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I. Introduction

In this work we deal with the application of Suppdfector Machines for Regression (SVRs) to the [mwbof

identifying linear dynamic systems on the basisa et of Input/Output samples. Three different epasof simple
linear systems will be considered, taking into actdoth non-recursive and recursive models. Wiegdimidg the SVR
estimating function, several examples of kernell k& employed, with emphasis on the ones that tmaymore
appropriate for describing linear models. As alfertstep, the exact parameters of the model witlitectly estimated
from the Support Vector values resulting from th&RSraining phase.

I1. Support Vector Machinesfor system identification

SVRs, as other learning-from-examples algorithms,b@sed on a very simple principle: once you lwlected a set

of Input/Output measuremeris= {xi , yi}i"il a training phase is performed aimed at extractihgiseful information

from the available data. Thus, an estimating fumcti (x;) is built that approximates the input-output relaship.

Following the standarel -SVR approach, errors are penalised, in a lineay, wnly outside a so-called insensitive zone,
whose width is indicated by while deviations smaller thanare considered to be negligible [1]. The cost fiomcis
then defined by summing up all error contributiogsd by taking into account a term describing theathness of the
function.
This formulation of the SVR algorithm results irettefinition of a constrained quadratic optimizatjiroblem where
the function to be minimized turns out to be conueerefore avoiding local minima problems (somaghtihat instead
hampers other techniques, e.g. Artificial Neuratvieks.)
The obtained SVR estimating function is the follogui

§=1(,B)= Y Bk(x,)+q

igsv

Notice that not all the samples used during thiaitrg give a positive contribution, instead onlgwubset of the original
dataset (the Support Vectoxrd is used for building the model [1]. Furthermoseitable kernels are introduced in the
definition of the SVR function. Here we will try ftérent kinds of kernel functions, including Gauwssi linear and
triangular kernels, as will be discussed in deptBéction V.
The performance of the SVR function depends onraben of parameters (called hyperparameters) thed ne be
tuned in order to get the best possible model. Eesof these hyperparameters are the widththe insensitive zone,
and specific parameters characterizing the keungdtion. Here, as optimality criterion, we will der an accuracy
index, namely the Root Mean Square Error (RMSE)hef model with respect to the true output valuee ©ptimal
model is then chosen as the one giving the smaRBESE in the training phase, and can then be tested set of
previously unseen samples.
To explore the hyperparameters space during theehsmlection phase, we decided to exploit a teclnigased on
Genetic Algorithms, which provide a faster and mefficient search tool when compared with the tiadal grid
search approach [2].

I11. Consider ed examples of linear systems

The first linear system that we consider herefissaorder discrete time system given by:

. z!
=G , h G = -
y(t) =Gy ()u(t), with Gy(2) o5

resulting in the following expression:
y(t)=alli(t-2)+bO/(t-1) =u(t-1) + 05y(t -1
that can be rewritten, introducimgas the number of past input samples, as:

d
y(t) =D 05 u(t k) + 05" y(t—d -1)
k=1



Having a look at the impulse response of the systeennotice that after 8 samples it is already thas 1/100 of the
initial value. Therefore, we can choose to desctifgesystem by taking into consideration 8 delaiyguit values as
features, meaning thatis built as{u(t—:l),...,u(t—S)]. Of course it will be necessary to accept a sewbr, since the

system cannot be completely described in a nonrseeuway. In the following, we will refer to thisxample as
“System A”.
Alternatively, a recursive model can be employadlding the feature vector as [u(t =D, y(t —1)]. This will result in

the second system used in this work (“System A )rec”
A third example is given by another simple disctetee system, obtained considering the followiramsfer function:

Gy(2) =z +05272
The resulting linear system is formulated as folldi&ystem B”):
y(t) =g, (t-1) +a, Mt -2) =u(t -1 + 0.5u(t - 2)
and can thus be perfectly described by 2 delayeut walues,u(t - 1), u(t - 2) .

