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Memory Enhaned PSO-Based Optimization Ap-proah for Smart Antennas Control in ComplexInterferene Senarios
M. Benedetti, R. Azaro, and A. Massa

AbstratIn the framework of ontrol methods for adaptive phased-arrays, this paper dealswith omplex ommuniation senarios by onsidering a memory-enhaned ooper-ative algorithm. Compared to existing approahes where far-�eld interferenes aretaken into aount, the proposed analysis onsiders a more realisti situation wherethe jamming soures are loated either in the near-�eld or in the far-�eld of thereeiving antenna. In order to arefully address the arising hallenges and to e�e-tively deal with suh omplex environments, an optimization approah based on anenhaned PSO-based algorithm is used. The obtained results seem to on�rm thee�etiveness of the proposed tehnique in terms of both signal-to-noise ratio andomputational osts and omplexity.
Index Terms:Smart Antennas, Adaptive Control, Optimization Tehniques, Partile SwarmOptimizer, Phased Arrays. 2



1 IntrodutionThe ontinuous evolution of ommuniation systems requires the development and us-tomization of tehniques based on the idea of diversity [1℄. In the framework of antennasdesign, suh a theory has been applied for developing smart systems able to improvethe quality of the reeived signal and to suppress the e�ets of interfering soures. Theonept of spatial diversity [2℄ has led to the oupling of array theory with adaptive on-trol and therefore to the design of antenna arhitetures able to maximize the systemperformanes (i.e., the signal-to-interferene-plus-noise ratio) by tuning dynamially theweights of the array elements.The mathematial theory of adaptive systems has been originally proposed by Applebaumin [3℄ dealing with linear arrays of isotropi soures in the presene of far-�eld (FF )narrow-band signals (i.e., a desired signal and a set of jammers). The array weights,adapted for plaing nulls in the far-�eld pattern in the diretions of interferene, areobtained by multiplying the quiesent weights by the inverse of the sampled ovarianematrix formed from the omplex signals reeived at eah element in the array.Alternatively, the adaptive ontrol has been also reast as an optimization problem byde�ning a suitable ost funtional to be maximized. Originally, deterministi tehniquesbased on gradient methods (e.g., the least mean square (LMS) algorithm by Widrow et al.[4℄[5℄) have been proposed, but the resulting approahes were still haraterized by severalnon-negligible drawbaks. Beause of the need of estimating the ovariane matrix of thedesired signal from the measurements of the reeived signals at eah element of the array,the array must have an expensive reeiver or a orrelator at eah element. Unfortunately,most arrays (or the simplest/heapest) have a single reeiver at the output of the summerand the reeivers (when available) would require sophistiated alibrations. On the otherside, these methods onsider variable analog amplitude and phase weights, but phasedarrays usually have only digital beam steering phase shifters at the elements and the feednetwork (�xed) determines the amplitude values. Therefore, the ontinuous phase valuesalulated by the adaptive algorithms are only approximated and the quantization errorlimits the null plaement.In order to redue the omplexity and the osts of adaptive systems, the possibility of3



implementing a phase-only ontrol (i.e., adjusting the phase shifter setting) for reduingthe total output power measured by the reeiver at the output of the summer has beeninvestigated [6℄. A signi�ant improvement on this tehnique has been proposed by Haupt[7℄ who used a Geneti Algorithm (GA) to adjust some of the least signi�ant bits of thebeam steering phase shifters for minimizing the total output power thus removing theinterfering signals from the output of the array.Notwithstanding the suess and suessive experimental implementation [8℄, suh a GA-based approah did not take into aount onstantly hanging onditions and the needof a readaptation to new environments one the population onverged. Suh a problemhas been overome in suessive works by Weile and Mihielssen [9℄ or Donelli et al.[10℄ by using diploidy and dominane or ooperative algorithms [i.e., the partile swarmoptimizer (PSO)℄.In suh a framework, this paper is aimed at assessing the e�etiveness and reliability ofan enhaned PSO-based tehnique in the presene of more omplex working onditions.In partiular, the signals impinging on the array are haraterized by randomly variablediretions and generated by eletromagneti soures loated at di�erene distanes fromthe antenna system. More in detail, the soure of the desired signal is assumed to bevery far from the system, whereas the distane of the interfering soures from the arrayvaries from the near to the far zone. Suh a situation turns out to be quite realisti sineit ould model/desribe an �info-mobility� senario where a moving network node (e.g.,a ar or a pedestrian) ommuniates with a base station or another node of the mobilenetwork. In this situation, a neighboring node (i.e., lose to the reeiving system) wouldbe onsidered as a near-�eld jamming soure.In order to properly address suh a topi, the PSO-based approah is added with enhanedlearning apabilities. Similarly to [11℄, the enhaned strategy is haraterized by theuse of memory-based operators, whih perform an exhange of information between theswarm and a set of referene solutions (de�ning the �memory� of the proess) iterativelyupdated. Furthermore, the memory mehanism is further exploited (and ustomizedto the ooperative optimizer at hand) by introduing a new term in the PSO veloityequation. 4



