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Abstract. Finding small unsatisfiable cores for SAT problems has recently re-
ceived a lot of interest, mostly for its applications in formal verification. How-
ever, propositional logic is often not expressive enough for representing many
interesting verification problems, which can be more naturally addressed in the
framework of Satisfiability Modulo Theories, SMT. Surprisingly, the problem of
finding unsatisfiable cores in SMT has received very little attention in the lit-
erature; in particular, we are not aware of any work aiming at producing small
unsatisfiable cores in SMT.
In this paper we present a novel approach to this problem. The main idea is to
combine an SMT solver with an external propositional core extractor: the SMT
solver produces the theory lemmas found during the search; the core extractor
is then called on the boolean abstraction of the original SMT problem and of the
theory lemmas. This results in an unsatisfiable core for the original SMT problem,
once the remaining theory lemmas have been removed.
The approach is conceptually interesting, since the SMT solver is used to dy-
namically lift the suitable amount of theory information to the boolean level, and
it also has several advantages in practice. In fact, it is extremely simple to im-
plement and to update, and it can be interfaced with every propositional core
extractor in a plug-and-play manner, so that to benefit for free of all unsat-core
reduction techniques which have been or will be made available.
We have evaluated our approach by an extensive empirical test on SMT-LIB
benchmarks, which confirms the validity and potential of this approach.

1 Motivations and goals

In the last decade we have witnessed an impressive advance in the efficiency of SAT
techniques, which has brought large and previously intractable problems at the reach
of state-of-the-art SAT solvers. As a consequence, SAT solvers are now a fundamental
tool in most formal verification design flows for hardware systems, both for equiva-
lence, property checking, and ATPG. In particular, and due to its importance in formal
verification [10], the problem of finding small unsatisfiable cores in SAT —i.e., unsat-
isfiable subsets of unsatisfiable sets of clauses— has been addressed by many authors
in the recent years [9, 11, 16, 12, 8, 4, 2, 7, 14].

The formalism of plain propositional logic, however, is often not suitable or expres-
sive enough for representing many other real-world problems, including the verification
of RTL designs, of real-time and hybrid control systems, and the analysis of proof obli-
gations in software verification. Such problems are more naturally expressible as sat-
isfiability problems in decidable first-order theories —Satisfiability Modulo Theories,



SMT. Efficient SMT solvers have been developed in the last five years, called lazy SMT
solvers, which combine DPLL with ad-hoc decision procedures for many theories of
interest (see, e.g., [6, 1, 3, 13, 5]).

Surprisingly, the problem of finding unsatisfiable cores in SMT has received virtu-
ally no attention in the literature. Although some SMT tools do compute unsat cores,
this is done either as a byproduct of the more general task of producing proofs, or by
modifying the embedded DPLL solver so that to apply basic propositional techniques to
produce an unsat core. In particular, we are not aware of any work aiming at producing
small unsatisfiable cores in SMT.

In this paper we present a novel approach addressing this problem. The main idea
is to combine an SMT solver with an external propositional core extractor. The SMT
solver stores and returns the theory lemmas it had to prove in order to refute the input
formula; the external core extractor is then called on the boolean abstraction of the
original SMT problem and of the theory lemmas. The resulting boolean unsatisfiable
core is cleaned from (the boolean abstraction of) all theory lemmas, and it is refined
back into a subset of the original clauses. The result is an unsatisfiable core of the
original SMT problem.

Although simple in principle, the approach is conceptually interesting: basically,
the SMT solver is used to dynamically lift the suitable amount of theory information to
the boolean level. Furthermore, the approach has several advantages in practice: first, it
is extremely simple to implement and to update; second, it is effective in finding small
cores; third, the core extraction is not prone to complex SMT reasoning; finally, it can
be interfaced with every propositional core extractor in a plug-and-play manner, so that
to benefit for free of all unsat-core reduction techniques which have been or will be
made available.

