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Abstract. Given two classifications, or lightweight ontologies, we compute the 
minimal mapping, namely the subset of all possible correspondences, called 
mapping elements, between them such that i) all the others can be computed 
from them in time linear in the size of the input ontologies, and ii) none of them 
can be dropped without losing property i). In this paper we provide a formal 
definition of minimal mappings and define a time efficient computation algo-
rithm which minimizes the number of comparisons between the nodes of the 
two input ontologies. The experimental results show a substantial improvement 
both in the computation time and in the number of mapping elements which 
need to be handled. 

Keywords: Knowledge Organization Systems, ontology matching, minimal 
mappings 

1 Introduction 

Given any two graph-like structures, e.g., database and XML schemas, classifica-
tions, thesauri and ontologies, matching is usually identified as the problem of finding 
those nodes in the two structures which semantically correspond to one another. Any 
such pair of nodes, along with the semantic relationship holding between the two, is 
what we informally call a mapping element.  

In the last few years a lot of work has been done on this topic both in the digital li-
braries [15, 20, 21, 22] and the computer science [2, 3, 4, 5, 6, 8, 9] communities, but 
the problem is still largely unsolved even if substantial progress has been made [6]. 
This difficulty is not unexpected because a solution to the matching problem would 
amount to solving the semantic heterogeneity problem at the level of schematic meta-
data (e.g., ontologies). 

In this paper we focus on a specific sub-problem of matching, namely that of find-
ing minimal mappings, that is, the subset of all possible correspondences, called map-
ping elements, such that i) all the others can be computed from them in time linear in 
the size of the input graphs, and ii) none of them can be dropped without losing prop-
erty i). We concentrate on lightweight ontologies, as formally defined in [7], namely 
on acyclic graph structures where each node is labelled by a natural language sentence 
which can be used to compute the meaning of that node as a Description Logic (DL) 
formula, and where the formula associated to each node is subsumed by the formula 
of the node above. We assume that each mapping element is associated with one of 



the following semantic relations: disjointness (⊥), equivalence (≡), more specific (⊑) 
and less specific (⊒), as computed for instance by semantic matching [5]. 

The main advantage of minimal mappings is that they are the minimal amount of 
information that needs to be dealt with. Notice that this is a rather important feature as 
the number of possible mapping elements can grow up to n*m with n and m being the 
size of the two input ontologies. In particular, minimal mappings become crucial with 
large ontologies, e.g., DMOZ, with 105 - 106 nodes, where even relatively small sub-
sets of the number (1012) of possible mapping elements are unmanageable. Minimal 
mappings provide clear usability advantages. Many systems and corresponding inter-
faces, mostly graphical, have been provided for the management of mappings but all 
of them hardly scale with the increasing number of nodes, and the resulting visualiza-
tions are rather messy [3]. Furthermore, the maintenance of smaller sets makes the 
work of the user much easier, faster and less error prone [11]. 

The main contributions of this paper are a formal definition of minimal and, dually, 
redundant mappings, evidence of the fact that the minimal mapping always exists and 
it is unique and an algorithm for computing it. This algorithm has the following main 
features: 
 

1. It can be proved to be correct and complete, in the sense that it always com-
putes the minimal mapping; 

2. It is very efficient as it minimizes the number of calls to the node matching 
function, namely to the function which computes the relation between two 
nodes. Notice that node matching in the general case amounts to logical rea-
soning (i.e., SAT reasoning) [5], and it may require exponential time; 

3. As also described in the evaluation section (Section 5), our algorithm com-
putes the mapping of maximum size (including redundant elements) as it 
maximally exploits the information codified in the graph of the lightweight on-
tologies in input. This, in turn, avoids missing mapping elements due to pit-
falls in the node matching functions, for instance as a consequence of missing 
background knowledge [8]. 

 

As far as we know very little work has been done on the problem of minimal map-
pings. In the context of digital libraries, Marshall and Madhusudan [17] use a syntac-
tic element level matcher (based on string matching) to match nodes of two concept 
maps. This technique is proposed as a valid tool to support educational processes (e.g. 
to match student maps against an instructor one). The solution proposed is an adapta-
tion of the Similarity Flooding (SF) algorithm which is known to be very accurate in 
the results. Unfortunately, experiments conducted on it [18] show that SF is very poor 
in recall and results one of the worst in terms of F-measure. Kovacs and Micsik [16] 
propose semantic matching as a valid support for information retrieval. In their ap-
proach the query is matched against a collection of documents which are both de-
scribed in form of logical expressions (DNF clauses). Using a set of heuristics, their 
element level matcher identifies relevant documents in a reasonable amount of time. 
Unfortunately no evaluation is provided in terms of precision and recall. Hence, it is 
not possible to appreciate the quality of the proposed solution. In general the compu-
tation of minimal mappings can be seen as a specific instance of the mapping infer-
ence problem [4]. Closer to our work, in [9, 10, 11] the authors use Distributed De-
scription Logics (DDL) [12] to represent and reason about existing ontology 



mappings. They introduce a few debugging heuristics which remove mapping ele-
ments which are redundant or generate inconsistencies from a given set [10]. The 
main problem of this approach, as also recognized by the authors, is the complexity of 
DDL reasoning [11]. In our approach, instead of pruning redundant elements, we di-
rectly compute the minimal set. Among other things, our approach allows us to mini-
mize the number of calls to node matching. 

The paper is organized as follows. Section 2 provides a motivating example. Sec-
tion 3 provides the definition for redundant and minimal mappings, and it shows that 
the minimal set always exists and it is unique. Section 4 describes the algorithm while 
Section 5 evaluates it. Finally, Section 6 draws some conclusions and outlines the fu-
ture work. 

