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Neighborhood Counting Measure Metric and
Minimum Risk Metric:

An empirical comparison
Andrea Argentini 1, Enrico Blanzieri 2

Abstract—Wang in a PAMI paper proposed Neighborhood
Counting Measure (NCM) as a similarity measure for the k-
nearest neighbors classification algorithm. In his paper, Wang
mentioned Minimum Risk Metric (MRM) an earlier method
based on the minimization of the risk of misclassification.
However, Wang did not compare NCM with MRM because
of its allegedly excessive computational load. In this letter, we
empirically compare NCM against MRM on k-NN with k=1,
3, 5, 7 and 11 with decision taken with a voting scheme and
k=21 with decision taken with a weighted voting scheme on
the same datasets used by Wang. Our results shows that MRM
outperforms NCM for most of the k values tested. Moreover,
we show that the MRM computation is not so probihibitive as
indicated by Wang.

Index Terms—Pattern Recognition, Machine Learning, k-
Nearest Neighbors, distance measures, MRM, NCM.

I. INTRODUCTION

THE k-nearest neighbors (k-NN) is a well-known
algorithm used in machine learning and in pattern

recognition for classification tasks [1]. Given a point to
classify and a distance (or similarity) function defined on
the input space, k-NN finds the k-neighbors of the point
and classify it to the majority class of its neighbors. The
performance of k-NN depends on the distance/similarity
function used to compute the set of neighbors and on the
choice of k. The classification decision can weight the
vote of each neighbor depending on the values of the used
distance or similarity. In literature, there is a large variety of
distance functions that are applicable to different data types.
Among the most simple distances we can recall the Euclidean
distance for numeric attributes and the Hamming distance
for categorical attributes. More complex distances, such as
HEOM [2] and HVDM [2], were introduced for data with
mixed features. Other relevant distances are Minimum Risk
Metric (MRM) [3] that minimize the risk of misclassification
using conditional probabilities and Neighboring Counting
Measure (NCM) proposed by Wang [4] that works counting
the neigborhoods in the input space. Paredes and Vidal
[5] presented an algorithm to learn weighted metrics for
numerical data. The weights are learned by minimizing
an approximation of the leave-one-out classification error
on a subset of the training set with gradient descent algorithm.
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MRM is a distance for classification tasks that relies on the
estimates of the posterior probabilities to minimize directly the
misclassification risk. MRM builds on the approach started by
Short and Fukunaga [6] metric that minimize the difference
between finite risk and asymptotic risk. MRM uses a Naı̈ve
Bayes to estimate the conditional probabilities for this reason
the time of execution is high but as showed in [3] MRM
outperformed other distance metrics like HEOM, DVDM,
IVDM and HVDM. Despite its name, MRM is not a metric
because it does not verify the identity of indiscernibles.

NCM [4], presented by Wang, works on the concept of
neighborhood instead of neighbor. Once defined a topological
space, the neighborhoods are regions in the data space that
include a specific data point in a query. The similarity between
two points is given by the number of neighborhoods that cover
both points. In order to assess which points are closer to a test
point NCM counts the neighborhoods and chooses the points
that have more neighborhoods that are common with the test
point. There are many ways to define a topological space.
Wang defines the topological neighborhoods as a hypertuple
and derive a method for counting in an efficient way all the
possible neighborhoods. NCM can work with mixed-feature
datasets, namely with both numerical and categorical features.
NCM is simple to implement and has a polynomial complexity
in the number of attributes. In [4] NCM is shown to outperform
HEOM, DVDM, IVDM and HVDM, however, Wang did not
test NCM against MRM for its high computational cost. In this
way the author left unasked the questions on the comparison
of the two methods.

In this letter, we compare the performance of NCM and
MRM completing the comparison that was missing in [4].
Empirical evaluation shows that MRM outperforms NCM and,
although the running time of MRM is higher, but in the same
order of the running time of NCM and so it is not prohibitive
as Wang suggested. The comparison between MRM, NCM
and the technique by Paredes and Vidal [5] is beyond the aim
of the present letter.
The paper is organized as follows: Section 2 overviews MRM
and the similarity measure NCM. Experimental evaluation
procedures and results are presented is Section 3. Finally,
conclusions are drawn in Section 4.

