈D4, 1, [1]〉
computer-1 〈D2, 1, [1]〉

feline-1 〈D1, 1, [4]〉; 〈D3, 1, [3]〉
leave 〈D3, 1, [4]〉

little-4 〈D1, 1, [1]〉; 〈D3, 1, [1]〉

Figure 5: Positional Inverted Index

D3, and D4 there are conjunctive components (i.e., small-4u
baby-3udog-1, little-4udog-1, and canine-2upopulation-4)
which are more specific than canine-2. The posting list P (t)
stores the positions of the symbol “t”.

Now the query answer QA(Cq, T) can be computed just by
merging posting lists (i.e., by computing intersections and
unions of posting lists). For instance, positions of conjunc-
tive components uAd which are more specific than complex
query concept uAq, i.e., uAd v uAq, can be computed by
intersecting the posting lists for all the atomic concepts Aq

in uAq. Let us consider, for example, the posting lists P (Aq)
for atomic concepts little-4 and carnivore-1.

P (little-4) = [〈D1, 1, [1]〉; 〈D3, 1, [1]〉]
P (carnivore-1) = [〈D1, 2, [1, 4]〉; 〈D3, 2, [1, 3]〉; 〈D4, 1, [1]〉]

In this case, the posting list computed for complex concept
little-4 u carnivore-1 is as follows:

P (little-4 u carnivore-1) = [〈D1, 1, [1]〉; 〈D3, 1, [1]〉]
The complete algorithm for computing a query answer QA(
Cq, T) is described in [3].

In CSearch, query concepts Cq can be combined into more
complex queries q, e.g., by using the boolean operators AND
and NOT. Query answer QA(q, T) in this case is computed
by recursively applying the following rules:

QA(qi AND qj , T) = QA(qi, T) ∩QA(qj , T)

QA(qi NOT qj , T) = QA(qi, T) 6 QA(qj , T)
(4)

For instance, the query answer for query baby-1 AND dog-1
(in Figure 3) is computed as follows: QA(baby-1 AND dog-1,
T) = QA(baby-1, T) ∩QA(dog-1, T) = ∅ ∩ {D1, D3} = ∅

The main limitation of CSearch is that it is a centralized
system, i.e., the BK and the inverted index are stored in a
single place. As any other centralized system, CSearch can
not scale without the need for powerful servers.

4. SYNTACTIC SEARCH IN DHT
Distributed Hash Tables (DHTs) have been proposed as a
way to enable an efficient discovery of objects in a very large
P2P networks [12, 16, 14, 21]. In DHT, every object is
associated with a key, which is transformed into a hash using
some hash function. The range of the output values of the
hash function forms an ID space. Every peer in the network
is responsible for storing a certain range of keys. Values,
e.g., objects or information about objects, are stored at the
precisely specified locations defined by the keys.

The two main operations provided by DHT are:

• put (key, value) - stores the value on the peer respon-
sible for the given key.

• get (key) → value - finds a peer responsible for the key
and retrieve the value for the key.

A straightforward way to implement syntactic search is to
use the DHT to distribute peers’ inverted indices in the P2P
network [13]. Peers locally compute posting lists P (t) for
every term t and store them in the network by using the
DHT ’put’ operation. The key in this case is a term t while
the value is a posting list P (t) associated with t. In DHT,
each peer is responsible for a few terms and for every term
t the peer merges all the posting lists P (t) for t from all
the peers in the network. In order to find a set of docu-
ments which contain a term t we just need to contact the
peer responsible for t and retrieve the corresponding posting
list. The DHT ’get’ operation does exactly this. In order
to search for more than one term, we, first, need to retrieve
posting lists for every single term, and then to intersect all
these posting lists.

The above approach has several problems (see e.g. [9, 17]).
Let us consider some of these problems.

Storage. For a large document collection, the number and
the size of posting lists can be also large. Therefore, the
storage needed to store the posting lists can potentially be
bigger than the storage peers can (or want) to allocate.

Traffic. Posting lists needs to be transferred when peers
join or leave the network. Searching with multiple terms
requires intersection of posting lists, which also need to be
transferred. In the case of huge posting lists, a bandwidth
consumption can exceed the maximum allowed. In [9], it is
shown that the efficiency of DHT can be even worse than
the efficiency of a simple flooding algorithm.

Load balancing. Popularity of terms, i.e., the number of
term’s occurrences, can vary enormously. It can result in an
extremely imbalanced load e.g., some peers will store and
transfer much more data than others.