2 A motivating example 

Classifications are perhaps the most natural tool humans use to organize informa-
tion content. Information items are hierarchical arranged under topic nodes moving 
from general ones to more specific ones as long as we go deep in the hierarchy. This 
attitude is well known in Knowledge Organization as the principle of organizing from 
the general to the specific [19], called synthetically the get-specific principle in [1, 7, 
23]. Consider the two fragments of classifications depicted in Fig. 1. They are de-
signed to arrange more or less the same content, but from different perspectives. The 
second is a fragment taken from the Yahoo web directory1 (category Computers and 
Internet). 

 

Fig. 1. Two classifications 

Following the approach described in [7] and exploiting dedicated NLP techniques 
tuned to short phrases (for instance, as described in [13]), each node label can be 
translated in an unambiguous, propositional DL expression. The resulting formulas 
are reported in Fig. 2. Here each string denotes a concept (e.g., journals#1) and the 
numbers at the end of the strings denote a specific concept constructed from a Word-
Net sense. Notice that the formula associated to each node contains the formula of the 
node above to capture the fact that the meaning of each node is contextualized by the 
meaning of its ancestor nodes. As a consequence, the backbone structure of the result-
ing lightweight ontologies is represented by subsumption relations between nodes. 

                                                           
1http://dir.yahoo.com/ 
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Fig. 2. The minimal and redundant mapping between two lightweight ontologies 
 
Fig. 2 also reports the resulting mapping elements. Notice however that not all the 

mapping elements have the same semantic valence. For instance, B⊑D is a trivial 
consequence of B⊑E and E⊑D, and similarly for C⊑F and C≡G. We represent the 
elements in the minimal mapping using solid lines and redundant elements using 
dashed lines. M’ is the set of maximum size (including the maximum number of re-
dundant elements) while M is the minimal. The problem is how to compute the mini-
mal set in the most efficent way. 

3 Redundant and minimal mappings 

Adapting the definition in [7] we define a lightweight ontology as follows: 
 
Definition 1 (Lightweight ontology). A lightweight ontology O is a rooted tree <N, 
E, LF> where: 

a) N is a finite set of nodes; 
b) E is a set of edges on N; 
c) LF is a finite set of labels expressed in a Propositional DL language such that for 

any node ni ∈ N, there is one and only one label li
F∈LF; 

d) l i+1
F 
⊑ li

F with ni  being the parent of ni+1. 
 

The superscript F is used to emphasize that labels are in a formal language. Fig. 2 
above provides an example of (a fragment of) two lightweight ontologies. We then 
define mapping elements as follows: 

 
Definition 2 (Mapping element). Given two lightweight ontologies O1 and O2, a 
mapping element m between them is a triple <n1, n2, R>, where: 

a) n1∈N1 is a node in O1, called the source node; 
b) n2∈N2 is a node in O2, called the target node; 
c) R ∈ {≡, ⊑, ⊒, ⊥} is the strongest semantic relation holding between n1 and n2. 

 

  M’ = {<A, G, ⊒>, <B, D, ⊑>, <B, E, ⊑>, <B, G, ⊒>, <C, D, ⊑>, <C, E, ⊑>, <C, F, ⊑>, <C, G, ≡>} 

  M = { <B, E, ⊑>, <C, G, ≡>} 
 

Source Target 
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D 
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F 
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⊒⊒⊒⊒ ⊒⊒⊒⊒ 

≡≡≡≡ 

⊑⊑⊑⊑ 

⊑⊑⊑⊑ 
⊑⊑⊑⊑ 

⊑⊑⊑⊑ 

⊑⊑⊑⊑ 
journals#1 programming#2 ⊔ ⊔ ⊔ ⊔ development#1 

languages#3 ⊓⊓⊓⊓ 
(programming#2 ⊔ ⊔ ⊔ ⊔ development#1) 

java#3 ⊓ ⊓ ⊓ ⊓ languages#3 ⊓⊓⊓⊓ 

(programming#2 ⊔ ⊔ ⊔ ⊔ development#1) 
 
magazines#1 ⊓ ⊓ ⊓ ⊓ java#3 ⊓ ⊓ ⊓ ⊓     

languages#3 ⊓ ⊓ ⊓ ⊓     

(programming#2 ⊔ ⊔ ⊔ ⊔ development#1) 

(development#1 ⊔ ⊔ ⊔ ⊔  programming#2) 
⊓⊓⊓⊓     languages#3 ⊓ ⊓ ⊓ ⊓ journals#1    

Java#3 ⊓ ⊓ ⊓ ⊓ 

(development#1 ⊔⊔⊔⊔ programming#2) 

⊓ ⊓ ⊓ ⊓ languages#3 ⊓ ⊓ ⊓ ⊓ journals#1    
 



The partial order is such that disjointness is stronger than equivalence which, in 
turn, is stronger than subsumption (in both directions), and such that the two sub-
sumption symbols are unordered. This in order to return subsumption only when 
equivalence does not hold or one of the two nodes being inconsistent (this latter case 
generating at the same time both a disjointness and a subsumption relation), and simi-
larly for the order between disjointness and equivalence. Notice that, under this order-
ing, there can be at most one mapping between two nodes. 

The next step is to define the notion of redundancy. The key idea is that, given a 
mapping element <n1, n2, R>, a new mapping element <n1’, n2’, R’> is redundant with 
respect to the first if the existence of the second can be asserted simply by looking at 
the relative positions of n1 with n1’, and n2 with n2’. In algorithmic terms, this means 
that the second can be computed without running the time expensive node matching 
functions. We have identified four basic redundancy patterns as follows::::    

 

 
Fig. 3. Redundancy detection patterns 

 
In Fig. 3, the blue dashed mappings are redundant w.r.t. the solid blue ones. The 

bold red solid lines show how a semantic relation propagates. Let us discuss the ra-
tionale for each of the patterns: 

 

• Pattern (1): each mapping element <C, D, ⊑> is redundant w.r.t. <A, B, ⊑>. 
In fact, C is more specific than A which is more specific than B which is 
more specific than D. As a consequence, by transitivity C is more specific 
than D. 

