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between lightweight ontologies 1 

Vincenzo Maltese, Aliaksandr Autayeu 
{maltese, autayeu}@disi.unitn.it 

Dipartimento di Ingegneria e Scienza dell’Informazione (DISI) 
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Abstract. The minimal mapping between two lightweight ontologies contains that minimal 
subset of mapping elements such that all the others can be efficiently computed from them. 
They have clear advantages in visualization and user interaction since they are the minimal 
amount of information that needs to be dealt with. They make the work of the user much 
easier, faster and less error prone. Experiments on our proposed algorithm to compute them 
demonstrate a substantial improvement both in run-time and number of elements found. 

1 Introduction 

As a possible answer to the semantic heterogeneity problem, in the recent years many 
matching solutions have been proposed. However, despite the progresses made, a lot of work 
still has to be done [4, 20]. In this paper, we focus on semantic matching techniques (see for 
instance [3, 5, 6, 7, 18, 19]), namely, techniques that find all semantically related nodes be-
tween any two graph-like structures in input (e.g., database or XML schemas and ontologies). 
Any such pair of nodes, along with the semantic relationship holding between the two, is what 
we informally call a mapping element.  

In particular, exploiting the semantics encoded in the structure, our proposed algorithm 
takes two lightweight ontologies, as formally defined in [8], and computes the minimal map-
ping, namely the subset of all possible mapping elements between them such that: i) all the 
other can be computed from them in time linear in the size of the input graphs, and ii) none of 
them can be dropped without losing property i). Lightweight ontologies are DAG-like graph 
structures where each node is labelled by a natural language sentence which can be translated 
into a propositional Description Logic (DL) formula codifying the meaning of the node and 
where, following the get-specific principle [17], each node is subsumed by the formula of the 
node above. Each mapping element is attached with one of the following semantic relations:  
disjointness (‘⊥’), equivalence (‘≡’), more specific (‘⊑’) and less specific (‘⊒’). 

Minimal mappings provide clear usability advantages. Consider for example the two frag-
ments of lightweight ontologies depicted in Fig. 1. They represent two small classifications 
designed to arrange more or less the same content, but from different perspectives. The second 
ontology is a fragment taken from the Yahoo web directory2. Following the approach de-
scribed in [8] and exploiting dedicated NLP techniques tuned to short phrases (see for instance 
[14]), each node label can be translated in an unambiguous, propositional DL expression. The 
resulting formulas are reported under the corresponding label. Here each string denotes a con-
cept (e.g., journals#1) and the numbers at the end of the strings denote a specific concept con-
structed from a WordNet sense. 

If we compute the whole set of mapping elements between the two ontologies, we obtain 
the set of arrows depicted in Fig. 1. However, only the two solid ones are in the minimal set, 
since all the others can be entailed from them. They are therefore said to be redundant. For in-
stance, B⊑D is a trivial consequence of B⊑E and E⊑D. Since the number of possible mapping 
elements can grow up to n*m with n and m the size of the two input ontologies, it is clear that 
visualization and manageability problems become crucial with large ontologies with poten-
tially millions of mapping elements between them. Current interfaces have clear scalability 
problems in visualizing even small sets [4]. Minimal mappings are clearly more manageable, 
since they are the minimal amount of information that needs to be dealt with. They make the 
work of the user much easier, faster and less error prone [12]. 

 

                                                           
1 This paper is a short version of [1]. 
2  http://dir.yahoo.com/ 



 

Fig. 1. The minimal mapping between two lightweight ontologies 

In this paper we provide a definition of minimal and, dually, redundant mappings (where a 
redundant mapping is a mapping which is not minimal, namely contains redundant elements) 
and an algorithm for computing them. It makes use of a few node matching functions which 
take two nodes in input and return a positive answer in case a given semantic relation holds 
between them. The algorithm can be proved to be correct and complete, in the sense that it al-
ways computes the minimal set; it is very efficient as it minimizes the number of calls to the 
node matching functions; it computes the maximum number of mapping elements (i.e., includ-
ing all the redundant ones) by maximally exploiting the information codified in the ontologies. 

To the best of our knowledge, a few amount of work has been done on the problem of 
minimal mappings. In [10, 11, 12] Distributed Description Logics (DDL) [13] is used to repre-
sent and reason about existing ontology mappings. They introduce a few debugging heuristics 
which remove mapping elements which are redundant or generate inconsistencies from a 
given set [11]. The main problem of this approach, as also recognized by the authors, is the 
complexity of DDL reasoning [12]. Conversely, instead of pruning redundant elements, we di-
rectly compute the minimal set. Among other things, our approach allows us to be as fast as 
possible by minimizing the number of calls to the node matching functions. 

The rest of the paper is organized as follows. Section 2 informally provides the definition 
for redundant and minimal mappings. Section 3 and 4 describe proposed algorithms. Finally, 
Section 5 draws some conclusions and outlines the future work. 

