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Preface

Electromagnetic scattering is a physical phenomenon in which an electromagnetic incident

wave is scattered by an obstacle or an inhomogeneity and the total field at any point in

space can be expressed as the sum of the original incident field and the scattered one. The

direct electromagnetic scattering problem consists in determining the scattered field, once the

geometrical and physical properties of the scatterer, as well as the incident field, are known.

Among the various corresponding inverse electromagnetic scattering problems we can conceive,

we are particularly interested in the following one: to get information on the support of the

scatterer, once the incident wave and the far-field pattern, i.e. the scattered wave considered

at large distances from the scatterer, are known.

In correspondence with the recent development of several new techniques in remote sensing

and non-invasive investigation, in the last years inverse electromagnetic scattering problems

have increasingly drawn the attention of scientific community, in particular with regard to the

following applications1:

1. medical diagnostics and therapy: for example, in using microwaves to detect bone marrow

cancer (leukaemia) or breast cancer, as well as to make hyperthermia treatment;

2. non-destructive testing: for example, in looking for small cracks inside metallic or plastic

structures;

3. mine removal, in the case in which one wants to recover the location of mines in a

minefield from aerial measurements of the wave scattered by such mines when reached

by a known electromagnetic field sent by a scout plane flying over them;

4. radar, when not only the presence and the number of some moving objects are to be

detected, but also some information about their dimensions and shapes is needed.

In general, there are two main difficulties making inverse scattering problems hard to solve:

1For an interesting review of some applications and methods in inverse electromagnetic (and acoustic)
scattering, we refer to [2].



VI Preface

(a) they are ill-posed (in the sense of Hadamard [40]);

(b) they are non-linear.

In order to briefly discuss these two points, we can observe what follows.

(a’) Any reliable approach to the solution of an ill-posed problem has to face, at some stage,

questions of uniqueness and stability; in particular, it is well-known that any numerical

implementation of a method for solving an ill-posed (or an ill-conditioned) problem needs

to involve, at some step, a regularization procedure in order to damp the wild oscillations

that, without regularization, would completely blur the solution owing to the presence

of noise in the measured data and an actually uncontrolled error propagation from the

data to the solution themselves. However, such pathologies can be satisfactorily cured, at

least for linear problems, by regularization theory: some basic concepts and techniques

of the latter are, in fact, introduced in chapter 1.

(b’) Unfortunately, the genuine non-linearity of inverse scattering problems in general prevents

one from using the powerful tools of regularization theory holding in the linear case.

Traditional approaches for solving such problems are substantially of two kinds:

(i’) non-linear optimization schemes, which provide an iterative (and, often, very accu-

rate) reconstruction of the scatterer starting from an initial guess about its geomet-

rical properties;

(ii’) weak scattering approximation methods, which allow one to linearize the problem

by means of suitable approximations, such as physical optics (holding when the

wavelength is much smaller than the linear dimensions of the scatterer and the

latter is a conductor) or Born approximation (holding when the wavelength is larger

than the linear dimensions of the scatterer and the latter is a penetrable object

having a low contrast with respect to the background medium).

Both kinds of approach suffer from some heavy drawbacks. As regards (i’), we point out

that the difficulty in implementing iterative optimization algorithms is twofold: first, they

require long (and, sometimes, extremely long) reconstruction times; second, they need to

be quite accurately initialized, while, on the other hand, there are several applications,

e.g. in medical imaging, in which the a priori available information about the geometrical

properties of the scatterer does not allow for an initial guess that is accurate enough (if

any at all). As regards (ii’), we point out that weak scattering approximation methods

typically require a priori knowledge of the physical conditions under which the scattering

phenomenon has generated the measured far-field pattern: more precisely, one should

know whether the object has been penetrated by the incident wave or not, and, in the

latter case, what kind of boundary condition the total field satisfies on the boundary of
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the object itself. Moreover, situations occur in which no weak scattering approximation

is possible: a typical example is microwave tomography in medical imaging applications.

In order to overcome the above mentioned drawbacks, in 1996 a new approach to inverse

scattering problem solving has been proposed by Colton and Kirsch [26] (with two important

additional contributions by Colton, Piana, Potthast in 1997 [29] and by Cakoni, Colton, Haddar

in 2002 [17]): it is the by now quite famous linear sampling method, which is essentially a

computational procedure providing a visualization of the support of the scatterer. Roughly

speaking, it works as follows: the N ×N measurements of the far-field pattern of the scattered

wave at N observation angles and for N incident fixed-frequency fields are put in a N × N

matrix, called far-field matrix, and a finite grid of sampling points in a spatial region containing

the scatterer is chosen; then, for each grid point zl, a linear algebraic system is written, whose

left-hand side coefficients are the elements of the far-field matrix, while the right-hand side

is a known vector with N components depending on zl; moreover, for each zl, a regularized

solution of the above linear system is determined and its Euclidean norm is computed. Finally,

the shape of the scatterer can be detected by the set of grid points in which such a norm

(playing the role of indicator function) is mostly large. Of course, several different indicator

functions are possible, since a visualization of the scatterer profile can also be obtained by

mapping the values of a suitable monotonically increasing or decreasing function I of the norm

itself. However, for the mathematical and technical aspects concerning the linear sampling

method in its traditional formulation, we directly refer, as regards this PhD thesis, to sections

2.4 and 2.5 of chapter 2 (which is entirely devoted to introducing the direct and, even more,

inverse scattering problem we are interested in).