• Pattern (2): dual argument as in pattern (1). 
• Pattern (3): each mapping element <C, D, ⊥> is redundant w.r.t. <A, B, ⊥>. 

In fact, we know that A and B are disjoint, that C is more specific than A and 
that D is more specific than B. This implies that C and D are also disjoint. 

• Pattern (4): Pattern 4 is the combinations of patterns (1) and (2).  
 

Notice that patterns (1) and (2) are still valid in case we substitute subsumption 
with equivalence. However, in this case we cannot exclude the possibility that a 
stronger relation holds between C and D. A trivial example of where this is not the 
case is provided in Fig. 4. 
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Fig. 4. Two non redundant mappings 

 
On the basis of the patterns and the considerations above we can define redundant 

elements as follows. Here path(n) is the path from the root to the node n. 
 
Definition 3 (Redundant mapping element). Given two lightweight ontologies O1 
and O2, a mapping M and a mapping element m’∈M with m’ = <C, D, R’> between 
them, we say that m’ is redundant in M iff one of the following holds: 

(1) If R’ is ⊑, ∃m∈M with m = <A, B, R> and m ≠ m’ such that R ∈ {⊑, ≡≡≡≡}, A 
∈ path(C) and D ∈ path(B);  

(2) If R’ is ⊒, ∃m∈M with m = <A, B, R> and m ≠ m’ such that R ∈ {⊒, ≡},  C 
∈ path(A) and B ∈ path(D); 

(3) If R’ is ⊥, ∃m∈M with m = <A, B, ⊥> and m ≠ m’ such that A ∈ path(C) 
and B ∈ path(D); 

(4) If R’ is ≡, conditions (1) and (2) must be satisfied. 
 

See how Definition 3 maps to the four patterns in Fig. 3. Fig. 2 in Section 2 pro-
vides examples of redundant elements. Definition 3 can be proved to capture all and 
only the cases of redundancy.  

 
Theorem 1 (Redundancy, soundness and completeness). Given a mapping M between 
two lightweight ontologies O1 and O2, a mapping element m’ ∈ M is redundant if and 
only if it satisfies one of the conditions of Definition 3. 

 
The soundness argument is the rationale described for the patterns above. Com-

pleteness can be shown by constructing the counterargument that we cannot have re-
dundancy in the remaining cases. We can proceed by enumeration, negating each of 
the patterns, encoded one by one in the conditions appearing in the Definition 3. The 
complete proof is given in the appendix. Fig. 5 provides some examples of non re-
dundancy. The first, based on pattern (1), tells us that the existence of a link between 
two nodes does not necessarily propagate to the two nodes below. For example we 
cannot derive that Canine ⊑ Dog from the set of axioms {Canine ⊑ Mammal, Mam-
mal ⊑ Animal, Dog ⊑ Animal}, and it would be wrong to do so. The second, based on 
pattern (3), shows that disjointness cannot propagate to the target (or to the source) 
one level up. For example we cannot derive that Dog ⊥ Animal only from {Dog ⊑ 
Canine, Cat ⊑ Animal, Canine ⊥ Cat}. The third example, based on pattern (4), tells 
us that we cannot derive equivalence if the source node C or target D is not between 
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D A 
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Car

Automobile

≡≡≡≡ 
  Auto 

≡≡≡≡ 



the source and target nodes of the two equivalence mappings. Notice that, by chance, 
the other equivalence mapping holds. 

 

 
Fig. 5. Some examples of non redundant mapping elements 

 
The notion of redundancy allows us to formalize the notion of minimal mapping as 

follows: 
 

Definition 4 (Minimal mapping). Given two lightweight ontologies O1 and O2, we 
say that a mapping M between them is minimal iff: 

a) ∄m∈M such that m is redundant (minimality condition); 

b) ∄M’⊃M satisfying condition a) above (maximality condition). 
A mapping element is minimal if it belongs to the minimal mapping. 

 
Note that conditions (a) and (b) ensure that the minimal set is the set of maximum 

size with no redundant elements. As an example, the set M in Fig. 2 is minimal. 
Comparing this mapping with M’ we can observe that all elements in the set M’ - M 
are redundant and that, therefore, there are no other supersets of M with the same 
properties. In effect, <A, G, ⊒> and <B, G, ⊒> are redundant w.r.t. <C, G, ≡> for pat-
tern (2); <C, D, ⊑>, <C, E, ⊑> and <C, F, ⊑> are redundant w.r.t.  <C, G, ≡> for pat-
tern (1); <B, D, ⊑> is redundant w.r.t. <B, E, ⊑> for pattern (1). Note that M contains 
far less mapping elements w.r.t. M’. 

As last observation, for any two given lightweight ontologies, the minimal map-
ping always exists and it is unique.  

 
Theorem 2 (Minimal mapping, existence and uniqueness). Given two lightweight 
ontologies O1 and O2, there is always one and only one minimal mapping between 
them. 

 
A proof is given in the appendix. Keeping in mind the patterns in Fig. 3, the mini-

mal set can be efficiently computed using the following key intuitions: 
1. Equivalence can be “opened” into two subsumption mapping elements; 
2. Taking any two paths in the two ontologies, a minimal subsumption mapping 

element (in both directions of subsumption) is an element with the lowest 
node in one path whose formula is subsumed by the other node and the high-
est node in the other path which subsumes the formula in the other node. 
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3. Taking any two paths in the two ontologies, a minimal disjointness mapping 
element is the one with the highest nodes in both paths such that their formu-
las satisfy disjointness. 

