
DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (Italy), Via Sommarive 14
http://dit.unitn.it/

REACTIVE SEARCH FOR MAX-SAT: DIVERSIFICATION-
BIAS PROPERTIES WITH PROHIBITIONS AND PENALTIES

Roberto Battiti and Paolo Campigotto

July 2007

Technical Report # DIT-07-058

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints Research

https://core.ac.uk/display/11829688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Reactive search for MAX-SAT:

diversification-bias properties with prohibitions

and penalties

Roberto Battiti and Paolo Campigotto

DISI - Dipartimento di Ingegneria e Scienza dell’ Informazione,

Università di Trento

July 2007

Abstract

Many incomplete approaches for SAT and MAX-SAT have been proposed
in the last years. The objective of this investigation is not so much horse-
racing (beating the competition on selected benchmarks) but understand-
ing the qualitative differences between the various approaches by analyz-
ing simplified versions thereof. In particular, we focus on reactive search

schemes where task-dependent and local properties in the configuration
space are used for the dynamic on-line tuning of local search parameters.

We consider the choice between prohibition-based and penalty-based
reactive approaches, and the choice between considering all variables or
only the variables appearing in unsatisfied clauses. On simplified versions
we consider the trade-off between diversification and bias after starting
from a local minimizer, the so called D-B plots. We then consider long runs
of the complete algorithms on selected MAX-SAT instances, by measuring
both the number of iterations (flips) and the CPU times required by the
single iterations with efficient data structures.

The results confirm the effectiveness of reactive approaches, in partic-
ular when combined with non-oblivious objective functions. Furthermore
a complex non-linear behavior of penalty-based schemes is observed.

1 Introduction

Most of the stochastic local search (SLS) algorithms for SAT and MAX-SAT
are characterized by a set of parameters whose tuning is crucial in term of CPU
time requirements and solution quality, see for example the review in [10]. How-
ever, the appropriate tuning depends on both the problem and the current task
being solved, implying costly human intervention. Furthermore, the appropri-
ate configuration can vary widely in different regions of the configuration space
around a given tentative current solution, leading to dynamic adaptive schemes.

1

Reactive search strategies for the on-line dynamic tuning of these free parame-
ters to the current task being solved and to the local characteristics can be used
to obtain more robust and efficient techniques [3].

Figure 1: A classification of different SLS schemes for SAT considered in this
paper along the two dimensions: all variables versus unsatisfied variables,
prohibition-based versus penalty-based.

The scope of this paper does not allow a detailed review, see for example [5]
for a recent survey of propositional satisfiability and the related constraint pro-
gramming problem, and [10] (in particular Chap. 7-8) for a survey of stochastic
local search approaches for SAT and MAX-SAT. Let us focus onto reactive
schemes and let us classify them according to the target acted upon during
the on-line adaptation. In detail, the reaction can be on the generation of a
set of constraints on the variables through the prohibition of recently-applied
moves (tabu search), or on the modification of the cost function guiding the local
search. For brevity, the two paradigms will be denoted as prohibition-based and
penalty-based, respectively. The first method aims at pushing the configuration
out from the attraction basin around a local minimizer but temporarily pro-
hibiting some moves which would lead the trajectory back to the starting point.
The second method, also termed “dynamic local search,” modifies the objective
function guiding the search so that a local minimum is raised to encourage the
exploration of different areas, see Fig. 2.

A second macroscopic difference is given by the selection of the variables
considered during each local search step. In the basic schemes (like GSAT),
all variables are potential candidates for the next flip, in more recent proposals
(like walksat), only the variables appearing in unsatisfied clauses are considered

2

new local minimum

��
��
��
��

�
�
�
�

a

b

c

local minimum

dynamic penalty
�
�
�
�

Figure 2: Transformation of the objective function to gently push the solution
out of a given local minimum, derived from [3].

for a possible flip. With a slight terminology abuse, but in the interest of
brevity, we will denote as unsatisfied variables the set of variables which appear
in unsatisfied clauses given the current truth assignment.

Given the space constraints of this paper we report selected results within
an ongoing investigation with the following aims:

• to compare and identify qualitative differences between prohibition and
penalty-based schemes.

• to better understand the role of the non-oblivious search considered in [2,
1] in differentiating between solutions belonging to a given plateau. Look-
ing at the internal structure of the solution and aiming at a redundant
satisfaction of the clauses (more than a single matched literal) can hint at
proper directions to follow on a plateau to facilitate the eventual discovery
of an improving move.

• to compare schemes acting on all variables with schemes acting on unsat-
isfied variables. There is a “rule of thumb” that considering all variables
results in less iterations but longer CPU-times per iteration, see for ex-
ample [10], so that the potential reduction in the number of search steps
gained by the complete neighborhood examination before selecting the
next move can be wasted by the longer CPU times required per iteration.

• to distinguish very clearly between results as a function of the number of
iterations and as a function of CPU times. The former are of high interest
because they refer to how the information derived during the search is
used effectively to minimize the number of steps, the latter are of course
of interest for the final user, not interested in theoretical results but in
minimizing solution times.

3

In the next section, we describe the algorithms considered in this work: GSAT
and GSAT/tabu, WalkSAT/SKC, WalkSAT/TABU, AdaptNovelty+ and SAPS.

In subsection 2.3, we describe the Hamming-based Reactive Tabu Search
algorithm. In section 4, we analyze the diversification-bias results. Finally, in
section 5 we present a selection of the experiments on long runs of the considered
candidates algorithms, while in section 6 we concentrate on CPU times.

2 Stochastic local search and reactive approaches

for MAX-SAT

The simplest cost function guiding stochastic local search (SLS) algorithms for
MAX-SAT is the number of unsatisfied clauses for a given variables truth as-
signment. This function will be denoted as f in the following. Escaping local
minima of f in an intelligent manner can be considered as the underlying mo-
tivation of most reactive search approaches.

In many cases, local minima are actually large plateaus where the algorithm
cannot determine the “right” direction to continue its search and a random
selection among equivalent neighbors is performed. The ensuing random walk
among the set of moves preserving the f value doesn’t encourage a fast traversal
of plateau regions: the lack of a direction guiding the search makes the algorithm
wander in an aimless fashion over these broad flat regions.

A remedy consists of transforming f into a modified g cost function, there-
fore tilting the plateau surface, and generating hints of a proper direction of
movement. This cost function modification may look at the internal structure
of the current solution, not simply at the number of satisfied clauses. In [1] one
exploits non-oblivious cost functions, which measure the degree of satisfaction of
each clause by counting the number of matched literals. Aiming at a redundant
satisfaction eliminates the embarrassment in selecting among seemingly similar
situations and may eventually permit to flip a variable to satisfy a new clause,
without loosing any already satisfied clause.

