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Abstract. In this paper the Dirichlet problem for pluriholomorphic functions
of two complex variables is investigated. The key point is the relation between
pluriholomorphic functions and pluriharmonic functions. The link is consti-
tuted by the Fueter-regular functions of one quaternionic variable. Previous
results about the boundary values of pluriharmonic functions and new results
on L2 traces of regular functions are applied to obtain a characterization of
the traces of pluriholomorphic functions.

1. Introduction

We consider some boundary value problems in two complex variables on a class
of pseudoconvex domains containing the unit ball B. The class consists of domains
Ω that satisfy a L2(∂Ω)-estimate (cf. §3.1). We conjecture that the estimate always
holds on a strongly pseudoconvex domain in C2.

We relate two boundary value problems on Ω by means of quaternionic ψ-regular
functions, a variant of Fueter-regular functions (see §2 for precise definitions) stud-
ied by many authors (see for instance [13, 16, 18]). We are interested in the Dirichlet
problems for pluriholomorphic functions and for pluriharmonic functions. Pluri-
holomorphic functions are solutions of the system ∂2g

∂z̄i∂z̄j
= 0 for 1 ≤ i, j ≤ 2 (see

e.g. [6, 7, 8]). The Dirichlet problem for this system is not well posed and the ho-
mogeneous problem has infinitely many independent solutions (see also [1, 2, 3, 4]).
As noted in [8], the Dirichlet problem for pluriharmonic functions has a different
character, related to strong ellipticity: the solution, if it exists, is unique and the
system can be splitted into equations for the real and imaginary parts of g.

The key point is that if f = f1+f2j is ψ-regular, then f1 is pluriholomorphic (and
harmonic) if and only if f2 is pluriharmonic. Then we can apply the results on the
traces of pluriharmonic functions given in [5] and [15] and obtain a characterization
of the traces of pluriholomorphic functions.

We begin by giving an application of an existence principle in Functional Analysis
proved by Fichera in the 50’s (cf. [9, 10] and [5]§12). We obtain a result on the
boundary values of class L2(∂Ω) of ψ-regular functions (Theorem 1): every function
f1 which belongs to the class L2(∂Ω) together with its normal derivative ∂nf1 is
the first complex component of a ψ-regular function on Ω, of class L2(∂Ω). On the
unit ball B, where computation of L2-estimates can be more precise, the result is

1991 Mathematics Subject Classification. 32A30, 31C10, 32W50, 30G35, 35J25.
Key words and phrases. pluriholomorphic functions, pluriharmonic functions, quaternionic

regular functions.
Partially supported by MIUR (Project “Proprietà geometriche delle varietà reali e complesse”)
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optimal. We show that the condition on the normal derivative cannot be relaxed
and therefore the operation of ψ-regular conjugation is not bounded in the harmonic
Hardy space h2(B).

In §4 we apply the preceding theorem to show that every domain that satisfies
the L2(∂Ω)-estimate is pseudoconvex.

In §5 we give the application of Theorem 1 to the Dirichlet problem for pluriholo-
morphic functions. We generalize some results obtained by Detraz [6] and Dzhuraev
[7] on the unit ball (cf. also [1, 2, 3, 4, 8]). We show that if Ω satisfies the L2(∂Ω)-
estimate, a function h ∈ L2(∂Ω) with ∂nh ∈ L2(∂Ω) is the trace of a harmonic
pluriholomorphic function on Ω if and only if it satisfies an orthogonality condition
(see Corollary 1 for the precise statement). On the unit ball, this condition can be
expressed in terms of spherical harmonics (Proposition 3).

2. Notations and definitions

Let Ω = {z ∈ Cn : ρ(z) < 0} be a bounded domain with C∞-smooth boundary
in C2. We assume ρ ∈ C∞ on C2 and dρ 6= 0 on ∂Ω. For every complex valued
function g ∈ C1(Ω), we can define on a neghbourhood of ∂Ω the radial derivatives

∂ng =
∑

k

∂g

∂zk

∂ρ

∂z̄k

1
|∂ρ| and ∂ng =

∑

k

∂g

∂z̄k

∂ρ

∂zk

1
|∂ρ| ,

where |∂ρ|2 =
∑n

k=1

∣∣∣∣
∂ρ

∂zk

∣∣∣∣
2

. By means of the Hodge ∗-operator and the Lebesgue

surface measure dσ, we can also write ∂ngdσ = ∗∂g|∂Ω
. Let L be the tangential

Cauchy-Riemann operator

L =
1
|∂ρ|

(
∂ρ

∂z̄2

∂

∂z̄1
− ∂ρ

∂z̄1

∂

∂z̄2

)
.