4 Computing minimal and redundant mappings 

The patterns described in the previous section allow us not only to identify mini-
mal and redundant mapping elements, but they also suggest how to significantly re-
duce the amount of calls to the node matchers. By looking for instance at pattern (2) 
in Fig. 3, given a mapping element m = <A, B, ⊒> we know in advance that it is not 
necessary to compute the semantic relation holding between A and any descendant C 
in the sub-tree of B since we know in advance that it is ⊒. At the top level the algo-
rithm is organized as follows: 

 

• Step 1: based on the ideas described in the previous section, compute the set 
of disjointness and subsumption mapping elements which are minimal modulo 
equivalence. By this we mean that they are minimal modulo collapsing, when-
ever possible, two subsumption relations of opposite direction into a single 
equivalence mapping element; 

• Step 2: eliminate the redundant subsumption mapping elements. In particular, 
collapse all the pairs of subsumption elements (of opposite direction) between 
the same two nodes into a single equivalence element. This will result into the 
minimal mapping; 

• Step 3: Compute the mapping of maximum size (including minimal and re-
dundant mapping elements) or, similarly, given any two nodes return the map-
ping element existing between the two nodes, or the fact that such element 
does not exist. During this step the existence of a (redundant) element is com-
puted as the result of the propagation of the elements in the minimal mapping. 
Notice that redundant equivalence mapping elements can be computed due to 
the propagation of minimal equivalence elements or of two minimal subsump-
tion elements of opposite direction. However, it can be easily proved that in 
the latter case they correspond to two partially redundant equivalence ele-
ments, where a partially redundant equivalence element is an equivalence ele-
ment where one direction is a redundant subsumption mapping element while 
the other is not. 

 

The first two steps are performed at matching time, while the third is activated 
whenever the user wants to exploit the pre-computed mapping elements for instance 
for their visualization. The following three subsections analyze the three steps above 
in detail. 

4.1 Step 1: Computing the minimal mapping modulo equivalence 

The minimal mapping is computed by a function TreeMatch whose pseudo-code 
is described in Fig. 6. M is the minimal set while T1 and T2 are the input lightweight 
ontologies. TreeMatch is called on the root nodes of T1 and T2. It is crucially de-
pendent on the node matching functions NodeDisjoint (Fig. 7) and NodeSubsum-
edBy (Fig. 8) which take two nodes n1 and n2 and return a positive answer in case of 
disjointness or subsumption, or a negative answer if it is not the case or they are not 



able to establish it. Notice that these two functions hide the heaviest computational 
costs; in particular their computation time is exponential when the relation holds and, 
exponential in the worst case, but possibly much faster, when the relation does not 
hold. The main motivation for this is that the node matching problem, in the general 
case, should be translated into disjointness or subsumption problem in propositional 
DL (see [5] for a detailed description). 
 
10  node: struct of {cnode: wff; children: node[];} 
20  T1,T2: tree of (node); 

30  relation in {⊑, ⊒, ≡, ⊥}; 
40  element: struct of {source: node; target: node; rel: relation;}; 
50  M: list of (element); 
60  boolean direction; 
 
70  function TreeMatch(tree T1, tree T2) 
80   {TreeDisjoint(root(T1),root(T2)); 
90    direction := true; 
100   TreeSubsumedBy(root(T1),root(T2));  
110   direction := false; 
120   TreeSubsumedBy(root(T2),root(T1)); 
130   TreeEquiv(); 
140  }; 
 

Fig. 6. Pseudo-code for the tree matching function 
 
The goal, therefore, is to compute the minimal mapping by minimizing the calls to 

the node matching functions and, in particular minimizing the calls where the relation 
will turn out to hold. We achieve this purpose by processing both trees top down. To 
maximize the performance of the system, TreeMatch has therefore been built as the 
sequence of three function calls: the first call to TreeDisjoint (line 80) computes the 
minimal set of disjointness mapping elements, while the second and the third call to 
TreeSubsumedBy compute the minimal set of subsumption mapping elements in the 
two directions modulo equivalence (lines 90-120). Notice that in the second call, 
TreeSubsumedBy is called with the input ontologies with swapped roles. These three 
calls correspond to Step 1 above. Line 130 in the pseudo code of TreeMatch imple-
ments Step 2 and it will be described in the next subsection. 

TreeDisjoint (Fig. 7) is a recursive function which finds all disjointness minimal 
elements between the two sub-trees rooted in n1 and n2. Following the definition of 
redundancy, it basically searches for the first disjointness element along any pair of 
paths in the two input trees. Exploiting the nested recursion of NodeTreeDisjoint in-
side TreeDisjoint, for any node n1 in T1 (traversed top down, depth first) Node-
TreeDisjoint visits all of T2, again top down, depth first. NodeTreeDisjoint (called 
at line 30, starting at line 60) keeps fixed the source node n1 and iterates on the whole 
target sub-tree below n2 till, for each path, the highest disjointness element, if any, is 
found. Any such disjoint element is added only if minimal (lines 90-120). The condi-
tion at line 80 is necessary and sufficient for redundancy. The idea here is to exploit 
the fact that any two nodes below two nodes involved in a disjointness mapping ele-
ment are part of a redundant element and, therefore, to stop the recursion thus saving 
a lot of time expensive calls (n*m calls with n and m the number of the nodes in the 
two trees). Notice that this check needs to be performed on the full path. NodeDis-



joint checks whether the formula obtained by the conjunction of the formulas associ-
ated to the nodes n1 and n2 is unsatisfiable (lines 150-170). 
 
10  function TreeDisjoint(node n1, node n2) 
20   {c1: node;  
30    NodeTreeDisjoint(n1, n2); 
40    foreach c1 in GetChildren(n1) do TreeDisjoint(c1,n2); 
50   }; 
 
60  function NodeTreeDisjoint(node n1, node n2) 
70   {n,c2: node; 

80    foreach n in Path(Parent(n1)) do if (<n,n2,⊥> ∈ M) then return; 
90    if (NodeDisjoint(n1, n2)) then  

100     {AddMappingElement(<n1,n2,⊥>);  
110      return; 
120     }; 
130   foreach c2 in GetChildren(n2) do NodeTreeDisjoint(n1,c2); 
140  }; 
 
150 function boolean NodeDisjoint(node n1, node n2) 
160  {if (Unsatisfiable(mkConjunction(n1.cnode,n2.cnode))) then  
        return true; 
170   else return false; }; 
 

Fig. 7. Pseudo-code for the TreeDisjoint function 
 
TreeSubsumedBy (Fig. 8) recursively finds all minimal mapping elements where 

the strongest relation between the nodes is ⊑ (or dually, ⊒ in the second call; in the 
following we will concentrate only on the first call). 
 