The paper is organized as follows. The mathematial formulation is presented in Set. 2where the adaptive antenna ontrol is reast as the minimization of the total power of thearray in terms of the quantized phase weights. The optimization proedure is detailedin Set. 3 and the results of a numerial validation are shown in Set. 4. Finally, someonlusions are drawn (Set. 5).2 Mathematial FormulationLet us onsider an array of N elements (Figure 1). The narrowband signal reeived by the
n-th element of the array at the time-step(1) tℓ, ℓ = 1, ..., L, an be expressed as follows

s(r)
n (tℓ) = a(r) (tℓ) ejϕ

(r)
n n = 1, ..., N ; l = 1, ..., L (1)where a(r) (tℓ) = h(r) (tℓ) ej2πftℓ , h(r) (tℓ) and f being the slowly-varying envelope of thereeived signal and the arrier frequeny, respetively. Moreover, ϕ

(r)
n is the phase term ofthe reeived signal oming from the angular oordinates (θr, φr) that identify the diretion-of-arrival (DoA) of the reeived signal. Under far-�eld onditions [12℄, the phase term of(1) turns out to be

ϕ(r)
n =

2π

λ
(urxn + vryn + qrzn) (2)where ur = sin θr cos φr, vr = sin θr sin φr, and qr = cos θr, and (xn, yn, zn) are theCartesian oordinates of the n-th element of the array.By onsidering o-hannel interferenes, s

(r)
n is the result of the summation of the desiredsignal s

(d)
n , a set of I jammers {

s
(g)
i,n ; i = 1, ..., I

}, and an unorrelated bakground noise[or noise signal s
(o)
n ℄ haraterized by an average power equal to σ2,

s(r)
n (tℓ) = s(d)

n (tℓ) +
I

∑

i=1

s
(g)
i,n (tℓ) + s(o)

n (tℓ) (3)
(1) A time-step is a slot of time, between two onseutive snapshots (△tℓ+1 and △tℓ), haraterizedby the presene of a desired signal and a �xed number of interfering signals with invariant DoAs: tℓ ,

△tℓ+1 −△tℓ. 5



where s
(d)
n (tℓ) = a(d) (tℓ) ejϕ

(d)
n and s

(g)
i,n (tℓ) = a

(g)
i,n (tℓ) ejϕ

(g)
i,n . Analogously to (2), ϕ

(d)
n =

2π
λ

(udxn + vdyn + qdzn), while
ϕ

(g)
i,n =

2π

λ

[

ρi −

√

(ρiui − xn)2 + (ρivi − yn)2 + (ρiqi − zn)2

]

n = 1, ..., N ; i = 1, ..., I(4)to model [13℄ the phase term of the i-th interferene soure loated at (ρi, θi , φi) eitherin the far-�eld or in the near-�eld depending on the value of ρi (Fig. 2).As far as the signal s(e) available at the the output of the summer is onerned, it appearsthat (see Fig. 1)
s(e) (tℓ) =

N
∑

n=1

Wns
(r)
n (tℓ) (5)where Wn = wne

jβn is the n-th omplex weight. Consequently, the total output powermeasured by the single reeiver is equal to [3℄[14℄
P (tℓ) = Pℓ (W ) ,

N
∑

n=1

wne
jβn

N
∑

p=1

wpe
−jβpΩr

p,n (tℓ) (6)that is a funtion of W = {Wn; n = 1, ..., N}, Ωr
p,n (tℓ) being the (p, n)-entry of the o-variane matrix of the reeived signal.In order to minimize the total output power thus removing the interfering signals from theoutput of the array, the array oe�ients are iteratively updated for taking into aountonstantly hanging (i.e., at eah time-step) onditions and the need of a readaptationto new environments. Moreover, a time-varying phase-only ontrol is implemented toredue the omplexity and the osts of the adaptive system. In partiular, the followingoptimization problem