Here we would rather point out the main features of the linear sampling method and explain

the reasons for its usefulness:

• as indicated by the name itself, the linear sampling method is actually linear: more

precisely, the indicator function is ultimately obtained by solving a finite number of

ill-conditioned linear systems (one for each grid point). This means that the implemen-

tation is computationally simple and the numerical instability typical of noisy inverse

problems can be easily handled by using the classical tools of regularization theory for

ill-conditioned linear systems;

• the above linearity does not derive from any sort of approximation based on particular

physical conditions; in other terms, no approximation concerning the wavelength or the

physical properties of the scatterer is needed;

• very little a priori information on the scatterer is required: more precisely, it is not

necessary to know a priori the number of connected pieces forming the scatterer, nor



VIII Preface

whether they are penetrable by the wave or not, and, in the latter case, which kind of

(possibly mixed) boundary conditions the total field satisfies (piecewise) on the boundary

of the scatterer. It suffices only to know that the latter is actually inside the chosen grid

of sampling points;

• the implementation of the linear sampling method is computationally fast: more precisely,

the reconstruction of a two-dimensional scatterer from real data requires a few minutes,

while for complex three-dimensional objects not more than a couple of hours is typically

necessary.

On the other hand, the linear sampling method has also some drawbacks. The main one

is that, in the case of scattering from a penetrable and inhomogeneous object, it can only

provide a visualization of the support of the scatterer, but no information at all about the

point values of the index of refraction; however, one should remember that, even in a purely

theoretical context, it is possible to prove that in several situations (e.g. anisotropic objects)

only the support of the scatterer is uniquely determined and not the point values of the index

of refraction. Another drawback is that scatterers are, in general, not accurately recovered as

regards their possible concavities, which tend to be “convexified”, as pointed out in [22].

Finally, the linear sampling method still presents some open problems from three points of

view:

(a) its mathematical foundation;

(b) its numerical implementation;

(c) the quantitative assessment of its performances.

The original results obtained by working at this PhD thesis mainly2 concern the previous

points (b) and (c) and are illustrated in chapter 3, according to the approach proposed in [3]

and adding some further details or applications. More precisely, we try to discuss and face the

following four problems:

(i) is there a criterion suggesting how to choose the parameters of an “optimal” grid containing

the scatterer (i.e. number of points and sampling distance)?

(ii) is it possible to give a characterization of the indicator function in terms of its physical

meaning or analytical properties?

2As far as we know, also the two theorems 1.7.6 and 1.7.7, as well as the blended regularization presented
in subsection 1.8.4, can be considered original results.
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(iii) which is the spatial resolution power achievable by means of the linear sampling method?

(iiii) once the visualization map, i.e. the indicator function, is available, which general crite-

rion can suggest the thresholding level for its values? Or, in other terms, what can be

considered “large” or “small” for the indicator function (respectively depending on the

increasing or decreasing monotonicity of the function I)?

To this end, in section 3.1 we present a new (no-sampling) implementation of the linear

sampling method in which the set of the angle-discretized far-field equations for all sampling

points is replaced by a single functional equation formulated in a Hilbert space defined as a

direct sum of L2 spaces; this removes the problem of choicing a grid of sampling points and

allows one to determine, by means of a unique regularization process, a regularized solution of

the above functional equation, in such a way that the regularization parameter does not depend

any longer on the sampling point and an analytical representation for any indicator function is

therefore possible without any sampling in the space. Then, for sake of simplicity, in section 3.2

we choose a particular indicator function whose analytical expression allows one to show that

it is band-limited and, consequently, to obtain (in section 3.3) some theoretical information

about the spatial resolution achievable by the method. Moreover, in the same framework of

our no-sampling implementation, in section 3.4 we discuss the possibility of using a different

family of indicator functions (with no apparent gain in visualization accuracy), while in section

3.5 we outline the technique of deformable contour models in order to face the problem stated

in the previous point (iiii).

Finally, this PhD thesis ends with two appendices: appendix A, which collects in few pages

a good number of definitions, notations, theorems and properties which we often need to use

and recall (mainly in chapter 2), and appendix B, which contains all the figures3 illustrating

chapters 2 and 3 (chapter 1 has no figures): this should avoid an excess of fragmentation in

the written text and make it more easily readable.

Throughout the text, the black square, i.e. the symbol ¥, indicates the end of the proof of

a theorem, while the empty square, i.e. the symbol ¤, indicates the end of a remark or of an

example.
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CHAPTER 1

Inverse problems and regularization

In this chapter we introduce the concept of inverse problem and we explain that, in general, an

inverse problem is ill-posed (or ill-conditioned), this implying, in particular, that its solution

is either non-existing, or not unique or completely blurred by noise and, consequently, devoid

of any physical meaning.

Then we show that such pathologies can be cured by regularization theory, which allows one

to define a new concept of solution of an inverse problem: it is the so-called regularized solution,

which represents a generally satisfying compromise between accuracy in reproducing the noisy

data and stability with respect to noisy perturbations of the data themselves. Although a

certain number of different regularization methods is known in literature, we mainly focus on

Tikhonov’s one, since it is just the one we shall use in chapters 2 and 3 to implement the linear

sampling method.

