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Abstract. This paper presents an efficient symbolic-numerical approach for generating and
solving the Boundary Value Problem - Differential Algebraic Equation (BVP-DAE) originating
from the variational form of the Optimal Control Problem (OCP). This paper presents the
Method for the symbolic derivation, by means of symbolic manipulation software (Maple), of
the equations of the OCP applied to a generic multibody system. The constrained problem is
transformed into a non-constrained problem, by means of the Lagrange multipliers and penalty
functions. From the first variation of the nonconstrained problem a BVP-DAE is obtained, and
the finite difference discretization yields a non-linear systems. For the numerical solution of
the non-linear system a damped Newton scheme is used. The sparse and structured jacobians
is quickly inverted by exploiting the sparsity pattern in the solution strategy. The proposed
method is implemented in an object oriented fashion, and coded in C++ language. Efficiency
is ensured in core routines by using Lapack and Blas for linear algebra.

1. Introduction

In the last decade, the interest on Optimal Control Problems (OCP) grew rapidly for its
ability to produce control laws, which operates a system in an optimal way according to given
aims. The applications cover many engineering fields such as chemical, economics, vehicle and
biomechanics dynamics, automation, and many others [5, 6, 10, 19, 18, 21, 23, 24, 30] At the
same time the improvement of available symbolic and numerical multibody software helped
researchers to develop complex mathematical models of the system to be controlled. As main
consequence, nowadays engineering problems yield very large systems of Differential Algebraic
Equations (DAE). Since such large number of equations being involved, the availability of an
automatic procedure for deriving OCPs equations and the speed of numerical computation have
become key issues. The literature review suggests that basically there are two ways to solve
these kinds of problems: the direct methods and the indirect ones. The dynamic programming
is ruled out being impracticable for its high dimensionality when tackling large systems.
Indirect methods. The theoretical basis of the solution of an OCP (as expressed in section
2) comes from the Calculus of Variations in the form of first necessary condition for the
Lagrangian function stationary condition [27]. The first necessary condition consists of the
original problem equations and a new set of equations called adjoint equations whose number
is equal to the problem variable ones. In addition there are the boundary condition equations.
The whole set of equations (presented in section 2.1) yields a Two Point Boundary Value
Problem (TPBVP), which can be numerically solved mainly using four different techniques.
Invariant embedding [26] is a procedure for converting the TPBVP to an IVP. The main
disadvantage is the high dimensionality of the resulting problem. Single shooting [3] technique
guess missing initial conditions and the equations are integrated as IVP. By means of Newton
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iterations missing initial conditions are updated until the given final conditions are met. The
main disadvantage of this method is its high sensitivity to guessed values and the fact that
some equations (typically the co-state equations) may be very-fast diverging. Multiple shooting
[4, 14, 25] follows the same idea of single shooting, but the domain is divided in smaller
subintervals reducing sensitivity to guessed values and divergence specially when combined with
direct collocation. The Newton iteration is used to enforce continuity between subintervals.

Discretization or global methods [10, 3] are the most stable, and the solution is obtained
simultaneously for the whole domain. Efficient factorization schemes [17, 20] and structural
orthogonal factorization [31] can be used to minimize the computational effort.

The solution of TPBVP arising from the necessary condition is commonly referred as indirect
method. Since it solves directly the equation of first necessary condition is generally reckoned
as very accurate. However the number of equations is at least doubled, moreover such a
procedure requires a massive symbolic computation to obtain the adjoint equations.
Direct methods. Instead of solving directly the necessary condition it is possible to discretize
the problem in order to obtain a Non Linear Program (NLP), which makes possible to use
consolidated numerical techniques, such as Initial Value Solver (IVS) and Sequential Quadratic
Programming (SQP) [2, 5, 16, 26, 23, 29]. With full discretization, both control variables and
state variables are discretized. This leads to a very large system, which consists of algebraic
objective function and a set of algebraic constraints which can be optimized by any NLP solver
The weakness are the large problem size, and the need for efficient large scale optimization
algorithm. On the other hand if only controls are parameterized (partial discretization), given
the initial conditions the process equations are solved with a DAE solver. This produces
the value of the objective function, to be iteratively used in a optimization routine to find
the optimal parameters in the control parametrization. The jacobian is needed with a high
accuracy. Moreover both method require post calculation to check validity of first necessary
condition.