We have evaluated our approach by an extensive empirical test on SMT-LIB bench-
marks, in terms of both effectiveness (reduction in size of the cores) and efficiency
(execution time). The results confirm the validity and potential of this approach.

The paper is organized as follows. In §2 we provide some background knowledge
on techniques for SMT and for extraction of unsatisfiable cores in SAT and in SMT.
In §3 we present and discuss our new approach and algorithm. In §4 we present and
comment empirical tests. In §5 we conclude, suggesting some future developments.

2 Background

Given a decidable first-order theory T , we call a theory solver for T , T -solver, any tool
able to decide the satisfiability in T of sets/conjunctions of ground atomic formulas
and their negations (theory literals or T -literals) in the language of T . If the input
set of T -literals µ is T -unsatisfiable, then a typical T -solver not only returns unsat,
but it also returns the subset η of T -literals in µ which was found T -unsatisfiable.
(η is hereafter called a theory conflict set, and ¬η a theory conflict clause.) If µ is T -
satisfiable, then T -solver not only returns sat, but it may also be able to discover one (or
more) deductions in the form {l1, ..., ln} |=T l, s.t. {l1, ..., ln} ⊆ µ and l is an unassigned
T -literal. If so, we call (

Wn
i=1¬li∨ l) a theory-deduction clause. Importantly, notice that



1. SatValue T -DPLL (T -formula ϕ) {
2. ϕp = T 2P (ϕ);
3. while (DPLL(ϕp,µp) == sat) {
4. 〈ρ,η〉 = T -solver(P 2T (µp))
5. if (ρ == sat) then return sat;
6. ϕp = ϕp∧T 2P (¬η);
7. };
8. return unsat;
9. };

Fig. 1. A simplified schema for lazy SMT(T ) procedures.

both theory-conflict clauses and theory-deduction clauses are valid in T . We call them
theory lemmas or T -lemmas.

Satisfiability Modulo (the) Theory T (SMT(T )) is the problem of deciding the sat-
isfiability of boolean combinations of propositional atoms and theory atoms. We call
an SMT(T ) tool any tool able to decide SMT(T ). Notice that, unlike a T -solver, an
SMT(T ) tool must handle also boolean connectives.

Hereafter we adopt the following terminology and notation. The bijective function
T 2P (“theory-to-propositional”), called boolean abstraction, maps propositional vari-
ables into themselves, ground T -atoms into fresh propositional variables, and is homo-
morphic w.r.t. boolean operators and set inclusion. The function P 2T (“propositional-
to-theory”), called refinement, is the inverse of T 2P . The symbols ϕ, ψ denote T -
formulas, and µ, η denote sets of T -literals; ϕp, ψp denote propositional formulas, µp,
ηp denote sets of propositional literals (i.e., truth assignments) and we often use them
as synonyms for the boolean abstraction of ϕ, ψ, µ, and η respectively, and vice versa
(e.g., ϕp denotes T 2P (ϕ), µ denotes P 2T (µp)). If T 2P (ϕ) |=⊥, then we say that ϕ is
propositionally unsatisfiable.

2.1 Lazy techniques for SMT

The idea underlying every lazy SMT(T ) procedure is that (a complete set of) the truth
assignments for the propositional abstraction of ϕ are enumerated and checked for sat-
isfiability in T ; the procedure either returns sat if one T -satisfiable truth assignment is
found, or returns unsat otherwise.

Figure 1 presents a simplified schema of a lazy SMT(T ) procedure, called the off-
line schema. The propositional abstraction ϕp of the input formula ϕ is given as input
to a DPLL solver, which either decides that ϕp is unsatisfiable, and hence ϕ is T -
unsatisfiable, or returns a satisfying assignment µp; in the latter case, P 2T (µp) is given
as input to T -solver. If P 2T (µp) is found T -consistent, then ϕ is T -consistent. If not,
T -solver returns the conflict set η which caused the T -inconsistency of P 2T (µp); the
abstraction of the T -lemma ¬η, T 2P (¬η), is then added as a clause to ϕp. Then the
DPLL solver is restarted from scratch on the resulting formula.

