View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Unitn-eprints Research

DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’ INFORMAZIONE

38050 Povo — Trento (ltaly), Via Sommarive 14
http://www.disi.unitn.it

COMPUTING MINIMAL AND REDUNDANT MAPPINGS
BETWEEN LIGHTWEIGHT ONTOLOGIES

Vincenzo Maltese and Aliaksandr Autayeu

December 2008

Technical Report # DISI-08-079

Also: Presented at the AISB Workshop on Matching and Meaning 20009,
9th April 2009, Edinburgh, UK

https://core.ac.uk/display/11829833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Computing minimal and redundant mappings
between lightweight ontologies:

Vincenzo Maltese, Aliaksandr Autayeu
{maltese, autayeu}@disi.unitn.it

Dipartimento di Ingegneria e Scienza dell'Infornw= (DISI)
Universita di Trento

Abstract. The minimal mapping between two lightweight ontaésgcontains that minimal
subset of mapping elements such that all the ottearse efficiently computed from them.
They have clear advantages in visualization and ingeraction since they are the minimal
amount of information that needs to be dealt withey make the work of the user much
easier, faster and less error prone. Experimentaioproposed algorithm to compute them
demonstrate a substantial improvement both in ime-and number of elements found.

1 Introduction

As a possible answer to the semantic heterogempedlem, in the recent years many
matching solutions have been proposed. Howevepitethe progresses made, a lot of work
still has to be done [4, 20]. In this paper, weuon semantic matching techniques (see for
instance [3, 5, 6, 7, 18, 19]), namely, techniqureg find all semantically related nodes be-
tween any two graph-like structures in input (edgtabase or XML schemas and ontologies).
Any such pair of nodes, along with the semantiati@ehship holding between the two, is what
we informally call amapping element

In particular, exploiting the semantics encodedhe structure, our proposed algorithm
takes two lightweight ontologies, as formally definin [8], and computes thminimal map-
ping, namely the subset of all possible mapping elesnbetween them such that: i) all the
other can be computed from them in time lineahi gize of the input graphs, and ii) none of
them can be dropped without losing property i).htigeight ontologies are DAG-like graph
structures where each node is labelled by a nalamgliage sentence which can be translated
into a propositional Description Logic (DL) formutadifying the meaning of the node and
where, following the get-specific principle [17]a&h node is subsumed by the formula of the
node above. Each mapping element is attached wighob the following semantic relations:
disjointness (L"), equivalence &’), more specific (£’) and less specific &).

Minimal mappings provide clear usability advantagésnsider for example the two frag-
ments of lightweight ontologies depicted in Fig.They represent two small classifications
designed to arrange more or less the same cobtarfrom different perspectives. The second
ontology is a fragment taken from the Yahoo weleatory. Following the approach de-
scribed in [8] and exploiting dedicated NLP techug tuned to short phrases (see for instance
[14]), each node label can be translated in an biguous, propositional DL expression. The
resulting formulas are reported under the corredipgnlabel. Here each string denotes a con-
cept (e.g., journals#1) and the numbers at theoétite strings denote a specific concept con-
structed from a WordNet sense.

If we compute the whole set of mapping elementsvben the two ontologies, we obtain
the set of arrows depicted in Fig. 1. However, ahly two solid ones are in the minimal set,
since all the others can be entailed from themy&re therefore said to bedundant For in-
stance, BD is a trivial consequence ofdE and ED. Since the number of possible mapping
elements can grow up tom with n andm the size of the two input ontologies, it is clézait
visualization and manageability problems becomeiatuvith large ontologies with poten-
tially millions of mapping elements between thenuri@nt interfaces have clear scalability
problems in visualizing even small sets [4]. Minim@appings are clearly more manageable,
since they are the minimal amount of informatioattheeds to be dealt with. They make the
work of the user much easier, faster and less erme [12].