Under some hypothesis, both direct and indirect methods theoretically produce the same
results, but the indirect ones are more accurate [29, 5, 21, 4]. Nevertheless, the direct methods
achieved more popularity because, among other reasons, they make use of consolidated numer-
ical techniques such as IVS and SQP and, above all, do not require the symbolic derivation
of the adjoint equations. Only their estimation is needed in some cases (especially in post
processing task), see the reviews by Cervantes [7] and Sargent [22]. This aspect might be an
advantage when large systems are involved, because systems dimension is halved. However,
accuracy and sensibility to design parameter variations, which is typical of indirect methods,
might be essential in some engineering problems for example as race engineering, where a vari-
ation of the position of centre of mass of few millimeters may change substantially the global
performance of the vehicle [11, 8].

The intent of this paper is to present a general methodology that implements a full indirect
method for OCP applied to large system of Ordinary Differential Equations (ODE). In section 2
the equation describing the minimum time problem to be solved are introduced. The equations
of the necessary condition as well as the adjoint ones are automatically derived via symbolic
derivation. In section 3 the TPBVP arising from indirect method obtaining a big non-linear
system are discretized. In section 4 a solution procedure for the big non-linear system is
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presented. In section 5 the method is applied to solve a minimum lap-time for a mathematical
model of a racing motorcycle on a real circuit. The numerical results are compared to the data
of a real vehicle acquired from onboard measurement systems.

2. The Optimal Control Problem formulation

The engineering application we are considering is the minimum lap time for a real circuit
performed by a motorcycle. The mathematical model of the driver–motorcycle system is an
improved version of the one presented in Cossalter et al. [10]. The variational formulation of
this OCP consists in finding the control u(s) ∈ Rm that minimizes the functional:

J [x,u] =
∫ sf

si

f(x(s),u(s)) ds, (1)

under differential and algebraic constraints. Here, the symbol x(s) ∈ Rn denotes the state
vector and s is the curvilinear abscissa of the circuit. The minimum is assumed to satisfy the
following ODE (or DAE):

a(x(s), ẋ(s),u(s)) = 0, s ∈ (si, sf ) (2)

where a(x, ẋ,u) = (ai(x, ẋ,u))n
i=1.

Algebraic constraints are divided in two groups, equality and inequality ones. These equality
constraints are pointwise and are used to set initial and final boundary conditions as follows:

c(x(si),x(sf )) = 0, (3)

where c(xi,xf ) = (ci(xi,xf ))p
i=1. Inequality constraints are set along the trajectory and are

written as follows:

d(x(s),u(s)) ≤ 0, s ∈ (si, sf ) (4)

where d(x,u) = (di(x,u))q
i=1. These inequalities are used to describe the domain of the

solution and limitation of the control variable u(s). The specific expressions of equations
(1)—(4) can be found in appendix.

2.1. Constraints eliminations. The OCP based on equations (1)—(4) is formulated in a
constrained variational way. Inequality constraints are eliminated by means of penalty func-
tions [22]. This is done by augmenting the original cost functional J with some penalty func-
tions that increase sharply if the inequality constraints are violated. Differential and equality
constraints can be eliminated by introducing a set of suitable Lagrangian multipliers, thus
resulting in an unconstrained formulation.

This formulation is possible at the cost of n more unknowns for the elimination of the
differential constraints an p more unknowns for the eliminations of the equality constraints.

The resulting functional is the following:

J̃ [x,u,λ,µ] = µ · c(x(si),x(sf )) +
∫ sf

si

[fp(x(s),u(s)) + λ(s) · a(x(s), ẋ(s),u(s))] ds, (5)



SYMBOLIC-NUMERIC EFFICIENT SOLUTION OF OCP FOR MULTIBODY SYSTEMS 4

where

fp(x,u) = f(x,u) +
q∑

i=1

pi(di(x,u)),

and pi is the penalty associated to the i−th components of inequalities (4) and takes the form:

pi(s) =


(

1 +
s

hi

)ni

if s > −hi,

0 otherwise,

where hi and ni are the parameters used to tune the sharpness of the penalty. Typically
hi = 0.1 and ni = 10. This kind of penalty results to be easy to use and to tune, in fact the
thickness parameter hi is used when the penalty becomes active and the sharpness parameter
ni is used to tune the penalty factor if the inequality is violated. Inequality constraints can
also be eliminated by other techniques such as slack variables as barrier functions [22].