Another approach to escape from local minima or plateaus of f is given by
dynamic local search, that relies on a reactively weighted version of the oblivious
function. The work in [21] uses weights to encourage the satisfaction of “more
difficult” clauses. Clause weighting is motivated in [21] in order to “fill-in” local
minima.

The dynamic modification of the cost function is not the only opportunity
for the application of reactive techniques into SLS algorithms for SAT. In [1], the
reactive search paradigm is applied to SAT by dynamically adjusting the prohi-
bition parameter. In [11], an adaptive mechanism for walkSAT is developed to
dynamically adjust the value of the noise parameter in the walkSAT algorithm,
which determines if a random walk step rather than a greedy step must be ex-
ecuted. In Adaptive Novelty+ [28] a similar mechanism for noise adaptation is
applied to the Novelty+ algorithm. Adaptive Novelty+ is considered one of the
best-performing SLS algorithms for SAT [10].

4

Finally, in [6] a technique to learn an evaluation function for local search
algorithms from features of the search space points visited during search is pre-
sented. The learned evaluation function is used to bias future search trajectories
toward better optima on the same problem. The results of the application of
this approach to SAT instances are reported in [6].

In the next subsection, the GSAT and GSAT/tabu algorithms are described.
An overview of the WalkSAT/SKC, WalkSAT/TABU and AdaptNovelty+ al-
gorithms follows. To conclude the section, the Hamming Reactive Tabu Search
and the Scaling and Probabilistic Smoothing algorithms are depicted.

2.1 GSAT and GSAT/tabu algorithms

Even if its performance is not competitive with the more recent SLS algorithms,
the GSAT algorithm [24] was one of the first SLS algorithms for SAT. It also
creates a touchstone for the other algorithms. GSAT is a local search greedy
strategy, that at each search step tries to improve the solution by flipping the
variable that, when flipped, leads to the maximum decrease in the number of
unsatisfied clauses. I.e., for each variable v it calculates:

• the number loosev of clauses currently satisfied that would become unsat-
isfied if the variable v is flipped;

• the number gainv of clauses currently unsatisfied that would become sat-
isfied if the variable v is flipped;

and greedily selects uniformly at random one variable v minimizing the quantity
loosev − gainv. Let f the score function for the GSAT algorithm, which simply
counts the number of unsatisfied clauses. Then, the quantity loosev − gainv

is called ∆f . minimizing ∆f , GSAT randomly picks one of them. In order
to escape from local minima, it adopts a periodic restart mechanism that re-
initializes the search step after a specific number of flips has been executed. The
pseudocode for the GSAT algorithm is in fig. 3. command usage:

At the time of this writing, GSAT/Tabu [27] is one of the best-performing
variants of GSAT. It simply enriches the GSAT algorithm via a tabu search
criterion, that avoids the current flipped variable to be flipped back for the next
T search steps. The T parameter is the prohibition parameter. Its setting is
a crucial point for the algorithm performance: a low T value does not allow
for easily escaping from local minima with great attraction basins, while a high
T value avoids search intensification in a promising region because too many
variables are tabu.

2.2 WalkSAT/SKC, WalkSAT/TABU and AdaptNovelty+

The ancestor of WalkSat family algorithms is the WalkSat/Skc algorithm [22].
It was created to allow a fast escaping from local minima, without necessarily
requiring a random re-inizialization of the search, like in the case of GSAT al-
gorithm. To do this, WalkSat algorithms randomly alternate between greedy

5

1. procedure GSAT
2. input: a set of clauses S
3. output: a satisfying truth assignment for S , if found
4. let MAX TRIES the maximum number of allowed trials
5. let MAX FLIPS the maximum number of allowed flips for each trial
6.

7. for i = 1 to MAX TRIES do

8. select a random truth assignment T
9. for j = 1 to MAX FLIPS do

10. if T satisfies S then

11. return T
12. otherwise

13. select at random one variable with the minimum ∆f value
14. flip the selected variable
15. return no assignment found

Figure 3: The pseudocode for the GSAT algorithm.

minimizing moves and random noisy moves. The moves of both kinds are ran-
domly selected from the variables appearing in unsatisfied clauses. At each
iteration, WalkSAT/Skc first randomly chooses an unsatisfied clause, and then
selects a variable to flip within the clause. The variable is selected applying the
heuristic in fig. 4.

1. let wp the noise setting parameter
2. for all variables in the selected clause do

3. calculate the number loosev of clauses currently satisfied that would
4. become unsatisfied if the variable v is flipped
5.

6. if a variable v with loosev = 0 exists then

7. flip it /* zero damage step */
8. otherwise

9. with probability 1− wp select randomly one variable v with the
10. minimum value for loosev and flip it /* greedy step */
11. with probability wp select randomly a variable from the clause
12. and flip it /* random walk step */

Figure 4: The selection of the variable to flip in the WalkSAT algorithm.

Note the difference with GSAT algorithm, that at each iteration globally de-
termines the best move (i.e., it do not perform any clause selection to determine
the variable to flip).

The AdaptiveWalkSat [11] algorithm dynamically adjusts the value wp dur-
ing the search. For our experiments, we used the WalkSAT family AdaptNovelty+

6

algorithm [28], that is one of the most performing and robust SLS algorithm
for SAT currently known. It is the “reactive” version of Novelty+. On its
turn, Novelty+ is the enhanced version of “Novelty” algorithm. It exploits the
concept of variable “age” and, differently from WalkSat/SKC, it uses the same
scoring function of GSAT. The age of variable v is simply the number of search
steps (i.e., variable flips) that have been performed since v has been flipped
last. Whenever v is flipped, its age is reset to 0 and increased by 1 with every
subsequent search steps. Analogously to GSAT description (see sec. 2.1), let
loosev the number of newly unsatisfied clauses and gainv the number of newly
satisfied clauses if the variable v is flipped and let ∆f = loosev − gainv, where
f is the score function. The search step performed by Novelty+ is described by
the self-explanatory pseudocode in fig. 5.

1. let wp the walk probability parameter
2. let p the noise setting parameter
3. let agev the age of variable v
4.

5. choose an unsatisfied clause c;
6. with probability 1− wp do

7. if the variable in c with the the minimum ∆f does not have minimal
8. age then

9. flip it
10. otherwise

11. with probability 1− p do

12. flip it
13. with probability p do

14. flip the second best variable
15. with probability wp do /* random walk step */
16. select a random variable in c
17. flip it

Figure 5: The pseudocode for the Novelty+ algorithm.

