

UNIVERSITY
OF TRENTO

 DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.disi.unitn.it

ONTOLOGY DRIVEN COMMUNITY ACCESS CONTROL

Fausto Giunchiglia, Rui Zhang, and Bruno Crispo

December 2008

Technical Report # DISI-08-080

Also: a short version accepted at the workshop of Trust and Privacy on
the Social and Semantic Web (SPOT2009) co-located with the European
Semantic Web Conference (ESWC), Crete, 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints Research

https://core.ac.uk/display/11829834?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

.

Ontology Driven Community Access Control?

Fausto Giunchiglia, Rui Zhang, and Bruno Crispo

Department of Information Engineering and Computer Science, University of Trento
Via Sommarive 14, Povo 38050 Trento, Italy
{fausto,zhang,crispo}@disi.unitn.it

Abstract. In this paper we present RelBAC (for Relation Based Access
Control), a model and a logic for access control which models communi-
ties, possibly nested, and resources, possibly organized inside complex file
systems, as lightweight ontologies, and permissions as relations between
subjects and objects. RelBACallows us to represent expressive access
control rules beyond the current state of the art, and to deal with the
strong dynamics of subjects, objects and permissions which arise in Web
2.0 applications (e.g. social networks). Finally, as shown in the paper,
using RelBAC, it becomes possible to reason about access control poli-
cies and, in particular to compute candidate permissions by matching
subject ontologies (representing their interests) with resource ontologies
(describing their characteristics).

1 Introduction

The Web 2.0 is making everything happening in the Web more interactive, more
social, more dynamic. In turn, this radically changes the scenario within which
most applications operate. Among many others, one such scenario and set of
applications, taken as reference in this paper, is eBusiness. Internet business pat-
terns such as B2B, B2C, C2C are no longer high-tech terminology but, rather,
they represent everyday activities involving virtually everybody from producers
to end customers. Businesses exchange information in addition to products via
B2B networks; they sell products to customers via B2C networks and customers
can even sell their own stuff to one another through C2C interaction patterns.
Furthermore, customers are now able to provide feedback for quality and service;
sale managers of large companies can distribute advertisements about new prod-
ucts or special offers to the vendors; service companies are able to publish new
services through these online media; and so on. Thanks to the Web 2.0, eBusi-
ness can enrich the traditional vending pattern with more active involvement of
the involved actors.

However, Web 2.0 applications present new challenges for access control that
can be exemplified, taking the eBusiness scenario as a reference, as follows:

? A short version accepted at the workshop of Trust and Privacy on the Social and
Semantic Web (SPOT2009) co-located with the European Semantic Web Conference
(ESWC), Crete, 2009

– The scale of the business varies greatly from a small personal online shop to
the large eBusiness solutions such as Dell. Thus directories of goods could be
as simple as several items, or as complex as different product lines including
laptop, desktop, printer, etc. What’s more, online comments and publishing
areas should also be regarded as objects such that different users are allowed
to have different flexible fine-grained access. As a consequence, the access
control system must be capable of protecting various kinds of objects in
largely different scales, possibly organized in complex directory structures.

– The social networks of, e.g., vendors and customers, form an evolving, highly
dynamic, soft organization which is usually quite different and independent
of the, rather static, enterprise organization. New groups, e.g., new friends
or groups associated to a new product such that the iPod, will appear while
others will disappear, being obsolete. Permissions, access control rules, poli-
cies should be defined in a way which is relatively independent from these
evolving structures so that the evolution of the social network has minimal
impact on access control policies. This in order to decrease maintenance
costs, which are notoriously a key issue in access control.

– The management complexity increases exponentially with the growth of the
social structure and shop directories, which in turn, in case of success, tend to
expand. The manually created and managed access control rules are time-
consuming and error-prone. The emergence of new users and new objects
makes the situation far worse as policies must be re-evaluated with any up-
date. There is a need for efficient tools for rule management which would
allow to check various properties, such as consistency or separation of duty
and to (semi-)automatically generate candidate permissions and access con-
trol rules.

RelBAC (for Relation Based Access Control) is a new model and a logic which
has been introduced in [1] with the overall goal of dealing with the problem
on access control in Web 2.0 applications and which allows to deal with the
issues described above. The first key feature of RelBAC is that its access control
models can be designed using entity-relationship (ER) diagrams. As such, they
can be seamlessly integrated into the whole system and vary according to the
scale of the business. The second feature, which motivates the name RelBAC, is
that permissions can be modeled as relations and, as such, and differently from
the state of the art, e.g., RBAC [2], they can be manipulated as independent
objects, thus achieving the requirements of modularity and flexibility described
above.