2.2. Optimality necessary conditions. Taking the first variation of (5) and setting it to
zero, we obtain the following boundary value problem (BVP):

∂d(x, ẋ,λ,u)
∂x

T

− d
ds

(
∂d(x, ẋ,λ,u)

∂ẋ

T
)

= 0, (6A)

∂d(x, ẋ,λ,u)
∂λ

T

= 0, (6B)

∂d(x, ẋ,λ,u)
∂u

T

= 0, (6C)

∂e(x(si),x(sf ),µ)
∂x(sf )

T

+
∂d(x(sf ), ẋ(sf ),λ(sf ),u(sf ))

∂ẋ(sf )
= 0, (6D)

∂e(x(si),x(sf ),µ)
∂x(si)

T

− ∂d(x(si), ẋ(si),λ(si),u(si))
∂ẋ(si)

= 0, (6E)

∂e(x(si),x(sf ),µ)
∂µ

T

= 0, (6F)

where

d(x, ẋ,λ,u) = fp(x,u) +
∑

k

ak(x, ẋ,u)λk, e(x(si),x(sf ),µ) =
∑

k

ck(x(si),x(sf ))µk.

Equations (6A)–(6F) constitute a BVP with second order differential equation due to equations
(6A). A further simplification is possible by specifying better the form of the differential
constraint a(x, ẋ,u) when it is derived from a multibody modeling.
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Assumption 1. The differential constraint (2) is linear in ẋ, i.e.:

a(x, ẋ,u) = A(x)ẋ + b(x,u)

where A(x) = (Aij(x))n
i,j=1 and b(x,u) = (bi(x,u))n

i=1.

This assumption is true for the application presented in this paper. This is typical of
multibody system with holonomic constraints [15]. Moreover if a(x, ẋ,u) is not linear in ẋ
but ẋ appears as polynomials then by adding more equations we can write another ã(x̃, ˜̇x,u)
which is linear in ˜̇x. This results in a differential-algebraic system, i.e. the matrix A(x) is not
necessarily of full rank.

From assumption 1 it follows that the derivative terms ∂d(x,ẋ,λ,u)
∂ẋ and ∂d(x,ẋ,λ,u)

∂u do not
depends on ẋ. This fact allows a simplifications of equations (6A)–(6F) because (6A) results
a first order ODE and (6C) becomes a system of algebraic equations. Equations (6A)–(6F)
can be reformulated as the following Boundary Value Problem – Differential Algebraic System
(BVP-DAE):

∂d̃(x,λ,u)
∂x

T

+ T(x,λ)T ẋ−A(x)T λ̇ = 0, (7A)

A(x)ẋ + b(x,u) = 0, (7B)

∂d̃(x,λ,u)
∂u

T

= 0, (7C)

∂e(x(si),x(sf ),µ)
∂x(sf )

T

+ ω(x(sf ),λ(sf )) = 0, (7D)

∂e(x(si),x(sf ),µ)
∂x(si)

T

− ω(x(si),λ(si)) = 0, (7E)

c(x(si),x(sf )) = 0, (7F)

where

d̃(x,λ,u) = fp(x,u) + λTb(x,u), ω(x,λ) = A(x)T λ, T(x,λ) =
∂ω(x,λ)

∂x
− ∂ω(x,λ)

∂x

T

.

System (7A)–(7F) can be written in a vector form as follows

M(y)ẏ + n(y,u) = 0, (8A)

h(y(si),y(sf ),µ) = 0, (8B)

g(y,u) = 0, (8C)

where (8A) is the vector form of the first-order differential equation (7A)–(7B), equations (8C)
is the vector form of boundary conditions (7D)–(7E)–(7F) and equations (8B) is the vector
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form of algebraic equations (7C). Moreover

y =

(
x

λ

)
, M(y) =

(
T(x,λ)T −A(x)T

A(x) 0

)
, n(y,u) =


∂d̃(x,λ,u)

∂x

T

∂d̃(x,λ,u)
∂λ

T

 , (9)

and

g(y,u) =
∂d̃(x,λ,u)

∂u
, h(y(si),y(sf ),µ) =



∂c(x(si),x(sf ))
∂x(si)

T

µ−A(x(si))T λ(si)

∂c(x(si),x(si))
∂x(sf )

T

µ + A(x(sf ))T λ(sf )

c(x(si),x(sf ))

 .(10)

Although expressions (9) and (10) are extremely complex they can be easily generated by using
symbolic manipulation software. In particular in this work a single MAPLE sheet is used to
generate all the expressions and relative jacobian matrices needed by the solution algorithm.

