View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Unitn-eprints Research

DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’ INFORMAZIONE

38050 Povo — Trento (ltaly), Via Sommarive 14
http://www.disi.unitn.it

COMPUTING MINIMAL MAPPINGS

Fausto Giunchiglia, Vincenzo Maltese and Aliaksandr Autayeu

December 2008

Technical Report # DISI-08-078

Also: at the ISWC Ontology Matching Workshop (OM 2009), 25th
October 2009, Washington DC, USA

https://core.ac.uk/display/11829832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Computing minimal mappings

Fausto Giunchiglia, Vincenzo Maltese, Aliaksandtayeu

Dipartimento di Ingegneria e Scienza dell'Infornw® (DISI)
Universita di Trento
{fausto, maltese, autayeu}@disi.unitn.it

Abstract. Given two classifications, or lightweight ontologjeve compute the

minimal mapping, namely the subset of all possitberespondences, called
mapping elements, between them such that i) allothers can be computed
from them in time linear in the size of the inpataogies, and ii) none of them
can be dropped without losing property i). In thaper we provide a formal
definition of minimal mappings and define a timéi@ént computation algo-

rithm which minimizes the number of comparisonsweetn the nodes of the
two input ontologies. The experimental results slkosubstantial improvement
both in the computation time and in the number afpping elements which
need to be handled.

Keywords. Knowledge Organization Systems, ontology matchimnimal
mappings

1 Introduction

Given any two graph-like structures, e.g., datalsagk XML schemas, classifica-
tions, thesauri and ontologies, matching is usudbytified as the problem of finding
those nodes in the two structures which semanyicalirespond to one another. Any
such pair of nodes, along with the semantic ratatiip holding between the two, is
what we informally call anapping element

In the last few years a lot of work has been daméhcs topic both in the digital li-
braries [15, 20, 21, 22] and the computer scie@¢8,[4, 5, 6, 8, 9] communities, but
the problem is still largely unsolved even if sandial progress has been made [6].
This difficulty is not unexpected because a sotutio the matching problem would
amount to solving the semantic heterogeneity protdé the level of schematic meta-
data (e.g., ontologies).

In this paper we focus on a specific sub-problermatching, namely that of find-
ing minimal mappingsthat is, the subset of all possible correspondermadiedmap-
ping elementssuch that i) all the others can be computed filoam in time linear in
the size of the input graphs, and ii) none of tteam be dropped without losing prop-
erty i). We concentrate on lightweight ontologias,formally defined in [7], namely
on acyclic graph structures where each node idlémbby a natural language sentence
which can be used to compute the meaning of thd¢ s a Description Logic (DL)
formula, and where the formula associated to eacte s subsumed by the formula
of the node above. We assume that each mappingetemassociated with one of

the following semantic relations: disjointnesg,(equivalence=f), more specific £)
and less specificH), as computed for instance by semantic matchipg [5

The main advantage of minimal mappings is that gueythe minimal amount of
information that needs to be dealt with. Notice thés is a rather important feature as
the number of possible mapping elements can grotw apm with n andm being the
size of the two input ontologies. In particularnimial mappings become crucial with
large ontologies, e.g., DMOZ, with 10 1¢f nodes, where even relatively small sub-
sets of the number (1) of possible mapping elements are unmanageableinidl
mappings provide clear usability advantages. Mamsyesns and corresponding inter-
faces, mostly graphical, have been provided forntamagement of mappings but all
of them hardly scale with the increasing numbenades, and the resulting visualiza-
tions are rather messy [3]. Furthermore, the maanee of smaller sets makes the
work of the user much easier, faster and less erare [11].

The main contributions of this paper are a fornedindtion of minimaland, dually,
redundant mapping®vidence of the fact that the minimal mappingasisvexists and
it is unique and an algorithm for computing it. $lalgorithm has the following main
features:

1. It can be proved to be correct and complete, instese that it always com-
putes the minimal mapping;

2. ltis very efficient as it minimizes the number adlls to the node matching
function, namely to the function which computes teétion between two
nodes Notice that node matching in the general case atsaw logical rea-
soning (i.e., SAT reasoning) [5], and it may reguéxponential time;

3. As also described in the evaluation section (Sechp our algorithm com-
putes the mapping of maximum size (including redunidelements) as it
maximally exploits the information codified in tigeaph of the lightweight on-
tologies in input. This, in turn, avoids missingppang elements due to pit-
falls in the node matching functigrfer instance as a consequence of missing
background knowledge [8].

As far as we know very little work has been doner@problem of minimal map-
pings. In the context of digital libraries, Mardhahd Madhusudan [17] use a syntac-
tic element level matcher (based on string matghiognatch nodes of two concept
maps. This technique is proposed as a valid toslipport educational processes (e.g.
to match student maps against an instructor orte).sblution proposed is an adapta-
tion of the Similarity Flooding (SF) algorithm wiiidgs known to be very accurate in
the results. Unfortunately, experiments conducted {18] show that SF is very poor
in recall and results one of the worst in term$-aheasure. Kovacs and Micsik [16]
propose semantic matching as a valid support flmrimation retrieval. In their ap-
proach the query is matched against a collectiodazuments which are both de-
scribed in form of logical expressions (DNF clayséksing a set of heuristics, their
element level matcher identifies relevant documénts reasonable amount of time.
Unfortunately no evaluation is provided in termspoécision and recall. Hence, it is
not possible to appreciate the quality of the psagobsolution. In general the compu-
tation of minimal mappings can be seen as a speaiftance of the mapping infer-
ence problem [4]. Closer to our work, in [9, 10] #ie authors use Distributed De-
scription Logics (DDL) [12] to represent and reasahout existing ontology

mappings. They introduce a few debugging heuristtbich remove mapping ele-
ments which are redundant or generate inconsigerfcom a given set [10]. The
main problem of this approach, as also recognizetthd authors, is the complexity of
DDL reasoning [11]. In our approach, instead ofrimg redundant elements, we di-
rectly compute the minimal set. Among other thirms, approach allows us to mini-
mize the number of calls to node matching.