Several approaches were proposed in order to address the
described above problems and to improve performance of
information retrieval in structured P2P networks. Some of
optimization techniques (e.g., Bloom Filters), which can im-
prove the performance of posting lists intersecting, are sum-
marized in [9]. Caching of results for queries with multiple
terms is discussed in [2, 15]. In [15], only those queries
are cached which are frequent enough and simple flooding
is used for rare queries. In [17], only important (or top)
terms are used for indexing of each document. Moreover,
the term lists are stored on peers responsible for these top
terms. Notice that by using only the top terms we can de-
crease the quality of search results. Automatic query ex-
pansion is proposed as a way to address this problem [17].
Some techniques to balance the load across the peers are
also presented in [17]. Normally users are interested only in
a few (k) high quality answers. An example of the approach

for retrieving top k results, which does not require trans-
mitting of entire posting lists, is discussed in [20]. In [10],
indexing is performed by terms and term sets appearing in a
limited number of documents. Different filtering techniques
are used in [10] in order to make vocabulary to grow linearly
with respect to the document collection size. In [1], it was
proposed to index a peer containing a document and not
the document itself. At search time, first, those peers are
selected, which are indexed by all the terms in the query,
then, the most promising peers are select, and finally, local
search is performed on these peers.

Notice that the above approaches are implementing syntac-
tic search. Therefore, the problems of syntactic search, i.e.,
problems of polysemy, synonymy, complex concepts, and re-
lated concepts, can also affect the quality of the results pro-
duced by these approaches.

5. P2P CONCEPT SEARCH
In order to provide semantic search in DHT networks, we
propose to extend the centralized version of CSearch to P2P
CSearch. First, we extend the reasoning with respect to a
single background knowledge T to the reasoning with re-
spect to the background knowledge TP2P which is distrib-
uted among all the peers in the network. Second, we extend
the centralized inverted index (II) to distributed inverted
index build on top of DHT. The idea is schematically repre-
sented in the equation below.

CSearch
Knowledge(T→TP2P),Index(II→DHT)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ P2P CSearch

In the following, we show how the distributed background
knowledge TP2P can be implemented on top of DHT and also
we show how DHT can be used, in P2P CSearch, to provide
an efficient distributed semantic indexing and retrieval.

5.1 Distributed Background Knowledge
To access the background knowledge T , stored on a single
peer, CSearch needs at least the following three methods:

getConcepts(W) returns a set of all the possible mean-
ings (atomic concepts A) for word W. For example, get-
Concepts(canine) → {canine-1 (’conical tooth’), canine-2
(’mammal with long muzzles’)}.

getChildren(A) returns a set of all the more specific atomic
concepts which are directly connected to the given atomic
concept A in T . For example, with respect to T in Figure 4,
getChildren (carnivore-1) → {canine-2, feline-1}.

getParents(A) returns a set of all the more general atomic
concepts which are directly connected to the given atomic
concept A in T . For example, with respect to T in Figure 4,
getParents (dog-1) → {canine-2}.

In order to provide access to background knowledge TP2P

distributed over all the peers in the P2P network, we cre-
ate distributed background knowledge DBK. In DBK, each
atomic concept A is identified by a unique concept ID (AID)
which is composed from peer ID (PID), where peer is a cre-
ator of the atomic concept, and local concept ID in the
Knowledge Base of the peer. Every atomic concept A is
represented as a 3-tuple: A = 〈AID, POS, GLOSS〉, where

AID is a concept ID; POS is a part of speech; and GLOSS
is a natural language description of A. In the rest of the
paper, for the sake of presentation, instead of complete rep-
resentation 〈AID, POS, GLOSS〉 we use just lemma-sn.

DBK is created on top of a DHT. Atomic concepts are in-
dexed by words using the DHT ’put’ operation, e.g., put(canine,
{canine-1, canine-2}). Moreover, every atomic concept is
also indexed by related atomic concepts together with the
corresponding relations. We use a modification of the DHT
’put’ operation put(A, B, Rel), which stores atomic con-
cept B with relation Rel on the peer responsible for (a
hash of) atomic concept A, e.g., put(canine-2, dog-1, ’v’),
put(canine-2, carnivore-1, ’w’).

After DBK has been created, getConcepts(W) can be im-
plemented by using the DHT ’get’ operation, i.e., getCon-
cepts(W) = get(W). Both methods getChildren(A) and get-
Parents(A) are implemented by using a modified DHT ’get’
operation get(A, Rel), i.e., getChildren(A) = get(W, ’v’)
and getParents(A) = get(W, ’w’). The operation get(A,
Rel) finds a peer responsible for atomic concept A and re-
trieve only those atomic concepts B which are in relation
Rel with A.