1 This paper is a short version of [1].
2 http://dir.yahoo.com/

Label: journals

c D Label: programming and development
journals#1 K

programming#2 U development#1

Label: development and
programming languages
(development#1 U programming#2)
M languages#3 M journals#1

Label: languages

languages#3 N
(programming#2 U development#1)

A
\
~

\ -
v

\
yeg
N

\
%
\
|

Label: java

Java#3 N

(development#1 U programming#2)
M languages#3 M journals#1

java#3 M languages#3 M
(oroarammina#2 LI develooment#1)

Label: magazines
magazines#1 M java#3 M
languages#3 M

1
1
1
1
1
1
1
1
1
1
1
1
:
Label: java :
1
1
1
1
1
1
1
1
1
|
(programming#2 U development#1) :
1

Fig. 1. The minimal mapping between two lightweight ontaésg

In this paper we provide a definition wfinimal and, duallyredundant mappingévhere a
redundant mapping is a mapping which is not minjmamely contains redundant elements)
and an algorithm for computing them. It makes usa few node matching functions which
take two nodes in input and return a positive amswease a given semantic relation holds
between them. The algorithm can be proved to beecband complete, in the sense that it al-
ways computes the minimal set; it is very efficiastit minimizes the number of calls to the
node matching functions; it computes the maximumioer of mapping elements (i.e., includ-
ing all the redundant ones) by maximally exploitthg information codified in the ontologies.

To the best of our knowledge, a few amount of wiodls been done on the problem of
minimal mappings. In [10, 11, 12] Distributed Déption Logics (DDL) [13] is used to repre-
sent and reason about existing ontology mappinigey Thtroduce a few debugging heuristics
which remove mapping elements which are redundargemerate inconsistencies from a
given set [11]. The main problem of this approaah,also recognized by the authors, is the
complexity of DDL reasoning [12]. Conversely, iredieof pruning redundant elements, we di-
rectly compute the minimal set. Among other things, approach allows us to be as fast as
possible by minimizing the number of calls to tteel@ matching functions.

The rest of the paper is organized as follows.i8e@ informally provides the definition
for redundant and minimal mappings. Section 3 am<tribe proposed algorithms. Finally,
Section 5 draws some conclusions and outlinesutuee work.

2 Redundant and minimal mappings

Before applying any form of automated reasoning fundamental to convert natural lan-
guage node labels of the DAG-like graph structunesput into a formal language. Light-
weight ontologies [8] are formal representationsereheach node label is translated into a
propositional DL formula and each node formula sutxss the one of the parent node.

A mapping element between two lightweight ontolsgiea triple <nl, n2, R>, where nl is
the source node on the first ontology and n2 istéinget node on the second one. R is a se-
mantic relation in the seti{ =, =, 2}. They are ordered such that disjointness precedes
equivalence which is stronger than subsumptiorbth directions), and such that the two
subsumption symbols are unordered. This in ordeetiorn subsumption only when it is not a
consequence of an equivalence relation or of oriheofwo nodes being inconsistent (this lat-
ter case generating at the same time both a disgges and a subsumption relation). Under
this ordering there can be at most one mappingeai¢between two nodes.

A mapping element’ is redundant w.r.t. another mapping elenraiitthe existence ofn’
can be asserted simply by looking at the positmfrits nodes w.r.t. the nodes mfin their re-
spective ontologies. In algorithmic terms, this methat the second mapping element can be
computed without running SAT. We identified foursaredundancy patterns, one for each
semantic relation. For sake of space we focus terthe pattern foe. The interested reader
can look at [1] for the other patterns. In Figtl# blue dashed mapping element <CgB,is
redundant w.r.t. the solid blue one <A,®$s. In fact, C is more specific than A which is more
specific than B which is more specific than D. Asansequence, by transitivity C is more

specific than D. Notice that it still holds in case substitute subsumption between A and B
with equivalence. The red solid curve shows howdsmantic relation propagates. This can
be codified in the followingedundancy condition:

Given two lightweight ontologies;@nd Q, a mapping M, and a mapping element
with m’ = <C, D, => between them, we say that m’ is redundant infM/im/ZM with m =
<A, B, R>and m#¥ m’ such that R7{ =, =}, A [Jpath(C) and D//path(B);

Here path(n) is the path from the root to the nodNote that we impose # m’ to ensure
we are not trivially comparing a mapping elemerttwitself.