The paper is organized as follows. Section 2 pexid motivating example. Sec-
tion 3 provides the definition for redundant anchimial mappings, and it shows that
the minimal set always exists and it is unique tiact describes the algorithm while
Section 5 evaluates it. Finally, Section 6 drawseaonclusions and outlines the fu-
ture work.

2 A motivating example

Classifications are perhaps the most natural taotdns use to organize informa-
tion content. Information items are hierarchicalaaged under topic nodes moving
from general ones to more specific ones as longeago deep in the hierarchy. This
attitude is well known in Knowledge Organizationths principle of organizing from
the general to the specific [19], called synthélyctne get-specific principlen [1, 7,
23]. Consider the two fragments of classificatialepicted in Fig. 1. They are de-
signed to arrange more or less the same contenfrdoa different perspectives. The
second is a fragment taken from the Yahoo web airgt(category Computers and
Internet).

| Classification (1) , !
1 1 1
1 1 1 .
journals | programming and
: ! Q 1 : Q development
1 1 1
: development and : :
! programming @ ! ! e languages
| languages 1 |
1
| | |
1 1 |
1 I 1
1 1 1
1 1 1
1 1 1
1 1 1
1 I 1
1 ! 1

java e G java
@ magazines

Fig. 1. Two classifications

Following the approach described in [7] and expigitdedicated NLP techniques
tuned to short phrases (for instance, as desciibgd3]), each node label can be
translated in an unambiguous, propositional DL eggion. The resulting formulas
are reported in Fig. 2. Here each string denotesrgept (e.g., journals#1) and the
numbers at the end of the strings denote a spexificept constructed from a Word-
Net sense. Notice that the formula associateddb rade contains the formula of the
node above to capture the fact that the meanireaohi node is contextualized by the
meaning of its ancestor nodés a consequence, the backbone structure of tidi-res
ing lightweight ontologies is represented by subystion relations between nodes.

Ihttp://dir.yahoo.com/

__

(development#1 U programming#2)
M languages#3 M journals#1

languages#3 N
(programming#2 LI development#1)

Java#3 n e g ~ G java#3 n languages#3 N
(programming#2 U development#1)

magazines#1 M java#3 M
languages#3 M

M’ ={<A, G, 2>, <B, D,=>, <B, E,c>, <B, G,=Z>, <C, D,=>, <C, E,£>, <C, F,£>, <C, G,=>}
M ={<B, E, &>, <C, G,=>}

Fig. 2. The minimal and redundant mapping between twawgrght ontologies

Fig. 2 also reports the resulting mapping elemeitdice however that not all the
mapping elements have the same semantic valenceingtance, BD is a trivial
consequence of & and ED, and similarly for €F and G:G. We represent the
elements in the minimal mapping using solid linesl aedundant elements using
dashed lines. M’ is the set of maximum size (inglgdthe maximum number of re-
dundant elements) while M is the minimal. The peoblis how to compute the mini-
mal set in the most efficent way.

3 Redundant and minimal mappings
Adapting the definition in [7] we define a lightvgdit ontology as follows:

Definition 1 (Lightweight ontology). A lightweight ontology O is a rooted tree <N,
E, L™> where:
a) N is afinite set of nodes;
b) E is a set of edges on N;
c) L"is a finite set of labels expressed in a Propwsii DL language such that for
any node pl N, there is one and only one lah&IL";
d) li.i" = " with n, being the parent of.n.

The superscript F is used to emphasize that lavelsn a formal language. Fig. 2
above provides an example of (a fragment of) twghtlveight ontologies. We then
define mapping elements as follows:

Definition 2 (Mapping element). Given two lightweight ontologies Qand Q, a
mapping element m between them is a triplg 85 R>, where:

a) n;[ON; is a node in Q called the source node;

b) n,0ON; is a node in @ called the target node;

¢) RO{=, c, 3, 1} is the strongest semantic relation holding betwveeand n.

The partial order is such that disjointness isrgiev than equivalence which, in
turn, is stronger than subsumption (in both dimw), and such that the two sub-
sumption symbols are unordered. This in order tarresubsumption only when
equivalence does not hold or one of the two no@dérsgbinconsistent (this latter case
generating at the same time both a disjointnessasubsumption relation), and simi-
larly for the order between disjointness and edeivee. Notice that, under this order-
ing, there can be at most one mapping between bdes

The next step is to define the notion of redundaftye key idea is that, given a
mapping element snrp, R>, a new mapping elementsm,’, R’> is redundant with
respect to the first if the existence of the secoandl be asserted simply by looking at
the relative positions of;rwith ny’, and rp with n,’. In algorithmic terms, this means
that the second can be computed without runningithe expensive node matching
functions. We have identified four basic redundapatterns as follows

Fig. 3. Redundancy detection patterns

In Fig. 3, the blue dashed mappings are redundantt whe solid blue ones. The
bold red solid lines show how a semantic relatiooppgates. Let us discuss the ra-
tionale for each of the patterns:

e Pattern (1): each mapping element <C, B> is redundant w.r.t. <A, B;>.
In fact, C is more specific than A which is moreegific than B which is
more specific than D. As a consequence, by trait§itC is more specific
than D.

e Pattern (2): dual argument as in pattern (1).

e Pattern (3): each mapping element <C, D> is redundant w.r.t. <A, B,>.
In fact, we know that A and B are disjoint, thatsGnore specific than A and
that D is more specific than B. This implies thaa@ D are also disjoint.

e Pattern (4): Pattern 4 is the combinations of patterns (1) @d

Notice that patterns (1) and (2) are still validcmse we substitute subsumption
with equivalence. However, in this case we cannafugle the possibility that a
stronger relation holds between C and D. A triegample of where this is not the
case is provided in Fig. 4.

Fig. 4. Two non redundant mappings

On the basis of the patterns and the consideratibose we can define redundant
elements as follows. Here path(n) is the path ftloeroot to the node n.