Let us now see how DBK can be bootstrapped. At the
beginning we have one single peer in the P2P network and
DBK is equivalent to the background knowledge T of this
peer. For example, T can be created from WordNet. A new
peer joining the P2P network bootstrap its own background
knowledge from DBK by doing the following three steps.
First, the peer computes a set of words which are used in the
local document collection. Second, the peer download from
DBK a set of all the atomic concepts which are associated
with these words by using ’getConcepts’ method. Finally,
the peer download all the more general atomic concepts by
recursively calling ’getParents’ method.

After bootstrapping, a user of each peer can extend DBK
in the domain of her expertise according to her needs. The
user can add a new atomic concept A to DBK by providing a
set of words W, a part-of-speech POS, and a gloss GLOSS.
By using the ’getConcepts’ method, the peer retrieves from
DBK all the atomic concepts A indexed by words in W.
Then, glosses of retrieved concepts are compared with the
GLOSS provided by user. We use gloss-based matchers
from [8, 7, 5]. If no similar concepts are found, then A is
created in the peer’s local background knowledge and in-
dexed in DBK. The user can also add a new meaning (i.e.,
to assign an atomic concept A) to a word W . Similarly
to how it was described above, before adding a new infor-
mation, system checks if this information is not already in
the system. Moreover, the user can define a new relation
between atomic concepts in DBK. Before adding a new re-
lation, system first checks if this relation does not introduce
cycles in DBK. Cycles should be prevented because we need
to have an acyclic DBK. Also system checks if the given
relation can not be decomposed into a sequence of existing
relations. This step is done in order to minimize the amount
of stored information.

Notice, that by extending peer’s background knowledge T to
DBK which stores TP2P , we are likely to have a higher cov-

erage on words, atomic concepts, and relations. Therefore,
we can enable semantics to a higher extend in the seman-
tic continuum, e.g., when user types a word which is not
present in her T , she can use atomic concepts from back-
ground knowledge of other peers stored in DBK.

5.2 Indexing and Retrieval
The query answer defined in Equation 3, can be extended to
the case of distributed search by taking into account that the
document collection DP2P is equivalent to the union of all
the documents from all the peers in the network (where each
document d is uniquely identified by a document ID) and
also that background knowledge TP2P is distributed among
all the peers.

QA(Cq,TP2P)={d ∈ DP2P |∃Cd∈d, s.t. TP2P |=CdvCq} (5)

Let us consider a subset QA(Cq,TP2P , A) of the query an-
swer QA(Cq,TP2P). QA(Cq,TP2P , A) consists of documents
d which contain at least one complex concept Cd which is
more specific than the complex query concept Cq and con-
tains atomic concept A.

QA(Cq,TP2P,A)={d ∈ DP2P |∃Cd∈d, s.t. TP2P |=CdvCq

and∃Ad∈Cd, s.t. Ad = A}
(6)

If by C(A) we denote a set of all atomic concepts Ad, which
are equivalent to or more specific than concept A, i.e.,

C(A) = {Ad | TP2P |= Ad v A} (7)

then, it can be shown that, given Equation 6, the query
answer QA(Cq,TP2P) can be computed as follows

QA(Cq,TP2P)=
[

(uAq)∈Cq

[

A∈C(A∗)

QA(Cq,TP2P,A) (8)

where A∗ is an arbitrarily chosen atomic concept Aq in con-
junctive component uAq.

Given Equation 8, the query answer can be computed by
using a recursive algorithm described below. The algorithm
takes as input complex query concept Cq and computes as
output a query answer QA in five macro steps:

Step 1 Initialize a query answer: QA = ∅.
Step 2 Select one atomic concept A from every conjunctive

component uAq in complex query concept Cq. For
every selected A, repeat steps 3, 4, and 5.

Step 3 Compute QA(Cq,TP2P,A) and add the results to QA.

Step 4 Compute a set Cms of all more specific atomic con-
cepts B which are directly connected to the given atomic
concept A in TP2P .

Step 5 If Cms 6= ∅, then for every atomic concept in Cms,
repeat steps 3, 4, and 5.

Note, that on step 2, atomic concepts A can be selected
arbitrarily. In order to minimize the number of iterations,
we chose A with the smallest number of more specific atomic
concepts. The smaller the number, the fewer times we need
to compute QA(Cq, TP2P,A) on step 3.