3. Discretization of the BVP-DAE

The algebraic-differential system (8A)–(8C) is discretized to obtain a finite dimensional
algebraic problem. The interval [si, sf ] is split into N subintervals, not necessarily of the same
size, si = s0 < s1 < · · · < sN = sf . Equations (8C) are evaluated on the collocation node
sk+ 1

2
= sk+sk+1

2 , the midpoint of the interval [sk, sk+1]:

0 = g
(
y(sk+ 1

2
),u(sk+ 1

2
)
)

= g
(

y(sk+1) + y(sk)
2

,u(sk+ 1
2
)
)

+O(h2) (11)

where h = max{sk+1 − sk; k = 0, . . . , N − 1}. Equations (8A) are approximated by using the
midpoint quadrature rule to average on [sk, sk+1] and by using finite differences in place of the
derivative terms:

0 =
1

sk+1 − sk

∫ sk+1

sk

M(y(s))ẏ(s) + n(y(s),u(s)) ds =

M
(

y(sk+1) + y(sk)
2

)
y(sk+1)− y(sk)

sk+1 − sk
+ n

(
y(sk+1) + y(sk)

2
,u
(
sk+ 1

2

))
+O(h2)

(12)

Using (12) and (11), and neglecting the truncation term of order O(h2) we obtain the following
non-linear system:

Φ(W) = 0, W = (y0,y1, . . . ,yN ,µ,u 1
2
,u1+ 1

2
, . . . ,uN− 1

2
)T (13)
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where yk ≈ y(sk) and uk+ 1
2
≈ u(sk+ 1

2
) and the map Φ is defined as follows:

Φk(W) =



M
(

yk+1 + yk

2

)
yk+1 − yk

sk+1 − sk
+ n

(
yk+1 + yk

2
,uk+ 1

2

)
k = 0 . . . N − 1,

h(y0,yN ,µ) k = N ,

g
(

yk−N + yk−N−1

2
, uk−N− 1

2

)
k = N + 1, . . . , 2N .

The solution of this non-linear system is a formally first-order accurate approximation of the
BVP-DAE (8A)–(8C). First order is low and is relatively easy to produce higher order solution.
Unfortunately higher-order scheme produce a non linear system with a more complex structure
than system (13). For the application presented in section 5 the discrete solution results in
good agreement with experiments so that the scheme can be considered adequate for such
application. However if accuracy is an issue second- or higher-order schemes can be easily
constructed. The price to pay for a higher order scheme is in increasing of the complexity
in both the symbolic generation of the jacobian matrices for the Newton scheme described in
section 4 and in the pattern of the non-zeroes of such matrices.

The final non-linear system can be very large; as an example for the Adria test (see section 5)
we have N = 3000, n = 19, m = 3, p = 29 and the total number of equations is 2 999 · 19 · 2 +
3 000 · 3 + 2 · 29 = 123 020.

3.1. Elimination of controls. To reduce the complexity of the problem (13) we use the fact
that the equation g(y,u) = 0 can be solved with respect to u to obtain a function u(y) such
that g(y,u(y)) = 0. From (10) it follows that u(y) is a stationary point of the function d̃(y,u)
so that jacobian matrix of g(y,u) with respect to u is the Hessian matrix of d̃(y,u) respect
to u. In many cases u(y) can be derived symbolically, otherwise a simple Newton–Raphson
procedure can be used to compute u(y) for any given y.

From now forward it is assumed that the vector u(y) is known so that problem (13) is
substituted by the following non-linear system:

Ψ(Z) = 0, Z = (y0,y1, . . . ,yN ,µ)T (14)

where

Ψk(Z) =

M
(

yk+1 + yk

2

)
yk+1 − yk

sk+1 − sk
+ n

(
yk+1 + yk

2
,u
(

yk+1 + yk

2

))
k = 0 . . . N − 1,

h(y0,yN ,µ) k = N ,

In the Adria test case the total number of equations is 2 999 · 19 · 2 + 2 · 29 = 114 020, saving
about 8% of equations. However the advantage is not in reducing the number of equations
because this is compensated by a slight increase of the complexity of the map. The major
simplification is in the structure of the resulting jacobian matrix used in the Newton iteration
used to solve (14). Moreover the strict coupling of u with y by u(y) results in accelerating the
convergence of the iterative scheme presented below.
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Figure 1. Implementation of block LU decomposition for the first 3 steps.