Definition 3 (Redundant mapping element). Given two lightweight ontologies O
and Q, a mapping M and a mapping elementid with m’ = <C, D, R’> between
them, we say that m’ is redundant in M iff one leé following holds:
(1) If R”is =, AmOM with m = <A, B, R> and n¥ m’ such that R {c, =}, A
O path(C) and O path(B);
(2) If R is =, 3mOM with m = <A, B, R> and n¥ m’ such that R0 {2, =}, C
O path(A) and BJ path(D);
(3) If R"is 1, AmOM with m = <A, B, 1> and m# m’ such that A0 path(C)
and B0 path(D);
(4) If R"is =, conditions (1) and (2) must be satisfied.

See how Definition 3 maps to the four patternsio B. Fig. 2 in Section 2 pro-
vides examples of redundant elements. Definitiarta® be proved to capture all and
only the cases of redundancy.

Theorem 1 (Redundancy, soundness and completeness). Given a mapping M between
two lightweight ontologies Qand Q, amapping element nT] M is redundant if and
only if it satisfies one of the conditions of Défian 3.

The soundness argument is the rationale descritrethé patterns above. Com-
pleteness can be shown by constructing the cougterent that we cannot have re-
dundancy in the remaining cases. We can proceezhbgneration, negating each of
the patterns, encoded one by one in the condiappgaring in the Definition 3. The
complete proof is given in the appendix. Fig. 5uiles some examples of non re-
dundancy. The first, based on pattern (1), tellthas the existence of a link between
two nodes does not necessarily propagate to thentwies below. For example we
cannot derive that Canirne Dog from the set of axioms {Canime Mammal, Mam-
mal = Animal, Dog= Animal}, and it would be wrong to do so. The secopased on
pattern (3), shows that disjointness cannot proatgmthe target (or to the source)
one level up. For example we cannot derive that Dognimal only from {Dogc
Canine, Cat Animal, Canine1r Cat}. The third example, based on pattern (4)s tel
us that we cannot derive equivalence if the sonome C or target D is not between

the source and target nodes of the two equivaleraggpings. Notice that, by chance,
the other equivalence mapping holds.

Mammal AnimaJ
il M

E Canine Dog

Fig. 5. Some examples of non redundant mapping elements

The notion of redundancy allows us to formalizelo&on of minimal mapping as
follows:

Definition 4 (Minimal mapping). Given two lightweight ontologies {and Q, we
say that a mapping M between them is minimal iff:

a) AmOM such that m is redundant (minimality condition);

b) AM’ DM satisfying condition a) above (maximality condit).
A mapping element is minimal if it belongs to thenimal mapping.

Note that conditions (a) and (b) ensure that theinmal set is the set of maximum
size with no redundant elements. As an example sé&teM in Fig. 2 is minimal.
Comparing this mapping with M’ we can observe taelements in the set M’ - M
are redundant and that, therefore, there are ner cilpersets of M with the same
properties. In effect, <A, G> and <B, G=> are redundant w.r.t. <C, &> for pat-
tern (2); <C, Dg>, <C, E,=> and <C, Fg> are redundant w.r.t. <C, &> for pat-
tern (1); <B, D> is redundant w.r.t. <B, E5> for pattern (1). Note that M contains
far less mapping elements w.r.t. M’.

As last observation, for any two given lightweighttologies, the minimal map-
ping always exists and it is unique.

Theorem 2 (Minimal mapping, existence and uniqueness). Given two lightweight
ontologies @ and Q, there is always one and only one minimal mapjatyveen
them.

A proof is given in the appendix. Keeping in mime tpatterns in Fig. 3, the mini-
mal set can be efficiently computed using the feifg key intuitions:

1. Equivalence can be “opened” into two subsumptioppiteg elements;

2. Taking any two paths in the two ontologies, a madisubsumption mapping
element (in both directions of subsumption) is sement with the lowest
node in one path whose formula is subsumed by tther mode and the high-
est node in the other path which subsumes the flarmuhe other node.

3. Taking any two paths in the two ontologies, a madiglisjointness mapping
element is the one with the highest nodes in bathgsuch that their formu-
las satisfy disjointness.

4 Computing minimal and redundant mappings

The patterns described in the previous sectiorwalle not only to identify mini-
mal and redundant mapping elements, but they alggest how to significantly re-
duce the amount of calls to the node matchers.oBkihg for instance at pattern (2)
in Fig. 3, given a mapping element m = <A, we know in advance that it is not
necessary to compute the semantic relation holdaigeen A and any descendant C
in the sub-tree of B since we know in advance ithist 2. At the top level the algo-
rithm is organized as follows:

e Step 1: based on the ideas described in the previousoseaompute the set
of disjointness and subsumption mapping elemenishadreminimal modulo
equivalenceBY this we mean that they are minimal moduloaysing, when-
ever possible, two subsumption relations of oppoditection into a single
equivalence mapping element;

e Step 2: eliminate the redundant subsumption mapping elésném particular,
collapse all the pairs of subsumption elementofgfosite direction) between
the same two nodes into a single equivalence elermbis will result into the
minimal mapping

e Step 3: Compute the mapping of maximum size (includingimal and re-
dundant mapping elements) or, similarly, given amy nodes return the map-
ping element existing between the two nodes, orfalee that such element
does not exist. During this step the existence @édundant) element is com-
puted as the result of the propagation of the ehdsni@ the minimal mapping.
Notice that redundant equivalence mapping elemearisbe computed due to
the propagation of minimal equivalence elementsfawo minimal subsump-
tion elements of opposite directiodowever, it can be easily proved that in
the latter case they correspond to two partialljgurelant equivalence ele-
ments, where a partially redundant equivalence et¢ns an equivalence ele-
ment where one direction is a redundant subsumpti@pping element while
the other is not.

The first two steps are performed at matching timbile the third is activated
whenever the user wants to exploit the pre-computadping elements for instance
for their visualization. The following three subsens analyze the three steps above
in detail.