Practical implementations follow a more elaborated schema, called the on-line schema.
As before, ϕp is given as input to a modified version of DPLL, and when a satisfying



assignment µp is found, the refinement µ of µp is fed to the T -solver; if µ is found T -
consistent, then ϕ is T -consistent; otherwise, T -solver returns the conflict set η which
caused the T -inconsistency of P 2T (µp). Then the clause ¬ηp is added in conjunction
to ϕp, either temporarily or permanently (T -learning), and the algorithm backtracks
up to the highest point in the search where a literal can be unit-propagated on ¬ηp

(T -backjumping).
An important variant [6] is that of building a “mixed boolean+theory conflict clause”,

starting from ¬ηp and applying the backward-traversal of the implication graph, until
one of the standard conditions (e.g., 1st UIP [15]) is achieved .

Other important optimizations are early pruning and theory propagation: the T -
solver is invoked also on (the refinement of) an intermediate assignment µ: if it is
found T -unsatisfiable, then the procedure can backtrack, since no extension of µ can
be T -satisfiable; if not, and if the T -solver performs a deduction {l1, ..., ln} |=T l s.t.
{l1, ..., ln} ⊆ µ, then T 2P (l) can be unit-propagated, and the boolean abstraction of the
T -lemma (

Wn
i=1¬li∨ l) can be learned.

The on-line lazy SMT(T ) schema is a coarse abstraction of the procedures under-
lying all the state-of-the-art lazy SMT(T ) tools like, e.g., ARIO, BARCELOGIC, CV-
CLITE, MATHSAT, YICES. The interested reader is pointed to, e.g., [6, 1, 3, 13, 5], for
details and further references.

2.2 Techniques for unsatisfiable-core extraction in SAT

Given an unsatisfiable (propositional) CNF formula ϕ, we say that an unsatisfiable CNF
formula ψ is an unsatisfiable core of ϕ iff ϕ = ψ∧ψ′ for some (possibly empty) CNF
formula ψ′. Intuitively, ψ is a subset of the clauses in ϕ causing the unsatisfiability
of ϕ. An unsatisfiable core ψ is minimal iff the formula obtained by removing any of
the clauses of ψ is satisfiable. A minimum unsat core is a minimal unsat core with the
smallest possible cardinality.

In the last few years, several algorithms for computing small, minimal or minimum
unsatisfiable cores of propositional formulas have been proposed. In [16], they are com-
puted as a byproduct of a DPLL-based proof-generation procedure. The computed unsat
core is simply the collection of all the original clauses that the DPLL solver used to de-
rive the empty clause by resolution. The returned core is not minimal in general, but it
can be restricted by iterating the algorithm until a fixpoint, using as input of the ith iter-
ation the core computed at the previous one. In [12], an algorithm to compute minimal
unsat cores is presented. The technique is based on modifications of a standard DPLL
engine, and works by adding some extra variables (selectors) to the original clauses, and
then performing a branch-and-bound algorithm on the modified formula. The procedure
presented in [8] extracts minimal cores using BDD manipulation techniques, removing
one clause at a time until the remaining core is minimal. The algorithm of [7], instead,
manipulates the resolution proof so that to shrink the size of the core, using also a fix-
point iteration as in [16] to further enhance the quality of the results. The construction
of a minimal core in [4] also uses resolution proofs, and it works by iteratively remov-
ing from the proof one input clause at a time, until it is no longer possible to prove
inconsistency. When a clause is removed, the resolution proof is modified to prevent
future use of that clause.