1.1. Direct and inverse problems

From a strictly mathematical point of view, the concept of inverse problem is quite ambiguous,

in the sense that it would be only possible to speak about a couple of reciprocally inverse

problems, as suggested by a well-known statement of J. B. Keller [43]: “We call two problems

inverses of one another if the formulation of each involves all or part of the solution of the

other”. However, the same author goes on: “Often, for historical reasons, one of the two

problems has been studied extensively for some time, while the other has never been studied

and is not so well understood. In such cases, the former is called the direct problem, while the

latter is the inverse problem”.

Mathematical physics is rich of such problems: their peculiarity is a sort of duality, by which

the data of one problem are all or part of the unknowns of the other and conversely, so that it

may be asked by virtue of which criterion a direct problem can be distinguished by an inverse
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one. The fact is that from a physical point of view the situation is quite different, since the

two problems are not on the same level: the direct one starts from known causes to compute

unknown effects, i.e. it is oriented along a cause-effect sequence, while the corresponding

inverse one works backwards, since it consists in computing the unknown causes of given

effects. Generally speaking, direct problems have always been considered by physicists more

fundamental than inverse ones, and consequently they also have been more studied.

Thus, the historical reasons mentioned by Keller are basically physical reasons, since only

physical laws can establish what are the causes and what are the effects, and provide the

equations relating the effects to the causes. Let us see some examples about this.

First of all, if we consider Newtonian mechanics, we know that its second law relates force

(cause) to acceleration (effect) and, consequently, to trajectory. So a direct problem is, for

instance, the computation of trajectories of particles from the forces acting upon them (and

their initial conditions), while the corresponding inverse problem is the determination of the

forces from the knowledge of the trajectories. From this point of view, Newton succeeded in

solving the first inverse problem when he drew the explicit form of the gravitation force from

the Kepler laws describing the trajectories of the planets.

However, with regard to the application of modern methods in inverse problem solving,

other examples are more suitable. In scattering and diffraction theory, the aim of the direct

problem is to calculate the scattered (or diffracted) waves starting from the knowledge of the

sources and the obstacles, while the inverse problem consists in determining the obstacles

when the data are the sources and the scattered (or diffracted) waves. This kind of inverse

problems is very important in non-destructive evaluation (e.g. medical imaging), which consists

in sounding an object by means of an appropriate radiation source.

Another typical example of direct problem can be found in wave-propagation theory, when,

starting from the knowledge of a given source, one has to compute the field radiated by it

(for instance, the radiation pattern of a given antenna); obviously, the corresponding inverse

problem consists in determining the source from the knowledge of the radiated field (in the

previous example, the aim is to compute the current distribution in the antenna, given the

radiation pattern).

We can also consider potential theory: a direct problem is computing the potential generated

by a known distribution of masses (or charges), while the corresponding inverse problem consists

in determining the mass (or charge) distribution, given the potential generated by it.

Another field rich of this kind of problems is instrumental physics, i.e. the physics of in-

struments such as electronic devices, imaging systems and so on. In these cases, the direct

problem consists in determining the output of the instrument (e.g. the image) from the knowl-

edge of the input (e.g. the object) and the characteristics of the instrument (impulse response

function, etc.), while the inverse problem is the computation of the input from the knowledge

of the instrument and of its output.
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We have already said that a direct problem is oriented along a cause-effect sequence; now

we want to point out that it is also directed towards a loss of information, in the sense that its

solution is the result of a transition from a physical quantity with a certain information content

to another physical quantity with a smaller information content. This is a common feature for

most direct problems and we shall investigate it more precisely in the next section. Here we

only observe that in general the solution of a direct problem is much smoother than the data:

for instance, the image yielded by a bandlimited system is smoother than the corresponding

object (if the object involves out of band frequencies), the wave scattered by a rough obstacle

can be smooth, and so on. An interesting example of this property can be found in [9], p. 3-4.

As a consequence, a conceptual difficulty common to most inverse problems arises, since

their solution requires a transformation which should involve a gain of information. This

difficulty is referred to as ill-posedness and we shall consider it in the next section.

Finally, although there exists a certain number of mathematically interesting nonlinear

inverse problems, in the following we shall consider only linear inverse problems. The reason

is threefold:

1) linear problems, eventually deriving from the linearization of nonlinear ones, are currently

the most important for the applications;

2) well-known mathematical methods and efficient numerical algorithms for the computa-

tion of their solutions are already at disposal;

3) we are mainly interested in implementing the linear sampling method (abbr. LSM, to

which section 2.5 is dedicated) for the solution of inverse scattering problems.

1.2. Well-posed and ill-posed problems

In the previous section we have mentioned ill-posedness as a typical feature of inverse problems:

our aim is now to give some definitions and comments in order to be more precise in handling

this important property.