4.1 Step 1. Computing the minimal mapping modulo equivalence

The minimal mapping is computed by a functibreeM atch whose pseudo-code
is described in Fig. 6. M is the minimal set whilé and T2 are the input lightweight
ontologies.TreeMatch is called on the root nodes of T1 and T2. It igc@lly de-
pendent on the node matching functiowedeDigoint (Fig. 7) and NodeSubsum-
edBy (Fig. 8)which take two nodes nl1 and n2 and return a pesétivswer in case of
disjointness or subsumption, or a negative ansfiieiid not the case or they are not

able to establish it. Notice that these tfuactions hide the heaviest computational
costs; in particular their computation time is exgotial when the relation holds and,
exponential in the worst case, but possibly mudahefa when the relation does not
hold. The main motivation for this is that the nadatching problem, in the general
case, should be translated into disjointness osiguption problem in propositional

DL (see [5] for a detailed description).

10 node: struct of {cnode: wff; children: node[];}

20 T1,T2: tree of (node);

30 relationin {&, =, = 1},

40 elenent: struct of {source: node; target: node; rel: relation;};
50 M list of (elenent);

60 bool ean direction;

70 function TreeMatch(tree T1, tree T2)
80 {TreeDi sjoint(root(T1),root(T2));

90 direction := true;
100 TreeSubsunedBy(root (T1), root(T2));
110 direction := fal se;

120 TreeSubsunedBy(root (T2), root (T1));
130 TreeEqui v();
140 };

Fig. 6. Pseudo-code for the tree matching function

The goal, therefore, is to compute the minimal nigy minimizing the calls to
the node matching functions and, in particular miging the calls where the relation
will turn out to hold. We achieve this purpose wpqessing both trees top down. To
maximize the performance of the systéimgeMatch has therefore been built as the
sequence of three function calls: the first callt@eDigoint (line 80) computes the
minimal set of disjointness mapping elements, wtiike second and the third call to
TreeSubsumedBy compute the minimal set of subsumption mappingelgs in the
two directions modulo equivalence (lines 90-120ntide that in the second call,
TreeSubsumedBYy is called with the input ontologies with swappetés. These three
calls correspond to Step 1 above. Line 130 in geugo code of reeMatch imple-
ments Step 2 and it will be described in the nekisction.

TreeDigoint (Fig. 7) is a recursive function which finds aisjdintness minimal
elements between the two sub-trees rooted in nInanéollowing the definition of
redundancy, it basically searches for the firsjoitisness element along any pair of
paths in the two input trees. Exploiting the nestxlrsion ofNodeTreeDig oint in-
side TreeDigjoint, for any node nl in T1 (traversed top down, depst) Node-
TreeDigoint visits all of T2, again top down, depth firstodeTreeDigoint (called
at line 30, starting at line 60) keeps fixed tharse node nl and iterates on the whole
target sub-tree below n2 till, for each path, tighlst disjointness element, if any, is
found. Any such disjoint element is added only ihimal (lines 90-120). The condi-
tion at line 80 is necessary and sufficient foruredhncy. The idea here is to exploit
the fact that any two nodes below two nodes inwlvea disjointness mapping ele-
ment are part of a redundant element and, theretforgtop the recursion thus saving
a lot of time expensive callem calls withn andm the number of the nodes in the
two trees). Notice that this check needs to beoperéd on the full pathiNodeDis-

joint checks whether the formula obtained by the conijan®f the formulas associ-
ated to the nodes nl1 and n2 is unsatisfiable (IL1&€s170).

10 function TreeDi sjoint(node nl, node n2)

20 {c1l: node;

30 NodeTr eeDi sj oi nt (nl, n2);

40 foreach ¢l in GetChildren(nl) do TreeDi sjoint(cl, n2);
50 };

60 function NodeTreeDisjoi nt (node nl, node n2)
70 {n, c2: node;

80 foreach n in Path(Parent(nl)) do if (<n,n2, 1> 0O M then return;

90 i f (NodeDisjoint(nl, n2)) then
100 { AddMappi ngEl enent (<nl, n2, 1>);
110 return;

120 }s

130 foreach c2 in GetChildren(n2) do NodeTreeD sjoint(nl,c2);
140 };

150 function bool ean NodeD sj oi nt(node nl, node n2)

160 {if (Unsatisfiabl e(nmkConjunction(nl.cnode, n2.cnode))) then
return true;

170 else return false; };

Fig. 7. Pseudo-code for thereeDigoint function

TreeSubsumedBYy (Fig. 8) recursively finds all minimal mapping elements wher

the strongest relation between the nodes (sr dually, = in the second call; in the
following we will concentrate only on the first gal

10 function bool ean TreeSubsunedBy(node nl, node n2)
20 {cl,c2: node; LastNodeFound: bool ean;

30 if (<nl,n2, 1> 0 M then return fal se;

40 i f (!NodeSubsunedBy(nl, n2)) then

50 foreach cl in GetChildren(nl) do TreeSubsunedBy(cl, n2);
60 el se

70 {Last NodeFound : = fal se;

80 foreach c2 in GetChildren(n2) do

90 if (TreeSubsunmedBy(nl,c2)) then Last NodeFound := true;
100 if (!LastNodeFound) then AddSubsunptionMappi ngEl enent (nl, n2);
120 return true;

140 1

150 return false;

160 };

170 function bool ean NodeSubsunedBy(node nl, node n2)

180 {if (Unsatisfiabl e(nkConjunction(nl.cnode, negate(n2.cnode)))) then
return true;

190 else return false; };

200 function AddSubsunpti onMappi ngEl enent (node nl, node n2)
210 {if (direction) then AddMappi ngEl enent (<nl, n2, =>);
220 el se AddMappi ngEl enent (<n2, n1, =2>); };

Fig. 8. Pseudo-code for ther eeSubsumedBYy function

Notice thatTreeSubsumedByYy assumes that the minimal disjointness elements are
already computed; as a consequence, at line 3eitks whether the mapping ele-
ment between the nodes nl and n2 is already imthiemal set. If this is the case it
stops the recursion. This allows computing thengfeo disjointness relation rather
than subsumption when both hold (namely with aomsistent node). Given n2, lines
40-50 implement a depth first recursion in thetfirge till a subsumption is found.
The test for subsumption is performed by functddodeSubsumedBYy that checks
whether the formula obtained by the conjunctionthe formulas associated to the
node nl and the negation of the formula for n2nisatisfiable (lines 170-190). Lines
60-140 implement what happens after the first soipgion is found. The key idea is
that, after finding the first subsumptiofreeSubsumedBy keeps recursing down the
second tree till it finds the last subsumption. Witkis happens, the resulting map-
ping element is added to the minimal mapping (li68). Notice that botiNodeDis-
joint andNodeSubsumedBY call the functiorUnsatisfiable which embeds a call to a
SAT solver.