As far as the the computation of minimum unsatisfiable cores is concerned, the al-
gorithm of [9] searches all the unsat cores of the input problem; this is done by intro-
ducing selector variables for the original clauses, and by increasing the search space of
the DPLL solver to include also such variables; then, (one of) the unsatisfiable subfor-
mulas with the smallest number of selectors assigned to true is returned. The approach
described in [11] instead is based on a branch-and-bound algorithm that exploits the re-
lation between maximal satisfiability and minimum unsatisfiability. The same relation
is used also by the procedure in [14], which is instead based on a genetic algorithm.

2.3 Techniques for unsatisfiable-core extraction in SMT

To the best of our knowledge, there is no published work in the literature devoted to
the computation of unsatisfiable cores in SMT. However, at least three SMT solvers
support unsat core generation with techniques adapted from SAT. CVCLITE [1] and a
recent extension of MATHSAT [3] can compute unsatisfiable cores as a byproduct of
the generation of proofs, in a way similar to that in [16]. YICES [5] instead uses the
following technique: a selector variable is introduced for each original clause, which is
forced to false before starting the search. In this way, when a conflict at decision level
zero is found, the conflict clause contains only selector variables, and the unsat core
returned is the union of the clauses whose selectors appear in such conflict clause. 3

We remark the fact that none of these solvers aims at producing minimal or mini-
mum unsat cores, nor does anything to reduce their size.

3 A novel approach to building unsatisfiable cores in SMT

We present a novel approach in which the unsatisfiable core is computed a posteriori
w.r.t. the execution of the SMT solver, and only if the formula has been found T -
unsatisfiable, by means of an external (and possibly optimized) propositional unsat-core
extractor.

3.1 A novel approach

In the following we assume that a lazy SMT(T ) procedure has been run over a T -
unsatisfiable SMT(T ) CNF formula ϕ =de f {C1, ...,Cn}, and that D1, ...,Dk denote all
the T -lemmas, both theory-conflict and theory-deduction clauses, which have been
returned by the T -solver during the run. In case of mixed boolean+theory-conflict
clauses [6] (see § 2.1), the T -lemmas are those which have been used to compute the
mixed boolean+theory-conflict clause, including the initial theory-conflict clause and
the theory-deduction clauses corresponding to the theory-propagation steps performed.

Our novel approach is based on two simple facts.

(i) Under the assumptions above, the conjunction of ϕ with all the T -lemmas D1, ...,Dk
is propositionally unsatisfiable: T 2P (ϕ∧Vn

i=1 Di) |=⊥.

3 The description about the computation of unsat cores in CVCLITE and YICES reported here
comes from private communications from the authors and from the user manual of CVCLITE.



T -DPLL

{D1, ...,Dk}

sat/unsat {C′1, ...,C′m}{C1, ...,Cn}

P 2TT 2P

Boolean Unsat Core

T 2P ({C′1, ...,D′
j})

{D′
1, ...,D

′
j}

T 2P ({C1, ...,Dk})

〈SatValue,Clause set〉 T -Unsat Core(Clause set ϕ) {
// ϕ is {C1, ...,Cn}
if (T -DPLL(ϕ) == sat)

then return 〈sat, /0〉;
// D1, ...,Dk are the T -lemmas stored by T -DPLL
ψp=Boolean Unsat Core(T 2P ({C1, ...,Cn,D1, ...,Dk}));
// ψp is T 2P ({C′1, ...,C′m,D′1, ...,D

′
j}));

return 〈unsat,{C′1, ...,C′m}〉;
}

Fig. 2. Schema of the T -Unsat Core procedure: architecture (left) and algorithm (right).

(ii) As T -lemmas Di are valid in T , they do not affect the T -satisfiability of a formula:
(ψ∧Di) |=T ⊥⇐⇒ ψ |=T ⊥.