Word senses
canine canine-1, canine-2

More specific concepts
canine-2 dog-1, wolf-1

More general concepts
canine-2 carnivore-1

CSearch index
canine-2 〈D4, 1, [1]〉

carnivore-1 〈D4, 1, [1]〉
population-4 〈D4, 1, [1]〉

Figure 6: Peer’s information

In the following, we, first, show how documents are indexed
in P2P CSearch, and then we show how the described above
algorithm can be implemented.

In P2P CSearch, complex concepts are computed in the same
way as in CSearch (see Section 3.1). The only difference
is that now if an atomic concept is not found in the lo-
cal background knowledge T , then TP2P is queried instead.
P2P CSearch also uses the same document representation as
CSearch (see Figure 3).

After document representations are computed, the indexing
of documents is performed as follows. Every peer computes
a set of atomic concepts A which appear in the representa-
tions of peer’s documents. For every atomic concept A, the
peer computes a set of documents d which contain A. For
every pair 〈A, d〉, the peer computes a set S(d, A) of all the
complex document concepts Cd in d, which contain A.

S(d, A) = {Cd∈d | A∈Cd} (9)

For example, if d is document D1 in Figure 3 and A is equiv-
alent to dog-1, then S(d, A) = {small-4ubaby-3udog-1}. For
every A, the peer sends document summaries corresponding
to A, i.e., pairs 〈d, S(d, A)〉, to a peer pA responsible for A in
DBK. The peer pA indexes these summaries using the local
CSearch. In total, every peer in the network is responsible
for some words and for some atomic concepts. Peers main-
tain the following information for their words and concepts:

1. For every word, the peer stores a set of atomic concepts
(word senses) for this word.

2. For every atomic concept, the peers stores a set of
direct more specific and more general atomic concepts.

3. Document summaries 〈d, S(d, A)〉 for all the atomic
concepts A (for which the peer is responsible) are stored
on the peer and indexed in the local CSearch, i.e., the
summaries are indexed in the positional inverted index
(like the one in Figure 5).

An example of the information, which can be stored on the
peer responsible for a single word canine and for a single
atomic concept canine-2, is shown in Figure 6.

Now, let us see how different steps of the algorithm for com-
puting the query answer are implemented in P2P CSearch:

Step 1 A peer pI initiates the query process for complex
query concept Cq and initialize the query answer QA.

Step 2 For every uAq in Cq, pI selects A in uAq with the
smallest number of more specific atomic concepts. For
every selected A, Cq is propagated to the peer pA re-
sponsible for A.

Step 3 pA receives the query concept Cq and locally (by
using CSearch) computes the set QA(Cq,TP2P,A). The
results are sent directly to pI . On receiving new re-
sults QA(Cq,TP2P,A), pI merges them with QA. An
(intermediate) result is shown to the user.

Step 4 pA computes the set Cms by querying locally stored
(direct) more specific concepts (e.g., see ’More specific
concepts’ in Figure 6).

Step 5 pA propagates Cq to all the peers pB responsible for
atomic concepts B in Cms, i.e., Step 2 is repeated on
every pB .

Note, that, in order to optimize query propagation, peer pA

can pre-compute addresses of peers pB which are responsible
for more specific atomic concepts, and use DHT to locate
such peers only when pre-computed information is outdated.

An example of how the query answer QA(Cq,TP2P,A) is com-
puted is given in Figure 7. Peers, represented as small
circles, are organized in a DHT overlay, represented as a
ring. A query consisting of a single query concept Cq =
little-4 u canine-2 is submitted to peer PI . Let us assume
that atomic concept canine-2 has smaller number of more
specific atomic concepts then concept little-4. In this case,
Cq is propagated to a peer Pcanine-2, i.e., the peer responsi-
ble for atomic concept canine-2. The query propagation is
shown as a firm line in Figure 7. Pcanine-2 searches in a lo-
cal CSearch index with Cq. No results are found. Pcanine-2
collects all the atomic concepts which are more specific then
canine-2, i.e., atomic concepts dog-1 and wolf -1. Query
concept Cq is propagated to peers Pdog-1 and Pwolf-1. Pdog-1
finds no results while Pdog-1 finds document D1. D1 is an
answer because it contains concept small-4u baby-3u dog-1
which is more specific than little-4 u canine-2. D1 is sent
to PI , which presents it to the user. The results propaga-
tion is shown as a dash line in Figure 7. Both peers Pdog-1
and Pwolf-1 have no more specific concepts than dog-1 and
wolf -1, therefore they do not propagate Cq to any other
peers.