4. A solver for the resulting non-linear system

A variant of the Newton-Raphson scheme, the affine invariant Newton scheme of reference
[13], is used to solve the non-linear system (14). The scheme read as:

• Let z0 assigned.
• For j = 0, 1, . . ., until convergence

zj+1 = zj − αjJ−1
j Ψ(zj),

where Jj = ∂Ψ(zj)
∂z and αj is the first number satisfying:

∥∥∥J−1
j Ψ(zj+1)

∥∥∥ ≤ κj

∥∥∥J−1
j Ψ(zj)

∥∥∥ (15)

and chosen in the sequence {1, q, q2, q3, . . . , qmax} with q ∈ [1/2, 1) and κj < 1 chosen
in the sequence {1− qi/2}.

Convergence is reached when αj = 1 and
∥∥∥J−1

j Ψ(zj)
∥∥∥ is less than a prescribed tolerance.

Although the previous algorithm works for small problem the condition (15) for accepting a
step is too restrictive for large size problems. This results in iterative stagnation and algorithm
spend long time in very small steps. A simple modification of the algorithm allows to speed
up the algorithm; in particular, we remove the monoticity request of κj < 1 and substitute κj

with a constant greater then 1 when the residual
∥∥∥J−1

j Ψ(zj)
∥∥∥ is large.

The resulting algorithm require the formal inversion of the matrix Jj for each steps, in
particular at least two inversions per iteration are needed. For this reason it is important to
store the LU decomposition of Jj in order to reduce the computational costs. The matrix Jj
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2n

4n 2n+p

2n+p

4n p

4n

p

Figure 2. Extracted subblock for the LU decomposition

is sparse and has the following block structure:

Jj =



A−
0 A+

0 0

A−
1 A+

1

. . . . . .
...

A−
N−1 A+

N−1 0

H0 · · · HN HN+1


where

A±
k = ± 1

sk+1 − sk
M(yk+ 1

2
) +

1
2

∂M
∂y

(yk+ 1
2
)
yk+1 − yk

sk+1 − sk
+

1
2

∂n
∂y

(yk+ 1
2
,uk+ 1

2
)

− 1
2

∂g
∂y

(yk+ 1
2
,uk+ 1

2
)× ∂g

∂u
(yk+ 1

2
,uk+ 1

2
)−1 × ∂g

∂y
(yk+ 1

2
,uk+ 1

2
),

H0 =
∂h(y0,yN ,µ)

∂y0
, HN =

∂h(y0,yN ,µ)
∂yN

, HN+1 =
∂h(y0,yN ,µ)

∂µ
.

The dimension of the blocks A± is 2n×2n, while the dimension of H0 and HN is (2n+p)×2n
and the dimension of HN+1 is an (2n + p)× (2n + p). The blocks A±

i and Hk are again sparse
but the number of non-zeroes for each block is about 25 % of the number of elements for each
block. This sparsity pattern is not enough to make competitive a sparse algorithm for the single
block so that this block matrices are assumed as full. Assuming the blocks full of non-zero it
is easy to apply block Gauss algorithm to obtain LU decomposition of Jk obtaining virtually
no fill-in. Unfortunately such algorithm is not stable and at least partial pivoting is needed.
However also with the partial pivoting it is possible to take advantage of the block form of Jk,
in fact is is possible to perform n steps of LU decomposition to extract sub-block as showed
in figure 1 and by calling LAPACK routines [1] obtain good performance. The algorithm can
be sketched as follows:

• For k = 0 to N − 1,
– extract the blocks A±

k , Hk, Hk+1 and the filled block as shown in figure 1 in the
single rectangular block of dimension (6n + p)× (4n + p);
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Figure 3. On the left, block implementation of LU decomposition for the last
step. On the right jacobian matrix after the reordering in the case of well
separated boundary conditions and after elimination of µ.

– perform 2n step of Gauss elimination with partial pivoting; this operation modifies
the block as shown in figure 2 on the left where the white part of the block
corresponds to the eliminated columns;

– restore the modified blocks in the original matrix with the corresponding permu-
tation of rows.

As shown in figure 1 this operation may produce a fill-in the block (k, k + 1). This is
due to the pivoting search and correspondingly performed row permutation. However
analyzing Gauss elimination as a row is filled-in in the block (k, k + 1) a correspond
row in the block (k, N) is freed.

• Extract the blocks HN−1, HN ,HN+1, A+
N−1 and the filled block as shown in figure 3.