First of all, let us recall the basic concept of well-posed problem, introduced for the first time

in 1902 by the French mathematician Jacques Hadamard: he gave a definition of such a concept

in a paper on boundary-value problems for partial differential equations and their physical

interpretation [39]. In this first formulation, a problem was called well-posed if its solution was

unique and existed for arbitrary data. However, in a subsequent treatise [40], written in 1923,

Hadamard pointed up the requirement of continuous dependence of the solution on the data,

since a solution that varies very much for small changes of the data cannot be considered a

solution from a physical point of view: in fact, physical data are always affected by errors and

an uncontrolled propagation of them in the solution makes the latter physically meaningless.



4 1 Inverse problems and regularization

Definition 1.2.1. A problem is well-posed (in the sense of Hadamard) if it satisfies the fol-

lowing three properties:

1. the solution is unique;

2. the solution exists for arbitrary data;

3. the solution depends continuously on the data.

Definition 1.2.2. A problem is ill-posed if at least one of the previous three properties is not

verified.

Therefore a problem is ill-posed if its solution is not unique or1 does not exist for arbitrary

data or2 does not depend continuously on the data.

Hadamard was convinced that problems deriving from physics had always to be well-posed;

this point of view was heavily conditioned by the physics of the nineteenth century. The

mathematical requirements of existence, uniqueness and continuity of the solution correspond

to the “philosophical” ideal of a unique, complete and stable determination of the physical

events. Consequently, ill-posed problems were considered for a long time (up to the late 1960s)

as mathematical pathologies, devoid of real interest in the context of applied mathematics, and

were not seriously studied.

Anyway, the subsequent discovery of the ill-posedness of most inverse problems has fully

changed this point of view: with the development of the inverse problems theory and its

application to many areas of applied sciences, ill-posedness has become a crucial point for their

solution, both in functional and numerical analysis.

For instance, the following impressive example of ill-posed problem, due to Hadamard

himself [40], has been considered for many years of merely mathematical interest, but in 1977

it turned out that the basic inverse problem of electrocardiography [25], i.e. the reconstruction

of the epicardial potential from body surface maps, can be formulated just as a Cauchy problem

for an elliptic equation, i.e. a generalization of the Laplace equation.

Example 1.2.1. Let us consider the Laplace equation in two dimensions

∂2u

∂x2
+
∂2u

∂y2
= 0 (1.1)

and the associated Cauchy problem characterized by the data

u(x, 0) =
1

n
cos(nx),

∂u

∂y
(x, 0) = 0. (1.2)

1Here or has the same meaning of the Latin vel.
2Idem.
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Then the unique solution of this Cauchy problem is

u(x, y) =
1

n
cos(nx) cosh(ny). (1.3)

If the same Laplace equation (1.1) is considered with the Cauchy data

u(x, 0) = 0,
∂u

∂y
(x, 0) = 0, (1.4)

the unique solution of the new Cauchy problem is u(x, y) = 0. Now, for sufficiently large n the

distance (measured, e.g., by means of the supremum norm) between the Cauchy data (1.2) and

(1.4) can be made arbitrarily small for any x, while at any given finite distance from the x-axis

the solution (1.3) grows to infinity. This is a classical example showing the effects produced

by a non-continuous dependence of the solution on the data. It is interesting to observe that if

the oscillating function (1.2) represents the experimental errors on the data, then, by linearity,

the error propagation from the data to the solution is described by the function (1.3), and its

effect is so heavy that the solution corresponding to these real data is physically meaningless.

Besides, it can be shown that the solution doesn’t exist for any data, but only for data endowed

with some specific analyticity properties. ¤

1.3. Formulation of a linear inverse problem

The observations and comments in the previous sections suggest the following general state-

ment: a direct problem, i.e. a problem oriented along a cause-effect sequence, is well-posed,

while the corresponding inverse problem, which implies a reversal of the cause-effect sequence,

is ill-posed. However, this statement is not completely meaningful unless we can yield an ap-

propriate mathematical environment for the description of direct and inverse problems. For

sake of perspicuity, we shall often use terms and expressions that are frequently used in imag-

ing problems: obviously, this is not necessary, but it can help in some cases by virtue of the

intuitive meaning of this terminology.

The first point is to define the direct problem: its solution provides a linear operator A,

whose domain is the linear space X of the objects to be imaged, which correspond to suitable

functions with certain properties, and whose range is in the linear space Y of the images, which

correspond to appropriate functions describing, in the inverse problem, the measurable data.

Naturally, X is called object space and Y image space; in this context, they represent functional

spaces that are typically taken as Hilbert spaces. There are good reasons for this choice: first

of all, we need a distance, in order to know whether two objects (or images) are close or not,

so that our spaces have to be metric. Secondly, a scalar product turns out to be particularly

appropriate in the case of discrete data: indeed, in such a case the operator A maps a function
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into a vector and, if A is continuous3, each component of this vector can be represented, by

virtue of Riesz representation theorem4, just in terms of a useful scalar product. Finally, the

space L2 of the measurable functions such that
∫ |f(x)|2 dx < ∞ contains the finite energy

signals, which are the only ones to be physically achievable.