II. METHODS

In this section we describe the methods tested in the
experimental procedure.
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A. Minimum Risk Metric

MRM proposed by Blanzieri and Ricci [3], is a very simple
distance that minimizes the risk of misclassification r(x,y)
defined as the ”the probability of misclassifying x by the 1-
nearest neighbor rule given that the nearest neighbor of x using
a particular metric is y”. MRM is expressed by:

MRM(x, y) = r(x, y) =
m∑

i=1

p(ci|x)(1− p(ci|y)) (1)

where m is the number of classes p(ci|x) is the probability that
x belong to the class ci and (1−p(ci|y)) is the probability that
the point y does not belong to the class ci. Given a point x and
a point y, respectively belonging one to the test set and one to
the training set, the risk to misclassify x when assigning it the
same label of y is given by p(ci|x)(1−p(ci|y)). The total finite
risk is the sum of the risks extended to all different classes
like in (1). Several estimations of the conditional probabilities
in (1) are possible so MRM can be considered a family
of distances. A simple choice is to estimate the conditional
probabilities p(ci|x) using the Naı̈ve Bayes estimator. The
idea of minimization of the expected risk as a distance has
been more recently re-proposed by Mahamud and Herbert
[7] who defined r(x, x′) as the ”conditional risk of assigning
input x with the class label corresponding to x′”. They also
demonstrated the optimality of it in terms of minimization of
the expectation of r(x, x′) over the sampling of test points and
learning points. They pointed out that the (1) holds only in the
case the samples are identically and independently distributed.
Instead of estimating the risk by means of estimation of p̂(x|ci)
in (1) they estimate r(x, y) directly as a function of a distance
d. From their work we can derive that MRM is symmetric,
subadditive (the triangular inequality holds), but it does not
verify the identity of indiscernibles (namely MRM(x, y) = 0
iff x = y does not hold true) so MRM is not a metric but only
a distance.

B. Neighborhood Counting Measure

The NCM proposed by Wang [4] is a similarity measure
defined as:

NCM(x, y) =
n∏

i

C(xi, yi)/C(xi) (2)

where

C(xi, yi) =





(max(ai)−max(xi, yi))×
(min(xi, yi)−min(ai)), if ai is numerical
2mi−1, if ai is categorical and xi = yi

2mi−2, if ai is categorical and xi 6= yi

(3)

c(xi) =
{

(max(ai)− xi)× (xi −min(ai)) if ai is numerical
2mi−1, if ai is categorical

(4)
Where n is the number of attributes of the data, ai indicates
the i-th attribute and mi is defined as mi = |domain(ai)|,
finally xi, yi indicate the value of the i-th attribute in x and y
respectively. In (2) each factor in the product is the number of

TABLE I
DATA SETS USED IN THE EXPERIMENTS.

DataSet Instances N Att Clas Val Type Missing
anneal 898 38 5 Mixed no
auto 205 25 6 Mixed no
breast-cancer 286 9 2 Mixed yes
bridges-v1 108 11 6 Mixed yes
credit-rating 690 15 2 Mixed yes
german-credit 1000 20 2 Mixed yes
zoo 101 17 7 Mixed no
credit 490 15 2 Mixed yes
hepatitis 155 19 2 Mixed yes
horse-colic-data 368 22 2 Mixed yes
bridges-v2 108 11 6 Nominal yes
vote 435 16 2 Nominal yes
tic-tac-toe 958 9 2 Nominal no
soybean 683 35 19 Nominal yes
audiology 226 69 24 Nominal no
primary-tumor 339 17 22 Nominal yes
sonar 208 60 2 Numerical no
vehicle 846 18 4 Numerical no
wine 178 13 3 Numerical no
yeast 1484 8 10 Numerical no
ecoli 336 7 8 Numerical no
Glass 214 9 7 Numerical no
heart-statlog 270 13 2 Numerical no
pima-diabetes 768 8 2 Numerical no
ionosphere 351 34 2 Numerical no
iris 150 4 3 Numerical no

27 Dataset: 10 Mixed, 6 Nominal , 10 Numerical

neighborhoods for the i-th attribute.The NCM similarity has
linear complexity with respect to the number of attributes. The
idea underlying (2) is to count the neighborhoods between two
points, where neighborhoods are defined basing on the notion
of hypertuple. If the j-th attribute is categorical the number of
neighborhoods is derived by the number of subsets that cover
both points, otherwise if the j-th attribute is numerical the
number of neighborhoods is represented by the number of in-
tervals that generate a hypertuple that covers both points. Wang
first develops the algorithm for counting the neighborhoods
for categorical attributes and numerical attribute with finite
domain. NCM as expressed in (2) is more general, and it takes
into account also numerical attributes with infinite domain and
it assumes the attributes to be equally important. The original
paper did not mention how to manage the exceptions derived
by 0/0 in (2) but following the indication of the author [8] in
case of 0/0 we set the ratio equal to 1. In our experiments,
we have used the distance 1 − NCM(x, y) as indicated by
the author [8].