Notice that, theoretically, in these simple cas8gstem A_rec” and “System B” can be reconstrudtedwing only 2
features.

In the following, when discussing the results ofdi on these three different systems, we will askiach case
separately.

IV. Excitation signals and characteristics of datasets

As excitations, we decided to use, for all the agred systems, a Random Phase Multisine signafacterised by the
following equation:

F
u(t) = > A, cos@rfokt+ )
k=1

wherefy = 1/N, t = 1,...,Nand ¢y is uniformly random distributed in [Gf? [3]. For the training phase, the excitation
signal is made ol =1024 samples, arfel=125 (excited frequencies up ©LF, =125[1/1024= 012). Notice that the

maximum excited frequency of the considered mulkisiis approximately equal to the cut-off frequeatgystem A,
and nearly half the cut-off frequency of systemAlRnplitudesA, were normalized in order to have a root mean squar
value of the signal equal to 1.

For selecting the best model during the traininggeh two different datasets need to be generatedjréng set for
building the SVR model and a validation set on \whice performance can be evaluated. Here we chaiséng and
validation sets both of sid€aining = Nyaligation = 1024.

Once the best configuration of the hyperparamasedetermined, the selected SVR model can be \elidan a final
test set, usually made of a very large number wipéas in order to allow a more reliable estimatehef error. In this
work, Nest= 10° (the value ofF is adjusted in order to obtain a multisine witle teme frequency band as in the
training).

The number of features will of course vary, deprgdon the specific model taken into consideratias,already
explained in Section 1.

V. Choice of the kernel function

In the SVR problem, so-called kernel functions aseally introduced, in a more general (nonlineagmework, in
order to express (in terms of inner products) tlagpng from the original input space into anothet groduct space
with much higher dimensionality. A widely commonoate in many applications is the use of a Gauskemel
function [4], expressed as:
2

k(XI ,X) = e_w‘xi _XH
This kernel (along with other radial basis functi@rnels) is considered the most appropriate soiuti all those cases
when no further knowledge on the problem is avélgb]. Notice here that parameteneeds to be tuned in the model
selection phase, since the choice of its valueheiflvily affect the performance of the SVR model.
Although the Gaussian kernel can be employed (wihy good results, as we will see further on) algzen
reconstructing a linear relationship between thputrand the output, a linear SVR estimating funceems, at least
from a theoretical point of view, the most natwtabice. To this aim, simple linear kernels areddtrced [4]:

k(x;,x) =x; X

An appealing property of the linear kernel is thatformulation does not depend upon any parametaking model
selection a much simpler (and faster) procedure.
Another example of (piecewise) linear function tikah be employed as kernel for SVR is the so-cédlleshgular
kernel [6]:

k(x;,X) = =[x; =X



It has been shown that the triangular kernel hasdliowing interesting property: it makes the S¥(Rction invariant
to any scale of the data. Moreover, no tuning dfeegarameters is needed [7].
A “rectified” version of the triangular kernel majso be considered:
.0 = c-x-xl)c it |x -xsc
0 otherwise

Unfortunately, this particular function is positigefinite in 0%, but not in 02 [8], and therefore cannot be used as
kernel for SVR. As a matter of fact, in the litena only the “unrectified” triangular kernel is dsi@ practice, so in this
work we will restrict to the first version.

In the following, the Gaussian, linear and triamgWernels will be employed in the formulation offSto reconstruct
the input-output relationship of the three considdimear dynamic systems.

V. Simulationsresults

All simulations have been run exploiting the LIBS\Bdftware by Linet al.[9], which have been modified in order to
add the triangular kernel, since it was not inctlilethe original version.

In the following paragraphs simulation results discussed for the three different examples of lirsyatems presented
in Section Ill.