βopt (tℓ) = arg
{

minβ [P (tℓ)]
} (7)is solved by means of the enhaned PSO-based strategy (Set. 3) to determine the optimalsetting of the phases, β = {βn; n = 1, ..., N}, sine amplitude oe�ients {wn; n = 1, ..., N}are �xed quantities (e.g., uniform amplitudes or distributed aording to Dolph-Chebyhevpattern).
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3 Memory Enhaned PSO-based Optimization (PSOM)3.1 Struture of the Binary PSO OptimizationThe PSO [16℄[17℄ has been introdued by Eberhart and Kennedy in the last deade [18℄.It is a multiple-agent optimization approah based on the imitation of the soial behaviorof groups of animals in searh of food. A swarm of P partiles, whih models a set of Ptrial solutions, is de�ned and its evolution in the solution spae is ontrolled by means ofa set of updating equations that take into aount and exploit the history of the swarm.In this paper, following the implementation guidelines of the PSO-based strategy pro-posed in [10℄ and onerned with N-sized phased-arrays in the presene of simpli�edfar-�eld interferenes, the solution spae is binarized for allowing the use of digital beamsteering phase shifters. The trajetories of eah partile in the binary spae are deter-mined by evaluating the hanges in the probability that a oordinate will take on a zeroor one value.Beause of the omplexity of the senario at hand, the learning apabilities of the approahhave been enhaned by de�ning a memory mehanism as well as an innovative updatingrelationship aimed at exploiting the �history� of the optimization for speeding up theonvergene to the optimal solution and the adaptability of the ontrol to the time-varyingonditions.As far as the mapping between the problem at hand and the swarm struture is onerned,let us refer to a phased-array ontrolled by B-bits digital phase shifters. Therefore, the
p-th trial solution turns out to be the sequene of the quantized phase values [10℄

Bp = {βb,p,n ∈ {0, 1} ; n = 1, ..., N ; b = 1, ..., B} . (8)Conerning the partile desription, Bp de�nes the position of the p-th element of theswarm in the solution spae and the veloity Vp

Vp = {Vb,p,n; n = 1, ..., N ; b = 1, ..., B} (9)
7



models the apaity of the partile to �y from a given position Bkℓ
p to another position

Bkℓ+1
p of the solution spae, kℓ being the iteration index at the ℓ-th time-step tℓ. Moreover,
Vb,p,n is the probability that βb,p,n takes value 1.The swarm samples the solution spae by means of a binary PSO-based strategy. Ateah iteration kℓ (kℓ = 1, ..., K) of every time-step tℓ, the P trial solutions are rankedaording to their ��tness� to the environmental senario by omputing (6) in orre-spondene with Bkℓ

p , Pkℓ
p = P

(

Bkℓ
p

). Suh an operation leads to the de�nition of thepersonal best partile ξℓ

p
= arg{minhℓ=1,...,kℓ

[

P
(

Bhℓ
p

)]} and of the global best partile
ζℓ = arg{minp=1,...,P

[

P
(

ξℓ

p

)]}. Starting from the initial population randomly generatedaround the �desired signal� partile (i.e., Bkℓ
p =

{

βkℓ

b,p,n suh that βn = ϕ
(d)
n ; n = 1, ..., N

},
kℓ = 1 and p = 1), the set of solutions iteratively evolves by modifying the partiles posi-tions aording to the binary-position updating equation [10℄:

βkℓ+1
b,p,n =











1 if rkℓ

b,p,n < ℑ
(

Vkℓ

b,p,n

)

0 otherwise
(10)

where ℑ ( . ) is the sigmoid funtion
ℑ

(

Vkℓ

b,p,n

)

=
1

1 + exp (

−βkℓ

b,p,n

) (11)
rkℓ

b,p,n being a random number drawn from an uniform distribution between 0 and 1. As faras the veloity update is onerned, it is obtained by applying the Thresholding Operator
Λ (·) to the result X kℓ

b,p,n of the Memory-Based Veloity Operator U {·}(13)
Vkℓ

b,p,n = Λ
{

X kℓ

b,p,n

}

=























−Vmax X kℓ

b,p,n < Vmax

X kℓ

b,p,n −Vmax ≤ X
kℓ

b,p,n ≤ Vmax

Vmax X kℓ

b,p,n > Vmax

. (12)
During a time step tℓ, the iterative proess stops when a maximum number of iterations Kis reahed, kℓ = K, (i.e., when the maximum reation time Tresp of the system is elapsed,
Tresp = K × Tkℓ

, Tkℓ
being the iteration CPU-time) or if the optimality riterion of the8



system performane is attained [i.e., P (

ζℓ
)