The AdaptNovelty+ algorithm has been designed to dynamically adjust the
noise parameter p based on search progress. In fact, the optimal setting for p
is instances-dependent: even small deviations from the optimal value can lead
to substantially decreased performance [11]. At the beginning of the search,
AdaptNovelty+ sets p to 0. This setting (and, in general, low values for p)
allows for a greedy search, resulting in rapid improvement for the evaluation
function value. Whenever the algorithm gets stuck in a local minimum, p is in-
creased, such that the search is diversified. The noise parameter keeps increasing
until the search process overcomes the stagnation situation. From now on, p
gradually decreases leading to an increase in search intensification. To detect
search stagnation, the AdaptNovelty+ algorithm exploits the search history. In
particular, if no improvements in the score function (i.e., in the number of un-

7

satisfied clauses) is observed within the last search steps, the search stagnation
is declared.

The WalkSAT/TABU algorithm [16] adopts the same score function and
the same two stage variables selection mechanism of the WalkSAT/SKC algo-
rithm described above. However, different from all the others WalkSAT family
algorithms, it has not the noise parameter. Furthermore, as the name itself
suggests, a tabu search method is exploited to constrain to choose the least
recently flipped variables.

2.3 H-RTS: Reactive tabu search guided by non-oblivious
functions

The non-oblivious functions (NOB) introduced in [25] to obtain better approx-
imation ratios represent a finer-grained approach with respect to the standard
function f (called oblivious), taking into account also the “degree” of satisfac-
tion of the clauses. Given an assignment X, let Si denote the set of clauses
in the given task in which exactly i literals are true and let w(Si) denote the
cardinality of Si. Let “n” the number of variables of the input SAT instance.
In addition, a d-neighborhood of a given truth assignment is defined as the set
of all assignment where the value of at most d variables is changed. The per-
formance ratio for any oblivious local search algorithm with a d-neighborhood
for MAX–2–SAT is 2/3 for any d = o(n), while non-oblivious local search with
an 1-neighborhood achieves a performance ratio 3/4, see [25]. The performance
ratio is improved even if the search is restricted to a much smaller neighborhood.
The oblivious function for MAX–k–SAT is of the form:

fNOB(X) =
k

∑

i=1

ciw(Si)

and requiring a best performance ratio for local search determines ∆i = ci+1−ci

as:

∆i =
1

(k − i + 1)

(

k
i− 1

)

k−i
∑

j=0

(

k
j

)

Because the positive factors ci that multiply w(Si) in the function fNOB are
strictly increasing with i, the approximations obtained through fNOB tend to be
characterized by a “redundant” satisfaction of many clauses. LS-NOB achieves
a performance ratio 1− 1

2k for MAX–k–SAT.
Beyond possessing a better worst-case behavior, in [1] also the average per-

formance of the NOB functions is empirically demonstrated to be better with
respect to the standard OB functions. I.e., the NOB functions lead to local
optima of better average quality with respect to the standard OB functions, at
least for the benchmark of random 3-SAT instances used for the experiments in
[1]. The good average performance of non-oblivious functions is a crucial point
for their usage in the framework of heuristics.

8

In [1], first an integration of the standard and the NOB functions in a sim-
ple local search scheme is studied. The developed scheme adopts a combined
two-phase local search strategy: the search is initially guided by a NOB func-
tion and, once a local minimum is found, an OB function is used followed by a
plateau search phase to further investigate the search space around its first local
minimum. At the base of this approach, the fact that local optima of the stan-
dard cost function are not necessarily local optima of the different cost function.
Based on the promising results obtained by this simple hybrid schema, the work
in [1] proposes an integrated heuristic (Hamming-based Reactive Tabu Search,
H-RTS for short) that integrates Tabu Search with the periodic activation of
non-oblivious functions and the “reactive” triggering of a strong diversification
phase (see the pseudocode in Fig. 7). The Hamming distance among the search
space points is used as a diversification trigger.

The initial truth assignment for H-RTS is generated in a random way, and
NOB local search is applied until the first local optimum of fNOB is encoun-
tered. LS-NOB obtains local minima of better average quality than LS-OB,
but then the guiding function becomes the standard oblivious one. This choice
is motivated by the success of the NOB & OB combination and by the poor
diversification properties of NOB alone, see [1].

The search proceeds by repeating phases of local search followed by phases
of tabu search (TS) (lines 8–17 in Fig. 7), until 10 n iterations are accumulated.
The variable t, initialized to zero, contains the current iteration and increases
after a local move is applied, while tr contains the iteration when the last random
assignment was generated. During each combined phase, first the local optimum
of f is reached, then 2(T + 1) moves of Tabu Search are executed. The design
principle underlying this choice is that prohibitions are necessary for diversifying
the search only after local search (LS) reaches a local optimum. Finally, an
“incremental ratio” test is executed to see whether in the last T + 1 iterations
the trajectory tends to move away or come closer to the starting point. A
possible reactive modification of Tf is executed depending on the tests results,
see the procedure REACT in fig. 6 for details. The fractional prohibition Tf

(the prohibition T is obtained as Tf n) is therefore changed during the run to
obtain a proper balance of diversification and bias.

The random restart executed after 10 n moves guarantees that the search
trajectory is not confined in a localized portion of the search space.

Currently, there is no detailed comparison among the H-RTS approach and
the best-performing SLS algorithms for SAT and MAX-SAT proposed in the
last years. The last sections of this paper aim at covering this gap.

2.4 Dynamic local search algorithms

The Dynamic Local Search Algorithms (DLS) rely on penalizing solution com-
ponents in order to allow the algorithm to escape from local minima In the
case of SAT, the solution components are the clauses constituting the input
CNF formula. A positive weight is associate to each clause, and these weights
are dynamically modified during algorithm execution. In particular, whenever

9

procedure React(Tf ,X(t),X(t−2(T+1)))
/* React: feedback scheme to adjust the prohibition Tf */
{ Returns the updated prohibition T , Tf is the reference to the current
fractional prohibition}

1 deriv ← H(X(t),X(t−2(T+1)))−(T+1)
T+1

2 if deriv ≤ 0 then Tf ← Tf + 1
100

3 else if deriv > 1
2 then Tf ← Tf −

1
100

4 if Tf > 1
4 then Tf ←

1
4

5 else if Tf < 1
40 then Tf ←

1
40

7 return max{⌊Tfn⌋, 4}

Figure 6: The REACT function of the H-RTS algorithm. The pseudocode is
taken from [1].

the algorithm gets stuck in a local minima, the penalty weights of the solution
components are increased, leading to the an increase of the evaluation function
value for the solution. Since the neighbours of the solution might not have been
affected at the same extent, improving steps are now possible. Therefore, the
DLS algorithms use a modified version of the “standard” score function f that
counts the number of unsatisfied clauses. The score function wf for the DLS
algorithms typically calculates the total weight of the unsatisfied clauses under
a given truth assignment. Among the big family of DLS algorithms, for our ex-
periment we chose the Scaling and Probabilistic Smoothing (SAPS) algorithm
[29], as it is one of the most recent and performing algorithms. SAPS in an
improved version of the Exponentiated Subgradient algorithm [20]. The pseu-
docode for the SAPS algorithm is at the end of this subsection. SAPS starts
its investigation from a random truth values variable assignment. Initially, all
clause weights are equal to one. For each subsequent search step, it selects the
variable to be flipped uniformly at random from the set of the variables appear-
ing in the currently unsatisfied clauses and causing the biggest reduction in the
total weight of unsatisfied clauses. When a local minimum is reached, i.e. a
truth assignment where flipping any variable appearing in an unsatisfied clause
causes no decrease in the total weight of the unsatisfied clauses, two cases arise:

1. with probability η the search is continued by flipping a variable chosen uni-
formly at random among all the variables in currently unsatisfied clauses;

2. with probability 1 − η, the search process is terminated and the SAPS
weight update procedure is started.