Note that the further we go in propagating query, the less
precise is the answer. For instance, the user searching for
canine-2 might be more interested in documents about con-
cept canine-2 than in documents about concept dog-1, and
she can be not interested at all in documents about very spe-
cific types of dogs (e.g., affenpinscher-1). In P2P CSearch,
we allow user to specify the max allowed distance in num-
bers of links between atomic concepts in TP2P . Notice that
this distance is similar to a standard time-to-live (TTL) [13].

In order to compute the query answer for a more complex
query, e.g., query baby-1 AND dog-1 (in Figure 3), the in-
tersection of posting lists needs to be computed (see Equa-
tion 4). Since our approach is not replacing syntactic search

MS Concepts:

canine-2 {dog-1, wolf-1}

CSearch index:

canine-2 <D4, 1, [1]>

carnivore-1 <D4, 1, [1]>

population-4 <D4, 1, [1]>Cq = little-4 canine-2

PI
Pcanine-2

Pdog-1

Pwolf-1

MS Concepts:

wolf-1 {}

CSearch index:

wolf-1 {}

MS Concepts:

dog-1 {}

CSearch index:

dog-1 <D1, 1, [1]>

canine-2 <D1, 1, [1]>

little-4 <D1, 1, [1]>

Figure 7: Query Answering

but extending it with semantics, for an efficient implemen-
tation of the intersection, we can reuse the optimization
techniques developed in P2P syntactic search (see e.g. Sec-
tion 4).

Other syntactic techniques, e.g., for ranking and merging of
query results, can also be reused in P2P CSearch. For this,
words, in these techniques, need to be replaced by concepts
and syntactic matching needs to be replaced by semantic
matching. Notice that in some P2P search approaches, in-
stead of a single document, a group of documents, a peer,
or a group of peers are indexed and searched. Our approach
can be adopted to these problems: a group of documents,
peers, or a group of peers should be annotated by complex
concepts and then they can be indexed in the same way as
a single document.

6. RELATED WORK
A number of P2P search approaches have been proposed in
the literature (for an overview see [13]). Examples of how
a full text retrieval can be efficiently implemented on top
of structured P2P networks are described in [9, 2, 17, 20,
15, 1, 10]. All of these approaches are based on syntactic
matching of words and, therefore, the quality of results pro-
duced by these approaches can be negatively affected by the
problems related to the ambiguity of natural language. P2P
CSearch is based on semantic matching of concepts which
allows it to deal with ambiguity of natural language. Note
that, since our approach extends syntactic search and does
not replace it, the optimization techniques which are used in
P2P syntactic search can be easily adapted to P2P CSearch.

Some P2P search approaches use matching techniques which
are based on the knowledge about term relatedness (and not
only syntactic similarity of terms). For instance, statistical
knowledge about term co-occurrence is used in [18]. Knowl-
edge about synonyms and related terms is used in [11]. Dif-
ferently from these approaches, P2P CSearch is based on se-
mantic matching of complex concepts and knowledge about
concept relatedness, in P2P CSearch, is distributed among
all the peers in the network.

7. CONCLUSIONS
In this paper, we have presented an approach, called P2P
CSearch, which allows for a semantic search on top of dis-
tributed hash table (DHT). There are two main aspects in
which P2P CSearch extends CSearch: (i) centralized doc-
ument index is replaced by distributed index build on top
of DHT; (ii) reasoning with respect to a single background
knowledge is extended to the reasoning with respect to the
background knowledge distributed among all the peers in the
network. P2P CSerarch addresses the scalability problem of
CSerarch and the ambiguity problem of natural language in
P2P syntactic search. Future work includes: (i) the devel-
opment of techniques which can control the quality of a user
input and in general to control the quality of DBK; (ii) the
development of document relevance metrics based on both
syntactic and semantic similarity of query and document
descriptions; (iii) evaluating the efficiency of the proposed
solution.

8. REFERENCES
[1] Matthias Bender, Sebastian Michel, Peter

Triantafillou, Gerhard Weikum, and Christian
Zimmer. P2P content search: Give the web back to
the people. In 5th International Workshop on
Peer-to-Peer Systems (IPTPS 2006), 2006.