• Perform the final LU decomposition as shown in figure 2 on the right.
The computational costs in term of multiplication and division operations can be evaluated as
follows:

• (N − 1) block Gauss steps of costs:

≈ 16 pn2 + 2 p2n +
92
3

n3, operations * and /

• 1 final LU decomposition,

≈ 16 pn2 + 4 p2n +
64
3

n3 + 1/3 p3 operations * and /

Assuming as in our test n ≈ p the leading term of the total cost is about 50Nn3. When it is
possible to compute explicitly the Lagrange multiplier µ and the boundary conditions can be
distinguished, i.e.

c(xi,xf ) =


ci(xi) i = 1, . . . , r

ci(xf ) i = r + 1, . . . , p
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the Jacobian matrix can be reordered as depicted in figure 3 on the right. In this case when
n ≈ p the cost to perform LU decomposition is about N19n3 and there is no fill-in in the case
of full blocks. It is clear that such approach is better from the computational point of view.
However there are situations where boundary conditions are not well separated, this is the case
when cyclic condition are imposed, moreover this approach needs to symbolically eliminate the
Lagrange multiplier µ.

A final remark should be done for the choice of z0. As very simple choice is as follows:
• All the z0

k related to the Lagrange multiplier and controls u are set to 0.
• All the z0

k related to the status variables x are evaluated as the motorcycle run slowly
in the middle of the road.

5. Numerical test: solution of minimum-lap time problem

-160

-80

0

80

160

-300 -200 -100 0 100 200 300 400 500

Major gain areas for braking:
(roll angle is also different)

Major gain areas for roll rate

Figure 4. Simulated minimum–time trajectory

The methodology proposed above has been applied to solve a minimum lap-time problem for
a sports motorcycle on a real race track (the circuit of Adria in Italy). The numerical results
have been compared to data acquired from real vehicle’s onboard inertial measurement unit.
The motorcycle was driven by an expert test driver. Solutions of optimal control problem in
racing environment are mainly useful for two purposes:

• to assess vehicle performance for first stages of vehicle design and/or for vehicle setup
on a specific circuit;

• to improve race driver’s skills.
Of course the agreement of numerical simulations with experimental data depends on the
complexity of the mathematical model describing the dynamic behaviour of the motorcycle
(system equations (1)).

The mathematical model described in this paper is capable of reproducing important issue
of the vehicle gross motion, despite its simplicity when compared to other literature models, see
Reference [28]. The model is an improved version of the one presented in [10]. It has four degree
of freedom (x, y, roll, yaw, and steering angle), tire equations and curvilinear path equations
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for a total of 19 ODE equations. The parameters used were obtained by accurate laboratory
measurements of the motorcycle [12] and tyres [9]. Overall inertia properties were calculated
by combining the inertia properties of the motorcycle with those of a rider of average size. The
Adria circuit is described in curvilinear abscissa with constant width and discretized with 3149
mesh points. Simulation results are compared with pure gyroscopes signals and longitudinal
accelerometer signals, as measured by the onboard equipment. Thus, the measured signals are
filtered by moving average to reduce noise. Then, the simulated acceleration and angular rates
are projected into a moving reference frame consistent with the one of the onboard equipment
for comparisons. The trajectory in figure 4 is the simulated one. In terms of lap time the
test driver was 6 seconds slower than simulated optimal performance. Figure4 highlights the
areas where major differences between simulation estimated performance and real motorcycle
performance occur. The comparison of longitudinal acceleration (see figure 5) shows that
maximum acceleration and minimum deceleration values are almost the same except for two
corners (highlighted in figure 4), where the test driver does not use all the longitudinal available
force. This is the main cause why the test driver falls behind the simulated manoeuvre.

Figures 6 show the comparison of telemetry angular rates with those of numerical solution
for the entire lap. The comparison shows quite good agreement for all motorcycle angular
rates except for some peaks of the simulated roll rate, compared to x gyroscopes signal, as
highlighted in the corresponding figure. The higher roll rate reached by the simulation is
possible because the model does not include suspensions, which limit roll rate during fast
lateral change manoeuvres. This basically occur in S shaped curves indicated in figure 4.
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Figure 6