III. EMPIRICAL EVALUATION

The aim of the experiment is to empirically compare the
performance of NCM and MRM in classification tasks using
the k-NN algorithm. We do not include HEOM, VDM and the
standard Euclidean and Hamming metrics in our experiments
because both MRM [3] and NCM [4] has been already shown
to outperform this metrics in terms of accuracy.

A. Experimental procedure

The k-NN is applied to NCM and MRM and the decision
on the class is taken with a simple voting schema on the k
neighbors; in one specific case (with k=21) the decision is
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taken with a weighted voting schema. In order to reproduce
the results of [4] we considered the same datasets. Table I
shows the datasets used. All of them originated from UCI
machine learning repository [9]. The datasets have heteroge-
neous composition (Nominal, Numerical, and Mixed), in order
to evaluate the performance in datasets with different kind of
features. The datasets used in [4] show some little difference
in terms of number of attributes and number of instances. In
particular Anneal, Credit and Soybean differs in the numbers
of instances, whereas Vote, Zoo and Horse-colic differs in the
number of attributes.

We ran 10-fold cross-validation 10 times with random
partitions of data for each data set and for each k value. In
each test we assess the statistical differences using the two-tail
paired t-Test with significance level equal to 0.05. In order to
compare directly with the data published by Wang [4] in a
first set of experiments we set k = 11, and k = 21 with the
weighted voting scheme. MRM is a distance function so we
used as weight its inverse 1/distance whereas for NCM we
used as weight directly the similarity value. We also run tests
with the usual values of k=1, 3, 5, 7. We implemented both
methods in Java and we used Weka [10] to perform all the
tests, the statistical analysis and the measures of the running
time. The Naı̈ve Bayes used in MRM is the one provided
by Weka with numeric attributes that have been discretized
replicating the choice done in [3]. In the training phase we
create an hash table containing the estimates of p̂(ci|y), with
y belonging to the training set. In this way, we compute a priori
the estimates of conditional probabilities for the training set.
All the code and the datasets used in our tests are available
on request.

B. Results and Discussion

The results of the experiments are presented as follows.
Table II presents the results of k-NN with NCM and MRM
and k=11, Table III presents the results with k=21 and the
weighted voting scheme. Tables IV-V present the results with
k=1, 3, 5, 7. The tables present the statistical significance
of the difference of the accuracy of MRM against NCM. In
order to show visually the differences between the methods,
Fig. 1 report scatter plots of the accuracies of MRM against
NCM. Finally, Table VI shows a representative example of the
running time of the two methods.

1) Reproducing NCM results: We compared the results for
NCM of Tables II-III with the analogous results presented
by Wang. The variations in the selection of the folds of
the datasets can account for the differences in the accuracies
between our results and Wang’s, however, the differences are
in the same order of the standard deviation so our results are
substantially aligned with the results of NCM in its original
proposal.

2) NCM vs MRM : MRM demonstrates good performances
in all the tests. Considering the number of datasets in which
MRM has significative differences with respect to NCM,
MRM is better than NCM, especially with k=11 and k=3. For
example, with k = 1, MRM is significantly better of NCM in
half of the datasets. These good results are also evident in the

TABLE II
ACCURACY RESULTS OF k-NN USING NCM AND MRM WITH k=11.

SIGNIFICATIVE DIFFERENCES ARE COMPUTED WITH RESPECT TO NCM.

Data Set NCM MRM
anneal 94.30±1.92 95.93±2.20
audiology 57.76±7.02 72.24±6.03 ◦
autos 56.66±10.47 65.17±10.93◦
breast-cancer 73.68±3.85 73.16±6.71
bridges-v1 57.60±8.32 68.50±10.46◦
bridges-v2 57.95±7.39 65.82±10.22◦
credit-rating 76.25±5.24 86.22±3.80 ◦
german-credit 71.70±2.64 75.04±3.56 ◦
credit 76.31±5.71 87.18±4.37 ◦
pima-diabetes 72.58±4.22 75.26±4.78
ecoli 80.21±5.45 80.84±4.63
Glass 62.01±8.82 72.60±8.63 ◦
heart-statlog 70.93±9.51 82.56±6.12 ◦
hepatitis 84.07±7.69 84.34±10.42
horse-colic-data 78.81±5.97 79.54±5.83
ionosphere 88.70±4.73 89.40±4.81
iris 93.47±5.92 93.33±5.76
primary-tumor 43.30±6.08 48.88±5.16 ◦
sonar 70.81±8.70 76.71±9.61
soybean 47.44±4.13 92.93±2.95 ◦
tic-tac-toe 98.24±1.38 69.64±4.40 •
vehicle 68.22±3.85 60.96±3.44 •
vote 93.50±3.52 90.02±3.91 •
wine 89.26±6.44 98.71±2.64 ◦
yeast 54.50±3.85 57.53±3.79 ◦
zoo 84.66±6.29 90.35±7.74
◦, • statistically significant improvement or degradation