The second point is to observe that the space Y cannot coincide with the range R(A) of

the operator A, but can only strictly contain it. In fact, recalling the obvious decomposition

Y = R(A)⊕R(A)⊥, (1.5)

it’s easy to realize that R(A) is the set of all the noise-free images : the direct problem being

well-posed, the operator A associates a unique image to each object. As already observed in

section 1.1, this image may be rather smooth, since its information content is smaller than the

one of the corresponding object. However, a measured image is certainly a noisy image, since

it corresponds to a noise-free image corrupted by the noise affecting the measurement process:

as a consequence, the smoothness property mentioned above may not be satisfied and, in any

case, the measured image may not belong to R(A).

So the third point is to define properly the Hilbert space Y , in such a way that it contains

both the noise-free and the noisy images.

Summing up, the solution of the direct problem defines a linear continuous operator A :

X → Y between two Hilbert spaces: X is the space of the objects, Y the space of all the

possible images, noise-free and noisy ones.

Definition 1.3.1. Let X and Y be two normed vector spaces (not necessarily complete); we

shall denote with B(X, Y ) the space of the linear continuous (i.e. bounded) operators from X

to Y .

Remark 1.3.1. We recall that the operatorial norm, defined in any one of the following

equivalent ways:

1. ‖A‖ := sup
‖x‖X 6=0

‖Ax‖Y
‖x‖X ;

2. ‖A‖ := sup
‖x‖X=1

‖Ax‖Y ;

3. ‖A‖ := sup
‖x‖X≤1

‖Ax‖Y ;

4. ‖A‖ := inf{C ∈ R | ‖Ax‖Y ≤ C‖x‖X ∀x ∈ X},
makes B(X,Y ) a normed vector space, which is also complete if Y is complete in turn. In the

following, unless otherwise specified, we shall always consider the particular case in which X

and Y are Hilbert spaces. ¤
3As we shall always admit, insofar as the direct problem is well-posed.
4See theorem A.1.3 in appendix A.
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By virtue of the previous mathematical setting, now we can explain more precisely the

loss of information that characterizes the solution of a direct problem. First of all, it may

obviously happen that two, or even more, different objects have exactly the same image. Since

the operator is linear, this fact corresponds to the existence of objects (called invisible) whose

image is zero. In other terms, given any object in the space X, if an invisible object is added to

it, we obtain a different object which has exactly the same image of the previous one. Secondly,

it may happen that two very distant objects have very close images; in other words, there may

exist very large sets of different objects that are mapped by the operator A into very small sets

of images.

Thus, if we now consider the inverse problem

g = Af, (1.6)

i.e. the problem of determining the object f corresponding to a given image g, it is easy

to realize that its ill-posedness is strictly related to the loss of information that affects the

solution of the direct one. Indeed, if the image g corresponds to two (or more) different

objects, the solution of the inverse problem is not unique (in this case, N (A) 6= {0}, being

N (A) the kernel of A). If g is a noisy image, which doesn’t belong to R(A), then the solution

to the inverse problem doesn’t exist (in this case, D(A−1) 6= Y , being D(A−1) the domain

of the inverse operator A−1). Finally, if we have two neighbouring images g1, g2 such that

the corresponding objects f1, f2 are very distant, then the solution of the inverse problem

doesn’t depend continuously on the data (in this case, the operator A−1 is not continuous).

Obviously, all three cases may occur in the same inverse problem. So we can understand why

the requirements of the following definition, which is simply the reformulation of definition

1.2.1 for a linear inverse problem, are not, in general, fulfilled:

Definition 1.3.2. A linear inverse problem is well-posed if the three following properties hold:

1. N (A) = {0};

2. D(A−1) = Y ;

3. A−1 : Y → X is continuous.

However, it is worthwhile noticing, also for future purpose, that if the first two requirements

are satisfied, also the third one is: this is a consequence of the two following theorems.

Theorem 1.3.1. [Open mapping theorem]. Let X and Y be Banach spaces; if A ∈ B(X,Y )

is surjective, then the image by A of an open set in X is an open set in Y , i.e. the map A is

open.

Proof. This is a fundamental theorem in functional analysis. For a proof, see, for instance,

[57]. ¥
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Theorem 1.3.2. Let X and Y be Banach spaces; if A ∈ B(X, Y ) is bijective, then A−1 is

continuous.

Proof. In particular, A is continuous and surjective: by theorem 1.3.1, it maps open sets into

open sets. Furthermore, A is injective, so that A−1 exists, D(A−1) = Y and the inverse image

by A−1 of an open set in X is an open set in Y , i.e. A−1 is continuous. ¥

It is also interesting to observe that neither the mere continuity of the inverse operator

A−1, which is trivially verified in a finite-dimensional context5, would be sufficient to assure

the stability of the solution: in other terms, well-posedness is not a sufficient condition for the

stability of the solution of a linear inverse problem. Indeed, let us assume that A−1 is well-

defined and continuous. Then, with reference to equation (1.6), if δg is a small variation of the

datum and δf is the corresponding variation of the solution, the continuity of A−1 implies

‖δf‖X ≤ ‖A−1‖‖δg‖Y , (1.7)

where ‖ · ‖X , ‖ · ‖Y now denote respectively the norms in the Hilbert spaces X and Y induced

by the scalar products in X and in Y themselves.