To fully understandr' reeSubsumedBy, the reader should check what happens in
the four situations in Fig. 9. In case (a) thetfiteration of the TreeSubsumedBy
finds a subsumption between A and C. Since C hashildren, it skips lines 80-90
and directly adds the mapping element <A G, to the minimal set (line 100). In
case (b), since there is a child D of C the albariiterates on the pair A-D (lines 80-
90) finding a subsumption between them. Since theeeno other nodes under D, it
adds the mapping element <A, B% to the minimal set and returns true. Therefore
LastNodeFound is set to true (line 90) and the rimgpelement between the pair A-C
is recognized as redundant. Case (c) is similae difference is thalreeSubsum-
edBy will return false when checking the pair A-D (li88), thanks to previous com-
putation of minimal disjointness mapping elememisd therefore the mapping ele-
ment <A, C,=> is recognized as minimal. In case (d) the alariiterates after the
second subsumption mapping element is identifigfitst checks the pair A-C and it-
erates on A-D concluding that subsumption doeshotd between them (line 40).
Therefore, it recursively calls TreeSubsumedBY ketwB and D. In fact, since <A,
C, => will be recognized as minimal, it is not worthecking <B, C,=> for pattern
(1). As a consequence <B, B> is recognized as minimal together with <A,G.

Fig. 9. Examples of applications of tHeeeSubsumedBy

Five observations. The first is that, even if, @llerTreeMatch implements three
loops instead of one, the wasted (linear) timeigely counterbalanced by the expo-
nential time saved by avoiding a lot of uselestsdalthe SAT solver. The second is
that, when the input trees T1 and T2 are two noflesgM atch behaves as a node
matching function which returns the semantic retatholding between the input

nodes. The third is that the call ToeeDig oint before the two calls tdreeSubsum-
edBy allows us to implement the partial order on relasi defined in the previous
section. In particular it allows returning only &jdintness mapping element when
both disjointness and subsumption hold (see D&mi2 of mapping). The fourth is
that, in the body offreeDigoint, the fact that the two sub-trees where disjoirgnes
holds are skipped is what allows not only implerimenthe partial order (see the pre-
vious observation) but also saving a lot of usetedis to the node matching functions
(line 2). The fifth and last observation is tha¢ iimplementation oTreeMatch cru-
cially depends on the fact that the minimal elem@fthe two directions of subsump-
tion and disjointness can be computed independémibylulo inconsistencies).

4.2 Step 2: Computing the minimal mapping

The output of Step 1 is the set of all disjointnasgl subsumption mapping ele-
ments which are minimal modulo equivalence. Thalfstep towards computing the
minimal mapping is that of collapsing any two subsgtion relations, in the two di-
rections, holding between the same two nodes igiogle equivalence relation. The
tricky part here is that equivalence is in the miai set only if both subsumptions are
in the minimal set. We have three possible situatio

1. None of the two subsumptions is minimal (in thesgethat it has not been
computed as minimal in Step 1): nothing changesraither subsumption
nor equivalence is memorized as minimal;

2. Only one of the two subsumptions is minimal white bther is not minimal
(again according to Step 1): this case is solvekegping only the subsump-
tion mapping as minimal. Of course, during Stegex(below) the necessary
computations will have to be done in order to stiowhe user the existence
of an equivalence relation between the two nodes;

3. Both subsumptions are minimal (according to Stepri}this case the two
subsumptions can be deleted and substituted witingle equivalence ele-
ment.

Notice that Step 3 can be computed very easilynie finear with the number of
mapping elements output of Step 1: it is sufficiemtheck for all the subsumption
elements of opposite direction between the samenwdes and to substitute them
with an equivalence element. This is performeduncfionTreeEquiv in Fig. 6.

4.3 Step 3: Computing the mapping of maximum size

For brevity we concentrate on the following problegiven two lightweight on-
tologies T1 and T2 and the of minimal mapping M poite the mapping element be-
tween two nodes nlin T1 and n2 in T2 or the fhat ho element can be computed
given the current available background knowledgerré€sponding pseudo-code is
given in Fig. 10.ComputeMappingElement is structurally very similar to the
NodeMatch function described in [5], modulo the kkfference that no calls to SAT
are neededComputeM appingElement always returns the strongest mapping ele-
ment. The test for redundancy performedlBgedundant reflects the definition of
redundancy provided in Section 3 above. For lackpEce, we provide below only
the code which does the check for the first paftdra others are analogous. Given for
example a mapping element <nl, a2, condition 1 is verified by checking whether

in M there is an element <c1, a2> or <c1, c2=> with c1 ancestor of n1 and c2 de-
scendant of n2. Notice th&omputeM appingElement calls IsRedundant at most
three times and, therefore, its computation timénisar with the number of mapping
elements in M.