TABLE III
ACCURACY RESULTS OF k-NN USING NCM AND MRM WITH k=21 AND

WEIGHTED VOTING SCHEME. SIGNIFICATIVE DIFFERENCES ARE
COMPUTED WITH RESPECT TO NCM.

Data Set NCM MRM
anneal 96.27±1.57 95.87±2.22
audiology 68.24±7.65 71.79±6.15
autos 75.91±8.94 65.17±10.93•
breast-cancer 74.64±4.00 73.16±6.71
bridges-v1 63.05±7.94 68.24±10.01
bridges-v2 62.26±9.08 64.29±9.35
credit-rating 77.26±5.22 86.22±3.80 ◦
german-credit 72.83±2.91 75.04±3.56
credit 77.88±5.57 87.18±4.37 ◦
pima-diabetes 75.02±4.54 75.26±4.78
ecoli 79.17±4.76 81.05±4.82
Glass 65.80±8.15 71.38±8.62
heart-statlog 74.52±7.83 82.56±6.12 ◦
hepatitis 81.38±6.01 84.34±10.42
horse-colic-data 83.77±5.69 79.54±5.83
ionosphere 89.52±4.72 89.40±4.81
iris 93.60±5.76 93.33±5.76
primary-tumor 47.08±5.20 49.03±5.26
sonar 66.43±8.10 76.71±9.61 ◦
soybean 49.69±4.18 92.91±2.95 ◦
tic-tac-toe 85.31±2.99 69.64±4.40 •
vehicle 68.90±3.73 61.05±3.46 •
vote 91.72±4.00 90.02±3.91
wine 90.45±5.98 98.71±2.64 ◦
yeast 55.84±3.64 57.37±3.70
zoo 95.05±6.24 92.81±6.95
◦, • statistically significant improvement or degradation

scatter plots in Fig. 1. Considering all the results in Tables IV-
V we can observe that increasing the value of k the only
three datasets in which NCM reaches an accuracy significantly
higher than MRM are Vote, Tic-Tac-Toe and Vehicle. This
result is not surprising given the optimality of the minimization
of the risk as a distance for classification tasks [7].

The running time results in Table VI show that the running
time of MRM is in the same order of the running time of
NCM. NCM is always faster of MRM except in the datasets
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TABLE IV
ACCURACY RESULTS OF k-NN OF NCM AND MRM WITH k=1 AND k=3. SIGNIFICATIVE DIFFERENCES ARE COMPUTED WITH RESPECT TO NCM.