A. Accuracy achieved using different kernel functions

Tables 1-3 summarize the RMSE results obtained th#hSVR approach on validation and final test fmtsSystem
A”, “System A_rec” and “System B”, using the diféat kernel functions, together with the number g Brt Vectors
(SVs) characterising the SVR model.

Notice that for the recursive example “System A”réoth prediction and simulation errors are coasidl in the test
phase. More specifically, the prediction error ie RMSE value evaluated on the test set, takingtwtioefeatures
u(t -1, y(t—1) as they are, i.e. the known measured values. Thelaion error, instead, is computed by introducing

recursively, as the second feature of the curesttsample, the output value estimated in the pusvétep, as follows:

) = fut -1, 9(t-1)
t+1) = fu(), y(v))

Thus, for the simulation case the accuracy is eegeto get worse than for prediction, since modedrs propagate
through the procedure.

Kernel function Number of SVs Validation Test
Gaussian 98 8.09-T0 7.44.10
Linear 104 1.11-19 1.09-1C°
Triangular 765 2.02-10 41510

Table 1. “System A”: number of SVs and RMSE resfdtdifferent kernel functions.

Kernel function Number of SVs Validation Test
Gaussian 46 2.82.10 FSJ Zggig
E B RS
Triangular 221 5.39-10 FSJ 32(75110(;

simulation (s) errors are reported.

Table 2. “System A_rec”: number of SVs and RMSHiitssor different kernel functions; both predicti¢p) and

Kernel function Number of SVs Validation Test
Gaussian 30 4.59-T0 4.98-10
Linear 7 4.40-10 4.42.1¢
Triangular 208 1.52.10 2.00-10°

Table 3. “System B”: number of SVs and RMSE resfatdifferent kernel functions.




As already mentioned in Section Ill, the best rssinl terms of RMSE are obtained for “System A_rantl “System
B”, since by using the features defined in those t@ses it is possible to reconstruct perfectlyibbavior of the
considered system, while for “System A” a biggepneneeds to be accepted.

In all the considered examples, very good resutisotained employing a Gaussian kernel functioowéier, having
a look at the value of parametethat characterise the width of the Gaussian kgjomimised in the model selection
procedure), we can observe that it takes a veryl salae (around 0.001) in all cases. This resmta SVR estimating
function which is approximately linear, somethingieh is not surprising, since we are modelling tingut-output
relationship of linear systems. Similarly, we olvgethat the choice of using linear kernels leadssatisfactory
accuracy performance (very close to or even betten the Gaussian case). Moreover, it can be mbticat for
“System A_rec” and “System B” (two examples wheheadretically only two features are needed to descthe
system) the number of Support Vectors is greattiuced when using a linear kernel function. In hé tonsidered
examples, the triangular kernel, instead, doesatioiv to obtain good results, both in terms of RMSHad of
complexity of the SVR function (very high numberSipport Vectors).

The parameter (that represents the width of the sensitivity Jdakes in all cases a value around 0.001.

B. Linear kernel case: effect of reducing training set size

In the remaining part of this section, we focustlom linear kernel case, analysing the effect oficedy the size of the
training set (i.e. the number of examples usedfdlding the SVR estimating function), both on REISE results, and
on the estimation of model parameters. Some exangblplots in the frequency domain will also bewho

Tables 4-6 report the number of Support VectorstardRMSE values obtained for the three considsystems, for a
decreasing training set size (1024, 100, 50, liditg samples). Notice that the number of validatamd test data is
kept unchanged (1024 and°¥@spectively).