During the SAPS weight update procedure, first the weights of currently unsat-
isfied clauses are scaled via multiplication by a factor α. Then, with probability
psmooth , the weights of all clauses are smoothed towards the average clauses

10

procedure Hamming-Reactive-Tabu-Search

1.
2.
3.
4.
5.
6.
7.
8.

9.
10.
11.
12.
13.
14.
15.

16.
17.
18.

repeat
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

tr ← t

X ← random truth assignment
T ← ⌊Tf n⌋
repeat { NOB local search }

ˆ

X ← Best-Move (LS, fNOB)
until largest ∆fNOB = 0
repeat

2

6

6

6

6

6

6

6

6

6

6

6

4

repeat { local search }
ˆ

X ← Best-Move (LS, fOB)
until largest ∆fOB = 0
XI ← X

for 2(T + 1) iterations { reactive tabu search }
ˆ

X ← Best-Move (TS, fOB)
XF ← X

T ← React(Tf , XF , XI)
until (t− tr) > 10 n

until solution is acceptable or maximum number of iterations reached

Figure 7: The H-RTS algorithm.

weight via the formula:

wi = wi ∗ ρ + w̄ ∗ (1− ρ) (1)

where wi is the current weight of the i-th clause, w̄ is the average weight of
all clauses after scaling and ρ is a fixed parameter ranging in (0, 1). With
probability 1 − psmooth, the smoothing phase is skipped. RSAPS is a reactive
variant of SAPS, adjusting the the smoothing probability psmooth during the
search. However, RSAPS cannot self-tune all its parameters: in particular, the
parameter ρ still needs to be set by hand. The self-explanatory pseudocode for
the SAPS algorithm is in fig. 8.

11

1. procedure updateWeights ()

2. input: clause weights vector W

3. let α the scaling factor

4. let ρ the smoothing factor

5. let Psmoothing the smoothing probability

6.

7. /* scaling stage */

8. for each unsatisfied clause i do

9. W [i] = W [i] ∗ α

10.

11. /* probabilistic smoothing stage */

12. with probability Psmoothing do

13. calculate mean weight w̄ among all clauses

14. for each clause i do

15. W [i] = W [i] ∗ ρ + (1− ρ) ∗ w̄

16. procedure local minimum for wf

17. output: true if the current state is a local minum, false otherwise

18.

19. if for each variable v in unsatisfied clauses there is no reduction

20. ∆wfv in the total weight of unsatisfied clauses when flipped then

21. return true

22. otherwise

23. return false

24. procedure SAPS

25. input: a set of clauses S

26. output: a satisfying truth assignment for S , if found

27. let MAX TRIES the maximum number of allowed trials

28. let MAX FLIPS the maximum number of allowed flips for each trial

29. let wp the random walk probability

30. let W the clause weights vector

31.

32. for each clause i do

33. W [i] = 1

34. for i = 1 to MAX TRIES do

35. select a random truth assignment T

36. for j = 1 to MAX FLIPS do

37. if T satisfies S then

38. return T

39. otherwise

40. for all variables v in unsatisfied clauses do

41. calculate the reduction ∆wfv in the total weight of unsatisfied

42. clauses if the variable v is flipped

43. if (local minimum for wf ()) then

44. with probability wp do

45. select randomly a variable in unsatisfied clauses

46. flip the selected variable

47. with probability 1− wp do

48. updateWeights ()

49. otherwise

50. select the variable b with the highest ∆Wb value

51. flip the selected variable

52. return no assignment found

Figure 8: The pseudocode for the SAPS algorithm.

12

3 Benchmark problems

Our tests are dedicated to MAX-3-SAT instances. The benchmark suite used
has been created via the generator of random instances was obtained from B.
Selman.

The SAT instances corresponding to some ratios of clauses to variables are
satisfiable with a very large probability. This result is clearly explained by the
analysis of [18]. For this reason, and in order to focus onto the most relevant data
for MAX-3-SAT, only the non-trivial cases of 300 variables and 1500 clauses and
of 500 variables and 5000 clauses are considered in the following experimental
part.

In detail, if n : m identify variables and clauses, 50 instances for the 500:5000
and 300:1500 cases has been randomly randomly generated. The different algo-
rithms are run 10 times for each instance, and therefore also different random
initial assignments. The total number of tests is therefore 500 and, unless spec-
ified in a different way, the mean results are averages of the 500 runs.

4 Diversification-bias analysis

The purpose of this exploration is to understand how the two basic reactive
schemes acting on prohibitions and penalties lead the trajectory away from a
local minimum. Are the two possibilities different ways to generate a similar
dynamical system (a trajectory with statistically similar properties) or is there
any qualitative difference? We consider skeletal version of the techniques, so
that many complex ingredients are not added and the basic mechanisms act in
isolation and we follow the diversification-bias empirical analysis (“D-B plots”)
proposed in [1]. Thus, the metric used to measure the quality of the visited
points (or, simply, the bias of the algorithm) is the cost function value over
those points, while the diversification is measured via the Hamming distance.
Clearly, adopting these metrics, the best algorithms are the one that realize the
best compromise between diversification and bias: they greatly diversify their
search while visiting points with low cost function values. When a local search
algorithm is started, new points are visited at each iteration until the first local
optimum is encountered, because the number of satisfied clauses increases by at
least one. During this phase additional diversification schemes are not necessary
and potentially dangerous, because they could lead the trajectory astray, away
from the local optimum. The compromise between bias and diversification be-
comes critical after the first local optimum is encountered. In fact, if the local
optimum is strict, the application of a move will worsen the cost function value,
and an additional move could be selected to bring the trajectory back to the
starting local optimum. Even if the local optimum is not strict (plateau regions
are typical for SAT) there is no guarantee that a simple local search algorithm
will not produce a localized trajectory, for example such that its maximum
Hamming distance from the first encountered local minimum is bounded by a
value much less than the number of variables of the input SAT instance (i.e.,

13

the maximum possible hamming distance value).
The mean bias and diversification after starting from a local minimum de-

pend on the value of the internal parameters of the different algorithms. In
order to isolate the effect of these parameters, a series of tests is executed where
all other experimental conditions are unchanged and only a single parameter is
changed.