k=1 k=3
Data Set NCM MRM NCM MRM
anneal 97.04 ±1.75 95.95±2.19 96.31±1.74 95.95±2.19
audiology 76.23±7.64 72.64±6.10 67.25±7.60 72.64±6.10 ◦
autos 77.63±8.90 65.17±10.93• 66.80±10.43 65.17±10.93
breast-cancer 72.62±6.02 73.16±6.71 73.09±4.92 73.16±6.71
bridges-v1 59.43±11.45 68.31±10.90◦ 56.79±10.69 68.10±10.23◦
bridges-v2 57.87±11.61 67.32±11.16◦ 53.92±11.30 67.33±10.99◦
credit-rating 78.51±4.76 86.22±3.80 ◦ 78.35±4.73 86.22±3.80 ◦
german-credit 67.85±4.41 75.02±3.58 ◦ 70.89±3.33 75.01±3.59 ◦
credit 77.53±5.16 87.18±4.37 ◦ 78.76±4.54 87.18±4.37 ◦
pima-diabetes 64.82±6.28 75.26±4.78 ◦ 67.55±5.65 75.26±4.78 ◦
ecoli 77.08±6.24 81.84±4.70 ◦ 80.95±5.58 81.93±4.67
Glass 73.05±8.64 69.34±8.22 69.29±8.40 70.45±8.39
heart-statlog 70.22±9.31 82.56±6.12 ◦ 70.96±8.07 82.56±6.12 ◦
hepatitis 76.54±7.45 84.34±10.42 81.15±8.30 84.34±10.42
horse-colic-data 73.53±8.10 72.22±16.83 72.53±6.71 79.54±5.83 ◦
ionosphere 86.22±5.27 89.40±4.81 88.69±4.58 89.40±4.81
iris 94.53±5.56 93.33±5.76 94.73±5.22 93.33±5.76
primary-tumor 40.03±6.32 43.48±6.31 42.45±5.42 43.86±5.64
sonar 68.40±8.90 76.71±9.61 69.00±9.01 76.71±9.61
soybean 61.69±4.86 92.94±2.92 ◦ 54.60±4.25 92.94±2.92 ◦
tic-tac-toe 98.73±1.15 69.64±4.40 • 98.73±1.15 69.64±4.40 •
vehicle 69.53±3.66 59.80±3.97 • 69.00±4.45 60.74±3.88 •
vote 81.54±5.79 90.02±3.91 ◦ 88.32±4.92 90.02±3.91
wine 92.07±6.03 98.71±2.64 ◦ 90.10±6.04 98.71±2.64 ◦
yeast 50.48±3.81 57.14±4.09 ◦ 52.90±4.06 57.45±3.80 ◦
zoo 93.18±6.71 93.21±7.35 94.45±6.37 93.21±7.35

◦, • statistically significant improvement or degradation

TABLE V
ACCURACY RESULTS OF k-NN OF NCM AND MRM WITH k=5 AND k=7. SIGNIFICATIVE DIFFERENCES ARE COMPUTED WITH RESPECT TO NCM.

k=5 k=7
Data Set NCM MRM NCM MRM
anneal 96.15±1.47 95.95±2.19 95.59±1.54 95.95±2.19
audiology 65.71±8.24 72.64±6.10 ◦ 60.97±7.71 72.64±6.10 ◦
autos 65.15±10.48 65.17±10.93 61.82±10.91 65.17±10.93
breast-cancer 74.07±3.81 73.16±6.71 74.31±3.96 73.16±6.71
bridges-v1 61.50±9.54 68.59±10.69 59.82±8.28 68.42±10.70◦
bridges-v2 59.70±9.96 66.10±11.26◦ 57.26±9.14 65.90±10.76◦
credit-rating 78.39±4.77 86.22±3.80 ◦ 77.86±4.83 86.22±3.80 ◦
german-credit 70.94±3.10 74.93±3.54 ◦ 72.10±2.96 74.93±3.54
credit 77.88±5.21 87.18±4.37 ◦ 77.65±5.51 87.18±4.37 ◦
pima-diabetes 69.06±5.41 75.26±4.78 ◦ 71.12±4.77 75.26±4.78 ◦
ecoli 81.90±5.72 81.93±4.61 80.80±5.56 81.63±4.47
Glass 64.98±8.88 72.64±8.64 ◦ 62.75±8.90 72.69±8.57 ◦
heart-statlog 70.81±8.56 82.56±6.12 ◦ 71.52±8.68 82.56±6.12 ◦
hepatitis 82.03±8.42 84.34±10.42 84.20±8.48 84.34±10.42
horse-colic-data 78.75±6.06 79.54±5.83 77.39±6.48 79.54±5.83
ionosphere 89.24±4.27 89.40±4.81 89.66±4.33 89.40±4.81
iris 94.00±5.48 93.33±5.76 93.60±5.52 93.33±5.76
primary-tumor 43.33±5.84 48.20±6.20 ◦ 43.33±5.93 48.49±5.56 ◦
sonar 66.98±8.88 76.71±9.61 ◦ 66.40±7.92 76.71±9.61 ◦
soybean 50.79±4.43 92.94±2.92 ◦ 48.99±4.51 92.94±2.92 ◦
tic-tac-toe 98.73±1.15 69.64±4.40 • 98.73±1.15 69.64±4.40 •
vehicle 67.85±3.79 60.71±3.91 • 68.27±3.79 60.86±3.57 •
vote 92.74±3.50 90.02±3.91 • 92.81±3.94 90.02±3.91 •
wine 90.15±6.15 98.71±2.64 ◦ 89.08±6.49 98.71±2.64 ◦
yeast 54.30±4.12 57.34±3.86 ◦ 55.25±4.16 57.45±3.80
zoo 90.03±6.59 93.11±7.32 86.85±6.83 89.85±7.54

◦, • statistically significant improvement or degradation

Breast-cancer and Vote where MRM has a smaller running
time. However, the differences of running time between the
two methods are not impressive. We can conclude that the
computation of MRM is not prohibitive, far from the results
of being ten times slower than NCM reported by [4] for a
straightforward implementation. Wang did not report running
times so it is not possible a comparison. It is important to note
that the only improvement in our implementation with respect
to a straightforward implementation is that we compute the
estimates p̂(ci|y) for y in the training set only once.