7. Conclusion

This paper presents a full direct approach technique for solving OCP applied to multibody
mathematical models. Langange multipliers are used to eliminate equality constraints, while
penalty formulation for inequality ones. Symbolic procedure have been used to obtain the
optimality necessary condition equations, included adjoint ones. In these procedures the par-
ticular structure of multibody system with holonomic constraints is exploited, to better handle
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problem with large number of equations. The resulting TPBVP is discretized by a finite dif-
ference scheme. The resulting nonlinear system of equations are automatically translated into
high-level programming language along with their jacobian matrices. The solution algorithm
is based on a modified version of the Affine Invariant Newton scheme. In the last part of article
the method is employed to solve a minimum–time lap problem for a sports motorcycle on the
circuit of Adria. A ODEs mathematical model consisting of 19 equations is used. The circuit
length is discretized with a mesh of about 3000 points. Comparisons with data acquired by a
inertial measurements unit mounted on a similar sports motorcycle show good agreement with
numerical simulations. The method is proved to be effective and able to handle large problem.

Appendix A. The Model

For completeness the differential constraint (2) and the functional (1) are here stated. This
model is an improvement of the model presented in [10].

The functional (1)

J [x,u] =
∫ sf

si

ds

x19
,

The differential constraints (2) are the following expressions where the shortcuts C(x) ≡ cos(x)
and S(x) ≡ sin(x) are used:

x19
dx3

ds
− x4 = 0, x19

dx12

ds
− κ(x13)x19

dx13

ds
+ x5 = 0,

(1− x14κ(x13)) x19
dx13

ds
− x2S(x12)− x1C(x12) = 0, x19

dx14

ds
− x2C(x12) + x1S(x12) = 0,

Krx1
2

m
− x10 + x11

m
− 2hx5x4C(x3)− bx5

2 − hS(x3)x19
dx5

ds
+ x19

dx1

ds
− x5x2 = 0,

−x9

m
− x8

m
− hx5

2S(x3)− hx4
2S(x3) + bx19

dx5

ds
+ hC(x3)x19

dx4

ds
+ x5x1 + x19

dx2

ds
= 0,

x7 + τ2x19
dx7

ds
m

+
x6 + τ2x19

dx6

ds
m

+ (h− rt) x4
2C(x3) + (h− rt)S(x3)x19

dx4

ds
− g = 0,

If
w

rf
C(ε)x1x16 +

(
h− rf

t

)
x9C(x3) + (h− rr

t ) x8C(x3) + Iex5x1C(x3)

+ (−Iy + Iz) x5
2C(x3)S(x3) +

(
rf
t − h

)(
x7 + τ2x19

dx7

ds

)
S(x3)

+ (rr
t − h)

(
x6 + τ2x19

dx6

ds

)
S(x3)− IxzC(x3)x19

dx5

ds
+ Ixx19

dx4

ds
+ rf

t x9 + rr
t x8 = 0,
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−If
w

rf
S(ε)x1x16 − Ixzx5

2C(x3)2 + (Ix + Iy − Iz) x5x4C(x3) + (p− b)
(

x7 + τ2x19
dx7

ds

)
C(x3)

+b

(
x6 + τ2x19

dx6

ds

)
C(x3) + (p− b)x9S(x3) + bx8S(x3) + IyS(x3)x19

dx5

ds
+ Ixzx4

2

− (rr
t C(x3) + h− rr

t ) (x10 + x11)− Iex19
dx1

ds
= 0,

(p− b)x9C(x3) + bx8C(x3) + Ixzx5
2C(x3)S(x3) + (−Ix + Iy − Iz) x5x4S(x3)

+(p− b)
(

x7 + τ2x19
dx7

ds

)
S(x3)− b

(
x6 + τ2x19

dx6

ds

)
S(x3)

+rr
t (x10 + x11)S(x3) + IzC(x3)x19

dx5

ds
− Ixzx19

dx4

ds
− Iex4x1 = 0,

σfx19
dx8

ds
x1

+ x8 −
(

Cr
s (rr

t (1− C(x3)) x4 − x2)
x1

+ Cr
rx3

)(
x6 + τ2x19

dx6

ds

)
= 0,

σrx19
dx9

ds
x1

+ x9 −

(
Cf

s

(
rf
t (1− C(x3)) x4 − x2 − x5p

x1
+

x15C(ε)
C(x3)