Using the definition of redundancy, the minimal rpeng is
the set of mapping elements with maximum size withre-
dundant mapping elements between the two ontolodiete
that for any two given lightweight ontologies, tménimal set
always exists and it is unique. A proof is providedl]. Tak-
ing any two paths in the two ontologies, a minimabsump-
tion mapping element is an element with the higmeste in
one path whose formula is subsumed by the othee modl Fig. 2. Redundancy detection
the lowest node in the other path which is subsumethe pattern for is subsumed by)(
formula in the other node.

3 Computing minimal mappings

In this paper, we propose the functibneeSubsumedBy which computes the minimal set
of subsumption mapping elements between two subtreeted in n1 and n2. The first call
will be on the roots of the two lightweight ontoleg T1 and T2 in input. The pseudo-code is
given in Fig. 3. The complete pseudo-code to comploé minimal set for all kinds of rela-
tions is given in [1].

node: struct of {cnode: wff; children: node[];}

T1,T2: tree of (node);

relation in { c, 2, = L1}

element: struct of {source: node; target: node; rel : relation;};
M: list of (element);

10 functi on boolean TreeSubsumedBy(node nl, node n2)

20 { c1,c2: node; LastNodeFound: boolean;

30 if (<nl,n2, 1> OM) then return false;

40 i f (! NodeSubsumedBy(n1, n2)) t hen

50 f or each cl in GetChildren(nl) do TreeSubsumedBy(c1,n2);

60 el se

70 { LastNodeFound := fal se;

80 f or each c2 in GetChildren(n2) do

90 i f (TreeSubsumedBy(n1,c2)) t hen LastNodeFound := true;
100 i f (!LastNodeFound) then AddSubsumptionElement(n1,n2);

120 return true;

140 ;

150 return false;

160 };

170 functi on boolean NodeSubsumedBy(node nl, node n2)

180 ({if (Unsatisfiable(mkConjunction(nl.cnode,negate(n2.cno de)))) then

return true;
190 el se return false; };

Fig. 3. Pseudo-code for the TreeSubsumedBy function.

At each step it makes use of thedeSubsumedBy (lines 170-190) which is the node
matching function that, given two nodes nl andrefjrns a positive answer in case subsump-
tion holds between the two, or a negative answeage is not or it cannot establish that this is
the case. It embeds a call to a SAT solver. loigiptially very expensive, since it takes expo-
nential time in worst case [5]. However, by progegsoth trees top down and using the de-
scribed pattern,TreeSubsumedBy significantly reduces the amount of calls to theden
matcher. In fact, once we identify a subsumptiorppirag element we know which parts of
the trees we can safely avoid to check. At eagh istessumes that minimal disjointness map-

ping elements are already computed; as a conseguahiine 30 it checks whether the map-
ping element between the nodes nl and n2 is alrigathe minimal set. If this is the case it
stops the recursion. This allows computing theoitispess relation rather than subsumption
when both hold (namely with an inconsistent no@yen n2, lines 40-50 implement a depth
first recursion in the first tree till a subsumgptits found. Lines 60-140 implement what hap-
pens after the first subsumption is found. The ikiey is that, after finding the first subsump-
tion, TreeSubsumedBYy keeps recursing down the second tree till it fitlis last subsump-
tion. When this happens the resulting mapping eferiseadded to the minimal set (line 100).