A function g ∈ C1(∂Ω) is a CR-function if and only if Lg = 0 on ∂Ω.
We will denote by Phol(Ω) the space of pluriholomorphic functions on Ω (cf.

[6, 7, 8]). They are C2(Ω) solutions of the system

∂2g

∂z̄i∂z̄j
= 0 on Ω (1 ≤ i, j ≤ 2).

We can identify the space C2 with the set H of quaternions by means of the
mapping that associates the pair (z1, z2) = (x0 + ix1, x2 + ix3) with the quaternion
q = z1 + z2j = x0 + ix1 + jx2 + kx3 ∈ H. A quaternionic function f = f1 + f2j ∈
C1(Ω) is (left) regular on Ω (in the sense of Fueter) if

Df =
∂f

∂x0
+ i

∂f

∂x1
+ j

∂f

∂x2
+ k

∂f

∂x3
= 0 on Ω.

Given the “structural vector” ψ = (1, i, j,−k), f is called (left) ψ-regular on Ω if

D′f =
∂f

∂x0
+ i

∂f

∂x1
+ j

∂f

∂x2
− k

∂f

∂x3
= 0 on Ω.

We refer to the papers of Sudbery[19], Shapiro and Vasilevski[18] and Nōno[13]
for the theory of regular functions. In complex components, ψ-regularity is equiv-
alent to the equations

∂f1

∂z̄1
=

∂f2

∂z2
,

∂f1

∂z̄2
= −∂f2

∂z1
.
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Note that every holomorphic map (f1, f2) on Ω defines a ψ-regular function
f = f1 + f2j and that the complex components are both holomorphic or both
non-holomorphic. Every regular or ψ-regular function is harmonic and if Ω is
pseudoconvex, every complex harmonic function is the complex component of a
ψ-regular function on Ω.

3. L2-solutions and ψ-regular functions

3.1. L2 boundary estimate. Now we suppose that on Ω the following L2(∂Ω)-
estimate is satisfied: there exists a positive constant C such that

(*) |(f, Lg)| ≤ C‖∂nf‖‖∂ng‖
for every complex harmonic functions f, g on Ω, of class C1 on Ω. Here (f, g)
denotes the L2(∂Ω)-product and ‖f‖ the L2(∂Ω)-norm.

Let B be the unit ball of C2 and S = ∂B. The space L2(S) is the sum of the
pairwise orthogonal spaces Hp,q, whose elements are the harmonic homogeneous
polynomials of degree p in z1, z2 and q in z̄1, z̄2 (cf. for example Rudin[17]§12.2).
The spacesHp,q can be identified with the spaces of the restrictions of their elements
to S (spherical harmonics).

Proposition 1. On the unit ball B of C2 the estimate (*) is satisfied with constant
C = 1.

Proof. It suffices to prove the estimate for a pair of polynomials f ∈ Hs,t, g ∈ Hp,q,
since the orthogonal subspaces Hp,q are eigenspaces of the operators ∂n and ∂n. We
can restrict ourselves to the case s = p + 1 > 0 and q = t + 1 > 0, since otherwise
the product (f, Lg) is zero. We have

|(f, Lg)|2 ≤ ‖f‖2‖Lg‖2 = ‖f‖2(L∗Lg, g) = ‖f‖2(−LLg, g) = ‖f‖2(p + 1)q‖g‖2
since the L2(S)-adjoint L∗ is equal to −L (cf. [17, §18.2.2]) and LL = −(p + 1)qId
when q > 0. On the other hand,

‖∂nf‖‖∂ng‖ = (p + 1)q‖f‖‖g‖.
and the estimate is proved. ¤
Remark 1. We will prove in §4 that the estimate (*) implies the pseudoconvexity
of Ω. We conjecture that in turn the estimate is always valid on a (strongly) pseudo-
convex domain in C2.