10  function boolean TreeSubsumedBy(node n1, node n2) 
20   {c1,c2: node; LastNodeFound: boolean;  

30    if (<n1,n2,⊥> ∈ M) then return false; 
40    if (!NodeSubsumedBy(n1, n2)) then 
50      foreach c1 in GetChildren(n1) do TreeSubsumedBy(c1,n2); 
60    else 
70      {LastNodeFound := false; 
80       foreach c2 in GetChildren(n2) do  
90         if (TreeSubsumedBy(n1,c2)) then LastNodeFound := true; 
100      if (!LastNodeFound) then AddSubsumptionMappingElement(n1,n2); 
120      return true; 
140     }; 
150   return false; 
160  }; 
 
170 function boolean NodeSubsumedBy(node n1, node n2) 
180  {if (Unsatisfiable(mkConjunction(n1.cnode,negate(n2.cnode)))) then  
        return true; 
190   else return false; }; 
 
200 function AddSubsumptionMappingElement(node n1, node n2) 

210  {if (direction) then AddMappingElement(<n1,n2,⊑>); 

220   else AddMappingElement(<n2,n1,⊒>); }; 
 

Fig. 8. Pseudo-code for the TreeSubsumedBy function 



Notice that TreeSubsumedBy assumes that the minimal disjointness elements are 
already computed; as a consequence, at line 30 it checks whether the mapping ele-
ment between the nodes n1 and n2 is already in the minimal set. If this is the case it 
stops the recursion. This allows computing the stronger disjointness relation rather 
than subsumption when both hold (namely with an inconsistent node). Given n2, lines 
40-50 implement a depth first recursion in the first tree till a subsumption is found. 
The test for subsumption is performed by function NodeSubsumedBy that checks 
whether the formula obtained by the conjunction of the formulas associated to the 
node n1 and the negation of the formula for n2 is unsatisfiable (lines 170-190). Lines 
60-140 implement what happens after the first subsumption is found. The key idea is 
that, after finding the first subsumption, TreeSubsumedBy keeps recursing down the 
second tree till it finds the last subsumption. When this happens, the resulting map-
ping element is added to the minimal mapping (line 100). Notice that both NodeDis-
joint and NodeSubsumedBy call the function Unsatisfiable which embeds a call to a 
SAT solver. 

To fully understand TreeSubsumedBy, the reader should check what happens in 
the four situations in Fig. 9. In case (a) the first iteration of the TreeSubsumedBy 
finds a subsumption between A and C. Since C has no children, it skips lines 80-90 
and directly adds the mapping element <A, C, ⊑> to the minimal set (line 100). In 
case (b), since there is a child D of C the algorithm iterates on the pair A-D (lines 80-
90) finding a subsumption between them. Since there are no other nodes under D, it 
adds the mapping element <A, D, ⊑> to the minimal set and returns true. Therefore 
LastNodeFound is set to true (line 90) and the mapping element between the pair A-C 
is recognized as redundant. Case (c) is similar. The difference is that TreeSubsum-
edBy will return false when checking the pair A-D (line 30), thanks to previous com-
putation of minimal disjointness mapping elements, and therefore the mapping ele-
ment <A, C, ⊑> is recognized as minimal. In case (d) the algorithm iterates after the 
second subsumption mapping element is identified. It first checks the pair A-C and it-
erates on A-D concluding that subsumption does not hold between them (line 40). 
Therefore, it recursively calls TreeSubsumedBy between B and D. In fact, since <A, 
C, ⊑> will be recognized as minimal, it is not worth checking <B, C, ⊑> for pattern 
(1). As a consequence <B, D, ⊑> is recognized as minimal together with <A, C, ⊑>. 

 
Fig. 9. Examples of applications of  the TreeSubsumedBy 

 
Five observations. The first is that, even if, overall, TreeMatch implements three 

loops instead of one, the wasted (linear) time is largely counterbalanced by the expo-
nential time saved by avoiding a lot of useless calls to the SAT solver. The second is 
that, when the input trees T1 and T2 are two nodes, TreeMatch behaves as a node 
matching function which returns the semantic relation holding between the input 
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nodes. The third is that the call to TreeDisjoint before the two calls to TreeSubsum-
edBy allows us to implement the partial order on relations defined in the previous 
section. In particular it allows returning only a disjointness mapping element when 
both disjointness and subsumption hold (see Definition 2 of mapping). The fourth is 
that, in the body of TreeDisjoint, the fact that the two sub-trees where disjointness 
holds are skipped is what allows not only implementing the partial order (see the pre-
vious observation) but also saving a lot of useless calls to the node matching functions 
(line 2). The fifth and last observation is that the implementation of TreeMatch cru-
cially depends on the fact that the minimal elements of the two directions of subsump-
tion and disjointness can be computed independently (modulo inconsistencies). 

4.2 Step 2: Computing the minimal mapping 

The output of Step 1 is the set of all disjointness and subsumption mapping ele-
ments which are minimal modulo equivalence. The final step towards computing the 
minimal mapping is that of collapsing any two subsumption relations, in the two di-
rections, holding between the same two nodes into a single equivalence relation. The 
tricky part here is that equivalence is in the minimal set only if both subsumptions are 
in the minimal set. We have three possible situations: 

1. None of the two subsumptions is minimal (in the sense that it has not been 
computed as minimal in Step 1): nothing changes and neither subsumption 
nor equivalence is memorized as minimal; 

2. Only one of the two subsumptions is minimal while the other is not minimal 
(again according to Step 1): this case is solved by keeping only the subsump-
tion mapping as minimal. Of course, during Step 3 (see below) the necessary 
computations will have to be done in order to show to the user the existence 
of an equivalence relation between the two nodes; 

3. Both subsumptions are minimal (according to Step 1): in this case the two 
subsumptions can be deleted and substituted with a single equivalence ele-
ment. 