All runs of the algorithms considered proceed as follows: as soon as the first
local optimum for the “standard” f function is encountered, it is stored and
the algorithm is then run for additional 4 ∗ n iterations. The final D-B values
are averaged over 500 tests are reported. In order to produce a fair comparison
among the algorithms, for each run 200000 search steps are executed, without
random restarts that could corrupt the experiment statistics. In fact, note that
we are interested in the behaviour of the SLS algorithms after the first local
minimum is met, skipping the particular cases happening when the first local
minimum is discovered some steps before a scheduled random re-initialization is
executed. However, we experimentally verify that no algorithms of the WalkSAT
family may be involved in this experiment, even if some of them are considered
extremely performing (see section 2). In fact, the algorithms of the WalkSAT
family (with walk probability parameter equal to 0.5) cannot discover a local
minimum for the instances of the adopted benchmark, even if 10000000 instead
of 100000 iterations are executed for each run. We argue this is due to the
fact that, with respect to other SLS SAT solvers, WalkSAT family algorithms
heavily rely on “noisy” moves [23].

Therefore, in order to allow WalkSAT-based-algorithms “to take part to the
game”, for each test we identify the first local minimum via GSAT algorithm.
Then, depending on the different test, we run one among the following alter-
natives: GSAT/tabu, GSAT (weighted version), WalkSAT/tabu and WalkSAT
(weighted version), starting from the the discovered local minimum. Constrain-
ing all the algorithms to start from the same (local minimum) point allows to
“make the competition more fair”. Clearly, the quality of the first local mini-
mum may affect the actions performed by the algorithm in the subsequent steps.
Furthermore, the random initial assignment constituting the starting point for
the algorithm heavily biases the first local minimum that will be discovered.
Therefore, a random initial assignment may influence the results of the search,
and, as a consequence, the results of the experiment, even if we stress that the
final values of our experiments are an average over 50 input instances. In addi-
tion, if the algorithms begin their search from the same local minimum point,
they perform exactly the same number of iterations during the experiment.

The tests presented in this work are dedicated to selected MAX-3-SAT in-
stances defined in [18] (see section 3). The different algorithms are run for the
500:5000 and 300:1500 instances randomly generated, for a total of 500 tests in
both cases. The average results are presented.

First, we evaluate a method based on fixed prohibitions, the GSAT/tabu
algorithm. Then we study the performance of a “weighted” approach, which is
a simplified version of the weighted GSAT algorithm. Initially all clause weights
are equal to one and, once the first local optimum is encountered, the weights

14

of the currently unsatisfied clauses are increased by a fixed quantity ∆w.
Fig. 9 shows the results obtained by running the considered algorithm for

4 ∗ n steps after the first local minimum discovered by the GSAT algorithms
for the same SAT instances. The labels for the curve in the figure represent
the different ∆w values considered. The value 0 for the “GSATweighted” curve
represents the case of the original GSAT algorithm [24].

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200

 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

m
e
a
n
 d

if
fe

re
n
c
e
 u

n
s
a
t
c
la

u
s
e
s
 (

a
t
4
 *

 #
V

a
r

it
e
r)

mean Hamming distance (at 4 * #Var iter)

DB plot

.01 .02 .03 .04.05.06
.15

.30

0

.01 0.1

0.5

1

2

4

128

gsatTabu
gsatWeighted

Figure 9: Diversification-bias plots of prohibition and penalty-based strategies.
In the first case, the curve is labeled with the ∆w values for the weights update
(points for ∆w = 8, 16, 32, 64, 128 are at a very similar position), in the second
case with the fractional prohibition Tf .

The bias is plotted as difference w.r.t. the starting f value at the local
minimum, the Hamming distance is divided by the number of variables n. A
remarkably different behavior can be observed between the prohibition and the
penalty-based approaches. With prohibitions, the diversification effect is as ex-
pected: a larger prohibition is related to a larger diversification (larger Hamming
distances reached). Furthermore, for a wide range of Tf values (approximately

15

between 0.01 and 0.1) the D-B values are Pareto-optimal: both a larger diver-
sification and a better bias are obtained. For Tf = 0.05, after the first local
optimum, on average 70 additional clauses are satisfied and Hamming distance
equal to 0.37 n is reached. On the contrary, for the penalty-based scheme
the behavior is quite complex and non-linear. At the beginning, when ∆w in-
creases from zero to 0.5 the diversification increases but the bias worsens (from
∆f = −45 to ∆f = −10). Then the bias keeps worsening in a drastic manner
and the diversification is actually decreased. A limiting situation of ∆f = 80
and Hamming distance 0.26 n is reached for ∆w values bigger than 8.

Note that, even if in Fig. 9 the curve for the “weighted” approach is called
“GSAT-weighted”, we stress that the algorithm used for the experiment is a
specific version of the GSAT weighted algorithm, that performs weights updat-
ing only at the first local minimum discovered during the search, rather than at
each random restart.

Fig. 10 shows the results for the same experiment executed in Fig. 9,
except that the algorithms are kept running only for n/4 steps from the first
local minimum encountered. Note that the behavior of the weighted and the
tabu-based approaches is coherent with the results for the 4 ∗ n case.

In the experiment depicted in Fig. 11, we consider the same approaches as
for Fig. 9. However, in this case the algorithms acts only over the unsatis-
fied variables. We consider a version of the WalkSAT/SKC algorithm (called
“WalkSATtabu f” in Fig. 11), which is driven by the same score function f of
the GSAT algorithm. We develop also a weighted variant of it, called “Walk-
SAT wf”. The probability of performing random walk steps for the algorithm
called “WalkSAT wf” has been fixed to 0.5.

The results are again surprising. The prohibition-based version confirms the
relationship between larger prohibition and larger diversification, although in
this case a larger diversification is paid by a rapidly worsening bias. In general,
if one compares these results with the ones of the previous Fig. 9, the ∆f values
are inferior (at best ∆f = −11 is obtained).

For the penalty-based case, again a strongly non-linear effect is observed.
For ∆w values growing from zero to 0.5 the diversification increases and the
bias worsens up to ∆f = 11, then the diversification dramatically worsens (e.g.
it goes from 0.46 n to 0.28 n for ∆w = 2) to reach a limiting value of 0.18 n for
large weight increases.

Fig. 12 shows the results for the same experiment executed in Fig. 11,
except that the algorithms are kept running only for n/4 steps from the first
local minimum encountered. Again, the behavior of the weighted and the tabu-
based approaches is coherent with the results for the 4 ∗ n case.