Fact (i) is the implicit termination condition of all lazy SMT tools when the input for-
mula is T -unsatisfiable. E.g., in the off-line schema of Figure 1, the procedure ends
when DPLL establishes that T 2P (ϕ∧Vn

i=1 Di) is unsatisfiable, each Di being the nega-
tion of the theory-conflict set ηi returned by the i-th call to the T -solver. Fact (i) gen-
eralizes to the on-line schema, noticing that T -backjumping on a theory-conflict clause
Di produces an analogous effect as re-invoking DPLL on ϕp∧T 2P (Di), whilst theory
propagation on a deduction {l1, ..., lk} |=T l can be seen as a form on unit propagation
on the theory-deduction clause T 2P (

W
i¬li∨ l).

These facts suggest the novel algorithm represented in Figure 2. The procedure
T -Unsat Core receives as input a set of clauses ϕ =de f C1, ...,Cn and it invokes on it
a lazy SMT(T ) tool T -DPLL, which is instructed to store somewhere the T -lemmas
returned by T -solver, namely D1, ...,Dk. If T -DPLL returns sat, then the whole proce-
dure returns sat. Otherwise, the boolean abstraction of {C1, ...,Cn,D1, ...,Dk}, which is
inconsistent because of (i), is passed to an external tool Boolean Unsat Core, which is
able to return the boolean unsat core ψp of the input. By construction, ψp is the boolean
abstraction of a clause set {C′1, ...,C′m,D′

1, ...,D
′
j} s.t. {C′1, ...,C′m} ⊆ {C1, ...,Cn} and

{D′
1, ...,D

′
j} ⊆ {D1, ...,Dk}. As ψp is unsatisfiable, then {C′1, ...,C′m,D′

1, ...,D
′
j} is T -

unsatisfiable. By (ii), the T -valid clauses D′
1, ...,D

′
j have no role in the T -unsatisfiability

of {C′1, ...,C′m,D′
1, ...,D

′
j}, so that the procedure returns unsat and the T -unsatisfiable

core {C′1, ...,C′m}.
Notice that the resulting T -unsatisfiable core is not guaranteed to be minimal,

even if Boolean Unsat Core returns minimal boolean unsatisfiable cores. In fact, it
might be the case that {C′1, ...,C′m} \ {C′i} is T -unsatisfiable for some C′i even though
T 2P ({C′1, ...,C′m}\{C′i}) is satisfiable, because all truth assignments µp satisfying the
latter are such that P 2T (µp) is T -unsatisfiable.

The procedure can be implemented very simply by modifying the SMT solver so
that to store the T -lemmas 4 —if it doesn’t already— and by interfacing it with some

4 Notice that here “storing” does not mean “learning”: the SMT solver is not required to add the
T -lemmas to the formula during the search. This imposes no constraint on the lazy strategy



state-of-the-art boolean unsat-core extractor used as an external black-box device (e.g.,
by a simple exchange of files in DIMACS format). Moreover, if the SMT solver can
provide the set of all T -lemmas as output, then the whole procedure may reduce to a
control device interfacing with both the SMT solver and the boolean core extractor as
black-box external devices.

3.2 Discussion

Though based on an extremely simple concept, we believe that the newly-proposed
approach is appealing for several reasons.

First, it is extremely simple to implement. The building of unsat cores is demanded
to an external device, which is fully decoupled from the internal DPLL-based enumera-
tor. Therefore, there is no need to implement any internal unsat-core constructor nor to
modify the embedded boolean device. Every possible external device can be interfaced
in a plug-and-play manner by simply exchanging a couple of DIMACS files.

Second, it is trivial to update: once some novel, more efficient or more effective
boolean unsat-core device is available, it can be used in a plug-and-play way. This does
not require modifying the DPLL engine embedded in the SMT solver.

Third, from the perspective of effectiveness in reducing the size of unsat cores, every
original clause which the boolean unsat-core device is able to drop is dropped also in
the final formula. Therefore, this technique exploits for free all unsat-core reduction
techniques which have been and will be conceived in the SAT community. Notably, this
involves also boolean unsat-core techniques which could be difficult to adapt to SMT
—like, e.g., those based on genetic algorithms [14].