In this paper we take a step further and show how, using RelBAC, social
networks and object organizations can be modeled as lightweight ontologies (as
defined in [3]), by exploiting the translation from classifications and Web di-
rectories to Lightweight ontologies described in [4, 5]. This in turn allows us to
model permissions as Description Logic (DL) roles [6], access control rules as
DL formulas, and policies as sets of DL formulas and, therefore, to reason about
access control simply by using off-the shelf DL reasoners, thus addressing the
last requirement described above. Some examples of useful RelBAC reasoning

Fig. 1. Alice’s Social Network Fig. 2. Alice’s Social Ontology

tasks are: whether a user can access a certain resource, the propagation of ac-
cess rights, the holding of dynamic and static separation of duty, the consistency
of a set of policies, and so on. As an important special case of reasoning, in
RelBAC it becomes also possible to compute candidate permissions by matching
user ontologies (representing their interests) with resource ontologies (describing
their characteristics) [7–10].

The paper is organized as follows. In Section 2 we introduce the RelBAC model
and logic. In Section 3 we describe how to implement and manage access control
with communities, resources and permissions by representing them, via RelBAC,
as lightweight ontologies and relations among them. In Section 4 we show how
it is possible to reason about access control policies and, in particular, to gen-
erate automatically suggestions for permissions by matching subject and object
ontologies. Finally, Section 5 describes the related work while Section 6 draws
some conclusions.

2 RelBAC : Relation Based Access Control

Suppose that Alice, an eBusiness vendor, has an online shop on eBay selling
digital devices. Figure 1 shows part of her social network. Thus for instance Bob,
David and Ivan have business relations with her, while Chris and George are just
common friends. With the continuous growth of this network, Alice decides to
manage these contacts in her own way, so that she can easily find the ‘proper
profiles’ whenever necessary. For example, David is a business friend who works
at the sales department of Apple, and he will inform Alice about products and
special offers such that Alice can immediately put them on her website. Jane is
her best customer: she visits Alice’s online shop frequently and comments on the
deals she has just completed. This will help new potential customers in getting
an impression of the service and quality of the goods. And of course, Alice is
happy to give Jane VIP prices as rewards. As a consequence, Alice builds the
simple tree-like lightweight ontology depicted in Figure 2 to capture, manage
and help navigating the messy network of relations of Figure 1.

Fig. 3. The ER Diagram of the RelBAC Model.

In this scenario we can see the existence of a quite complex relation struc-
ture with a superimposed ontological organization. Notice that the network of
relations and the ontology will evolve largely independently. Let us see how we
can capture a scenario like this in RelBAC.

2.1 The model

We represent the RelBAC model as the ER Diagram in Figure 3. Notice that this
model is a refined and, at the same time, simpler version of the model presented
in [1]. The model has the following components:

– SUBJECT (or USER): it is a set of subjects (agents in Alice’s view) that intend
to access some resources. The loop on SUBJECT represents the ‘IS-A’ relation
between sets of subjects. The largest subject set is the collection of all the
possible subjects.

– OBJECT: it is a set of objects or resources that subjects intend to access. The
loop on OBJECT represents again an ‘IS-A’ relation between sets of objects.
The largest object set is the collection of all the possible objects of the system
(e.g., anything with a URI).

– PERMISSION: the intuition is that a permission is an operation that subjects
can perform on objects. To capture this, a permission is named with the
name of the operation it refers to, e.g., Write or Read. As shown in the
ER diagram in Figure 3, a PERMISSION is a relation between SUBJECT and
OBJECT, namely a set of (subject,object) pairs. The loop on PERMISSION
represents the ‘IS-A’ relation between permissions.

– RULE (short for ACCESS CONTROL RULE): a rule associates a PERMISSION to
a specific set of (SUBJECT,OBJECT) pairs which assigns the specific SUBJECT
the access right named by the PERMISSION onto the specific OBJECT. Rules
are formalized as DL formulas, as described in the following subsection.

2.2 The Logic

The ER model of RelBAC can be directly expressed in DL (see [1] for the de-
tails). In general, SUBJECTs, and OBJECTs are formalized as concepts and sin-
gle PERMISSIONs are formalized as DL roles1. Individual SUBJECTs and OBJECTs
are formalized as instances and PERMISSIONs are pairs of instances (SUBJECT,

Fig. 4. SUBJECTs and OBJECTs Assignment Combinations

OBJECT). RULEs express the kind of access rights that SUBJECTs have on OBJECTs
and are formalized as the subsumption axioms provided below.