Our algorithm, let us call it MinSMatch, has beerplemented by taking the node match-
ing routines of the state of the art matcher S-K#§¢ and by changing the way the tree struc-
ture is matched. The selected four datasets haddesady used in previous evaluations; see
[5, 15, 16] and the full version of this paper [} details (in terms of computed mapping
elements, run time and SAT calls). For brevity e delow only the number of subsumption
mapping elements of the minimal and the redundagpimg of maximum size (as it is com-
puted using an extended version of the algorithnpresent in the next section) identified by
the algorithm. We also provide the percentageedbficed elements (1-minimal/total) which
turns to be very high, in the range 87-100% (tltedanteresting case is because they are all
redundant w.r.t. an equivalence mapping elemeng.observed also an overall (namely for
all semantic relations) significant reduction ingmutation time (in the range 16-59%) and
calls to SAT (in the range 43-66%) w.r.t. S-Mat@he interested reader can refer to [5, 15]
for a detailed qualitative and performance evatuatf SMatch w.r.t. other state of the art
matching algorithms.

S-Match MinSMatch
Total mapping Total mapping Mapping elements Reduction
elements elements in the minimal set (%)
- 92/541 92/541 5/0 94.56/100.00
B 20587/8295 20594/8401 1534/1103 92.55/86.87

Table 1. Mapping results (subsumption only) for the selddbur datasets.

4 Computing the mapping of maximum size

Computing the mapping of maximum size can be sseth@result of the propagation of
the elements in the minimal set according to theemiredundancy condition for subsump-
tions. If new mapping elements are identified, ibgulting mapping is clearly redundant. Note
that no calls to SAT are needed for that. See gseode above for subsumption.

10 functi on list PropagateSubsumedBy(node n1, node n2)

20 { M’ list of (element);

30 foreachcl in SubTree(nl) do

40 foreachc2 in Path(n2) do AddElement(<cl,c2, > M);
50 returnM’ };

Fig. 4. Pseudo-code to propagate a subsumption

Given two lightweight ontologies T1 and T2, theresponding minimal set M, and two
nodes nlin T1 and n2 in T2 we can verify whethsulasumption mapping element holds be-
tween the two given the current available backgdokmowledge. Intuitively, <nl, nZ> is a
suitable mapping element either if it is in the immal set M or it is redundant w.r.t. some
mapping elementn in M. Test for redundancy can be performed asrieestt in Fig. 5. Note
that a subsumption element can be the result opithpagation of a non redundant subsump-
tion or equivalence mapping element (modulo incsiesicies).

10 functi on boolean VerifySubsumedBy(node n1, node n2)
20 {c1,c2: node;
30 foreach cl in Path(nl) do

40 foreachc2 in SubTree(n2) do

50 if ((<cl,c2, £> € M)]|(<cl,c2, => € M)) then return true;
60 return false;

70}

Fig. 5. Pseudo-code to verify the redundancy of a subswmptiapping element

5 Conclusion

In this paper we have provided a definition andegyvfast algorithm for the computation
of the minimal mapping and, on user request, thepimg of maximum size between two
lightweight ontologies. We have evaluated the tesylsystem with respect to the state-of-
the-art matching system S-Match [5]. The resultswska substantial improvement in the
(much lower) computation time, in the (much loweamber of mapping elements which need
to be stored and handled and in the (higher) tasahber of mappings which are computed.
The latter point because, maximally exploiting iff@rmation codified in the tree structure of
the two input ontologies, we minimize the impacthe lack of background knowledge [9].

The future work includes the development of a &l&aiser interface which exploits mini-
mal mapping elements thus avoiding the messy vimiains which are generated whenever
the number of elements grows, but also the expeatiztien with large scale mapping tasks,
for instance between large library classificatigatems (e.g., NALT, AGROVOC, LCSH).

Refer ences

1. F. Giunchiglia, V. Maltese, A. Autayeu, 2008. Cortipg minimal mappings. University of Trento,
KnowDive Group Technical Report.