)
+ Cf

r x3

)(
x7 + τ2x19

dx7

ds

)
= 0,

If
z

(
C(ε)x19

dx5

ds
C(x3)− C(ε)x5S(x3)x4 + S(ε)x19

dx4

ds
+ x19

dx16

ds

)
+(C(ε)x4C(x15)− S(ε)x5C(x3)C(x15) + x5S(x3)S(x15))(

If
y (C(x3)S(x15)x5S(ε) + S(x3)C(x15)x5 − x4C(ε)S(x15))−

If
wx1

rf

)
− (C(x3)S(x15)x5S(ε) + S(x3)C(x15)x5 − x4C(ε)S(x15))

If
x (C(ε)x4C(x15)− S(ε)x5C(x3)C(x15) + x5S(x3)S(x15))

−
(
`− S(ε)

(
rf + C(x3)r

f
t

))
(

(C(x3)C(x15)− S(x3)S(ε)S(x15)) x9 − (S(x3)C(x15) + C(x3)S(ε)S(x15))
(

x7 + τ2x19
dx7

ds

))
+S(x3)r

f
t

(
(C(x3)S(x15) + S(x3)S(ε)C(x15)) x9 − (S(x3)S(x15)− C(x3)S(ε)C(x15))

(
x7 + τ2x19

dx7

ds

))
−x17 −Kδx15 − Cδx16 = 0,

x19
dx15

ds
− x16 = 0, x19

dx10

ds
− u1 = 0, x19

dx11

ds
− u2 = 0, x19

dx17

ds
− u3 = 0,

dx18

ds
x19 − 1 = 0,
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−dx19

ds
+

dx19

ds
x14κ(x13) + x19

dx14

ds
κ(x13) + x19x14

dκ

ds
(x13)

dx13

ds
+

dx2

ds
S(x12) + x2C(x12)

dx12

ds

+
dx1

ds
C(x12)− x1S(x12)

dx12

ds
+ (x14κ(x13)− 1) x19 + x2S(x12) + x1C(x12) = 0,

As boundary conditions (3) the following values are assigned:

x(si), x2(sf ), x3(sf ), x4(sf ), x5(sf ), x8(sf ), x9(sf ), x12(sf ), x15(sf ), x16(sf ), x17(sf ).

The inequality (4):

x 2
8

f2
lim

+
x 2
10

s2
lim

≤ x 2
6 ,

x 2
9

f2
lim

+
x 2
11

s2
lim

≤ x 2
7 ,

x5 ≤ x5max, x10 ≤ x10max, x11 ≤ x11max, x14 ≤ road width,

x16 ≤ x16max, u3 ≤ u3max, u1 ≤ u1max, u2 ≤ u2max.

A.1. Parameter description.
g gravitational acceleration;

τ2 time delay constant for vertical forces;
Kr coefficient of air resistance;
m total mass (motorcycle + driver);
b longitudinal distance of centre of mass from rear wheel centre;
h centre of mass height;
p base wheel

Ix overall x axis moment of inertia;
Iy overall y axis moment of inertia;
Iz overall z axis moment of inertia;

Ixz overall xz moment of inertia;
If
x front frame x axis moment of inertia;

If
y front frame y axis moment of inertia;

If
z front frame z axis moment of inertia;
Iv flywheel moment of inertia;
Ir
w rear wheel axial moment of inertia;

If
w front wheel axial moment of inertia;
Ie equivalent moment of inertia = If

w

rf + Ir
w

rr + Iv
rt

;
rr
t rear tyre toroidal radius;

rf
t front tyre toroidal radius;

rr rear tyre rolling radius;
rf front tyre rolling radius;
rt mean rolling radius;
` front frame offset;

Kδ front frame stiffness;
Cδ front frame damping;
σr rear tyre relaxation length;
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σf front tyre relaxation length;
Cr

s rear tyre sideslip stiffness;
Cf

s front tyre sideslip stiffness;
Cr

r rear tyre roll stiffness;
Cf

r front tyre roll stiffness;
κ road curvature;

flim tyre lateral adherence limits;
slim tyre longitudinal adherence limits;

A.2. state vector and controls description.
x1 forward velocity;
x2 lateral velocity;
x3 roll angle;
x4 roll rate;
x5 yaw rate;
x6 rear vertical load;
x7 front vertical load;
x8 rear lateral force;
x9 front lateral force;

x10 rear longitudinal force;
x11 front longitudinal force;
x12 yaw relative to middle road line;
x13 curvilinear abscissa;
x14 lateral displacement;
x15 steering angle;
x16 steering rate;
x17 steering torque;
x18 time;
x19 mapping variable;
u1 rear longitudinal force rate;
u2 front longitudinal force rate;
u3 steering torque rate;
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