U v ∃P.O (1)
U v ∀P.O (2)
U v≥ nP.O (3)
U v≤ nP.O (4)
U v ∀O.P (5)
U v P : o (6)

(P : o)(u) (7)
(∃P.O)(u) (8)
(∀P.O)(u) (9)
(≥ nP.O)(u) (10)
(≤ nP.O)(u) (11)
(∀O.P)(u) (12)

In Rule (5) and (12), we abbreviate ∀¬P.¬O as ∀O.P . This rule allows us to
assign a permission P to all objects in O. Thus, as schematically represented in
Figure 4, we may have a single subject having access to all objects in a set O
(rule (12)), to up to/more than n objects (rules (11),(10)), to some objects (rule
(8)), to only the objects in O (rule (9)), or to a single object (rule (7)). Dual
arguments can be given for any set of users by looking at the rules on the left
(rules (1) - (6)). We call the above rules user-centric, as they allow us to assign
users fine-grained permissions such as those listed above. Dually, we can define
corresponding object-centric rules by replacing U, O, P, u, o respectively with
O, U, P−1, o, u. This feature, not discussed here for lack of space, is however
quite important in terms of access control as it allows to define user capabilities.

Thus given a permission P , in RelBAC we can write assignments such as the
ones described below.

1. the rule ‘A user u is allowed to access an object o’ is represented as P (u, o).
For instance, ‘David is allowed to update the entry MB903LL/A’ is assigned
as Update(David,MB903LL/A);

1 A DL role is a binary relation, not to be confused with a ‘role’ of the RBAC model.

2. the rule ‘A user u is allowed to access some objects in O’ is represented as
(∃P.O)(u). For instance, ‘David is allowed to update some entries in Digital’
is assigned as (∃Update.Digital)(David);

3. the rule ‘A user u is allowed to access maximum n objects in O (n ≤ |O|)’
is represented as (≤ nP.O)(u). For instance ‘David is allowed to update at
most 5 entries of Digital’ is assigned as (≤ 5Update.Digital)(David);

4. the rule ‘A user u is allowed to access all objects in O’is represented as
(∀O.P)(u). For instance, ‘David is allowed to update all entries in Digital’
is assigned as (∀Digital.Update)(David);

5. the rule ‘Some users in U are allowed to access an object o’ is represented as
(∃P−1.U)(o). For instance, ‘Some friends from Apple are allowed to update
the entry MB903LL/A’ is assigned as (∃Update−1.Apple)(MB903LL/A);

6. the rule ‘Some users in U are allowed to access some objects in O’ is repre-
sented as ∃P.O v U . For instance, ‘Some friends from Apple are allowed to
update some entries in Digital’ is assigned as ∃Update.Digital v Apple;

7. the rule ‘Minimum m (m ≤ |U |) users in U are allowed to access an ob-
ject o’ is represented as (≥ mP−1.U)(o). For instance, ‘At least 3 friends
from Apple are allowed to update the entry MB903LL/A’ is assigned as
(lg 3Update−1.Apple)(MB903LL/A);

8. the rule ‘Maximum m users in U are allowed to access some objects in O’ is
represented as ≤ P−1.U v O. For instance, ‘At most 3 friends from Apple are
allowed to update some entries of Digital’ is assigned as≤ 3Update−1.Apple v
Digital;

9. the rule ‘All users in U are allowed to access an object o’ is represented as
U v P : o. For instance, ‘All friends from Apple are allowed to update the
entry MB903LL/A’ is assigned as Apple v Update : MB903LL/A;

10. the rule ‘All users in U are allowed to access some objects in O’ is represents
as U v ∃P.O. For instance, ‘All friends from Apple are allowed to update
some entries of Digital’ is assigned as Apple v ∃Update.Digital;

11. the rule ‘All users in U are allowed to access all the objects in O’ is repre-
sented as U v ∀O.P . For instance, ‘All friends from Apple are allowed to
update all entries of Digital’ is assigned as Apple v ∀Digital.Update.

As it can be seen from the above list, RelBAC provides a rich set of policies,
which becomes even more articulated if one considers object-centric rules. In
practice, the most commonly used assignments are the first and the last, which
resemble the only two kinds of assignments allowed in RBAC.