From the perspective of execution time, we notice a few facts. On the one hand,
when the input formula ϕ is T -unsatisfiable, the technique requires the call of an ex-
ternal boolean unsat-core tool, involving an extra execution time. (Notably, these tools
typically present a tradeoff between execution time and effectiveness in reducing the
size of the cores. See §4.) This is compensated in part by the loss of the overhead due
to the computation of proofs/unsat cores within SMT. 5 On the other hand, when ϕ is
T -satisfiable, neither the call of the external tool nor the internal building of proofs
and unsat cores is activated. Therefore, we may expect a possible increase of execution
time for T -unsatisfiable formulas, depending on the efficiency/effectiveness ratio of the
external tool, and a decrease for T -satisfiable formulas.

One potential drawback of this approach is the fact that a SMT(T ) solver is required
to store all the T -lemmas returned by the T -solver. However, we claim this is not a real
problem. In fact, unlike with plain SAT, in lazy SMT the computational effort is typi-
cally dominated by the search in the theory T , so that the number of clauses that can be
stored with a reasonable amount of memory is typically much bigger than the number
of calls to the T -solver which can overall be accomplished within a reasonable amount
of time. In our experience, even the hardest SMT formulas at the reach of current lazy

adopted (e.g., offline/online, permanent/temporary learning, usage of mixed boolean+theory
conflict clauses, etc.).

5 E.g., in MATHSAT the computation of proofs may require some overhead; moreover, some
tricks and speedups are disabled in order to be able to produce proofs.



SMT solvers rarely need generating more than 105 T -lemmas, which have very reason-
able memory requirements to store. (E.g., notice that the default choice in MATHSAT
is to learn all T -lemmas permanently anyway, and we have never encountered memory
overload problems due to this fact.)

Finally, one limitation of this approach is that the resulting T -unsatisfiable core is
not guaranteed to be minimal, even if Boolean Unsat Core returns minimal boolean
unsatisfiable cores. However, to the best of our knowledge, not only the issue of the
minimality of unsat cores in SMT has never been addressed or even discussed before,
but also this is the first time that the problem of the size of unsat cores in SMT is
addressed.

4 An empirical evaluation

The novel approach presented in §3 was implemented within the MATHSAT [3] system,
and was experimentally evaluated. We have tried different external propositional unsat
core extractors, including AMUSE [12], BOOLEFORCE [2], EUREKA [4], MUP [8],
TRIMMER [7], ZCHAFF [16], 6 and interfaced them with MATHSAT by exchanging
boolean formulas and relative cores in form of files in DIMACS format. We wanted
to try also the procedure presented in [14], but we could not obtain the tool from the
authors. We also had to stop the experiments with MUP because it used to run out of
memory (1GB) even on small examples. We adopted BOOLEFORCE as our baseline
choice because it turned out to be both the fastest and the least effective in reducing the
size of the cores, so that to be the ideal starting point for evaluating the tradeoff between
these two features. 7

We also developed a simple script, here referred as “BOOLEFORCE-iter-X%”, which
calls BOOLEFORCE iteratively until the reduction performed in the last iteration is
smaller than a given percentage X ∈ [0, ..,100], with a maximum of 10 iterations. 8

Notice that the parameter X allows for tuning the tradeoff between effectiveness and
efficiency. (E.g., X = 0 is equivalent to run BOOLEFORCE until a fixpoint is reached,
X = 100 is equivalent to call it only once.)

All the experiments have been performed on a subset of the SMT-LIB benchmarks.
We collected a total of 885 problems, of which 561 are T -unsatisfiable, taken from the
QF UF, QF IDL, QF RDL, QF LIA and QF LRA divisions, and selected by using the
same scripts used in the last SMT competition. 9 We used a preprocessor to convert
them into CNF, and in some cases to translate them from the SMT language to the
native language of a particular SMT solver if needed. 10 All the tests were performed

6 For all these tools we have used the default configurations.
7 This is not surprising because BOOLEFORCE was explicitly conceived for speeding up core

generation with no claims of minimality, whilst all the other tools explicitly targeted size re-
duction or minimality.