2. F. Giunchiglia, M. Marchese, |. Zaihrayeu, 2006cé&tiing Classifications into Lightweight Ontolo-
gies. Journal of Data Semantics 8, pp. 57-81.

3. P. Shvaiko, J. Euzenat, 2007. Ontology Matchi®Bgringer-Verlag New York, Inc. Secaucus, NJ,
USA.

4. P. Shvaiko, J. Euzenat, 2008. Ten Challenges fwol6gy Matching. In Proceedings of the 7th In-
ternational Conference on Ontologies, DataBasesAgplications of Semantics (ODBASE 2008).

5. F.Giunchiglia, M. Yatskevich, P. Shvaiko, 2007. $atic Matching: algorithms and implementa-
tion. Journal on Data Semantics, IX, 2007.

6. F. Giunchiglia, M. Yatskevich, and E. GiunchiglEtficient semantic matching. In Proceedings of
the 2nd european semantic web conference (ESWCEsaklion, 2005.

7. F. Giunchiglia, P. Shvaiko, and M. Yatskevich, 2088mantic schema matching. In Proceedings of
CooplS, pp. 347-365.

8. F.Giunchiglia, I. Zaihrayeu, 2007. Lightweight Olugies. In The Encyclopedia of Database Sys-
tems, to appear. Springer, 2008.

9. F.Giunchiglia, P. Shvaiko, M. Yatskevich, 2006. €igering missing background knowledge in on-
tology matching. Proceedings of the 17th Europeanf&@ence on Artificial Intelligence (ECAI
2006), pp. 382-386.

10. H. Stuckenschmidt, L. Serafini, H. Wache, 2006.9®@ing about Ontology Mappings. Proceedings
of the ECAI-06 Workshop on Contextual Representadind Reasoning, 2006.

11. C. Meilicke, H. Stuckenschmidt, A. Tamilin, 2006rproving automatically created mappings using
logical reasoning. In the proceedings of the 1tgrirational Workshop on Ontology Matching OM-
2006, CEUR Workshop Proceedings Vol. 225.

12. C. Meilicke, H. Stuckenschmidt, A. Tamilin, 2008ed&oning support for mapping revision. Journal
of Logic and Computation, 2008.

13. A. Borgida, L. Serafini. Distributed Description ¢ios: Assimilating Information from Peer
Sources. Journal on Data Semantics pp. 153-184.

14. 1. Zaihrayeu, L. Sun, F. Giunchiglia, W. Pan, Q. Nu Chi, and X. Huang, 2007. From web directo-
ries to ontologies: Natural language processindlefges. In & International Semantic Web Con-
ference (ISWC 2007).

15. P. Avesani, F. Giunchiglia and M. Yatskevich, 2083.arge Scale Taxonomy Mapping Evaluation.
In Proceedings of International Semantic Web Canfee (ISWC 2005), pp. 67-81.

16. M. Yatskevich, F. Giunchiglia, and P. Avesani, 2087Large Scale Dataset for the Evaluation of
Matching. In Posters of'4European Semantic Web Conference (ESWC 2007).

17. F. Giunchiglia, M. Marchese, |. Zaihrayeu, 2006cé&ging Classifications into Lightweight Ontolo-
gies. Proceedings of the 3rd European Semantic @¢elference (ESWC 2006) pp. 80-94.

18. P. Shvaiko, J. Euzenat, 2005. A Survey of Schensaddlatching Approaches. Journal on Data
Semantics, (IV) pp. 146-171.

19. F. Giunchiglia and M. Yatskevich. Element level setic matching. In Proceedings of Meaning
Coordination and Negotiation workshop at the Ira¢iomal Semantic Web Conference (ISWC),
2004.

20. C. Caracciolo, J. Euzenat, L. Hollink, R. Ichise, ldaac, V. Malaisé, C. Meilicke, J. Pane, P.
Shvaiko, 2008. First results of the Ontology Aligenmh Evaluation Initiative 2008.