≤ γopt, γopt being a user-de�ned threshold℄.Whatever the termination ondition, ζℓ is assumed as the problem solution onernedwith the ℓ-th time-step, tℓ.3.2 Memory-Based Learning and Updating StrategyIn order to de�ne a fast �reation� of the ontrol to the environmental hanges, a ustomi-zed and integrated strategy based on amemory mehanism has been implemented throughthe de�nition of suitable operators ating during the iterative proedure (kℓ = 1, ..., K)and in the whole time-varying proess (tℓ; ℓ = 1, ..., L).The memory mehanism lies on the de�nition of a �system memory� omposed by a �nite-length bu�er M = {ςm; m = 1, ..., M} (M being the bu�er length). At eah time-step,the Storage Operator allows an exhange of information from the swarm to the memoryof the system. In orrespondene with a new time-step (tℓ ← tℓ+1), the solutions storedinM are ranked aording to their �tness values suh that Pℓ+1

(

ς
1

)

≥ ...... ≥ Pℓ+1

(

ς
M

).Then, at the end of the time-step, the system memory is updated as follows: ς1 = ζℓ+1if Pℓ+1

(

ζℓ+1
)

< Pℓ+1

(

ς
1

). In a omplementary fashion, the operator Π {·} ontrols theexploitation of the system memory to improve the swarm reation to the hanges of theinterferene senario. Unlike [11℄, a simpler ativation mehanism is implemented byde�ning a user-�xed lower bound for the system performanes, γwor. More in detail,when P (

ζℓ
)

> γwor then the worst partile is replaed by the best solution stored inM(γℓ+1 ← ς
M
, being γℓ+1 = arg

{

maxp=1,...,P

[

P
(

Bkℓ+1
p

)]} ).Although suh a learning strategy e�etively uses the available information on the systemhistory, ertainly the exploitation of the information ontained inM at eah iteration kℓof the swarm evolution would allow a more puntual and immediate use of the aquiredknowledge on the behavior of the environment. Towards this purpose, the Memory-BasedVeloity Operator U {·} is de�ned as the omposition of four terms
X kℓ

b,p,n = I
{

Vkℓ−1
b,p,n

}

+ S
{

βkℓ

b,p,n, ξℓ
b,p,n

}

+ G
{

βkℓ

b,p,n, ζℓ
b,n

}

+A
{

ςm
b,n; m = 1, ..., M

}

. (13)The �rst veloity omponent, usually referred to as inertia, is given by9



I
{

Vkℓ−1
b,p,n

}

= αVkℓ−1
b,p,n . (14)It models the tendeny of a partile to ontinue in the same diretion it is traveling. Ingeneral, the inertial weight α takes a onstant value [19℄ or it dereases during the iterativeproess to favor a loal searhing at the end of the optimization [20℄[21℄.The seond term is alled self-knowledge and it auses the attration of the partile to-wards the best position previously reahed for an amount proportional to a �xed onstantoe�ient c1 (ognition oe�ient) and a random number r1 from an uniform distributionbetween 0 and 1

S
{

βkℓ

b,p,n, ξℓ
b,p,n

}

= c1r1

(

ξℓ
b,p,n − βkℓ

b,p,n

)

. (15)Complementary to the self-knowledge omponent, the group-knowledge term models alinear attration towards the optimal position ahieved so far
G

{

βkℓ

b,p,n, ζℓ
b,n

}

= c2r2

(

ζℓ
b,n − βkℓ

b,p,n

) (16)
c2 being the soial oe�ient and r2 ∈ [0, 1].Beause of the time-varying senario and the need to redue the reation time taking intoaount the similarities among the environmental onditions at di�erent time-steps, thefourth veloity omponent (indiated as �ambient-knowledge�) is aordingly de�ned asfollows

A
{

ςm
b,n; m = 1, ..., M

}

= c3r3

∑M
m=1

[

ςm
b,ne

−H
(m−1)

M

]

M
(17)

H , c3 being two onstant weighting parameters and r3 is another random number. In suha manner, the partile veloity is in�uened by a historial term related to the optimalsolutions at di�erent time-steps and in orrespondene with various interferene senarios.4 Numerial ValidationIn this setion, the results of several numerial tests are reported in order to assess thepotentialities and urrent limitations of the proposed approah. The �rst subsetion10