Notice that Step 3 can be computed very easily in time linear with the number of 
mapping elements output of Step 1: it is sufficient to check for all the subsumption 
elements of opposite direction between the same two nodes and to substitute them 
with an equivalence element. This is performed by function TreeEquiv in Fig. 6. 

4.3 Step 3: Computing the mapping of maximum size 

For brevity we concentrate on the following problem: given two lightweight on-
tologies T1 and T2 and the of minimal mapping M compute the mapping element be-
tween two nodes n1 in T1 and n2 in T2 or the fact that no element can be computed 
given the current available background knowledge. Corresponding pseudo-code is 
given in Fig. 10. ComputeMappingElement is structurally very similar to the 
NodeMatch function described in [5], modulo the key difference that no calls to SAT 
are needed. ComputeMappingElement always returns the strongest mapping ele-
ment. The test for redundancy performed by IsRedundant reflects the definition of 
redundancy provided in Section 3 above. For lack of space, we provide below only 
the code which does the check for the first pattern; the others are analogous. Given for 
example a mapping element <n1, n2, ⊑>, condition 1 is verified by checking whether 



in M there is an element <c1, c2, ⊑> or <c1, c2, ≡> with c1 ancestor of n1 and c2 de-
scendant of n2. Notice that ComputeMappingElement calls IsRedundant at most 
three times and, therefore, its computation time is linear with the number of mapping 
elements in M.  
 
10  function mapping ComputeMappingElement(node n1, node n2) 
20   {isLG, isMG: boolean; 

30    if ((<n1,n2,⊥> ∈ M) || IsRedundant(<n1,n2,⊥>)) then  

        return <n1,n2,⊥>; 

40    if (<n1,n2,≡> ∈ M) then return <n1,n2,≡>; 

50    if ((<n1,n2,⊑> ∈ M) || IsRedundant(<n1,n2,⊑>)) then isLG := true; 

60    if ((<n1,n2,⊒> ∈ M) || IsRedundant(<n1,n2,⊒>)) then isMG := true; 

70    if (isLG && isMG) then return <n1,n2,≡>; 

80    if (isLG) then return <n1,n2,⊑>; 

90    if (isMG) then return <n1,n2,⊒>; 
100   return NULL; 
110  }; 
 
120 function boolean IsRedundant(mapping <n1,n2,R>)  
130  {switch (R)  

140    {case ⊑: if (VerifyCondition1(n1,n2)) then return true; break; 

150     case ⊒: if (VerifyCondition2(n1,n2)) then return true; break; 

160     case ⊥: if (VerifyCondition3(n1,n2)) then return true; break; 

170     case ≡: if (VerifyCondition1(n1,n2) &&  
                    VerifyCondition2(n1,n2)) then return true; 
180    }; 
190   return false; 
200  }; 
 
210 function boolean VerifyCondition1(node n1, node n2) 
220  {c1,c2: node; 
230   foreach c1 in Path(n1) do  
240     foreach c2 in SubTree(n2) do 

250       if ((<c1,c2,⊑> ∈ M) || (<c1,c2,≡> ∈ M)) then return true; 
260   return false; 
270  }; 
 

Fig. 10. Pseudo-code to compute a mapping element 

5 Evaluation 

The algorithm presented in the previous sections, let us call it MinSMatch, has 
been implemented by taking the node matching routines of the state of the art matcher 
S-Match [5] and by changing the way the tree structure is matched. The evaluation 
has been performed by directly comparing the results of MinSMatch and S-Match on 
several real-world datasets. All tests have been performed on a Pentium D 3.40GHz 
with 2G of RAM running Windows XP SP3 operating system with no additional ap-
plications running except the matching system. Both systems were limited to allocat-
ing no more than 1G of RAM. The tuning parameters were set to the default values. 
The selected datasets had been already used in previous evaluations, see [14]. Some 



of these datasets can be found at Ontology Alignment Evaluation Initiative web site2. 
The first two datasets describe courses and will be called Cornell and Washington, re-
spectively. The second two come from the arts domain and will be referred to as To-
pia and Icon, respectively. The third two datasets have been extracted from the 
Looksmart, Google and Yahoo! directories and will be referred to as Source and Tar-
get. The fourth two datasets contain portions of the two business directories eCl@ss3 
and UNSPSC4 and will be referred to as Eclass and Unspsc. Table 1 describes some 
indicators of the complexity of these datasets. 

 
# Dataset pair Node count Max depth Average 

branching factor 
1 Cornell/Washington 34/39 3/3 5.50/4.75 
2 Topia/Icon 542/999 2/9 8.19/3.66 
3 Source/Target 2857/6628 11/15 2.04/1.94 
4 Eclass/Unspsc 3358/5293 4/4 3.18/9.09 

Table 1. Complexity of the datasets 

Consider Table 2. The reduction in the last column is calculated as (1-m/t), 
where m is the number of elements in the minimal set and t is the total number of ele-
ments in the mapping of maximum size, as computed by MinSMatch. As it can be 
easily noticed, we have a significant reduction, in the range 68-96%. 

 
 S-Match MinSMatch 
# Total mapping  

elements (t) 
Total mapping 
elements (t) 

Minimal mapping 
elements (m) 

Reduction, % 

1 223 223 36 83.86 
2 5491 5491 243 95.57 
3 282638 282648 30956 89.05 
4 39590 39818 12754 67.97 

Table 2. Mapping sizes. 