On the other hand, the continuity of A implies

‖f‖X ≥ ‖g‖Y
‖A‖ , (1.8)

so that ‖δf‖X
‖f‖X ≤ ‖A‖‖A−1‖‖δg‖Y‖g‖Y . (1.9)

The real positive number

C(A) := ‖A‖‖A−1‖ (1.10)

is said condition number and provides an estimate of the instability of the problem. Since we

have

‖g‖Y = ‖Af‖Y ≤ ‖A‖‖f‖X = ‖A‖‖A−1g‖X ≤ ‖A‖‖A−1‖‖g‖Y , (1.11)

it is always

C(A) ≥ 1. (1.12)

Hence, if C(A) À 1 (in some LSM-applications6, for instance, it is up to the order of 1010),

a small variation δg on the datum can produce an enormous variation δf on the solution: in

such a case, the inverse problem is said ill-conditioned. In other terms, relation (1.9) shows

5This typically happens when the original continuous problem is discretized.
6See chapter 2.
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that the presence of an error, however small, on the datum of an ill-conditioned problem can

make its solution extremely unstable7.

So the next point is: how to cure ill-posedness (or ill-conditioning)?

1.4. Facing ill-posedness

First of all, we could observe that the property of non-continuous dependence of the solution

on the data is strictly verified only for ill-posed problems formulated in infinite-dimensional

spaces; in practice, one has to deal with discrete data and with discrete, finite-dimensional

problems. Now, the discrete version of a continuous linear inverse problem is a linear algebraic

system, apparently an easy mathematical problem: there exist a lot of methods that yield a

numerical solution to it. However, this problem is obtained by discretizing a problem with

very bad mathematical properties: indeed, its mathematical solution simply doesn’t work, in

the sense that it is physically meaningless. If we now remember the last part of the previous

section, we can easily imagine what happens.

We already know that in the continuous case small oscillating data can produce large

oscillating solutions. In any inverse problem, data are always affected by noise, which can

be considered as a small randomly oscillating function. Thus, the solution method amplifies

the noise generating a large and wildly oscillating function which fully hides the physically

meaningful solution corresponding to the exact, i.e. noise-free data. This property is still

true for the discrete version of the continuous ill-posed problem, since the corresponding linear

algebraic system is ill-conditioned : even if the solution exists and is unique, it is completely

corrupted by a minimum error on the data.

Summing up, whereas on the one hand we can compute a unique solution of our algebraic

system, on the other hand this solution is meaningless; the physically meaningful solution we

are seeking is not a solution of the problem but only an approximate solution, in the sense

that, when mapped by the matrix representing the discretized version of the operator A, it

reproduces the data not exactly, but only within the experimental errors. Anyway, if we search

for approximate solutions, they turn out to form a very large set, which contains completely

different functions, as a consequence of the loss of information in the direct problem. Thus our

problem is: how can we choose the good ones?

We can now state the so-called golden rule for solving ill-posed inverse problems: look for

approximate solutions satisfying additional constraints coming from the physics of the problem.

Let us clarify this statement by means of the mathematical model introduced just above.

The set of the approximate solutions that reproduce (within a certain amount of error) the

7We point out that inequality (1.9) cannot be improved since, in some cases, equality holds true: see [9], p.
82-83.
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same data function is the set of the objects whose images are close to the measured one. The

set of such objects is too large, due to the loss of information in the direct problem. Thus

we need some additional information, also called a priori or prior information, in order to

compensate this loss. This information is additional in the sense that it cannot be retrieved

from the image or from the properties of the mapping A that describes the direct problem, but

represents some expected physical properties of the object. Its role is to reduce the set of the

objects that are compatible with the measured image, or also to distinguish meaningful objects

from spurious ones, generated by overwhelming propagation of the noise affecting the image.

Let us see some simple examples of additional information.

1. The object cannot be too large: this implies a constraint in the form of an upper bound

on the object itself, or its intensity, or its energy, etc.

2. The object is smooth, so that, for example, its derivatives must be smaller than a certain

quantity.

3. The object is known to be non-negative.

4. The object must be different from zero only inside a given bounded region.

Furthermore, a quite different kind of additional information may be represented by sta-

tistical properties of the objects. In this case, the objects to be restored are assumed to be

realizations of a random process with known probability distribution (this can be a way of

expressing our previous experience in object restoring). Although a complete knowledge of

the probability distribution is not always at disposal, also a partial knowledge of statistical

properties of the object (for instance, the expectation values or covariance matrices) may be

useful.

Thus, the principle of the regularization methods is to use the additional information explic-

itly, from the very beginning, to construct families of approximate solutions, that is of objects

compatible with the measured image. These methods are now one of the most effective tools

for the solution of inverse problems.

1.5. Generalized inverse operators

Given an ill-posed linear inverse problem, a first step towards the objective determination of

an approximate solution consists of looking for functions minimizing in some sense the distance

between their image by the operator A and the datum. More precisely, we introduce the least-

squares problem associated to the linear inverse one (1.6), defined as the problem of determining

f ∈ X such that

‖Af − g‖Y = minimum, (1.13)
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where X and Y are Hilbert spaces.

Definition 1.5.1. A solution of the least-squares problem (1.13) is said a normal solution or

pseudosolution.

The characterization of pseudosolutions is given by the following theorem.