deals with the alibration of the PSO-based proedure and it is aimed at de�ning theoptimal on�guration of the key parameters of the optimization algorithm. The latter isonerned with the desription of the performanes of the adaptive ontrol in omplexsenarios haraterized by the presene of near-�eld interferene soures, as well.4.1 Calibration of the Optimization AlgorithmThe key parameters of the optimization algorithm have been seleted through numerialsimulations. They have been �xed to those values that allow a favorable trade-o� betweenthe rate of onvergene towards a suitable solution and the apability of usefully exploringthe whole solution spae. Moreover, due to the intrinsi statistial nature of the approah,eah test ase or experiment has been run several times to assess the quality of the solutionas well as its statistial signi�ane.The referene geometry onsisted of a linear array of N = 20 z-oriented and λ/2-spaeddipoles lying on the x-axis. The amplitudes of the array weights have been hosen a-ording to the Dolph-Chebyshev distribution. In the following, suh a geometry will bereferred to as linear array .The inertial weight α has been heuristially tuned by verifying the e�etiveness of theadaptive ontrol in orrespondene with di�erent rules of variation or setting. Towardsthis end, an interferene senario haraterized by jamming signals with diretions ran-domly distributed and arrival-times modeled by means of a Poisson's proess [11℄ has beenonsidered. With referene to Fig. 3, where a representative sample of a stohasti real-ization of the interferene generation proess is pitorially desribed, a random number Iof jamming signals [Fig. 3(a)℄ with DoAs uniformly distributed in φ ∈ [0; 180] [Fig. 3(b)℄has been onsidered (Poisson's senario). The power of the jamming soures has been�xed to 30 dB above the power of the desired signal (the power of bakground noise hasbeen assumed equal to σ2 = −30 dB). Moreover, the positions of the jamming soureshave been randomly hosen between 5 λ and 100 λ. In suh a noisy environment, thehoie of a swarm of P = 30 partiles is a good trade-o� between onvergene rate andquality of the adaptive ontrol as on�rmed by Fig. 4 where the plot of the average valueof the signal-to-interferene-plus-noise ratio (SINR) [9℄ versus P is reported to provide11



a quality rating of the algorithm performane(2) .Di�erent hoies of α have been analyzed (Tab. I) taking into aount the guidelinessuggested in the referene literature. Firstly, a dynami law has been used by dereasingthe inertial weight from 0.9 up to 0.4 in the range of iterations (kℓ = 1, ..., K, K = 1000) ofa time-step tℓ. In general, suh a hoie allows a better balane between global and loalexploration during the minimization enouraging the global and the loal searh at thestart and at the end of the optimization, respetively. However, when solving (7) and ason�rmed by the indexes in Tab. I and related to the SINR averaged over L time-steps,better performanes have been attained by hoosing a small and onstant value of theinertial weight (α = 0.1). Suh a hoie usually favors the reation and the adaptabilityof the ontrol to the environmental hanges thus improving the onvergene rate of thealgorithm. Consequently, the faster the ontrol reahes a set of suitable weights the lowerbeomes the response time with a redution of the amount of iterations needed for eahtime-step without penalizing the e�etiveness of the optimization proess. Therefore,starting from suh an indiation and after an exhaustive and statistially relevant set ofnumerial tests, K has been set to 20 iterations whatever the interferene senario.As far as the tuning of the �self-knowledge�, of the �group-knowledge� and of the �ambient-knowledge� terms is onerned, a large number of simulations has been performed byonsidering the guidelines reommended by the PSO literature [16℄[17℄ as referenesand by taking into aount other experimentations in similar optimization frameworks[22℄[19℄[23℄. The hyperspae of possible setups of the parameters c1, c2, c3, and H hasbeen sampled to �nd the most suitable setting to allow an e�ient PSO-based optimiza-tion. As a representative example, let us refer to Fig. 5 where the plot of the averaged
SINR along a slie of the PSO parameters hyperspae (H = 10 and c1 = 2.0) is shown.The maximum value of suh a quality index is situated at c2 = 2c3 = 2.0 and suh aparameters on�guration has been assumed in the following analyses/experiments.Finally, the ontrol parameters of the �memory mehanism� have been tuned. Beause ofthe novelty of the proposed implementation, no indiations are available. Thus, three dif-

(2) Unfortunately, the SINR annot be used by the ontrol algorithm to rank trial solutions, but onlyas a quality index. As a matter of fat, there is no way to alulate the signal-to-interferene-plus-noiseratio for the system arhiteture assumed in this paper (Fig. 1). Therefore, the total output powermeasured by the reeiver is used as the index of the ��tness to the environment� of eah partile.12



ferent senarios have been onsidered. Besides the Poisson's environment, two synthetiand ustomized interferene on�gurations have been generated to verify the e�etive-ness of the approah in fully exploiting similarities and ourrenes of jamming signals.The former (intermittent senario) oinides with that proposed by Weile et al. in [9℄.The latter (deterministi senario) onsiders a luster of interferenes whose DoAs aresupposed to be invariant during a large number of iterations (Tab. II).In order to evaluate the sensitivity of the system to the memory dimension (i.e., the bu�erlength M), let us analyze the behavior of the following index
∆ =

〈SINRM=Y〉 − 〈SINRM=0〉

〈SINRM=0〉
× 100 (18)where Y is the urrent value of M and the operator 〈 . 〉 stands for the average value.Conerning the deterministi senario, the obtained results are summarized in Tab. III.As it an be notied, the e�ieny of the ontrol improves in orrespondene with aninrease of the dimension of the bu�er, until a saturation veri�es when M ≥ 20 (i.e.,