10 function mappi ng Conput eMappi ngEl enent (node nl, node n2)
20 {isLG isMG bool ean;

30 if ((<nl,n2, 1> € M || IsRedundant(<nl,n2, L>)) then
return <nl, n2, 1L>;
40 if (<nl,n2,=> € M then return <nl, n2, =>;
50 if ((<nl,n2,=> € M || IsRedundant(<nl,n2,=>)) then isLG := true;
60 if ((<nl,n2,2> € M || IsRedundant(<nl,n2, 2>)) then isMG := true;
70 if (isLG & isM3 then return <nil, n2, =>;
80 if (isLG then return <nl, n2, =>;
90 if (isM3 then return <nl, n2, 3>;
100 return NULL;
110 };

120 function bool ean | sRedundant (mappi ng <nl, n2, R>)
130 {switch (R

140 {case =: if (VerifyConditionl(nl,n2)) then return true; break;
150 case =: if (VerifyCondition2(nl,n2)) then return true; break;
160 case L: if (VerifyCondition3(nl,n2)) then return true; break;

170 case =: if (VerifyConditionl(nl, n2) &&
VerifyCondition2(nl,n2)) then return true;

180 };
190 return false;
200 };

210 function bool ean VerifyConditionl(node nl, node n2)
220 {c1,c2: node;
230 foreach cl1 in Path(nl) do

240 foreach c2 in SubTree(n2) do

250 if ((<cl,c2,e> €M || (<cl,c2,=> €M) then return true;
260 return false;

270 };

Fig. 10. Pseudo-code to compute a mapping element

5 Evaluation

The algorithm presented in the previous sectioasus call it MinSMatch, has
been implemented by taking the node matching restof the state of the art matcher
S-Match [5] and by changing the way the tree stmacis matched. The evaluation
has been performed by directly comparing the resafliMinSMatch and S-Match on
several real-world datasets. All tests have beefoeed on a Pentium D 3.40GHz
with 2G of RAM running Windows XP SP3 operating teys with no additional ap-
plications running except the matching system. Boytstems were limited to allocat-
ing no more than 1G of RAM. The tuning parameteesenset to the default values.
The selected datasets had been already used ilysesvaluations, see [14]. Some

of these datasets can be found at Ontology Aligrireealuation Initiative web site
The first two datasets describe courses and witlabedCornell andwashington, re-
spectively. The second two come from the arts doraad will be referred to ako-
pia andlcon, respectively. The third two datasets have bedracted from the
Looksmart, Google and Yahoo! directories and wallrbferred to aSource andrlar-
get. The fourth two datasets contain portions efttho business directories eCI@ss
and UNSPS€and will be referred to asclass andJnspsc. Table 1 describes some
indicators of the complexity of these datasets.

Dat aset pair Node count Max depth Aver age
branchi ng factor

1| Cornell/Washington 34/ 39 3/3 5.50/4.75

2 Topi a/l con 542/ 999 2/9 8.19/ 3. 66

3 Sour ce/ Tar get 2857/ 6628 11/ 15 2.04/1.94

4 Ecl ass/ Unspsc 3358/ 5293 4/ 4 3.18/9.09

Table 1. Complexity of the datasets

Consider Table 2. The reduction in the last coluscalculated asl¢ nft),
wheremis the number of elements in the minimal set @anslthe total number of ele-
ments in the mapping of maximum size, as computetMinSMatch. As it can be
easily noticed, we have a significant reductiorthe range 68-96%.

S-Match M nShat ch
Total mappi ng Total mappi ng M ni mal mappi ng Reduction, %
el ements (t) el ements (t) elenents (m
1 223 223 36 83. 86
2 5491 5491 243 95. 57
3 282638 282648 30956 89. 05
4 39590 39818 12754 67.97

Table 2. Mapping sizes.

The second interesting observation is that in T&ble the last two experiments,
the number of total mapping elements computed bySatch is higher (compare
the second and the third column). This is due éof#lct that in the presence of one of
the patterns, MinSMatch directly infers the existef a mapping element without
testing it. This allows MinSMacth, differently fro®-Match, to avoid missing ele-
ments because of failures of the node matchingtiome (because of lack of back-
ground knowledge [8]). One such example from oypeexnents is reported below
(directories Source and Target):

\Top\Computers\internet\Broadcasting\Video Shows
\Top\Computing\Internet\Fun & Games\Audio & VideaiMes

We have a minimal mapping element which states \id¢o Shows= Movies.
The element generated by this minimal one, whichaistured by MinSMatch and

2 http://oaei.ontologymatching.org/2006/directory/
3 http://www.eclass-online.com/
4 http://www.unspsc.org/

missed by S-Match (because of the lack of backgidumowledge about the relation
between ‘Broadcasting’ and ‘Movies’) states thav&icastings Movies.

To conclude our analysis, Table 3 shows the redudti computation time and
calls to SAT. As it can be noticed the time rethrt are substantial, in the range
16% - 59%, but where the smallest savings are éoy 8mall ontologies. The inter-
ested reader can refer to [5, 14] for a detaileglitpiive and performance evaluation
of SMatch w.r.t. other state of the art matchirgpathms.

Run Tine, ns SAT calls
S- Mat ch M nSwvat ch | Reducti on, S-Mat ch M nSwat ch | Reducti on,
% %
1 472 397 15. 88 3978 2273 42. 86
2 141040 67125 52. 40 1624374 616371 62. 05
3 | 3593058 1847252 48. 58 56808588 19246095 66. 12
4 | 6440952 2642064 58. 98 53321682 17961866 66. 31

Table 3. Run time and SAT problems

6 Conclusion

In this paper we have provided a definition anaeyvast algorithm for the com-
putation of the minimal mapping between two lighigte ontologies and for the fol-
low-up computation of the mapping of maximum sip@m user request (for instance
in order to visualize them). We have evaluatedéselting system with respect to the
state-of-the-art matching system S-Match [5]. Theults show a substantial im-
provement in the (much lower) computation timethe (much lower) number of
elements which need to be stored and handled atldeirthigher) total number of
mapping elements which are computed. The last phenon is a consequence of the
fact that, by minimizing the number of calls to thede matching functions and by
maximally exploiting the information codified indhtree structure of the two input
ontologies, our algorithm minimizes the impactlod tack of background knowledge.

The future work includes the development of a flétaiser interface which ex-
ploits minimal mappings thus avoiding the messyaiizations which are generated
whenever the number of mapping elements growsalsetthe experimentation with
large scale mapping tasks. At the moment we arsidering applying the system to
various large Knowledge Organization Systems (&l4L T, AGROVOC, LCSH).