IV. CONCLUSION

We have presented an empirical comparison of MRM and
NCM. The motivation for the empirical comparison arises
from the fact that Wang in [4] did not performed the com-
parison arguing the MRM was computationally heavy. Our
comparison shown that MRM outperforms NCM. MRM, with
a simple implementation has a computational cost slightly
bigger than NCM, does not have a cost prohibitively high as
the work by Wang suggested.
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Fig. 1. Scatterplots of the accuracies of Tables II-V. MRM vs NCM for k=1, 3, 5, 7, 11, 21.

REFERENCES

[1] B. V. Dasarathy, Ed., Nearest Neighbor Pattern Classification Tech-
niques. IEEE Computer Society Press, 1991.

[2] D. R. Wilson and T. R. Martinez, “Improved heterogeneous distance
functions,” J. Artif. Intell. Res. (JAIR), vol. 6, pp. 1–34, 1997.

[3] E. Blanzieri and F. Ricci, “A minimum risk metric for nearest neighbor
classification,” in Proc. 16th International Conf. on Machine Learning.
Morgan Kaufmann, San Francisco, CA, 1999, pp. 22–31.

[4] H. Wang, “Nearest neighbors by neighborhood counting,” IEEE Trans.
Pattern Anal. Mach. Intell, vol. 28, no. 6, pp. 942–953, 2006. [Online].
Available: http://doi.ieeecomputersociety.org/10.1109/TPAMI.2006.126

[5] R. Paredas and E. Vidal, “Learning weighted metrics to minimize
nearest-neighbor classification error,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 28, no. 7, pp. 1100–1110, 2006.

[6] R. Short and K. Fukanaga, “The optimal distance measure for nearest
neighbor classification,” IEEE Trans. Information Theory, vol. 27, pp.
622–627, 1981.

[7] S. Mahamud and M. Hebert, “Minimum risk distance
measure for object recognition,” in ICCV. IEEE
Computer Society, 2003, pp. 242–248. [Online]. Available:
http://csdl.computer.org/comp/proceedings/iccv/2003/1950/01/195010242abs.htm

[8] H. Wang, “Personal communication,” 2007.
[9] C. L. Blake and C. J. Merz, “UCI repository of machine learning

databases,” 1998, http://www.ics.uci.edu/∼mlearn/MLRepository.html.
[10] I. H. Witten and E. Frank, Data Mining: Practical machine learning

tools and techniques. Morgan Kaufmann San Francisco, 2nd Edition
2005.



6

TABLE VI
RUNNING TIME IN SECONDS FOR THE TEST PHASE OF k-NN USING THE

TWO METHODS WITH k=1.

Data Set NCM MRM
anneal 1.46±0.65 2.62±0.87
audiology 0.15±0.03 1.02±0.37
autos 0.05±0.02 0.19±0.07
breast-cancer 0.06±0.03 0.03±0.02
bridges-v1 0.01±0.00 0.01±0.00
bridges-v2 0.01±0.00 0.01±0.00
credit-rating 0.32±0.05 0.29±0.08
german-credit 1.14±0.38 0.85±0.31
credit 0.16±0.04 0.22±0.13
pima-diabetes 0.08±0.03 0.32±0.19
ecoli 0.02±0.00 0.09±0.03
Glass 0.01±0.02 0.04±0.02
heart-statlog 0.02±0.01 0.02±0.01
hepatitis 0.01±0.00 0.02±0.01
horse-colic-data 0.14±0.04 0.13±0.07
ionosphere 0.08±0.05 0.25±0.10
iris 0.00±0.01 0.01±0.00
primary-tumor 0.17±0.06 0.44±0.11
sonar 0.06±0.03 0.24±0.72
soybean 0.86±0.10 4.10±0.16
tic-tac-toe 0.52±0.21 0.41±0.02
vehicle 0.32±0.13 0.96±0.36
vote 0.20±0.08 0.10±0.02
wine 0.01±0.00 0.02±0.03
yeast 0.43±0.13 2.82±0.98
zoo 0.02±0.00 0.01±0.00
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