8 That is, it stops iterating either when (|corei|− |corei+1|)/|corei| < X/100, |corei| being the
size of the core after i iterated calls to BOOLEFORCE, or when i > 10.

9 See http://www.csl.sri.com/users/demoura/smt-comp/.
10 In particular, this was necessary for CVCLITE and YICES, since they can compute unsatisfi-

able cores only if the problems are given in their own native format.
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Fig. 3. Size of the unsat cores computed by MATHSAT +BOOLEFORCE, y-axis, against those of
CVCLITE, MATHSAT and YICES with proof-traces, with statistics on unsat core ratios. Points
on the horizontal and vertical lines indicate timeouts/memouts.

on 3 GHz Intel Xeon machines with 4 GB of RAM running Linux. For each tested
instance, the timeout was set to 600 seconds, and the memory limit to 1 GB. In order
to make the experiments reproducible, the benchmarks and tools used are available at
http://dit.unitn.it/∼griggio/papers/sat07 data.tar.bz2. 11

4.1 Effectiveness and efficiency of the baseline version

In this section we evaluate the baseline implementation of our novel approach in terms
of effectiveness (size of cores) and efficiency (execution times).

Size of the unsat cores. First, we compare the baseline implementation of our novel ap-
proach, MATHSAT +BOOLEFORCE, against CVCLITE [1], YICES [5] and MATHSAT
with unsat-core generation, with respect to the size of the unsat cores returned. Figure 3
shows the resulting scatter-plots, showing also some statistics about the ratios of the un-
sat core sizes computed by two different solvers. CVCLITE, MATHSAT, MATHSAT
+BOOLEFORCE and YICES solved within the timeout respectively 233, 423, 420 and
472 out of the 561 T -unsatisfiable problems; in every plot of Figure 3 only instances
for which both solvers terminated successfully have been considered. Figure 4 shows
the absolute reduction in size performed by MATHSAT +BOOLEFORCE.

11 With the exception of EUREKA, which has been provided to us by the authors under a non-
disclosure agreement.
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The results presented show that, even using the external tool which is the least effec-
tive in reducing the size of the cores (BOOLEFORCE), the effectiveness of the baseline
version of our tool is almost equivalent to those of the other tools.

Execution times. Second, we compare our novel approach against the proof-based one
with respect to the run time. We compare MATHSAT+BOOLEFORCE against MATH-



SAT on both T -unsatisfiable and T -satisfiable formulas. 12 Figure 5 shows the scatter-
plots for T -unsatisfiable (left) and T -satisfiable (right) instances, together with statis-
tics about the execution time ratios of the two solvers. For MATHSAT +BOOLEFORCE,
the execution time considered is the sum of the times of MATHSAT and BOOLEFORCE.
The experiments show that our proposed method is slightly slower for unsatisfiable
problems, but a bit faster for satisfiable problems, and comparable on average.

4.2 Using different propositional unsat core extractors

We have already stressed that one of the advantages of our method is that it benefits
for free of all the advances in propositional unsat core extraction. In this last part of
our experimental evaluation, we compare the results obtained using different tools. We
show that by using different core extractors it is possible to reduce significantly the
size of cores and to trade core quality for speed of execution (and vice versa) with
no implementation effort. We compare the baseline configuration of our novel system,
MATHSAT +BOOLEFORCE, against five other configurations, each calling a different
propositional core extractor.