2 Redundant and minimal mappings 

Before applying any form of automated reasoning it is fundamental to convert natural lan-
guage node labels of the DAG-like graph structures in input into a formal language. Light-
weight ontologies [8] are formal representations where each node label is translated into a 
propositional DL formula and each node formula subsumes the one of the parent node. 

A mapping element between two lightweight ontologies is a triple <n1, n2, R>, where n1 is 
the source node on the first ontology and n2 is the target node on the second one. R is a se-
mantic relation in the set {⊥, ≡, ⊑, ⊒}. They are ordered such that disjointness precedes 
equivalence which is stronger than subsumption (in both directions), and such that the two 
subsumption symbols are unordered. This in order to return subsumption only when it is not a 
consequence of an equivalence relation or of one of the two nodes being inconsistent (this lat-
ter case generating at the same time both a disjointness and a subsumption relation). Under 
this ordering there can be at most one mapping element between two nodes. 

A mapping element m’ is redundant w.r.t. another mapping element m if the existence of m’ 
can be asserted simply by looking at the positions of its nodes w.r.t. the nodes of m in their re-
spective ontologies. In algorithmic terms, this means that the second mapping element can be 
computed without running SAT. We identified four basic redundancy patterns, one for each 
semantic relation. For sake of space we focus here on the pattern for ⊑. The interested reader 
can look at [1] for the other patterns. In Fig. 2, the blue dashed mapping element <C, D, ⊑> is 
redundant w.r.t. the solid blue one <A, B, ⊑>. In fact, C is more specific than A which is more 
specific than B which is more specific than D. As a consequence, by transitivity C is more 
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specific than D. Notice that it still holds in case we substitute subsumption between A and B 
with equivalence. The red solid curve shows how the semantic relation propagates. This can 
be codified in the following redundancy condition: 

Given two lightweight ontologies O1 and O2, a mapping M, and a mapping element m’∈M 

with m’ = <C, D, ⊑> between them, we say that m’ is redundant in M iff ∃ m∈M with m = 

<A, B, R> and m ≠ m’ such that R ∈ {⊑, ≡}, A ∈ path(C) and D ∈ path(B); 

Here path(n) is the path from the root to the node n. Note that we impose m ≠ m’ to ensure 
we are not trivially comparing a mapping element with itself. 

Using the definition of redundancy, the minimal mapping is 
the set of mapping elements with maximum size with no re-
dundant mapping elements between the two ontologies. Note 
that for any two given lightweight ontologies, the minimal set 
always exists and it is unique. A proof is provided in [1]. Tak-
ing any two paths in the two ontologies, a minimal subsump-
tion mapping element is an element with the highest node in 
one path whose formula is subsumed by the other node and 
the lowest node in the other path which is subsumed by the 
formula in the other node. 

3 Computing minimal mappings 

In this paper, we propose the function TreeSubsumedBy which computes the minimal set 
of subsumption mapping elements between two subtrees rooted in n1 and n2. The first call 
will be on the roots of the two lightweight ontologies T1 and T2 in input. The pseudo-code is 
given in Fig. 3. The complete pseudo-code to compute the minimal set for all kinds of rela-
tions is given in [1]. 
 
node: struct of {cnode: wff; children: node[];} 
T1,T2: tree of (node); 

relation in { ⊑, ⊒, ≡, ⊥}; 
element: struct of {source: node; target: node; rel : relation;}; 
M: list of (element); 
 

10  function boolean TreeSubsumedBy(node n1, node n2) 
20   {c1,c2: node; LastNodeFound: boolean;  

30    if (<n1,n2, ⊥> ∈ M) then return false; 
40    if ( !NodeSubsumedBy(n1, n2)) then 
50      foreach c1 in GetChildren(n1) do TreeSubsumedBy(c1,n2); 
60    else 
70      {LastNodeFound := false; 
80       foreach c2 in GetChildren(n2) do  
90         if (TreeSubsumedBy(n1,c2)) then LastNodeFound := true; 
100      if ( !LastNodeFound) then AddSubsumptionElement(n1,n2); 
120         return true; 
140     }; 
150   return false; 
160  }; 
 

170 function boolean NodeSubsumedBy(node n1, node n2) 
180  {if (Unsatisfiable(mkConjunction(n1.cnode,negate(n2.cno de)))) then  
        return true; 
190   else return false; }; 
 

Fig. 3. Pseudo-code for the TreeSubsumedBy function. 
 