2.3 The propagation of access rights

Subsumption is used not only for expressing access control RULEs. In RelBAC,
subsumption is also used to represent a partial order ≥ among subjects, among
objects and among permissions. Figures 2, 5 and 6 provide some examples in the
eBusiness scenario. The ordering relation ≥ translates the ‘IS-A’ relation in the
RelBAC model (see Figure 3) and it allows us to build inheritance hierarchies
among subjects, objects and permissions. Inheritance is a very valuable property

as it largely simplifies the otherwise very complex task of administration [2]. We
define ≥ as follows:

Ui ≥ Uj iff Ui v Uj (13)
Oi ≥ Oj iff Oi v Oj (14)
Pi ≥ Pj iff Pi v Pj (15)

The advantage of having hierarchies on subjects and objects is obvious. The
intuition is that smaller sets of subjects and objects are higher in the hierarchy
as they correspond to more powerful permissions which in turn will be satisfied
by smaller sets of pairs of subjects and objects. The motivation for having hi-
erarchies of permissions is as strong, thought a little more subtle. For example,
the permission P1 ‘update the information about some product from a certain IP
number during working hours for the purpose of management’ is less powerful
than the permission P2 ‘update information about some product’ (P2 ≥ P1). As
such, P1 will be satisfied by more pairs of subjects and objects (P2 v P1). In
other words, in P1, with respect to P2, there will be more subjects which will
have more access rights on more objects. Permissions may have rich attributes
such as purpose, space, time, condition, etc. and these attributes may make one
permission more specific than another. Inheritance hierarchies allow to orga-
nize and manage them uniformly rather than one by one, as scattered islands,
‘irrelevant’ to one another.

3 Lightweight Ontologies for Access Control

Each person will belong to one or more different social communities where many
people and different social relations will co-exist. With the communication eased
by the development of Internet, social activities such as online forums and
blogs greatly increase the number and type of relations in a social network:
not only traditional relations like ‘knows’, ‘is-a-friend-of’ etc. but new terms
such as ‘shares-photo-with’ or ‘comments-on-blog’. On the other hand, people
are familiar with tree-like structures such as the file systems of their computer,
their email directory, classifications, catalogs, and so on. In general, there is
widespread tendency towards organizing resources in tree-like structures. The
key feature underlying the success of directories is that one can easily find some-
thing according to the property that, the deeper a category is in a tree, the more
specific resources it will contain.

Thus access control within user communities can be implemented in Rel-
BAC as follows:

1. We implement subject hierarchies, as defined Section 2.3, and like the one
in Figure 2, as lightweight ontologies (as defined in [3]) of subjects (users,
agents, customers, friends, ...);

Fig. 5. Alice’s Web Directories Fig. 6. ‘Update’ Ontology

2. We implement object hierarchies, as defined Section 2.3, and like the one in
Figure 5, as lightweight ontologies of objects (resources, files, photos, web
services, ...);

3. We implement permissions as relations and we formalize them as DL roles
between subject and object hierarchies. In turn, permissions as well can be
organized as lightweight ontologies, like the one in Figure 6, thus implement-
ing the partial order defined in Section 2.3.

However tree-like structures like the ones in Figures 2,5,6, are not quite
(lightweight) ontologies, nor does it make sense to propose the use of lightweight
ontologies as the main access control mechanism for social networks. The prob-
lem is that end users most often do not understand and do not know how to
manage structures as sophisticated as (lightweight) ontologies. Our solution is,
therefore to translate, with no or very little user intervention, these tree-like
knowledge structures into lightweight ontologies. We achieve this goal by exploit-
ing the ideas described in [4, 5]. In these papers, the authors show how a clas-
sification or a Web directory can be automatically translated into a lightweight
ontology. According to this work, a lightweight ontology is a tree where labels
are written in a logical concept language2 and where each node can be associated
a normal form formula which uni-vocally describes its contents. Any classifica-
tion or directory where each category is labeled with a natural language name
expressing its contents, can be translated into a lightweight ontology according
to two main steps which can be summarized as follows:

1. The label of each node is transformed into a propositional DL formula using
natural language processing (NLP) techniques. For example, the label ‘Social
Network’ is transformed into ‘Socceri u Fanj ’ where the superscript i(j)
stands for the ith (jth) meaning of the word in a reference dictionary (e.g.,
WordNet).

2 A propositional Description Logic without roles.

Fig. 7. RelBACPermission Assignment on LOs

2. Each node is associated a formula, called the concept at node, which is the
conjunction of the formulas of all the nodes on the path from the root to the
node itself. For example the node labeled ‘Soccer Fan’ in Figure 2 will be
labeled with ‘Friendk u Socceri u Fanj ’. The concept at node uni-vocally
defines the ’meaning of that node’, namely, the set of documents which can
be classified under it.

The result of the two steps above is a lightweight ontology where each node
is labeled with its concept at node and where each concept at node is subsumed
by the concepts of all the nodes above. This property allows for automated docu-
ment classification and query answering. The user will keep seeing and managing
a classification (like the one in Figure 2) but all her operations will be supported
and (partially) automated via the background reasoning operating on the un-
derlying lightweight ontology. This background ontology has the same (tree-like)
structure as the original classification, but it makes explicit, with its IS-A hierar-
chy, all the originally implicit and ambiguous relations between object categories.
This substantially facilitates the access control problem. More concretely, some
advantages are:

– Objects can be automatically classified into the proper directories with the
help of a DL reasoner. By exploiting the ideas described in [5] it becomes
possible to easily add the vast amount of new information to the proper
categories with the proper access rules;

– The evolution of the object ontology (e.g., addition or deletion of a new
category) is much more under control because it must satisfy the underlying
ontological semantics;

– As from Section 2.3, the permissions on an object category will propagate
up the tree.