References

1. F. Giunchiglia, M. Marchese, |. Zaihrayeu, 2006.césting Classifications into Light-
weight Ontologies. Journal of Data Semantics 8 5@p31.

2. P. Shvaiko, J. Euzenat, 2007. Ontology MatchBpringer-Verlag New York, Inc. Se-
caucus, NJ, USA.

3. P. Shvaiko, J. Euzenat, 2008. Ten Challenges ftol@gy Matching. In Proceedings of the
7th International Conference on Ontologies, DataBasnd Applications of Semantics
(ODBASE 2008).

4. J. Madhavan, P. A. Bernstein, P. Domingos, A. YleMa 2002. Representing and Rea-
soning about Mappings between Domain Models. At National Conference on Arti-
ficial Intelligence (AAAI 2002).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

F. Giunchiglia, M. Yatskevich, P. Shvaiko, 2007nfaatic Matching: algorithms and im-
plementation. Journal on Data Semantics, X, 2007.

C. Caracciolo, J. Euzenat, L. Hollink, R. Ichise,I#aac, V. Malaisé, C. Meilicke, J. Pane,
P. Shvaiko, 2008. First results of the OntologygAtnent Evaluation Initiative 2008.
F.Giunchiglia, . Zaihrayeu, 2007. Lightweight Olatgies. In The Encyclopedia of Data-
base Systems, to appear. Springer, 2008.

F.Giunchiglia, P. Shvaiko, M. Yatskevich, 2006. &igering missing background knowl-
edge in ontology matching. Proceedings of the Eitftopean Conference on Atrtificial In-
telligence (ECAI 2006), pp. 382—-386.

H. Stuckenschmidt, L. Serafini, H. Wache, 2006. $o@éng about Ontology Mappings.
Proceedings of the ECAI-06 Workshop on Contextuapri@sentation and Reasoning,
2006.

C. Meilicke, H. Stuckenschmidt, A. Tamilin, 2008aproving automatically created map-
pings using logical reasoning. In the proceedirfgh® 1st International Workshop on On-
tology Matching OM-2006, CEUR Workshop ProceediWigs 225.

C. Meilicke, H. Stuckenschmidt, A. Tamilin, 2008ed&oning support for mapping revi-
sion. Journal of Logic and Computation, 2008.

A. Borgida, L. Serafini. Distributed Description ¢ies: Assimilating Information from
Peer Sources. Journal on Data Semantics pp. 153-184

I. Zaihrayeu, L. Sun, F. Giunchiglia, W. Pan, Q, Bu Chi, and X. Huang, 2007. From
web directories to ontologies: Natural languagecessing challenges. If"@nternational
Semantic Web Conference (ISWC 2007).

P. Avesani, F. Giunchiglia and M. Yatskevich, 2085Large Scale Taxonomy Mapping
Evaluation. In Proceedings of International Sentamieb Conference (ISWC 2005),
pp. 67-81.

M. L. Zeng, L. M. Chan, 2004. Trends and IssueEstablishing Interoperability Among
Knowledge Organization Systems. Journal of the Aecaer Society for Information Sci-
ence and Technology, 55(5) pp. 377-395.

L. Kovacs. A. Micsik, 2007. Extending Semantic Matg Towards Digital Library Con-
texts. Proceedings of the 11th European Conferendeigital Libraries (ECDL 2007), pp.
285-296.

B. Marshall, T. Madhusudan, 2004. Element matciingoncept maps. Proceedings of the
4th ACM/IEEE-CS Joint Conference on Digital Libesi(JCDL 2004), pp.186-187.

M Yatskevich, 2003. Preliminary evaluation of sclzematching systems. Technical Re-
port, DIT-03-028, University of Trento, (2003).

B. Hjgrland, 2008. What is Knowledge Organizati&®©]?. Knowledge Organization. In-
ternational Journal devoted to Concept Theory, fiaation, Indexing and Knowledge
Representation 35(2/3) pp. 86-101.

D. Soergel, 1972. A Universal Source Thesaurus @mssification Generator. Journal of
the American Society for Information Science 23(), 299-305.

D. Vizine-Goetz, C. Hickey, A. Houghton, and R. fqson. 2004. Vocabulary Mapping
for Terminology Services. Journal of Digital Infoation, Volume 4, Issue 4.

M. Doerr, 2001. Semantic Problems of Thesaurus Mapgdournal of Digital Information,
Volume 1, Issue 8.

F. Giunchiglia, I. Zaihrayeu, U. Kharkevich, 2007%rRalizing the get-specifc document
classification algorithm. In 11th European Confeemn Research and Advanced Tech-
nology for Digital Libraries (ECDL2007). LNCS Spger Verlag.

Appendix: proofs of the theorems

Theorem 1 (Redundancy, soundness and completeness). Given a mapping M between
two lightweight ontologies Qand Q, amapping element nT] M is redundant if and
only if it satisfies one of the conditions of Defian 3.

Proof:

SoundnessThe argumentation provided in section 3 as anate for the patterns al-
ready provides a full demonstration for soundness.