In Fig. 13 and Fig.14, you can find the behavior of the tabu and weighted
approach and of the tabu and weighted approach based on the modified versions
of WalkSAT algorithm, respectively, taking into account the first local minimum
after 10 ∗ n steps of local search, where the greedily selected variable to flip is
always accepted, even if the f value remains equal or worsens. For all the
considered algorithms, their behavior confirms the results of the analysis for the
experiment considering the first local minimum.

16

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200

 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

m
e

a
n

 d
if
fe

re
n

c
e

 u
n

s
a

t
c
la

u
s
e

s
 (

a
t

#
V

a
r/

4
 i
te

r)

mean Hamming distance (at #Var/4 iter)

DB plot

.01.02 .04 .15 .300 .01 0.1

0.5

1

2

4
128

gsatTabu
gsatWeighted

Figure 10: Diversification-bias plots measured at distance n/4 of prohibition
and penalty-based strategies. In the first case, the curve is labeled with the ∆w
values for the weights update (points for ∆w = 8, 16, 32, 64, 128 are at a very
similar position), in the second case with the fractional prohibition Tf .

17

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200

 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

m
e
a
n
 d

if
fe

re
n
c
e
 u

n
s
a
t
c
la

u
s
e
s
 (

a
t
4
 *

 #
V

a
r

it
e
r)

mean Hamming distance (at 4 * #Var iter)

DB plot

.01.02
.03

.05.06

.15

.30

0
0.01

0.1 0.5
1

2
4128

WalkSATtabu_f
WalkSAT_wf

Figure 11: The diversification-bias performance of the modified versions of
weighted WalkSAT and WalkSAT-tabu algorithms using the score function f of
the GSAT algorithm.

These D-B results on simplified schemes suggest that prohibition-based schemes
acting on all variables are characterized by a higher level of robustness and an
overall better compromise between diversification and bias. In particular, it may
be the case that penalties can be more dangerous than prohibitions because of
the possible interference between the original function f and the modified func-
tion g. For example, pushing up a given local minimum by the weighting mecha-
nism can hide other unexplored local minima. The superiority of more complex
weighting schemes based either on weight decay (forgetting) or redistributions
can be related to curing these complex interference effects.

In the next section we will consider the original complete schemes, including
the reactive and dynamic versions and analyze the average f values obtained
for long runs.

18

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

m
e

a
n

 d
if
fe

re
n

c
e

 u
n

s
a

t
c
la

u
s
e

s
 (

a
t

#
V

a
r/

4
 i
te

r)

mean Hamming distance (at #Var/4 iter)

DB plot

.01.02.03
.05.06

.15
.30

0 0.01
0.1

0.5

1
24128

WalkSATtabu_f
WalkSAT_wf

Figure 12: The diversification-bias performance measured at distance n/4 of the
modified versions of weighted WalkSAT and WalkSAT-tabu algorithms using the
score function f of the GSAT algorithm.

19

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

m
e

a
n

 d
if
fe

re
n

c
e

 u
n

s
a

t
c
la

u
s
e

s
 (

a
t

4
 *

 #
V

a
r

it
e

r)

mean Hamming distance (at 4 * #Var iter)

DB plot

.01 .02 .03 .04 .05 .06
.15

.30

0.01
0.1

0.2

0.5

1

2

4
128

gsatTabu
gsatWeighted

Figure 13: Diversification-bias (DB) plane taking into account the first local
minimum after 10 ∗ n greedy search steps.

20

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200

 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

m
e

a
n

 d
if
fe

re
n

c
e

 u
n

s
a

t
c
la

u
s
e

s
 (

a
t

4
 *

 #
V

a
r

it
e

r)

mean Hamming distance (at 4 * #Var iter)

DB plot

.01
.02

.03
.05

.06

.15

.30

0
0.01

0.1
0.51

2

4
128

WalkSATtabu_f
WalkSAT_wf

Figure 14: Diversification-bias (DB) plane taking into account the first local
minimum after 10 ∗ n greedy search steps.

21

5 Experiments on long runs

For brevity we report here only the average results (10 runs with different ran-
dom seeds for each of the 50 instances) as a function of the number of iterations
(flips). The user of SLS algorithms is typically interested in the number of it-
erations required by each algorithm to reach the desired results, or, at least, a
good quality approximation. As predicted by the previous Diversification-Bias
analysis, the curves in Fig. 15 confirm a clear superiority of the prohibition-
based techniques with respect to the penalty-based approaches. The error bars
are not shown on the plots to avoid cluttering. Among all the possible values for
the tabu parameter of the WalkSAT/TABU algorithm, we plot the case where
the fractional prohibition Tf is 0.01, as with this setting we obtain the best per-
formance over the considered benchmark. The same for the GSAT/TABU algo-
rithm, whose curve is drawn for the optimal Tf value 0.05 over our benchmark
set. With this optimal setting, the GSAT/TABU algorithm reaches eventually
a performance equivalent to that of H RTS, even if its performance is inferior in
the initial phase. This result clearly indicates that parameters setting is crucial
for the algorithms performance: not only H RTS reaches the results compara-
ble to the ones with a fixed and optimal Tf , but it actually improves on these
because of the dynamic on-line adaptation. This observation is emphasized by
the curves for SAPS and RSAPS. They confirm the effectiveness of the reactive
approach, that obtains better results while, at same time, allowing to avoid the
manual tuning of the optimal parameters setting. The SAPS parameters have
been set to the default values, without attempting any extensive optimization.
Preliminary tests obtained changing the values did not lead to significant im-
provements. In detail, the following setting of SAPS parameters is considered:

• the scaling parameter α is 1.3;

• the algorithm smoothing parameter ρ is 0.8;

• the smooth probability psmooth is 0.05;

• the walk probability η is 0.01.

For an explanation of these parameters, see subsection 2.4.
Finally, the curve for H RTS shows the effectiveness of the NOB search to

rapidly discover good local optima.
Fig. 16 shows the behavior of the same algorithms in a scenario closer to

the satisfiability threshold (the clauses/variables ratio of the 300:1500 tasks is
5). The results of the previous analysis are confirmed, except, in this case, the
competitive performance of AdaptNovelty+ which eventually duplicates H RTS
performance although with a much lower start.