Considerations similar to those provided for object ontologies apply also to
subject ontologies. As mentioned above, these ontologies can be used to organize

Fig. 8. Scattered Permissions to a LO

access to the underlying (possibly very messy) social network (see, for instance
Figure 1). There are however two further important considerations. The first is
that RelBAC subject lightweight ontologies closely resemble RBAC role hierar-
chies [2]. They are however easier to manage as users and permissions are totally
decoupled. The second is that the links across subjects in a social network, like
those in Figure 1, can be used to suggest candidate paths for permission propa-
gation. One such small example is depicted in Figure 7.

Finally, the translation into a lightweight ontology can be applied also to
permission hierarchies. The result of applying this translation process to the
hierarchy in Figure 6 is (partially) depicted in the lightweight ontology Figure 8.
Notice how the natural language labels in Figure 6 have been translated into DL
formulas. The terms on the left of Figure 8 are meant to provide evidence of how
the step from natural language to logic allows us to organize otherwise sparse
categories. Notice how the lightweight ontology in Figure 8 is upside down with
respect the object and subject ontologies presented before. In particular the top
category is the most powerful and less populated (in the sense that that it is the
one satisfied by the smallest number of subject object pairs). This notation is
quite common in access control and it satisfies the intuition that the categories
corresponding to the highest number of permissions should be put at the top of
the hierarchy.

4 Reasoning about Access Control Rules

The management and administration of access control with complex subject,
object and permission structures is quite challenging and error-prone. In Rel-
BAC, by exploiting the translation into lightweight ontologies described in the
previous section, this activity can be strongly supported by providing tools (i.e.,
DL reasoners) which automate much of (all?) the reasoning about access control.
Some examples of reasoning are:

1. Design Time Consistency Checking It’s impossible to check by hand a large
access control knowledge base, not to say further integration of multiple
knowledge bases. Reasoning service of RelBAC offers consistency checking
such as to check if S ∪ P |= ⊥, where S,P stand for the knowledge bases
corresponding to the state description and rule description. If the answer is
negative, the knowledge base is consistent.

2. Membership Checking The membership of an individual user or resource to
a given set is an important property such as ‘Is Bob a member of the busi-
ness friend group?’. Given the knowledge base with membership declaration
such as ‘Bob is from Lenovo’ and the friend group hierarchy, we can infer
{Lenovo(Bob), Lenovo v Product, Product v Business} |= Business(Bob).

3. Permission Propagation An advantage of the hierarchy formalized as ‘IS-A’
relation through subject, object and permission provides ‘free’ permission
propagation by the reasoning. For example, in the predefined knowledge
base we know ‘Bob is a business friend’, ‘write is more powerful than read’,
‘laptop is a subset of digital device’. Thus we can reason the permission prop-
agation as {Bussiness(Bob),Write v Read, Laptop v Digital, Business v
∀Digital.Write} |= ∀Digital.Write(Bob).

4. Separation of Duty (SoD) To enforce that some permissions should not be
assigned to some users at the same time is the basic idea of SoD. For example,
‘customers should not be allowed to read and update some category, say
Player’. And it’s straight forward to be secured by a rule in the knowledge
base as Update : Player u Read : Player u Customer v ⊥. To be precise,
“at the same time” can be detailed as design-time and run-time and SoD are
classified as Static SoD (SSD) and Dynamic SoD (DSD). For example, the
previous SoD is a kind of SSD as it’s declared at design time that the two
permissions should be separated. If this is allowed in design, but disallowed
at run-time, it becomes a DSD such as ‘customers can be allowed to read and
update the Player category, but not physically at the same time’. And this
can be reasoned with the run-time permission described in [11] as Updating :
Player uReading : Player u Customer v ⊥

5. Access Control Decision At run time, the access control system will face vari-
ous of access control requests and make decisions at real-time. RelBAC turns
these requests into formulas and put it to the reasoner and the reasoner will
check whether it’s consistent with the knowledge base. If ‘YES’, the request
is accepted, otherwise reject.