CompletenesdNe can demonstrate the completeness by showaigvh cannot have
redundancy in the cases which do not fall in thed#t@ns listed in Definition 3. We
proceed by enumeration, negating each of the donditThere are some trivial cases
we can exclude in advance:

Fig. 11. Some trivial cases which do not fall in the redamcly patterns

- The trivial case in which m’ is the only mapping@mlent between the lightweight
ontologies. See Fig. 11 (a);

- Incomparable symbols. The only cases of dependenoyss symbols are cap-
tured by conditions (1) and (2) in Definition 3, erb equivalence can be used to
derive the redundancy of a more or less specifippimg element. This is due to
the fact that equivalence is exactly the combimatbmore and less specific. No
other symbols can be expressed in terms of thertfidnis means for instance
that we cannot establish implications between ameht with more specific and
one with disjointness. In Fig. 11 (b) the two el@tsedo not influence each other;

- All the cases of inconsistent nodes. See for imgtdfig. 11 (c). If we assume the
element <A, B, £"> to be correct, then according to pattern (1) negoping ele-
ment between C and D should be <C,d>. However, in case of inconsistent
nodes the stronger semantic relatioholds. The algorithm presented in section 4
correctly returns. in these cases;

- Cases of underestimated strength not covered bpréangous cases, namely the
cases in which equivalence holds instead of theake subsumption. Look for
instance at Fig. 11 (d). The two subsumptions in BA=> and <E, Fg> must be
equivalences. As a consequence, <CsBis redundant for pattern (4). In fact,
the chain of subsumptions&... cCc...cAcBc ..cDc ... c Fallows
to conclude that EE F holds and therefore E F. Symmetrically, we can con-

clude that A= B. Note that the mapping elements <A,2; and <E, Fz> are
minimal. We identify the strongest relations by gagation (at step 3 of the pro-
posed algorithm, as described at the beginningdicn 4).

We refer to all the other cases asitteaningful cases

Condition (1):its negation is when R “c” or A [0 path(C) or DO path(B). The cases
in which R= “c” are shown in Fig. 12. For each case, the provid¢idnale shows
that available axioms cannot be used to derive D from A c B. The remaining

meaningful cases, namely only when R==,“are similar.

A Opath(C) | D Opath(B) | Rationale
(@) NO YES Cc..cADc..cB,Ac Bcannot derive = D
(b) YES NO Ac ..cC,Bt..cD,Ac Bcannot derive = D
() YES YES Ac ..cC,Dc .. c B, Ac Bcannot derive = D

Fig. 12. Completeness of condition (1)

Condition (2):it is the dual of condition (1).

Condition (3):its negation is when R “ 1"or A 0 path(C) or B path(D). The cases
in which R= “1" are shown in Fig. 13. For each case, the provid¢idnale shows
that available axioms cannot be used to derive O from A 1 B. There are no
meaningful cases for R “ 1".

A Opath(C) | B Opath(D) | Rationale
() NO YES Cc..cABc..cD, AL Bcannot deriveE L D
(b) YES NO Ac ..cC,Dc .. c B, AL Bcannot derive 1L D
(c) YES YES Ac ..cC,Dc .. c B, AL Bcannot derive 1L D

Fig. 13. Completeness of condition (3)

Condition (4):it can be easily noted from Fig. 3 that the redumictlements identified
by pattern (4) are exactly all the mapping elemerits <C, D,=> with source C and
target D respectively between (or the same ofsthece node and target node of two
different mapping elements m = <A, 8% and m” = <E, F=>. This configuration
allows to derive from m and m” the subsumptionstie two directions which
amount to the equivalence. The negation of comdiias when R+ “=" in m or m”

or A [path(C) or DO path(B) or CO path(E) or HJ path(D). In almost all the cases
(14 over 15) in which R “=" we just move the source C or the target D outtidse
ranges. For sake of space we show only some of casds in Fig. 14. The rationale
provided for cases (a) and (b) shows that we cadeiite C= D from A= B and E

= F. The only exception (the remaining 1 case over f&presented by case (c), is
when A 0 path(C) and DO path(B) and CJ path(E) and FJ path(D). This case
however is covered by condition 4 by inverting tbke of m and m”. The remaining
cases, namely when-R"="in m or m”, are not meaningful.

A O path(C) D O path(B) C Opath(E) | FOpath(D) | Rationale

Ec ...cC,Ct ... cA
Bc ..cF Fc..cD,
(@) NO NO NO YES A = B andE = F cannot
derive c = D (we can
only derivec c D).

Cc ..cE Ec..cA
Bc ..cF Fc..cD,
(b) NO NO YES YES A = B andE = F cannot
derive c = D (we can
only derivec c D).

Covered by condition
(©) YES YES YES YES (4) inverting the roleg
of mand m”

Fig. 14. Completeness of condition (4)

This completes the demonstration.

Theorem 2 (Minimal mapping, existence and uniqueness). Given two lightweight
ontologies @ and Q, there is always one and only one minimal mapfiatyveen
them.

Pr oof:

The proof is based on two main observations:

Observation 1 A redundant mapping element @i’ M’ can be caused by one and
only one of the redundancy conditions in Definit@&nln other words, redundancy
conditions are mutually exclusive. In particulapaat from the cases of inconsistent
nodes, subsumption and disjointness mutually egcthdmselves. For equivalence,
note that for condition 4 in Definition 3 a mappiaement m cannot satisfy both con-
dition 1 and 2. In fact, since ghm’, it cannot be A7path(C) and D/7path(B) (see
condition 1) and C// path(A) and B// path(D) at the same time (see condition 2).
Conditions 1 and 2 are both needed to build theingint equivalence.

Observation 2We can definite a strict partial order over mapgielements for each
relation in {c,=,.}: given two lightweight ontologies ;&and Q, a mapping M be-
tween them and two distinct mapping elements nv,/if with m = <A, B, R> and

m’ = <C, D, R’>, we say that m’ < m iff one of ttiellowing holds:

(1) fR'is 5, R J{z, =}, A [Jpath(C) and D//path(B);
(2) IfRis 7, R {3z, =}, C [Jpath(A) and B/path(D);
(3) If R’ and R are, A [7path(C) and B/path(D);

It can be easily noticed that in all the three casbove < enforces a partial order,
since, given two mapping elements with source arget on the same paths, they are
ordered when their structural configuration is like the corresponding patterns in
Fig. 3, while they are not ordered when the configjon is different or are on differ-
ent paths. The fact that the ordering defined idighis a direct consequence of the
tree structure of lightweight ontologies.

It is clear that under the strict partial order adaf we “open” equivalence relation-

ships in the two subsumptions of opposite diregtiba minimal mapping is the set of
all the maximal elements of the partially orderet sshere subsumptions of opposite
direction involving the same nodes are collapsed & (minimal) equivalence map-

ping element. For the properties of partial ordéhés set always exists and it is
unique.o