M
P

= 0.67). As a matter of fat, M = 20 seems to be the best hoie sine it allows anon-negligible improvement in the ontrol apabilities (∆ = 39.7) without signi�antlya�eting the omputational burden. To further on�rm suh a onlusion, the analysis hasbeen extended to the whole set of senarios. Figure 6 shows the plots of the SINR with(M = 20) and without (M = 0) memory versus tℓ (ℓ = 1, ..., L; L = 900). As expeted,the most relevant enhanement holds for the deterministi on�guration, even though thelearning apabilities of the approah impats in a non-negligible way in orrespondenewith the �intermittent� on�guration and the Poisson's senario, as well. Moreover, theobtained results on�rm that the introdution of a memory bu�er and of an enhanedstrategy for the veloity updating turns out in a fully exploitation of the existing (whennegligible or limited too) orrelations among di�erent time-steps.4.2 Testing of the Optimization AlgorithmBy assuming the optimal setting of the PSOM parameters de�ned after the �alibration�phase, this sub-setion presents the results of a study aimed at evaluating the performane13



of the adaptive ontrol in various situations and senarios. Suh a study onsidered aomparative assessment, as well. As a matter of fat, the enhaned PSO-based ontrolhas been ompared with other state-of-the-art proedures in terms of both quality indexesand omputational osts.The �rst analysis is devoted at evaluating the dependene of the adaptive ontrol on theloations of the interferene soures and the reeiving system arhiteture. As a result,it appears that the performanes of the PSOM are notably a�eted from the number ofbits B of the digital phase shifters espeially in orrespondene with small values of thedistane ρi. Suh an event is pointed out in Fig. 7(a) where the behavior of Φav versus Bfor di�erent values of ρi is summarized (Poisson's senario). Φav is a quality index de�nedas
Φav =

〈SINRFull〉 − 〈SINRFF 〉

〈SINRFF 〉
× 100where the subsripts (Full) and (FF ) indiate that the SINR has been omputed withthe array weights determined by minimizing (6) and using (4) or (2) for modeling thejammers, respetively.As expeted and on�rming the e�etiveness of the �Full� formulation in dealing withnear-�eld interferenes, Φav inreases when ρi beomes smaller and smaller. Moreover,the value of Φav grows as B inreases up to B = 8. As a matter of fat, when B ≥ 10the binary-solution-spae onsiderably enlarges and it appears to be too large for allowingfast onvergene and reliable results.For omparison purposes, Figure 7(b) shows the results obtained setting B = 8 with the

PSOM approah, the Applebaum-based ideal method [3℄, the Applebaum tehnique withdisrete phases (DPA), the Least Mean Square algorithm (LMS), the LMS with disretephases (DPLMS), the PSO-based approah proposed in [10℄ (PSO), and the learnedreal-time GA [24℄ (LRTGA). As it an be notied, the proposed approah outperformsboth DPLMS and LRTGA, as well as the PSO. Moreover, its behavior turns outto be quite lose to that of the DPA whatever the jammers loations, despite a lowerarhitetural omplexity. Furthermore, the PSOM ahieves better signal-to-noise ratiosthan LMS when ρi

λ
< 400, while for farther interferenes the LMS allows slightly betterperformanes, but with multiple reeivers one at eah array element.14



As a representative example, Figure 8 shows the behavior of the SINR for a realizationof the Poisson's senario (L = 900) under the assumption that ρi is randomly distributedin the range [5λ, 100λ] and the interferenes do not hange in K(PSOM) = 20 iterations.Moreover, the ontrol methods have been arrested after the same Tresp. Consequently,
K has been �xed to 3000 when using the LMS algorithm sine the number of om-plex �oating point operations per iteration is O (N), while the �oating point operationsneeded by PSOM/PSO/LRTGA are of the order of O (P 2 ×B ×N). As far as the
LRTGA is onerned, it is of about 4 times omputationally heavier than the PSO-basedmethods (Tab. IV). Therefore, eah GA-based optimization loop has been terminated at
K(LRTGA) = K(PSO)

4
.In Figure 8(a), the results obtained with the FF formulation are given in terms of thesignal-to-interferene-plus-noise ratio (SINRFF ), whereas Fig. 8(b) shows the SINRbehavior when using the omplete formulation (SINRFull). Exept for the ideal approahand whatever the ontrol tehnique, the system performane improves by resorting to theFull formulation as outlined by the plot of the index Φ [Fig. 9()℄ given by