3.2. An existence principle. We recall an existence principle in Functional Anal-
ysis proved by Fichera in the 50’s (cf. [9, 10] and [5]§12).

Let M1 and M2 be linear homomorphisms from a vector space V over the real
(complex) numbers into the Banach spaces B1 and B2, respectively. Let Ψ1 be a
linear functional defined on B1. Then a necessary and sufficient condition for the
existence of a linear functional Ψ2 defined on B2 such that

Ψ1(M1(v)) = Ψ2(M2(v)) ∀ v ∈ V

is that there exists a constant K such that for all v ∈ V ,

‖M1(v)‖ ≤ K‖M2(v)‖.
Moreover, the following estimate holds:

inf
Ψ0∈N

‖Ψ2 + Ψ0‖ ≤ K‖Ψ1‖,
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where N = {Ψ0 ∈ B∗
2 | Ψ0(M2(v)) = 0 ∀v ∈ V }.

3.3. Application to ψ-regular functions. We apply the existence principle to
the following setting. Let V be the space Harm1(Ω) of complex valued harmonic
functions on Ω, of class C1 on Ω. We consider the Hilbert space

W 1
n(∂Ω) = {f ∈ L2(∂Ω) | ∂nf ∈ L2(∂Ω)}

w.r.t. the product
(f, g)W 1

n
= (f, g) + (∂nf, ∂ng)

and the conjugate space

W
1

n(∂Ω) = {f ∈ L2(∂Ω) | ∂nf ∈ L2(∂Ω)}
with product

(f, g)
W

1
n

= (f, g) + (∂nf, ∂ng).

Here we identify f ∈ L2(∂Ω) with its harmonic extension on Ω. For every α >

0, a function f ∈ C1+α(∂Ω) belongs to W 1
n(∂Ω) and to W

1

n(∂Ω) . By means
of the identification of L2(∂Ω) with its dual, we get dense, continuous injections
W 1

n(∂Ω) ⊂ L2(∂Ω) = L2(∂Ω)∗ ⊂ W 1
n(∂Ω)∗.

Let A be the closed subspace of L2(∂Ω) whose elements are conjugate CR-
functions. It was shown by Kytmanov in [11]§17.1 that the set of the harmonic
extensions of elements of A is the kernel of ∂n.

Let B1 =
(
W 1

n(∂Ω)/A
)∗ and B2 = L2(∂Ω). Let M1 = π ◦ L, M2 = ∂n, where π

is the quotient projection π : L2 → L2/A =
(
L2/A

)∗ ⊂ B1.
For every g ∈ L2(∂Ω), let g⊥ denote the component of g in A⊥. A function h1 ∈

W 1
n(∂Ω) defines a linear functional Ψ1 ∈ B∗

1 = W 1
n(∂Ω)/A such that Ψ1(π(g)) =

(g⊥, h1)L2 for every g ∈ L2(∂Ω). If h is a CR function on ∂Ω,

(Lφ, h̄) =
1
2

∫

∂Ω

h∂(φdz) = 0 ⇒ (Lφ)⊥ = Lφ.

Then Ψ1(M1(φ)) = (Lφ, h1).
By the previous principle, the existence of h2 ∈ L2(∂Ω) such that∫

∂Ω

h̄1Lφdσ =
∫

∂Ω

h̄2∂nφdσ ∀ φ ∈ Harm1(Ω)

is equivalent to the existence of C > 0 such that

(**) ‖π(Lφ)‖(W 1
n(∂Ω)/A)∗ ≤ C‖∂nφ‖L2(∂Ω) ∀ φ ∈ Harm1(Ω).

The functional π(Lφ) ∈ L2/A =
(
L2/A

)∗ ⊂ B1 acts on π(g) ∈ L2/A in the following
way:

π(Lφ)(π(g)) = (g⊥, Lφ)L2 = (g, Lφ)L2

since Lφ ∈ A⊥.
We get then the following result.