However the fact that we handle subject, object and permission hierarchies
as lightweight ontologies allows us to deal with the problem of semantic het-
erogeneity, namely with the fact that in general we will have multiple subject
and/or object and/ or permission hierarchies which express semantically related
notions in many different forms. This problem has been largely studied in the
past [7–10]. In the domain of access control this problem becomes quite relevant
as being able to deal with that facilitates the management of access control rules
with an automated or semi-automated tools for rule creation and reuse. We see
two kinds of applications:

1. Two subject hierarchies
2. one subject and one object hierarchy. We found that there exists similarity

between the subject and object LO although they are heterogeneous ontolo-
gies built independently.

Let’s go back to Figure 7, it shows parts of the LOs built on the hierarchies
of Figure 2 and Figure 5. In the left LO, David is classified as an instance of the
set ‘Friend3 uBusiness7 u Product1 u Apple3’ according to his social position
that he has a Business7 relation with Alice and he works for Apple3 (which is an
IT company rather than a fruit). And in the right LO, there’s a class of objects
‘Sale1uDigital3uLaptop1uMacBook1’ where Sale1 is a branch of Business7,
MacBook1 is a Laptop1 as a product1 of Apple3. Apparently the two concepts
are different in labels, but semantically overlapping.

To detect these semantic relations between classifications, we use Semantic
Matching (S-Match)[7–9]. The original idea is to calculate the semantic simi-
larity such as equal, overlapping etc. between the categories of the two given
classifications. The core of a S-Match procedure consists two rounds of match-
ing on the concepts at label and concept at node. The first round can be regarded
as a preparation for the second as it discovers the relation between senses from
the knowledge base.

WordNet [12] is used as a knowledge base in which possible relations between
senses (meanings of word) are provided Semantic similarities are defined with
sense relations. Equal ≡: one concept is equal to another if there is at least one
sense of the first concept, which is a synonym of the second. Overlapping u:
one concept is overlapped with the other if there are some senses in common.
Mismatch ⊥: two concepts are mismatched if they have no sense in common.
More general / specific w,v: One concept is more general than the other iff
there exists at least one sense of the first concept that has a sense of the other
as a hyponym or as a meronym.

For the ontologies of the eBusiness scenario, we can apply the S-Match tech-
niques in two stages: rule creation and rule reuse.

4.1 Suggestions for Rule Creation

For any access control systems, the stage of rules creation is very important
because a cute rule set will simplify later work as enforcement and management.
Semantic Matching between the subject, object ontologies will clarify all the
semantic relations between categories of the two LOs. For example, given the
background knowledge about the relations MacBook1 is a Laptop1 as a product1

of Apple3 etc., we can find the semantic similarities as list in Table 1. As WordNet
does not ‘know’ the word as ‘MacBook’, which is common under the enormous
birth of new words in this Internet era, we should enrich the knowledge base
with the facts such as ‘Apple3 is a IT company selling digital products such as
MacBook and IPod.’.

¿From Table 1, we can see the semantic similarities such as Sale2 v Business7,
etc. The interesting thing here is that the relation between Friend3 and Sale2

Table 1. Semantic Matching on Labels

S-Match Friend3 Business7 Product1 Apple3 Lenovo1 Soccer1 u Fan2

Sale2 ⊥ v ⊥
Digital3

Laptop1 v
MacBook1 u ⊥
Thinkpad1 ⊥ u

is ⊥ which means that the two words has nothing in common. It’s weird but
true as Friend3 means ‘a person with whom you are acquainted’ and Sale2 is
‘the general activity of selling’. And this will be the general case when we try to
match a subject ontology with an object ontology. If we went on with the second
step to match the concepts at node in the LOs, ⊥s will fill up all the table,
which is not usable for rule creation. So, we only use the first round S-Match to
discover the relations. These relations provide the following suggestions to create
new rules.

Semantically Related The cells marked with ‘v,w,≡,u’ represent the se-
mantic similarity of the corresponding concepts. And it’s meaningful to as-
sign corresponding users some access to the objects. For example, the relation
Sale2 v Business7 suggests that some access, let’s say Read, should be as-
signed to the Business7 Friend3 to some Sale2 categories. It’s obvious here
in the small toy user and object ontologies, but facing a large eBusiness such
as Amazon.com, these similarities will be very useful for the administrators
while creating new rules.

Explicit Unrelated The cells marked with ‘⊥3’ represent that the correspond-
ing concepts are found ‘unrelated’ in the knowledge base. We have to differ-
entiate the real world semantics of these ‘⊥’s.
– Sale2⊥Friend3 is a Subject/object mismatch as they are mismatch only

because they are referring to person and activity respectively;
– MacBook1⊥Lenovo1 comes from that ‘MacBook is a product of Apple

company but not Lenovo.’ And this explicit mismatch relation between
the two concepts suggests no access should be assigned;

– Sale2⊥(Soccer1uFan2) covers both of the upper cases so it’s still explicit
unrelated and no access should be assigned.