The second interesting observation is that in Table 2, in the last two experiments, 
the number of total mapping elements computed by MinSMatch is higher (compare 
the second and the third column). This is due to the fact that in the presence of one of 
the patterns, MinSMatch directly infers the existence of a mapping element without 
testing it. This allows MinSMacth, differently from S-Match, to avoid missing ele-
ments because of failures of the node matching functions (because of lack of back-
ground knowledge [8]). One such example from our experiments is reported below 
(directories Source and Target): 

  
\Top\Computers\Internet\Broadcasting\Video Shows   
\Top\Computing\Internet\Fun & Games\Audio & Video\Movies 
 

We have a minimal mapping element which states that Video Shows ⊒ Movies. 
The element generated by this minimal one, which is captured by MinSMatch and 

                                                           
2 http://oaei.ontologymatching.org/2006/directory/ 
3 http://www.eclass-online.com/ 
4 http://www.unspsc.org/ 



missed by S-Match (because of the lack of background knowledge about the relation 
between ‘Broadcasting’ and ‘Movies’) states that Broadcasting ⊒ Movies. 

To conclude our analysis, Table 3 shows the reduction in computation time and 
calls to SAT.  As it can be noticed the time reductions are substantial, in the range 
16% - 59%, but where the smallest savings are for very small ontologies. The inter-
ested reader can refer to [5, 14] for a detailed qualitative and performance evaluation 
of SMatch w.r.t. other state of the art matching algorithms. 

 
 Run Time, ms SAT calls 
# S-Match MinSMatch Reduction, 

% 
S-Match MinSMatch Reduction, 

% 
1 472 397 15.88 3978 2273 42.86 
2 141040 67125 52.40 1624374 616371 62.05 
3 3593058 1847252 48.58 56808588 19246095 66.12 
4 6440952 2642064 58.98 53321682 17961866 66.31 

Table 3. Run time and SAT problems 

6 Conclusion 

In this paper we have provided a definition and a very fast algorithm for the com-
putation of the minimal mapping between two lightweight ontologies and for the fol-
low-up computation of the mapping of maximum size upon user request (for instance 
in order to visualize them). We have evaluated the resulting system with respect to the 
state-of-the-art matching system S-Match [5]. The results show a substantial im-
provement in the (much lower) computation time, in the (much lower) number of 
elements which need to be stored and handled and in the (higher) total number of 
mapping elements which are computed. The last phenomenon is a consequence of the 
fact that, by minimizing the number of calls to the node matching functions and by 
maximally exploiting the information codified in the tree structure of the two input 
ontologies, our algorithm minimizes the impact of the lack of background knowledge. 

The future work includes the development of a suitable user interface which ex-
ploits minimal mappings thus avoiding the messy visualizations which are generated 
whenever the number of mapping elements grows, but also the experimentation with 
large scale mapping tasks. At the moment we are considering applying the system to 
various large Knowledge Organization Systems (e.g., NALT, AGROVOC, LCSH). 
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Appendix: proofs of the theorems 

 
Theorem 1 (Redundancy, soundness and completeness). Given a mapping M between 
two lightweight ontologies O1 and O2, a mapping element m’ ∈ M is redundant if and 
only if it satisfies one of the conditions of Definition 3. 
 
Proof: 
Soundness: The argumentation provided in section 3 as a rationale for the patterns al-
ready provides a full demonstration for soundness. 
Completeness: We can demonstrate the completeness by showing that we cannot have 
redundancy in the cases which do not fall in the conditions listed in Definition 3. We 
proceed by enumeration, negating each of the conditions. There are some trivial cases 
we can exclude in advance: 
 

 
Fig. 11. Some trivial cases which do not fall in the redundancy patterns 

 
- The trivial case in which m’ is the only mapping element between the lightweight 

ontologies. See Fig. 11 (a); 
- Incomparable symbols. The only cases of dependency across symbols are cap-

tured by conditions (1) and (2) in Definition 3, where equivalence can be used to 
derive the redundancy of a more or less specific mapping element. This is due to 
the fact that equivalence is exactly the combination of more and less specific. No 
other symbols can be expressed in terms of the others. This means for instance 
that we cannot establish implications between an element with more specific and 
one with disjointness. In Fig. 11 (b) the two elements do not influence each other; 

- All the cases of inconsistent nodes. See for instance Fig. 11 (c). If we assume the 
element <A, B, “⊑”> to be correct, then according to pattern (1) the mapping ele-
ment between C and D should be <C, D, ⊑>. However, in case of inconsistent 
nodes the stronger semantic relation ⊥ holds. The algorithm presented in section 4 
correctly returns ⊥ in these cases; 

- Cases of underestimated strength not covered by the previous cases, namely the 
cases in which equivalence holds instead of the (weaker) subsumption. Look for 
instance at Fig. 11 (d). The two subsumptions in <A, B, ⊑> and <E, F, ⊑> must be 
equivalences. As a consequence, <C, D, ≡> is redundant for pattern (4).  In fact, 
the chain of subsumptions E ⊑ … ⊑ C ⊑ … ⊑ A ⊑ B ⊑ … ⊑ D ⊑ … ⊑ F allows 
to conclude that E ⊑ F holds and therefore E ≡ F. Symmetrically, we can con-
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clude that A ≡ B. Note that the mapping elements <A, B, ⊑> and <E, F, ⊒> are 
minimal. We identify the strongest relations by propagation (at step 3 of the pro-
posed algorithm, as described at the beginning of section 4). 

 
We refer to all the other cases as the meaningful cases. 
Condition (1): its negation is when R ≠ “⊑” or A ∉ path(C) or D ∉ path(B). The cases 
in which R = “⊑” are shown in Fig. 12. For each case, the provided rationale shows 
that available axioms cannot be used to derive C ⊑ D from A ⊑ B. The remaining 
meaningful cases, namely only when R = “≡”, are similar. 
 