Theorem 1. Assume that the boundary ∂Ω is connected and estimate (*) is sat-
isfied. Given f1 ∈ W

1

n(∂Ω), there exists f2 ∈ L2(∂Ω) such that f = f1 + f2j is the
trace of a ψ-regular function on Ω. The function f2 is unique up to a CR function.
Moreover, f2 satisfies the estimate

inf
f0
‖f2 + f0‖L2(∂Ω) ≤ C‖f1‖W

1
n(∂Ω)

,
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where the infimum is taken among the CR functions f0 ∈ L2(∂Ω).

Proof. From (*) we get

sup
‖π(g)‖W1

n(∂Ω)/A≤1

|(g, Lφ)| ≤ C‖∂nφ‖L2(∂Ω) ∀ φ ∈ Harm1(Ω)

which is the same as estimate (**). From the existence principle applied to h1 =
f̄1 ∈ W 1

n(∂Ω), we get f2 = −h2 ∈ L2(∂Ω) such that∫

∂Ω

f1Lφdσ = −
∫

∂Ω

f̄2∂nφdσ ∀ φ ∈ Harm1(Ω).

Therefore
1
2

∫

∂Ω

f1∂φ ∧ dζ = −
∫

∂Ω

f̄2 ∗ ∂φ ∀ φ ∈ Harm1(Ω)

and the result follows from the L2(∂Ω)-version of Theorem 5 in [16], that can be
proved as in [16] using the results given in [18, §3.7]. The estimate given by the
existence principle is

inf
f0∈N

‖f2 + f0‖L2(∂Ω) ≤ C‖Ψ1‖W 1
n/A ≤ C‖h1‖W 1

n(∂Ω) = C‖f1‖W
1
n(∂Ω)

,

where N = {f0 ∈ L2(∂Ω) | (∂nφ, f0)L2(∂Ω) = 0 ∀φ ∈ Harm1(Ω)} is the subspace
of CR-functions in L2(∂Ω) (cf. [11]§17.1 and [5]§23).

¤

If Ω = B, then the space W 1
n(S)/A is a Hilbert space also w.r.t. the product

(π(f), π(g))W 1
n/A = (∂nf, ∂ng).

This is a consequence of the estimate ‖g⊥‖L2(S) ≤ ‖∂ng‖L2(S), which holds for
every g ∈ W 1

n(S): if g =
∑

p≥0,q≥0 gp,q is the orthogonal decomposition of g in
L2(S), then

‖∂ng‖2 =
∑

p>0,q≥0

‖pgp,q‖2 ≥
∑

p>0,q≥0

‖gp,q‖2 = ‖g⊥‖2.

Then
‖π(g)‖2W 1

n/A = ‖g⊥‖2L2 + ‖∂ng‖2L2 ≤ 2‖∂ng‖2L2

and therefore ‖π(g)‖W 1
n/A and ‖∂ng‖L2 are equivalent norms on W 1

n(S)/A.
We can repeat the arguments of the previous proof and get the following:

Theorem 2. Given f1 ∈ W
1

n(S), there exists f2 ∈ L2(S) such that f = f1 + f2j
is the trace of a ψ-regular function on B. The function f2 is unique up to a CR
function. Moreover, f2 satisfies the estimate

inf
f0
‖f2 + f0‖L2(S) ≤ ‖∂nf1‖L2(S).

Remark 2. On the unit ball B of C2, the estimate which is obtained from (**) by
taking the L2(S)-norm also in the left-hand side is no longer valid (take for example
φ ∈ Hk−1,1(S)). The necessity part of the existence principle gives that there exists
f1 ∈ L2(S) for which does not exist any L2(S) function f2 such that f1 + f2j is the
trace of a ψ-regular function on B. Then the operation of ψ-regular conjugation is
not bounded in the harmonic Hardy space h2(B).

Note that this is different from pluriharmonic conjugation (cf. [20]) and in par-
ticular from the one-variable situation, which can be obtained by intersecting the
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domains with the complex plane Cj spanned by 1 and j. In this case f1 and f2 are
real-valued and f = f1 + f2j is the trace of a holomorphic function on Ω∩Cj w.r.t.
the variable ζ = x0 + x2j.