I don’t know (IDN) The blank cells of the table means that the knowledge
base doesn’t know any existing relation between the corresponding concepts.
And it’s up to the administrators to decide whether to assign some access
or not. From Table 1 we can see that this kind of cells are the majority
because the knowledge base we use is not specially for eBusiness domain
and if the it is specially enriched, more semantic relations will be found and
more suggestions will be offered.

3 Here we shorten the axiom ‘C1 u C2 v ⊥’ as ‘C1⊥C2’.

Fig. 9. Bob’s Social Ontology Fig. 10. Ontology Matching for Rule Reuse

4.2 Automated Rule Reuse

One important evolution of subject and object ontologies is to integrate similar
ontologies. For example, an eBusiness vendor will enlarge her social network
to involve more customers and very likely to integrate the customer ontology of
another vendor, or symmetrically to integrate the goods ontology. The traditional
access control solutions require the administrator to create new rules for these
evolving parts. Even for the similar ontologies, all assignments have to be made
once more. For example, the vendor in the scenario of Section 2 would like to
merge another ontology of subjects as Bob’s Social Ontology as Figure 9. It is
also an ontology about friends, but in different structures and descriptions of the
person sets. For instance, a customer set called ‘Senior’ has the similar intuition
to the ‘VIP’ set in previous ontology.

We shown in Figure 10 the results of S-Match on two branches of the ‘friend’
ontologies in Figure 2 and 9. The semantic similarity axioms can be added to
the knowledge base of access control and the rule reuse is done without further
efforts. For example,

{(Friend3 uCommerce1) v (Friend3 uBusiness7), Business7 v α}
|= Friend3 u Commerce1 v α

So any subject-centric rules that assigned to Business7 permissions will also
propagate to Friend3 u Commerce1 without creating new rules for the new
subject sets. Similar reuse applies on objects as well when S-Match is used to
find the semantic similarities of the object ontologies.

5 Related Work

With the arrival of Web 2.0 and now coming even Web 3.0, privacy and ac-
cess control over the resources online throughout the evolving social networks
stretching out with the expanding Internet arouse more and more attention.

RBAC [2], a popular access control model in many fields has been tried to
be applied on this new dynamic scenario. Its popularity in enterprise solutions
such as Sun and IBM is a proof of its efficiency, but the permission propagation
through predefined role hierarchies, as an advanced feature, is no longer suitable
or even a drawback for dynamic environment such as the social community and
web directories. In contrast, RelBAC provide an adjustable model for dynamic
subject and object structures. In addition, lightweight ontologies [3, 13, 14] and
semantic matching [7–9, 15–17] techniques help a lot in formalizing the dynamics
and heterogeneous structures.

Caminati et al. proposed a solution based on cryptographic and digital sig-
nature techniques in [18]. This kind of access control systems focus on protection
of security threats rather than taking use of the rich information of the social
network. And the authentication procedure is done once for all the life cycle of
a live session which is not enough for the need of fine grained access control.

Lockr[19] is proposed to fit the situation nowadays that the large number of
content sharing systems and sites use different access control methods and not
reusable for each other. It separates social networking information from from the
content sharing mechanisms, so that end users do not have to maintain several
site-specific copies of their social networks. It also provides a way to use social
relationships as an important attribute, relationship type, to define access control
rules. But the core of Lockr is still a public/private key communication which
is short of fine-grained rule specification such as we can do with the 15 ways of
rules in RelBAC.

Another thread similar to our solution is SAC (Semantic Based Access Con-
trol). Yague et al. discuss the SAC (Semantic Access Control) model in [20] with
a XML based language SPL (Semantic Policy Language). The SAC model is
based on the semantic properties of the resources, clients (users), contexts and
attribute certificates. And it relies on the rich expressiveness of the attributes to
create and validate access control. The flexibility of SAC to define access control
over attributes also brings the complexity problem of system as the number of
rules explodes with the number of attributes which is far more than the number
of resources and clients. In contrast, our model covers the expressiveness of at-
tributes and take use of the structure at the same time so that the permission
propagation will greatly reduce the number of rules. Pan et al. present a novel
middle-ware based system [21] to use semantics in access control. It is based
on RBAC model [2] with the core as semantic scopes of objects and concepts.
Access control rules are all defined on concepts, which are in turn predefined by
attributes. For interoperation purpose, they use semantic mapping on roles in
order to find the similarity or separation of duties between roles in two ontolo-
gies. And this is similar to our approach, but we do much further as the S-Match
tools are not domain specific so that we can match from a subject ontology to
an object ontology, result of which offers suggestions for rule creation.