[2] Bobby Bhattacharjee, Sudarshan Chawathe, Vijay
Gopalakrishnan, Pete Keleher, and Bujor Silaghi.
Efficient peer-to-peer searches using result-caching. In
Proc. of the 2nd Int. Workshop on Peer-to-Peer
Systems, 2003.

[3] Fausto Giunchiglia, Uladzimir Kharkevich, and Ilya
Zaihrayeu. Concept search. In Proc. of ESWC’09,
Lecture Notes in Computer Science. Springer, 2009.

[4] Fausto Giunchiglia, Maurizio Marchese, and Ilya
Zaihrayeu. Encoding classifications into lightweight
ontologies. In Journal on Data Semantics (JoDS)
VIII, Winter 2006.

[5] Fausto Giunchiglia, Pavel Shvaiko, and Mikalai
Yatskevich. Semantic schema matching. In In
Proceedings of CoopIS, pages 347–365, 2005.

[6] Fausto Giunchiglia, Pavel Shvaiko, and Mikalai
Yatskevich. Discovering missing background
knowledge in ontology matching. In Proc. of ECAI,
2006.

[7] Fausto Giunchiglia, Mikalai Yatskevich, and Enrico
Giunchiglia. Efficient semantic matching. In Proc. of
ESWC, Lecture Notes in Computer Science. Springer,
2005.

[8] Fausto Giunchiglia, Mikalai Yatskevich, and Pavel
Shvaiko. Semantic matching: Algorithms and
implementation. Journal on Data Semantics (JoDS),
9:1–38, 2007.

[9] Jinyang Li, Boon Thau, Loo Joseph, M. Hellerstein,
and M. Frans Kaashoek. On the feasibility of
peer-to-peer web indexing and search. In 2nd
International Workshop on Peer-to-Peer Systems
(IPTPS 2003), 2003.

[10] Toan Luu, Gleb Skobeltsyn, Fabius Klemm, Maroje
Puh, Ivana Podnar Žarko, Martin Rajman, and Karl
Aberer. AlvisP2P: scalable peer-to-peer text retrieval
in a structured p2p network. In Proc. VLDB Endow.,
2008.

[11] Wenhui Ma, Wenbin Fang, Gang Wang, and Jing Liu.
Concept index for document retrieval with
peer-to-peer network. In Proc. SNPD ’07, 2007.

[12] Sylvia Ratnasamy, Paul Francis, Mark Handley,
Richard Karp, and Scott Schenker. A scalable
content-addressable network. SIGCOMM ’01:
Proceedings of the 2001 conference on Applications,
technologies, architectures, and protocols for computer
communications, 2001.

[13] John Risson and Tim Moors. Survey of research
towards robust peer-to-peer networks: Search
methods. Computer Networks, 50:3485–3521, 2006.

[14] Antony Rowstron and Peter Druschel. Pastry:
Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. IFIP/ACM
Middleware, 2001.

[15] Gleb Skobeltsyn and Karl Aberer. Distributed cache
table: efficient query-driven processing of multi-term
queries in p2p networks. In P2PIR ’06: Proceedings of
the international workshop on Information retrieval in
peer-to-peer networks, 2006.

[16] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger,
M. F. Kaashoek, F. Dabek, and H. Balakrishnan.
Chord: a scalable peer-to-peer lookup protocol for
internet applications. IEEE/ACM Transactions on
Networking, 11(1):17–32, February 2003.

[17] Chunqiang Tang and Sandhya Dwarkadas. Hybrid
global-local indexing for effcient peer-to-peer
information retrieval. In NSDI’04: Proceedings of the
1st conference on Symposium on Networked Systems
Design and Implementation, 2004.

[18] Chunqiang Tang, Zhichen Xu, and Sandhya
Dwarkadas. Peer-to-peer information retrieval using
self-organizing semantic overlay networks. SIGCOMM
’03: Proceedings of the 2003 conference on
Applications,technologies, architectures, and protocols
for computer communications, 2003.

[19] I. Zaihrayeu, L. Sun, F. Giunchiglia, W. Pan, Q. Ju,
M. Chi, and X. Huang. From web directories to
ontologies: Natural language processing challenges. In
6th International Semantic Web Conference (ISWC
2007). Springer, 2007.

[20] Jiangong Zhang and Torsten Suel. Efficient query
evaluation on large textual collections in a
peer-to-peer environment. In P2P ’05: Proceedings of
the Fifth IEEE International Conference on
Peer-to-Peer Computing, 2005.

[21] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D.
Joseph. Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical Report
UCB/CSD-01-1141, UC Berkeley, January 2001.