Training set size Number of SVs Validation Test
N=1024 104 1.11-1 1.09-1C°
N=100 58 1.27-16 1.26-10°

N=50 47 1.69-16 1.70-1C°
N=10 9 2.25-18 2.32:1C0

Table 4. “System A” with linear kernel: number ofsSand RMSE results for different training set size

Training set size Number of SVs Validation Test
S IR T
L O T e
o | e e
EEECTNE:

Table 5. “System A_rec” with linear kernel: numioéiSVs and RMSE results for different training seges; both

prediction (p) and simulation (s) errors are repart

Training set size Number of SVs Validation Test
N=1024 7 4.40-16 4.42.1¢
N=100 5 3.73-160 3.73-1¢

N=50 5 5.73-10 5.72-1¢
N=10 5 6.47-10 6.48-1¢

Table 6. “System B” with linear kernel: number afsSand RMSE results for different training set size

A considerable reduction of the training set sigesinot seem to affect the accuracy performanteeo$VR function,
except for “System A” where only foN =10 the RMSE value gets worse by a factor 10 (althabghreduction from
N =1024to N =50has a small effect on the accuracy). In all otleeses, even the results obtained for=10 are still
satisfactory. It is however still to be understamitly the number of Support Vectors does not decrbatiger towards
the theoretically minimum number of only two SVs.



C. Linear kernel case: estimation of model parameters

For the linear kernel example it is possible toivdeian analytical expression for the parameterthefmodel, as a
function of the Support Vector values and the gpomding coefficient§, . More in details, the values of parameters

andb of “System A” and “System A_rec”, and of paramst@randa, of “System B” can be obtained by substituting
the definition of the linear kernel in the expressior the SVR estimating function:

§=F(B)= Y Bk(x,X)+q

SV
= Zﬁixi X+q
iosv
= zlgi (XX +Xi2% *...+ Xig Xg )+
Y
:Xl[zlgiXilJ-'-XZ(ZIBiXi2J+"'+Xd(ZﬁixidJ"’q
Y i0SV Y

whered is the length of the feature vector andx,,...,)y represent the single feature values. Thus, for t&ysA”
d=8and x; =u(t-1),x, =u(t-2),...,Xg =u(t-8); for “System A rec”d =2and x; =u(t-1),x, =y(t-1); for
“System B"d =2and x; =u(t-1,x, =u(t—2).

As a result of the SVR training phase, the setupip®rt Vectors;, the correspondingB; coefficients, and the bias term

g are obtained. Based on this information, the \sahfethe model parameters can be easily computedthe equation
above. Tables 7-9 report the obtained values cosdpaith the true model parameters in the three elesn for
different training set sizes.

Trainingset size | ay=1 | a=0.5|a;=05%*| a,=05° | as= 05" | =05 | &2=05° | as=05' | q=0
N=1024 0.9807 0.5780| 0.1465] 0.1264 0.1899 -0.07f4 0.0197 0.035601-1C°
N=100 1.0027] 0.4999| 0.2379] 0.1319 0.0730 0.03%51 -0.0204 0.037&38-10
N=50 1.0107] 0.4770| 0.2602] 0.1303 0.065f 0.0349 -0.0146 0.086014-1(C"
N=10 0.9950] 0.4968| 0.2478] 0.120§ 0.057F7 0.0280 0.0127 0.002723-B0°

Table 7. “System A” with linear kernel: values bétmodel parameters obtained for different traisiegsizes.

Training set size a=1 b=0.5 g=0
N=1024 0.9993| 0.5003 -9.89:1(
N=100 0.9992| 0.5003 2.63710

N=50 0.9990| 0.5001] -2.54-1Q
N=10 0.9991| 0.5004] 2.15-10

Table 8. “System A_rec” with linear kernel: valueghe model parameters obtained for differenniraj set sizes.

Training set size =1 | &=05 g=0
N=1024 0.9991| 0.5005 6.40:10
N=100 0.9993| 0.5004 1.14-1Q

N=50 0.9989| 0.5009 -3.27-1Q
N=10 0.9990 | 0.5004 2.11-10

Table 9. “System B” with linear kernel: values bétmodel parameters obtained for different trairsiegsizes.