A function f1 ∈ L2(S) with the required properties is f1 = z2(1− z̄1)−1. In fact,
it can be computed that ‖f1‖L2(S) = 1, but ∂nf1 = z̄1z2(1 − z̄1)−2 is not of class

L2(S) and so f1 /∈ W
1

n(S). The function f = f1 + f2j, with f2 = 1
2 z̄2

2(1 − z1)−2,
is a ψ-regular function on B. The second component f2 is not of class L2(S) and
the same is true for every function f ′2 = f2 + f0, f0 holomorphic on B. In fact, let
fr
2 (z) = f2(rz) for every r ∈ (0, 1), and the same notation for fr

0 and f ′2
r, then

fr
2 =

1
2
rz̄2

2(1− rz1)−2 =
∞∑

k=1

k

2
rz̄2

2(rz1)k−1

is orthogonal in L2(S) to the functions holomorphic in a neighbourhood of B. Then

‖f ′2r‖2L2(S) = ‖fr
2 + fr

0 ‖2L2(S) ≥ ‖fr
2 ‖2L2(S)

is unbounded w.r.t. r, and so f ′2 /∈ L2(S).

4. L2-estimate and pseudoconvexity

We now show that estimate (*), via Theorem 1, implies the pseudoconvexity of
Ω. We adapt the proof given by Nōno in [14] of a result proved by Laufer in [12].

Proposition 2. If the domain Ω satisfies estimate (*), then it is a domain of
holomorphy.

Proof. If Ω is not a domain of holomorphy, there exists an open domain Ω′, in
which Ω is strictly contained, such that every h ∈ O(Ω) extends holomorphically
to Ω′. Let ζ0 ∈ Ω′ \ Ω and set f1(z) = |z − ζ0|−2. The function f1 is harmonic in
Ω, of class C∞ on Ω. Theorem 1 gives f2 ∈ L2(∂Ω) whose harmonic extension on
Ω satisfies

∂f2 = −∂f1

∂z2
dz̄1 +

∂f1

∂z1
dz̄2 = |z − ζ0|−4((z̄2 − ζ̄0

2 )dz̄1 − (z̄1 − ζ̄0
1 )dz̄2)

on Ω. Let h(z1, z2) = (z1− ζ0
1 )f2 + |z− ζ0|−2(z̄2− ζ̄0

2 ). An easy computation shows
that h is holomorphic on Ω. But h(ζ0

1 , z2) = |z2− ζ0
2 |−2(z̄2− ζ̄0

2 ) = (z2− ζ0
2 )−1 and

therefore h cannot be holomorphically extended to Ω′, giving a contradiction. ¤

5. Traces of pluriholomorphic functions

We give an application of Theorem 1 to pluriholomorphic functions. The key
point is that if f = f1 + f2j is ψ-regular, then f1 is pluriholomorphic if and only if
f2 is pluriharmonic. Then we can apply the results on the traces of pluriharmonic
functions given in [5] and [15] in order to obtain a characterization of the traces of
pluriholomorphic functions (cf. [6, 7]).

Let Harm1
0(Ω) = {φ ∈ C1(Ω) | φ is harmonic on Ω, ∂nφ is real on ∂Ω}. This

space of harmonic functions can be characterized by means of the Bochner-Martinelli
operator of the domain Ω (cf. [15]).
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Corollary 1. Assume that Ω has connected boundary and satisfies the condition
(*). Let h ∈ W

1

n(∂Ω). Then h is the trace of a harmonic pluriholomorphic function
on Ω if and only if the following orthogonality condition is satisfied:

(***)
∫

∂Ω

h∂φ ∧ dζ = 0 ∀φ ∈ Harm1
0(Ω).

Proof. From Theorem 1 we get f2 ∈ L2(∂Ω) such that f = h + f2j is the trace of
a ψ-regular function on Ω. From Theorem 4 in [16] it follows that

∫

∂Ω

h∂φ ∧ dζ = −2
∫

∂Ω

f̄2∂nφdσ ∀ φ ∈ Harm1(Ω).

Therefore the orthogonality condition for h is equivalent to the pluriharmonic trace
condition for f̄2. But the pluriharmonicity of the harmonic extension of f̄2 is
equivalent to that of f2 and to the pluriholomorphicity of the harmonic extension
of h.