Theorem 1.5.1. Given A ∈ B(X,Y ), let P denote the linear projection onto R(A), closure of

the range of A, and let g be a generic element of Y . Then the following properties of u ∈ X
are equivalent:

(i) Au = Pg;

(ii) ‖Au− g‖Y ≤ ‖Af − g‖Y ∀f ∈ X;

(iii) A∗Au = A∗g,

where A∗ denotes the adjoint operator of A, defined, as usual, by the condition8 (Af, g)Y =

(f, A∗g)X ∀f ∈ X, ∀g ∈ Y .

Proof. (i) ⇒ (ii): by virtue of the decomposition Y = R(A)⊕R(A)⊥, one has that Pg − g ∈
R(A)⊥; besides Af − Pg ∈ R(A), so that

‖Af − g‖2
Y = ‖Af − Pg‖2

Y + ‖Pg − g‖2
Y . (1.14)

Then, by using hypothesis (i), we have

‖Af − g‖2
Y = ‖Af − Pg‖2

Y + ‖Au− g‖2
Y ≥ ‖Au− g‖2

Y ∀f ∈ X, (1.15)

i.e. (ii).

(ii) ⇒ (iii): since Pg ∈ R(A) and R(A) is closed, there exists a sequence {fn}∞n=1 such that

Pg = limn→∞Afn, i.e. limn→∞ ‖Afn − Pg‖Y = 0. If we now assume that u ∈ X is such that

(ii) holds, by virtue of the continuity of the norm we have

‖Au− g‖2
Y = ‖Au− Pg‖2

Y + lim
n→∞

‖Afn − g‖2
Y ≥ ‖Au− Pg‖2

Y + ‖Au− g‖2
Y . (1.16)

It follows that Au − Pg = 0, then Au − g = Pg − g and A∗Au − A∗g = A∗(Pg − g). But

Pg − g ∈ R(A)⊥ = N (A∗), so that (iii) is true.

(iii) ⇒ (i): if (iii) holds, then Au− g ∈ N (A∗) = R(A)⊥ and (i) follows. ¥

8In the following, we shall denote with ( , )X the scalar product in a Hilbert space X. We choose “right
component conjugation”, i.e. (x1, ax2)X = ā(x1, x2)X ∀a ∈ C and ∀x1, x2 ∈ X, where we obviously denote
with ā the complex conjugate of a ∈ C.



12 1 Inverse problems and regularization

If g ∈ Y , the set of the pseudosolutions associated to g will be denoted with Sg. Clearly,

by virtue of condition (i) of theorem 1.5.1, it follows that Sg is empty if and only if R(A) is

not closed and g ∈ R(A) \ R(A). In other terms, it holds

Sg 6= ∅ ⇔ g ∈ R(A)⊕R(A)⊥. (1.17)

Let us now suppose that Sg is not empty and let u0 be a generic pseudosolution: it’s trivial to

show that

Sg = {u = u0 + ϕ, Aϕ = 0} , (1.18)

or, in a shorter form,

Sg = u0 +N (A). (1.19)

Then, it is easy to realize that the set Sg is convex and closed in the Hilbert space X; therefore,

for a well-known theorem, there exists a unique pseudosolution with minimal norm. Hence, we

can introduce the following definition.

Definition 1.5.2. Given the inverse problem g = Af , if the set Sg of its pseudosolutions is

not empty, the unique element of Sg having minimal norm will be called generalized solution

of the problem and it will be denoted with f †. Moreover, the operator A† : D(A†) → X, defined

by the condition

A†g = f † ∀g ∈ D(A†) ⊂ Y, (1.20)

will be called generalized inverse operator.

Recalling the double implication (1.17), we can immediately realize that

D(A†) = R(A)⊕R(A)⊥. (1.21)

It is worthwhile observing that the condition of minimal norm in the definition of generalized

solution may have a quite natural physical meaning. Indeed, for example, the L2-norm of a

signal is a measure of its energy and minimizing the energy of a signal is a typical way to

reduce its instability9.

Of course, the concepts of generalized solution and of generalized inverse operator are

fundamental in studying linear inverse problems. In order to describe them in a better way,

we give the two following theorems.

Theorem 1.5.2. The generalized solution f † is the unique pseudosolution belonging to N (A)⊥.

9However it may happen that minimum conditions other than the L2 minimization more realistically fulfil
the problem requirements. A possible generalization of the definition of generalized solution is given by replacing
the minimum norm condition with the more general constraint ‖Cf‖Z = minimum, where C is a closed linear
operator with range in the Hilbert space Z. The closedness condition is due to the fact that the use of
C-generalized inverse operators is particularly useful in the case of closed differential operators.
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Proof. Since f † ∈ X, we have the obvious decomposition

f † = u1 + u2, (1.22)

with u1 ∈ N (A)⊥ and u2 ∈ N (A). We immediately have

u1 = f † − u2, (1.23)

and, by remembering representation (1.18) and recalling that f † is, in particular, a pseudoso-

lution, we get that u1 is a pseudosolution too. Furthermore, we can write

‖f †‖2
X = ‖u1 + u2‖2

X = ‖u1‖2
X + ‖u2‖2

X ≥ ‖u1‖2
X . (1.24)

Since by definition f † is the unique pseudosolution of minimal norm, the relation (1.24) can

hold only if u2 = 0. This implies that f † = u1 and so f † ∈ N (A)⊥. Finally, if we substitute f †

to u0 in the decomposition (1.19), we find that f † is the unique pseudosolution in N (A)⊥. ¥

Theorem 1.5.3. The generalized inverse operator A†, defined by relation (1.20), is linear.