Once again, we can see that for “System A_rec”&ydtem B”, two features are sufficient to estimederectly all the
parameters of the model (with very good approxiomgti even when the number of samples used foritiaihe SVR
is reduced to 10. For “System A”, a reasonableregion is given for the first parameters, while; farameters with
true values around F0t is more difficult to obtain an accurate approation, especially foN =1024(higher number
of Support Vectors). A possible reason for thithet, while two parameters (the bias term is et are sufficient to
characterize “System A_rec” and “System B”, pararsd,,...,. do not give a complete description of “System A”

(additional term05 y(t —d 1) should also be included), and need therefore tadpested a little with respect to their
theoretical value, in order to reconstruct the telationship betweeun(t) andy(t).



D. Linear kernel case: frequency domain plots

In order to have an idea of the behavior of the S\Rroach also in the frequency domain, some pl@shown that
depict the trend of the error of the SVR estimate.
Figure 1 shows that the two frequency responsdifume (true model and SVR estimate) are perfectbriapped.

! I ! ! ! ! I ! !
0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 05

-10

Figure 1. “System B”: normalized frequency respdiosetion of the system (blue) versus the normadlifzequency
response function reconstructed by means of the &\tiRate with linear kernel (red).

Moreover, the amplitude in dB of the normalizebewf the SVR frequency response function (wittpess to the true
frequency response of the system) is shown asatidmnof the (normalized) frequency:

Ysyr(K
Go(k)_ SVR( )
Go(K) ~Gsvr(®)|  _ U (k)
O ‘ Go(0)
dB
whereU(K) represents the FFT values of the test input datd,Ysy(k) is the FFT value of the SVR estimate of the

output.

The plots are shown in Figures 2-4 for “System Bthvthe linear kernel function, for three differeaxcitation signals,
namely multisines with excited frequencies up t20.0.27 and 0.5. Similar figures can be obtained #or the two
other cases, “System A” and “System A_rec”.

As a reference, the deviation of the frequencyarse function of the test data from the true mdslalso provided:

Ves¥)

6o -Gea®| _|*® U
| GO Ids‘ Go (0)

dB

Although the latter will be obviously equal to Ge{bw —300 dB in the figures), since the test datagenerated starting
from the true model, it is interesting to observe different behavior in those ranges where fregigsrare not excited.
Multisines with excited frequencies up to 0.12 @r2i7 will not give any information for frequencylwas outside these
ranges, resulting in a bigger error.

As far as the SVR estimate plots are concernediifferences are observed when changing the frequemge of the

excitation signal: the behavior of the system ig/weell reconstructed in all cases (values aroun@ éB correspond to
the RMSE results shown above).
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Figure 2. “System B” with linear kernel, test dati¢h excited frequencies up to 0.12: normalizedepot (amplitude
in dB) in the frequency domain of the SVR estin(é&) and of the test data (right).

0 T r T T T T T T T 0

50k

20+
-100 -

30+
-150
a0+

-200
50

=250
601 _
—

- -300

L | WWMWMMM
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

80 L I L I L I L I L 350

0.45 0.5

Figure 3. “System B” with linear kernel, test dafi¢h excited frequencies up to 0.27: normalizedeplot (amplitude
in dB) in the frequency domain of the SVR estinm#té) and of the test data (right).
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Figure 4. “System B” with linear kernel, test dafi¢gh excited frequencies up to 0.5: normalized eplot (amplitude in
dB) in the frequency domain of the SVR estimaté)(knd of the test data (right).

VI. Conclusions

In this work we have analysed the identificationsef/eral examples of linear systems by means ofsSU&ng both
non-recursive and recursive models. Different kiefurections were employed in order to better chimase the linear
input-output relationship. The obtained SVR modedse been used also for estimating directly therpaters of the
linear system, in the case of the linear kernele Hpproach based on SVR was successfully applieall tthe

considered examples, and frequency domain plotw shat the SVR estimate approximates very welllibbavior of
the true system. Future directions for our reaseaitt be to extend the work to the nonlinear caameg to study the
effect of introducing noise on the data.
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