Φ =
SINRFull − SINRFF

SINRFF

× 100.On the other hand, the PSO-based approahes generally outperform other optimizationmethods as well as the LMS-based tehniques. Furthermore, they turn out to be verylose or better than the DPA approah [Fig. 8(b)℄. As a matter of fat, 〈

SINRPSOM
Full

〉

=

29.90 and 〈

SINRPSO
Full

〉

= 28.82 versus 〈

SINRDPA
Full

〉

= 27.05 (Tab. V).The seond test ase deals with the same senario of Fig. 8, but with a lower response time
Tresp. As a matter of fat, the optimization loops have been terminated at K(PSOM) =

K(PSO) = 5, K(LRTGA) = 2, and K(LMS) = 750, respetively. Unlike both Applebaumand LMS-based approahes, the results from stohasti strategies signi�antly hange.Whatever the formulation, the average values of SINR redue of about 3 ÷ 6 dB asindiated in Tab. V and Tab. VI. However, the PSOM still favorably ompares with theother digital optimization methods (i.e., DPLMS, PSO, and LRTGA) [Figs. 9(a)-()and Tab. VI℄.The last experiment is onerned with a more omplex situation. Let us onsider a planar15



array of N = 61 z-oriented and λ/2-spaed dipoles [11℄ with uniform amplitudes. At eahtime-step tℓ, a random number of I jamming signals with Poisson-modeled arrival-timesand DoAs uniformly distributed in θ ∈ [0; 180] and φ ∈ [0; 180] (3D-Poisson senario)impinges on the array. Likewise the Poisson's senario, eah jammer is haraterized bya power of 30 dB above the desired signal power and the loations of the interferenesoures are random variables uniformly distributed between 5 λ and 100 λ.Figure 10(a) shows the plot of the SINR value in a window of L = 100 time-steps. As ex-peted, the omplete formulation allows a more e�etive adaptive ontrol (〈SINRPSOM
Full

〉

=

38.02 vs. 〈

SINRPSOM
FF

〉

= 26.84). As far as the omparative assessment is onerned,Figure 10(b) points out that on average the e�ieny of the PSOM tends to that of the
DPA (〈SINRPSOM

Full

〉

= 38.02 vs. 〈

SINRDPA
Full

〉

= 38.31) and it overomes the LMS-basedstrategies, the PSO as well as the LRTGA (〈SINRLMS
Full

〉

= 31.31, 〈

SINRDPLMS
Full

〉

=

28.62, 〈

SINRPSO
Full

〉

= 31.63, and 〈

SINRLRTGA
Full

〉

= 29.43).For ompleteness, Figure 11 shows the olor level representations of the quiesent beampattern [Fig. 11(a)℄ and both near-�eld [13℄ [Fig. 11(b) - ρoss = 25 λ, Fig. 11() - ρoss =

59 λ℄ and far-�eld [Fig. 11(d)℄ distributions generated by the adaptive planar array at the
ℓ = 28-th snapshot when two interferene soures loated at (θ1 = 62o, φ1 = 89o, ρ1 = 25 λ)and (θ2 = 42o, φ2 = 39o, ρ2 = 59 λ) radiates.5 ConlusionsThis paper has investigated both the theoretial and numerial aspets of the use of digitalphase-shifters only weighting for adaptive null steering in omplex interferene senarios.It has demonstrated the appliation of a PSO-based ontrol equipped with enhanedmemory features for the adaptation of the antenna array to minimize the total outputpower at the reeiver. The mathematial formulation of the approah and the algorithmisequene of the enhaned adaptive ontrol have been arefully desribed. The numerialvalidation has been arried out by onsidering di�erent array geometries and variousinterferene on�gurations.The PSOM-based approah demonstrated:16



• an enhaned e�ieny of the adaptive ontrol (Full vs. FF formulation);
• a favorable trade-o� among arhitetural omplexity of the reeiver, omputationalload, and fast readaptation to hanging environmental onditions;
• a robustness to both near-�eld and far-�eld interferenes.As far as the main novelties of this paper are onerned, they an be summarized asfollows:
• the mathematial formulation of the smart ontrol able to model time-varying se-narios haraterized by randomly loated jamming soures;
• the enhaned PSO-based approah, whih has been suitably designed to pro�tablyexploit the memory mehanism.Future developments and researh ativities will be aimed at improving the model of theinterferene senario. For example, by onsidering the presene of satterers in the lose-ness of the antenna or di�erent statistial desriptions. Moreover, it would be interestingto study the performane of the adaptive ontrol under onditions when array elementsare expeted to fail [25℄. In priniple, no hanges to the proposed algorithm would berequired and ertainly, the memory mehanism ould aid under suh onditions, as well.
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Figure Captions
• Figure 1. Arhiteture of the adaptive array with a single reeiver at the outputof the summer.
• Figure 2. Geometry of the senario under test.
• Figure 3. Poisson's interferene senario. (a) Number of interferene signals I and(b) distribution of the angles of arrival of the jammers versus the time-step index.
• Figure 4. Calibration Phase. Averaged SINR for di�erent sizes of the swarm, P .
• Figure 5. Calibration Phase. Behavior of the averaged SINR versus c2 and c3(c1 = 2, H = 10).
• Figure 6. Calibration Phase. Behavior of the SINR versus the time-step indexfor di�erent interferene senarios with (M = 20) and without memory mehanism(M = 0).
• Figure 7. Testing Phase (Poisson's interferene senario). Behavior of Φav versus