 
 

 A ∉∉∉∉ path(C) D ∉∉∉∉ path(B) Rationale 

(a) NO YES C ⊑ … ⊑ A, D ⊑ … ⊑ B, A ⊑ B cannot derive C ⊑ D 

(b) YES NO A ⊑ … ⊑ C, B ⊑ … ⊑ D, A ⊑ B cannot derive C ⊑ D 

(c) YES YES A ⊑ … ⊑ C, D ⊑ … ⊑ B, A ⊑ B cannot derive C ⊑ D 

Fig. 12. Completeness of condition (1) 
 

Condition (2): it is the dual of condition (1). 
Condition (3): its negation is when R ≠ “⊥”or A ∉ path(C) or B ∉ path(D). The cases 
in which R = “⊥” are shown in Fig. 13. For each case, the provided rationale shows 
that available axioms cannot be used to derive C ⊥ D from A ⊥ B. There are no 
meaningful cases for R ≠ “⊥”. 
 

 
 

 A ∉∉∉∉ path(C) B ∉∉∉∉ path(D) Rationale 

(a) NO YES C ⊑ … ⊑ A, B ⊑ … ⊑ D, A ⊥ B cannot derive C ⊥ D 

(b) YES NO A ⊑ … ⊑ C, D ⊑ … ⊑ B, A ⊥ B cannot derive C ⊥ D 

(c) YES YES A ⊑ … ⊑ C, D ⊑ … ⊑ B, A ⊥ B cannot derive C ⊥ D 

Fig. 13. Completeness of condition (3) 
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Condition (4): it can be easily noted from Fig. 3 that the redundant elements identified 
by pattern (4) are exactly all the mapping elements m’ = <C, D, ≡> with source C and 
target D respectively between (or the same of) the source node and target node of two 
different mapping elements m = <A, B, ≡> and m’’ = <E, F, ≡>. This configuration 
allows to derive from m and m’’ the subsumptions in the two directions which 
amount to the equivalence. The negation of condition 4 is when R ≠ “≡”  in m or m’’ 
or A ∉ path(C) or D ∉ path(B) or C ∉ path(E) or F ∉ path(D). In almost all the cases 
(14 over 15) in which R = “≡” we just move the source C or the target D outside these 
ranges. For sake of space we show only some of such cases in Fig. 14. The rationale 
provided for cases (a) and (b) shows that we cannot derive C ≡ D from A ≡ B and E 
≡ F. The only exception (the remaining 1 case over 15), represented by case (c), is 
when A ∉ path(C) and D ∉ path(B) and C ∉ path(E) and F ∉ path(D). This case 
however is covered by condition 4 by inverting the role of m and m’’. The remaining 
cases, namely when R ≠ “≡” in m or m’’, are not meaningful. 
 

 
 

 A ∉∉∉∉ path(C) D ∉∉∉∉ path(B) C ∉∉∉∉ path(E) F ∉∉∉∉ path(D) Rationale 

(a) NO NO NO YES 

E ⊑ … ⊑ C, C ⊑ … ⊑ A, 

B ⊑ … ⊑ F, F ⊑ … ⊑ D, 

A ≡ B and E ≡ F cannot 
derive C ≡ D (we can 
only derive C ⊑ D). 

(b) NO NO YES YES 

C ⊑ … ⊑ E, E ⊑ … ⊑ A, 

B ⊑ … ⊑ F, F ⊑ … ⊑ D, 

A ≡ B and E ≡ F cannot 
derive C ≡ D (we can 
only derive C ⊑ D). 

… 

(c) YES YES YES YES 
Covered by condition 
(4) inverting the roles 
of m and m’’ 

Fig. 14. Completeness of condition (4) 
 

This completes the demonstration.□ 
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≡≡≡≡ 



 
Theorem 2 (Minimal mapping, existence and uniqueness). Given two lightweight 
ontologies O1 and O2, there is always one and only one minimal mapping between 
them. 

 

Proof: 
 

The proof is based on two main observations:  
Observation 1: A redundant mapping element m’ ∈ M’  can be caused by one and 
only one of the redundancy conditions in Definition 3. In other words, redundancy 
conditions are mutually exclusive. In particular, apart from the cases of inconsistent 
nodes, subsumption and disjointness mutually exclude themselves. For equivalence, 
note that for condition 4 in Definition 3 a mapping element m cannot satisfy both con-
dition 1 and 2. In fact, since m ≠ m’, it cannot be A ∈ path(C) and D ∈ path(B) (see 
condition 1) and C ∈ path(A) and B ∈ path(D) at the same time (see condition 2).  
Conditions 1 and 2 are both needed to build the redundant equivalence. 

 

Observation 2: We can definite a strict partial order over mapping elements for each 
relation in {⊑,⊒,⊥}: given two lightweight ontologies O1 and O2, a mapping M be-
tween them and two distinct mapping elements m, m’ ∈ M with m = <A, B, R> and 
m’ = <C, D, R’>, we say that m’ < m iff one of the following holds: 

(1) If R’ is ⊑, R ∈ {⊑, ≡≡≡≡}, A ∈ path(C) and D ∈ path(B);  
(2) If R’ is ⊒, R ∈ {⊒, ≡}, C ∈ path(A) and B ∈ path(D); 
(3) If R’ and R are ⊥, A ∈ path(C) and B ∈ path(D); 

 

It can be easily noticed that in all the three cases above < enforces a partial order, 
since, given two mapping elements with source and target on the same paths, they are 
ordered when their structural configuration is like in the corresponding patterns in 
Fig. 3, while they are not ordered when the configuration is different or are on differ-
ent paths. The fact that the ordering defined is partial is a direct consequence of the 
tree structure of lightweight ontologies. 
 

It is clear that under the strict partial order above, if we “open” equivalence relation-
ships in the two subsumptions of opposite direction, the minimal mapping is the set of 
all the maximal elements of the partially ordered set, where subsumptions of opposite 
direction involving the same nodes are collapsed into a (minimal) equivalence map-
ping element. For the properties of partial orders, this set always exists and it is 
unique. □ 

 