6 Conclusion

In this paper we have presented RelBAC, a new model and logic for access
control. The main feature of RelBAC is that it allows to organize users and
objects as (lightweight) ontologies and that it models permissions are relations.
This in turn allows to represent access control rules and policies as DL formulas
and therefore to reason about them using state of the art off-the-shelf reasoners.
In turn, as shown in the second part of the paper, this allows us to match, using
the semantic matching technology, the user and the object ontologies and, as
a consequence, to (semi)- automatically permissions which (may) fit the user
interests. The idea is that these permissions are then proposed to the user as
suggestions to be confirmed and approved.

References

1. Giunchiglia, F., Zhang, R., Crispo, B.: Relbac: Relation based access control. In
Society, I.C., ed.: International Conference on Semantics, Knowledge and Grid,
SKG 2008. (2008)

2. Ferraiolo, D.F., Sandhu, R.S., Gavrila, S.I., Kuhn, D.R., Chandramouli, R.: Pro-
posed NIST standard for role-based access control. Information and System Secu-
rity 4(3) (2001) 224–274

3. Giunchiglia, F., Zaihrayeu, I.: Lightweight ontologies. In: Encyclopedia of Database
Systems, Springer (2008)

4. Giunchiglia, F., Marchese, M., Zaihrayeu, I.: Encoding classifications into
lightweight ontologies. In: ESWC. (2006) 80–94

5. Giunchiglia, F., Marchese, M., Zaihrayeu, I.: Towards a theory of formal classifi-
cation. In: CandO 2005,AAAI-05, Pittsburgh, Pennsylvania, USA (July 9-13 2005
2005)

6. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.,
eds.: The description logic handbook: theory, implementation, and applications.
Cambridge University Press, New York, NY, USA (2003)

7. Giunchiglia, F., Yatskevich, M., Shvaiko, P.: Semantic matching: Algorithms and
implementation. Journal on Data Semantics (2007) 1–38

8. Giunchiglia, F., Yatskevich, M., Giunchiglia, E.: Efficient semantic matching. In:
Proceedings of the 2nd European semantic web conference (ESWC’05), LNCS,
Springer Verlag (2005)

9. Giunchiglia, F., Yatskevich, M.: Element level semantic matching. In: Meaning
Coordination and Negotiation workshop at ISWC’04, Hiroshima, Japan (November
2004)

10. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: Semantic schema matching. In: In
Proceedings of CoopIS, Springer (2005) 347–365

11. Zhang, R., Crispo, B., Giunchiglia, F.: Relbac: Design and run-time reasoning
about web access control policies. Technical report, University of Trento (2008)

12. Miller, G.A.: Wordnet: A lexical database for english. Communications of the
ACM 38 (1995) 39–41

13. Giunchiglia, F., Marchese, M., Zaihrayeu, I.: Encoding classifications into
lightweight ontologies. J. Data Semantics 8 (2007) 57–81

14. Zaihrayeu, I., Sun, L., Giunchiglia, F., Pan, W., Ju, Q., Chi, M., Huang, X.: From
web directories to ontologies: Natural language processing challenges. In: In 6th
International Semantic Web Conference (ISWC, Springer (2007)

15. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: Discovering missing background
knowledge in ontology matching. In: ECAI. (2006) 382–386

16. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: Semantic schema matching. In: In
Proceedings of CoopIS, Springer (2005) 347–365

17. Giunchiglia, F., Yatskevich, M., Shvaiko, P.: Semantic matching: Algorithms and
implementation. J. Data Semantics 9 (2007) 1–38

18. Carminati, B., Ferrari, E.: Privacy-aware collaborative access control in web-based
social networks. In Atluri, V., ed.: DBSec. Volume 5094 of Lecture Notes in Com-
puter Science., Springer (2008) 81–96

19. Tootoonchian, A., Gollu, K.K., Saroiu, S., Ganjali, Y., Wolman, A.: Lockr: social
access control for web 2.0. In: WOSP ’08: Proceedings of the first workshop on
Online social networks, New York, NY, USA, ACM (2008) 43–48

20. del Valle, M.I.Y., del Mar Gallardo, M., Mana, A.: Semantic access control model:
A formal specification. In di Vimercati, S.D.C., Syverson, P.F., Gollmann, D., eds.:
ESORICS. Volume 3679 of Lecture Notes in Computer Science., Springer (2005)
24–43

21. Pan, C.C., Mitra, P., Liu, P.: Semantic access control for information interopera-
tion. In: SACMAT ’06: Proceedings of the eleventh ACM symposium on Access
control models and technologies, New York, NY, USA, ACM (2006) 237–246