ρi for (a) di�erent values of B (PSOM) and in orrespondene with (b) di�erentontrol tehniques (B = 8).
• Figure 8. Testing Phase (Poisson's interferene senario, ρi ∈ [5λ, 100λ] - LinearArray). Plots of (a) SINRFull, (b) SINRFF , and () Φ versus the time-step indexfor di�erent adaptive ontrol methods [KPSOM = 20℄.
• Figure 9. Testing Phase (Poisson's interferene senario, ρi ∈ [5λ, 100λ] - LinearArray). Plots of (a) SINRFull, (b) SINRFF , and () Φ versus the time-step indexfor di�erent adaptive ontrol methods [KPSOM = 5℄.
• Figure 10. Testing Phase (Poisson's interferene senario, ρi ∈ [5λ, 100λ] - PlanarArray). (a) Plots of SINRFull and SINRFF versus the time-step index when using

PSOM . (b) Comparison between di�erent ontrol methods.
• Figure 11. Testing Phase (3D Poisson's interferene senario, ρi ∈ [5λ, 100λ] -Planar Array). (a) Quiesent beam pattern. Beam patterns generated at the

ℓ = 28-th snapshot when (b) ρobs = 25λ, () dobs = 59λ and (d) in the FF region.21



Table Captions
• Table I. Calibration Phase. Impat of the inertial weight setting α on the systemperformane (∆).
• Table II. Desriptive parameters of the Deterministi Senario.
• Table III. Calibration Phase. Impat of the dimension M of the memory bu�er onthe system performane (∆).
• Table IV. Computational osts of the digital optimization approahes (CPU Intel

P4, 2.8 GHz, 512 MB RAM). T ,
Tkℓ

min(Tkℓ)
.

• Table V. Testing Phase (Poisson's interferene senario, ρi ∈ [5λ, 100λ] - LinearArray). Average values of SINRFull and of SINRFF for di�erent adaptive ontrolmethods [K(PSOM) = 20℄.
• Table VI. Testing Phase (Poisson's interferene senario, ρi ∈ [5λ, 100λ] - LinearArray). Average values of SINRFull and of SINRFF for di�erent adaptive ontrolmethods [K(PSOM) = 5℄.
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α 〈SINR〉 [dB]

0.4 → 0.9 13.81

0.9 13.73

0.4 13.86

0.1 13.93

0.01 13.84

Table I - M. Benedetti et al., �Memory Enhaned PSO-based ...�34



ℓ θ1 φ1 ρ1 [λ]

0→ 330 90 165 5

330→ 660 90 120 10

660→ 990 90 42 7

Table II - M. Benedetti et al., �Memory Enhaned PSO-based ...�35



M ∆

5 10.9

10 27.3

20 39.7

40 41.1

Table III - M. Benedetti et al., �Memory Enhaned PSO-based ...�36



Control Algorithm Tkℓ
[ms] T

PSOM 1.62 1.02

PSO 1.59 1.0

LRTGA 6.48 4.07

Table IV - M. Benedetti et al., �Memory Enhaned PSO-based ...�37



〈SINRFull〉 [dB] 〈SINRFF 〉 [dB]

Applebaum 42.80 42.52

DPA 27.05 20.44

LMS 25.82 20.09

DPLMS 23.54 19.82

PSOM 29.90 23.25

PSO 28.82 22.81

LRTGA 25.56 22.87

Table V - M. Benedetti et al., �Memory Enhaned PSO-based ...�38



〈SINRFull〉 [dB] 〈SINRFF 〉 [dB]

Applebaum 42.80 42.52

DPA 27.05 20.44

LMS 25.82 20.09

DPLMS 23.54 19.82

PSOM 24.48 21.24

PSO 21.98 20.07

LRTGA 21.84 20.55

Table VI - M. Benedetti et al., �Memory Enhaned PSO-based ...�39