Let us note that many of the considered techniques have been proposed
for SAT and one may argue that a direct comparison with H RTS is not fair.
On the other hand, the underlying logic of the methods is always based on
maximizing the number of satisfied clauses, which is an argument in favor a

22

 155

 160

 165

 170

 175

 180

 185

 190

 195

 200

 205

 210

 215

 220

 225

 230

 235

 240

 245

 250

100000100001000100

m
e
a
n
 b

e
s
t
s
o
 f
a
r

v
a
lu

e

iterations

DB plot

saps 500:5000
rsaps 500:5000

AdNov+ 500:5000
h_rts 500:5000

WalkSAT_tabu(0.01) 500:5000
gsat_tabu(0.05) 500:5000

Figure 15: The mean best so far bias value reached by the SAPS, RSAPS,
AdaptNovelty+ and H RTS algorithms.

direct comparison, in particular for adaptive techniques. In any case, this issue
will be explored further in the future.

Fig. 17 shows the performance of a simplified version of the H RTS al-
gorithm, where the prohibition parameter is fixed to the number of flipping
candidates causing a null variation for the score function f when the local mini-
mum for the OB search is encountered (line 11 in fig. 7)). I.e., we eliminate the
“reaction” (line 16 in fig. 7) to update the prohibition value. Note that this sim-
plified approach obtains performances competitive with the more sophisticated
reactive approach.

23

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

100000100001000100

m
e
a
n
 b

e
s
t
s
o
 f
a
r

v
a
lu

e

iterations

DB plot

saps 300:1500
rsaps 300:1500

AdNov+ 300:1500
h_rts 300:1500

WalkSAT_tabu(5) 300:1500

Figure 16: The mean best so far bias value reached by the SAPS, RSAPS,
AdaptNovelty+ and H RTS algorithms on 300:1500 instances.

24

 155

 160

 165

 170

 175

 180

 185

 190

 195

 200

 205

 210

 215

 220

 225

 230

 235

 240

 245

 250

100000100001000100

m
e

a
n

 b
e

s
t

s
o

 f
a

r
v
a

lu
e

iterations

DB plot

h_rts 500:5000

Figure 17: The mean best so far bias value reached by a simplified version of
the H RTS algorithms
.

25

6 Experiments on CPU times

We finally analyze the CPU time instead of iterations. The comparative CPU
time results obtained are fully confirmed, when the competing algorithms are
considered in the efficient UBCSAT framework implementation (see section 8).
In particular, the experimental results show approximately a factor of two be-
tween the time per iteration of GSAT and H RTS. On our machines (a 2Ghz
Intel Xeon processor, with 6GB RAM), the CPU time per iteration ranges ap-
proximately from 2.5 microsec per iteration in the case of GSAT to 5 microsec
for H RTS to 7 microsec for SAPS. Table 1 show the CPU times per 100000
iterations (including the set up time) for the considered implementation of the
GSAT algorithm, for the SAPS algorithm implemented in the UBCSAT frame-
work and for the H RTS algorithm. The version denoted by “our” of the GSAT
and H RTS algorithms refers to the original code in [1]. To speed up the execu-
tion of the H RTS algorithm, we implemented an “ad-hoc” data structure (Fig.
18), that allows for a fast retrieval of the desired information. In particular, the
core of the data structure is an array of lists (the “Delta vector”). The array
index takes integer values over the interval [−m,m], where m is the number
of clauses of the SAT instance. Each array cell contains a list storing all the
variables causing the variation in the number of satisfied clauses (∆f) indicated
by the cell index value. The “max index” stores the biggest current value for
∆f . Three supporting vectors are exploited for the data structure fast update:
the “offset vector”, the “position vector” and the“counter vector”. The first
two allow for a constant time retrieval of a variable: the i -th variable is stored
in position offset vector[i] of the position vector [i] list. The “counter vector”
stores the length of the lists. The data structure is updated at each iteration.
If the variable v is flipped, only the variable appearing in a clause containing
v or its negation may change their location into the data structure. Thanks
to the adoption of the supporting vectors, all the operation required to move a
variable into the data structure are executed in constant time. The adoption
of this data structure allows to save about 20% of the CPU time per iteration
(see table 1). Note that the CPU time reported for the optimized version of the
H RTS algorithm refers to an implementation that computes the NOB functions
at each iterations. Experimental tests show that a substantial portion of the
CPU time per iteration is spent by H RTS for the NOB functions computation,
that allows to derive also the OB function value. If the NOB functions are
calculated only when it is strictly necessary (i.e., during the NOB search phase.
See lines 5-7 in fig. 7), the amount of time required by H RTS per iteration is
sensibly reduced.

26

Figure 18: The data structure used by the improved version of the H RTS
algorithm.

Algorithm version total CPU time (sec) per 1000000 iterations
GSAT our 8.5
GSAT our (optimized) 6.8
GSAT UBCSAT framework 2.5

SAPS UBCSAT framework 7
H RTS our 12
H RTS our (optimized) 10

Table 1: CPU times for 1000000 iterations

27

7 Conclusion

We presented some selected results of an ongoing comprehensive evaluation of
alternatives design strategies for SAT and MAX-SAT algorithms. In particular,
we focus onto Diversification-Bias results and onto a comparison on long runs
of the Hamming-based Reactive Tabu Search versus competitive approaches
proposed in the last years. The D-B plots indicate the complexity and strong
non-linearity of diversification-bias plots of penalty-based approaches and the
more predictable effects of prohibition-based schemes. Some of these findings
agree with [12] which focused onto dynamic local search. The experimental
results on long runs confirm that reactive approaches are indeed more effective
than static (non-learning) versions, in some cases beating the results which can
be obtained by an optimal off-line tuning phase.

We are aware that the number of questions raised by this preliminary in-
vestigation is bigger that the number of answers provided. We plan to further
investigate the raised issues in the next months, in particular by considering
more recent proposals like the “adaptive clause weight redistribution” of [13],
following the divide-and-distribute-fixed-weight approach in [14], the schemes
based aggressive search for local minima proposed in [15] and different schemes
like IRoTS [26] or GLS [17], which in any case do not deliver an improving per-
formance. Furthermore we plan to study the relationship between landscapes
characteristics [4] and reactive approaches. Finally, in the never-ending empir-
ical evaluation phase, we plan to consider challenging problems defined in the
last years, such as the “q-hidden” instances benchmark defined in [8], the hard
satisfiable instances generator presented in [9] and the satisfiable spin glass
formulas [7] motivated by a spin glass model [19].

8 Acknowledgment

We acknowledge here the colleagues who made the software corresponding to
their algorithms available for experimentation. In particular, the software for the
GSAT and WalkSAT families algorithms employed and for the SAPS algorithm
has been made available by Dave Tompkins and Holger Hoos, at the Department
of Computer Science of the University of British Columbia. It can be freely
downloaded at http://www.satlib.org/ubcsat.

References

[1] R. Battiti and M. Protasi. Reactive search, a history-sensitive heuristic for
MAX-SAT. ACM Journal of Experimental Algorithmics, 2(ARTICLE 2),
1997. http://www.jea.acm.org/.