¤

Remark 3. If Ω has a pluriholomorphic defining function ρ (as in the case of
the unit ball B), then h ∈ Phol(Ω) ∩ C1(Ω) implies that Lh is CR on ∂Ω, since

Lh = ρ2

∂h

∂z̄1
− ρ1

∂h

∂z̄2
is holomorphic on Ω. In particular, if h ∈ Phol(Ω) ∩ C2(Ω),

then LLh = 0 on ∂Ω.

Proposition 3. On B condition (***) is equivalent to
∫

S

hL(sPs,t + tPs,t)dσ = 0 ∀Ps,t ∈ Hs,t,∀s, t > 0.

If h ∈ C1(S) and Lh is a CR-function on S, then h satisfies the condition (***).

Proof. In [15] it was shown that Harm1
0(B) is the space Fix(N0) = {φ ∈ C1(B) :

φ is harmonic in B and N0(φ) = φ}, where N0 is the real linear projection defined
for Ps,t ∈ Hs,t by

N0(Ps,t) =





s

s + t
Ps,t +

t

s + t
Ps,t, for t > 0

Ps,t, for t = 0.

If s = 0 or t = 0, LN0(Ps,t) = 0 and this proves the first part. If Lh is a CR-
function, then to get (***) it must be shown that (h, L(sPs,t + tPs,t)) = 0 for every
s > 0, t > 0. For any s > 0, L is an isomorphism between Hs,t and Hs−1,t+1. Then
if s, t > 0, there exists Q such that (h, L(sPs,t + tPs,t)) = −(Lh, sPs,t + tPs,t) =
−(Lh,LQ) = 0 since Lh is CR on S. ¤

It follows from Proposition 3 and the preceding remark that on the unit ball
B the harmonic assumption for a pluriholomorphic function with trace h ∈ C1(S)
can be removed. In particular, we get a result proved in [6] (cf. Proposition 6):
h extends to a pluriholomorphic function on B if and only if LLh = 0 on S.
Moreover, if h ∈ Phol(B)∩C1+α(B), α > 0, then the harmonic extension h̃ of h|S
on B is pluriholomorphic on B, since h ∈ W

1

n(S). Then h = h̃ + (|z|2− 1)g, with g
holomorphic, continuous on B. The last assertion is a consequence of the following
proposition.
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Proposition 4. If Ω has a pluriholomorphic defining function ρ and h ∈ Phol(Ω)∩
C1(Ω) vanishes on ∂Ω, then there exists a holomorphic function g ∈ C0(Ω) such
that h = ρg.

Proof. Let g ∈ C0(Ω) such that h = ρg. Then ρ̄i and
∂h

∂z̄i
= ρ̄ig + ρ

∂g

∂z̄i
are

holomorphic on Ω. We set

g̃ =





1
ρ̄1

∂h

∂z̄1
where ρ̄1 6= 0,

1
ρ̄2

∂h

∂z̄2
where ρ̄2 6= 0.

Then there exists a neighbourhood V of ∂Ω such that g̃ is holomorphic on V ∩ Ω.
Therefore g̃ extends holomorphically on Ω. Moreover, ∂(h − ρg̃) = 0 where ρ̄1 6=
0, ρ̄2 6= 0 and h− ρg̃ vanishes on ∂Ω. Then h = ρg̃ on Ω by continuity and g = g̃ is
holomorphic. ¤

Remark 4. The boundary of a domain Ω with a pluriholomorphic defining function
ρ is a quadric hypersurface or a hyperplane. The function ρ has the form

ρ = a1|z1|2 + a2|z2|2 + 2Re(βz̄1z2 + α1z̄1 + α2z̄2) + b

for some real a1, a2, b and complex α1, α2, β. Then, if Ω is bounded, it is indeed
biholomorphic to the unit ball.

Example 1. As an example of a function h /∈ C1(S) to which the criterion of
Proposition 3 can be applied we can take h = z̄2(1−z1)−1. This function is of class
W

1

n(S) but h and Lh /∈ C0(S). h satisfies the criterion and is pluriholomorphic on
B. The function f2 which exists according to Theorem 2 is, up to a CR-funciton, the
pluriharmonic function f2 = log(1− z̄1), with squared norm ‖f2‖2L2(S) = π2/6−1 <

1 = ‖∂nh‖2L2(S).
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