Results are collected in Figures 6 and 7. The first column shows scatter-plots com-
paring the sizes of the unsat cores, while the third shows those comparing execution
times. Plots in the second column are meant to show a more detailed view of the rela-
tive performance of the different configurations with respect to core quality; they have
the following meaning: the x-axis displays the size (number of clauses) of the prob-
lem, whilst the y-axis displays the ratio between the size of the unsat core computed
by MATHSAT +BOOLEFORCE and that computed by the other configuration. For in-
stance, a point with y value of 1/2 means that the unsat core computed by the current
configuration is half the size of that computed by MATHSAT +BOOLEFORCE; values
above 1 mean the tool behaves worse than plain MATHSAT +BOOLEFORCE.

In figure 6 we evaluated the five configurations which use, respectively, AMUSE
[12], EUREKA [4], TRIMMER [7], ZCHAFF [16], and BOOLEFORCE-iter-0%. Looking
at the second column, we notice that EUREKA, followed by ZCHAFF and BOOLE-
FORCE-iter-0%, seems to be the most effective in reducing the size of the final unsat
cores, up to 1/2 the size of those obtained with plain BOOLEFORCE. Looking at the
third column, we notice that with AMUSE and ZCHAFF, and in part with EUREKA, ef-
ficiency degrades drastically, and many problems cannot be solved within the timeout.
With BOOLEFORCE-iter-0% and TRIMMER the execution times improve relevantly, but
still we have up to an order magnitude performance gaps w.r.t. the baseline version.

To address this problem, in Figure 7 we evaluated the configurations with BOOLE-
FORCE-iter-X% for different values of the threshold parameter X (X = 0, 2, 5, 10, 20).
(Notice that the baseline configuration is equivalent to BOOLEFORCE-iter-100%.) By
tuning X we can trade effectiveness for efficiency at will. Remarkably, even X = 2 is
sufficient to drastically reduce the performance gaps down to an acceptable level, with
very limited reduction in core quality.

12 It would have been interesting to try the same comparison also within YICES, so that to check a
slightly different way of internally generating the unsat cores. Unfortunately, the API of YICES

does not provide the possibility of retrieving the T -lemmas generated during the search.



It is important to notice that, due to limited time and know-how of the external tools
used, we restricted our experiments to their default configurations. Therefore we are
confident that even better results, in terms of both effectiveness and efficiency, can be
obtained by means of a more accurate tuning of the parameters of the tools.

5 Conclusions

We have presented a novel approach to generating small unsatisfiable cores in SMT,
that computes them a posteriori, relying on an external propositional unsat core ex-
tractor. The technique is very simple in concept, and straightforward to implement and
update. Moreover, it benefits for free of all the advancements in propositional unsat core
computation. Our experimental results have shown that, by using different core extrac-
tors, it is possible to reduce significantly the size of cores and to trade core quality for
speed of execution (and vice versa), with no implementation effort. As a byproduct, our
evaluation gives also some insights on the relative performances of these tools.

Future work will include experiments with more fine-tuning of the external boolean
unsat core devices, as well as experiments of a “mixed” technique, in which to use the
unsat core computed by MathSAT as a starting point. We also plan to investigate the
possibility of applying a similar technique to reduce the size of proofs of unsatisfiability,
in particular in the context of interpolant generation.
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Fig. 6. Comparison of the core sizes (left), core ratios (middle) and run times (right) using dif-
ferent propositional unsat core extractors. For the scatter plots (1st and 3rd column), the baseline
system (MATHSAT +BOOLEFORCE) is always on the x-axis. For the ratio plots (2nd column),
on the x-axis there’s the size of the problem, and on the y-axis the ratio between the size of the
cores computed by the two systems: a point above the middle line means better quality for the
baseline system.
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Fig. 7. Comparison of the core sizes (left), core ratios (middle) and run times (right) with BOOLE-
FORCE-iter-X% for different values of the parameter X . For the scatter plots (1st and 3rd column),
the baseline system (MATHSAT +BOOLEFORCE) is always on the x-axis. For the ratio plots (2nd

column), on the x-axis there’s the size of the problem, and on the y-axis the ratio between the size
of the cores computed by the two systems: a point above the middle line means better quality for
the baseline system.