[2] R. Battiti and M. Protasi. Solving MAX-SAT with non-oblivious functions
and history-based heuristics. In D. Du, J. Gu, and P. M. Pardalos, editors,
Satisfiability Problem: Theory and Applications, number 35 in DIMACS:

28

Series in Discrete Mathematics and Theoretical Computer Science, pages
649–667. American Mathematical Society, Association for Computing Ma-
chinery, 1997.

[3] Roberto Battiti, Mauro Brunato, and Franco Mascia. Reactive Search
and Intelligent Optimization. DIT - University of Trento, Via Sommarive
14, 38100, Trento - Italy, April 2007. Available at http://www.reactive-
search.org/thebook/.

[4] M. Belaidouni and J.K. Hao. Landscapes of the Maximal Constraint Satis-
faction Problem. Lecture Notes in Computer Science, 1829:244–255, 2000.

[5] L. Bordeaux, Y. Hamadi, and L. Zhang. Propositional Satisfiability and
Constraint Programming: A comparative survey. ACM Computing Surveys
(CSUR), 38(4), 2006.

[6] J. A. Boyan and A. W. Moore. Learning evaluation functions for global
optimization and boolean satisfability. In AAAI Press, editor, In Proc. of
15th National Conf. on Artificial Intelligence (AAAI), pages 3–10, 1998.

[7] B. Selman H. Jia, C. Moore. From spin glasses to hard satisfiable formulas.
In H.H. Hoos, D.G. Mitchell (Eds.), Theory and Applications of Satisfiabil-
ity Testing, 7th International Conference (Vancouver, May 10-13, 2004),
pages 199–210. Springer, 2005.

[8] C. Moore H. Jia and D. Strain. Generating hard satisfiable formulas by
hiding solutions deceptively. In Proceedings of the 20h National Conference
on Artificial Intelligence, pages 384–389. AAAI Press, 2005.

[9] Harri Haanpää, Matti Järvisalo, Petteri Kaski, and Ilkka Niemelä. Hard
satisfiable clause sets for benchmarking equivalence reasoning techniques.
Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):27–46,
2006.

[10] H. H. Hoos and T. Stuetzle. Stochastic Local Search: Foundations and
Applications. Morgan Kaufmann, 2005.

[11] H.H. Hoos. An adaptive noise mechanism for WalkSAT. In Proceedings of
the national conference on artificial intelligence, volume 18, pages 655–660.
AAAI Press; MIT Press, 1999.

[12] Holger Hoos and Dave Tompkins. Dynamic local search for sat - clause
weights, search landscapes and effective model finding. Unpublished presen-
tation at: Learning and Intelligent OptimizatioN LION 2007 12-18 Febru-
ary 2007, Andalo (Trento), Italy.

[13] A. Ishtaiwi, J. R. Thornton, Sattar A. Anbulagan, and D. N. Pham. Adap-
tive clause weight redistribution. In Proceedings of the 12th International
Conference on the Principles and Practice of Constraint Programming, CP-
2006, Nantes, France, pages 229–243, 2006.

29

[14] Abdelraouf Ishtaiwi, John Thornton, Abdul Sattar, and Duc Pham. Neigh-
bourhood clause weight redistribution in local search for sat. In Principles
and Practice of Constraint Programming - CP 2005, volume 3709 of Lecture
Notes in Computer Science, pages 772–776. Springer Berlin / Heidelberg,
2005.

[15] C.M. LI and W.Q. HUANG. Diversification and determinism in local search
for satisfiability. In Proceedings of 8th SAT, Lecture notes in computer
science, pages 158–172. Springer, 2005.

[16] D. McAllester, B. Selman, and H. Kautz. Evidence for invariants in local
search. In Proceedings of the national conference on artificial intelligence,
number 14, pages 321–326. John Wiley and sons LTD, USA, 1997.

[17] P. Mills and E. Tsang. Guided Local Search for Solving SAT and Weighted
MAX-SAT Problems. Journal of Automated Reasoning, 24(1):205–223,
2000.

[18] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions
of SAT problems. In Proceedings of the Tenth National Conference on
Artificial Intelligence (AAAI-92), pages 459–465, San Jose, Ca, July 1992.

[19] M. E. J. Newman and Cristopher Moore. Glassy dynamics and aging in an
exactly solvable spin model. Physical Review E, 60:50–68, 1999.

[20] D. Schuurmans, F. Southey, and R.C. Holte. The exponentiated subgra-
dient algorithm for heuristic boolean programming. In Proceedings of the
international joint conference on artificial intelligence, volume 17, pages
334–341. Lawrence Erlbaum associates LTD, USA, 2001.

[21] B. Selman and H.A. Kautz. An empirical study of greedy local search for
satisfiability testing. In Proceedings of the eleventh national Conference on
Artificial Intelligence (AAAI-93), Washington, D. C., 1993.

[22] B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for improving local
search. In Proceedings of the national conference on artificial intelligence,
volume 12. John Wiley and sons LTD, USA, 1994.

[23] B. Selman, H.A. Kautz, and B. Cohen. Local search strategies for satisfi-
ability testing. In M. Trick and D. S. Johson, editors, Proceedings of the
Second DIMACS Algorithm Implementation Challenge on Cliques, Color-
ing and Satisfiability, number 26 in DIMACS Series on Discrete Mathemat-
ics and Theoretical Computer Science, pages 521–531, 1996.

[24] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard
satisfiability problems. In Proceedings of the Tenth National Conference on
Artificial Intelligence (AAAI-92), pages 440–446, San Jose, Ca, July 1992.

30

[25] S.Khanna, R.Motwani, M.Sudan, and U.Vazirani. On syntactic versus com-
putational views of approximability. In Proc. 35th Ann. IEEE Symp. on
Foundations of Computer Science, pages 819–836, 1994.

[26] K. Smyth, H.H. Hoos, and T. Stutzle. Iterated Robust Tabu Search for
MAX-SAT. Proc. of the 16th Canadian Conference on Artificial Intelli-
gence (AI 2003).

[27] Olaf Steinmann, Antje Strohmaier, and Thomas Stutzle. Tabu search vs.
random walk. In KI - Kunstliche Intelligenz, pages 337–348, 1997.

[28] Dave A. D. Tompkins and Holger H. Hoos. Novelty+ and adaptive novelty+.
SAT 2004 Competition Booklet. (solver description).

[29] F. Hutter D.A.D. Tompkins and H.H. Hoos. Scaling and probabilistic
smoothing: Efficient dynamic local search for sat. In Proc. Principles and
Practice of Constraint Programming - CP 2002 : 8th International Confer-
ence, CP 2002, Ithaca, NY, USA, September 9-13, volume 2470 of LNCS,
pages 233–248. Springer Verlag, 2002.

31