At each step it makes use of the NodeSubsumedBy (lines 170-190) which is the node 
matching function that, given two nodes n1 and n2, returns a positive answer in case subsump-
tion holds between the two, or a negative answer in case is not or it cannot establish that this is 
the case. It embeds a call to a SAT solver. It is potentially very expensive, since it takes expo-
nential time in worst case [5]. However, by processing both trees top down and using the de-
scribed pattern, TreeSubsumedBy significantly reduces the amount of calls to the node 
matcher. In fact, once we identify a subsumption mapping element we know which parts of 
the trees we can safely avoid to check. At each step it assumes that minimal disjointness map-
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Fig. 2. Redundancy detection 
pattern for is subsumed by (⊑). 



ping elements are already computed; as a consequence, at line 30 it checks whether the map-
ping element between the nodes n1 and n2 is already in the minimal set. If this is the case it 
stops the recursion. This allows computing the disjointness relation rather than subsumption 
when both hold (namely with an inconsistent node). Given n2, lines 40-50 implement a depth 
first recursion in the first tree till a subsumption is found. Lines 60-140 implement what hap-
pens after the first subsumption is found. The key idea is that, after finding the first subsump-
tion, TreeSubsumedBy keeps recursing down the second tree till it finds the last subsump-
tion. When this happens the resulting mapping element is added to the minimal set (line 100).  

Our algorithm, let us call it MinSMatch, has been implemented by taking the node match-
ing routines of the state of the art matcher S-Match [5] and by changing the way the tree struc-
ture is matched. The selected four datasets had been already used in previous evaluations; see 
[5, 15, 16] and the full version of this paper [1] for details (in terms of computed mapping 
elements, run time and SAT calls). For brevity we give below only the number of subsumption 
mapping elements of the minimal and the redundant mapping of maximum size (as it is com-
puted using an extended version of the algorithm we present in the next section) identified by 
the algorithm. We also provide the percentages of reduced elements (1-minimal/total) which 
turns to be very high, in the range 87-100% (the latter interesting case is because they are all 
redundant w.r.t. an equivalence mapping element). We observed also an overall (namely for 
all semantic relations) significant reduction in computation time (in the range 16-59%) and 
calls to SAT (in the range 43-66%) w.r.t. S-Match. The interested reader can refer to [5, 15] 
for a detailed qualitative and performance evaluation of SMatch w.r.t. other state of the art 
matching algorithms. 

 
 S-Match MinSMatch 
 Total mapping 

elements 
Total mapping 

elements  
Mapping elements 

in the minimal set  
Reduction 

(%) 

⊑ 92/541 
20587/8295 

92/541 
20594/8401 

5/0 
1534/1103 

94.56/100.00  
92.55/86.87 

Table 1. Mapping results (subsumption only) for the selected four datasets. 

4 Computing the mapping of maximum size 

Computing the mapping of maximum size can be seen as the result of the propagation of 
the elements in the minimal set according to the given redundancy condition for subsump-
tions. If new mapping elements are identified, the resulting mapping is clearly redundant. Note 
that no calls to SAT are needed for that. See pseudo-code above for subsumption. 
 
10  function list PropagateSubsumedBy(node n1, node n2)  
20   {M’: list of (element); 
30    foreach c1 in SubTree(n1) do  

40       foreach c2 in Path(n2) do AddElement(<c1,c2,  ⊑>,M’); 
50    return M’ }; 
 

Fig. 4. Pseudo-code to propagate a subsumption 
 

Given two lightweight ontologies T1 and T2, the corresponding minimal set M, and two 
nodes n1 in T1 and n2 in T2 we can verify whether a subsumption mapping element holds be-
tween the two given the current available background knowledge. Intuitively, <n1, n2, ⊑> is a 
suitable mapping element either if it is in the minimal set M or it is redundant w.r.t. some 
mapping element m in M. Test for redundancy can be performed as described in Fig. 5. Note 
that a subsumption element can be the result of the propagation of a non redundant subsump-
tion or equivalence mapping element (modulo inconsistencies). 
 
10  function boolean VerifySubsumedBy(node n1, node n2) 
20   {c1,c2: node;  
30    foreach c1 in Path(n1) do  
40      foreach c2 in SubTree(n2) do 

50        if ((<c1,c2, ⊑> ∈ M) || (<c1,c2, ≡> ∈ M)) then return true; 
60    return false; 
70   }; 
 

Fig. 5. Pseudo-code to verify the redundancy of a subsumption mapping element 



5 Conclusion 

In this paper we have provided a definition and a very fast algorithm for the computation 
of the minimal mapping and, on user request, the mapping of maximum size between two 
lightweight ontologies. We have evaluated the resulting system with respect to the state-of-
the-art matching system S-Match [5]. The results show a substantial improvement in the 
(much lower) computation time, in the (much lower) number of mapping elements which need 
to be stored and handled and in the (higher) total number of mappings which are computed. 
The latter point because, maximally exploiting the information codified in the tree structure of 
the two input ontologies, we minimize the impact of the lack of background knowledge [9]. 

The future work includes the development of a suitable user interface which exploits mini-
mal mapping elements thus avoiding the messy visualizations which are generated whenever 
the number of elements grows, but also the experimentation with large scale mapping tasks, 
for instance between large library classification systems (e.g., NALT, AGROVOC, LCSH). 
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