Proof. Let g1 and g2 be two elements of the domain D(A†) of the generalized inverse operator

A†. Then, remembering condition (i) of theorem 1.5.1 and relation (1.20), we have immediately

AA†g1 = Pg1, AA†g2 = Pg2. (1.25)

Since Pg1, Pg2 ∈ R(A), by linearity of A and P we have that also P (g1 + g2) = Pg1 + Pg2 ∈
R(A). Thus, not only g1 + g2 ∈ D(A†) and AA†(g1 + g2) = P (g1 + g2), but, recalling the two

relations (1.25), we also get

AA†g1 + AA†g2 = AA†(g1 + g2), (1.26)

and then, by linearity of A, we have that A†g1 + A†g2 − A†(g1 + g2) ∈ N (A). But A†g1, A
†g2

and A†(g1 + g2) are the generalized solution respectively corresponding to the data g1, g2 and

g1 + g2, so that A†g1, A
†g2, A

†(g1 + g2) ∈ N (A)⊥. Since the latter is a linear subspace of X, it

follows that A†g1 + A†g2 − A†(g1 + g2) ∈ N (A)⊥. Summing up, we have found that

A†g1 + A†g2 − A†(g1 + g2) ∈ N (A) ∩N (A)⊥. (1.27)

But obviously N (A) ∩N (A)⊥ = {0}, so that

A†g1 + A†g2 = A†(g1 + g2). (1.28)

In a fully analogous way it can be shown that A†(ag) = aA†g ∀a ∈ C. ¥

We can also establish a relation between the range of the generalized inverse operator and

the range of the adjoint one: this is the aim of the following theorem.
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Theorem 1.5.4. Given A ∈ B(X, Y ), it holds R(A∗) ⊂ R(A†). Furthermore, if R(A) is

closed, then R(A∗) = R(A†).

Proof. If u ∈ R(A∗), then u ∈ R(A∗) = N (A)⊥. If we define the element g := Au, then u

is the generalized solution corresponding to g, since it is trivially pseudosolution and has no

components in N (A). Hence u = A†g and so u ∈ R(A†); summing up, R(A∗) ⊂ R(A†).

Furthermore, let us now suppose that R(A) is closed; then, it suffices to prove the other

inclusion R(A†) ⊂ R(A∗). If u ∈ R(A†), it is also u ∈ N (A)⊥ by virtue of theorem 1.5.2. Now,

if R(A) is closed, also R(A∗) is closed10 and then N (A)⊥ = R(A∗). It follows that u ∈ R(A∗)

and, finally, R(A†) ⊂ R(A∗). ¥

Since we have introduced the generalized solution and the generalized inverse operator, we

are in a position to formulate a new inverse problem that consists in determining the solution

of two subsequent minimum problems, described by the two equations

‖Af − g‖Y = minimum (1.29)

and

‖f‖X = minimum. (1.30)

Such a problem is well-posed if and only if, ∀g ∈ Y , the generalized solution exists unique and

the generalized inverse operator is continuous. There is an entire class of operators in B(X,Y )

for which the well-posedness of the problem (1.29), (1.30) is ensured. Indeed, if R(A) is closed,

the space of the data can be decomposed in the form Y = R(A) ⊕ R(A)⊥. It follows that

D(A†) = Y and then, ∀g ∈ Y , the set Sg of pseudosolutions is not empty. Hence, the existence

and uniqueness of the generalized solution is a direct consequence of its definition, while the

continuity of the generalized inverse operator is guaranteed by the following lemma and the

subsequent theorem.

Lemma 1.5.5. If A ∈ B(X,Y ) and R(A) is closed, then ∃m > 0 such that

‖Af‖Y ≥ m‖f‖X ∀f ∈ N (A)⊥. (1.31)

Proof. If A is the null operator A = 0, then N (A)⊥ = {0} and, as a consequence, inequality

(1.31) is trivially verified by choosing an arbitrary m ∈ R.

If A 6= 0, i.e. N (A)⊥ 6= {0}, then the restriction A′ : N (A)⊥ → R(A) of A is a bijective

and continuous operator between two Hilbert spaces and then, by theorem 1.3.2, (A′)−1 is

continuous. Hence, ∀f ∈ N (A)⊥, we have

‖f‖X = ‖(A′)−1Af‖X ≤ ‖(A′)−1‖‖Af‖Y , (1.32)

10The proof of this statement is not immediate and can be found, e.g., in [11], p. 72.
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so that the thesis holds with m := ‖(A′)−1‖−1. ¥

Theorem 1.5.6. Let A ∈ B(X, Y ): then A† is continuous ⇔R(A) is closed.

Proof. “⇒”: by absurd, if R(A) were not closed, then D(A†) would be dense in Y, being

D(A†) = R(A)⊕R(A)⊥. Clearly, ∀g ∈ D(A†) it holds:

AA†g = Pg. (1.33)

Since A† is linear, continuous and densely defined in Y , it can be extended to a linear continuous

operator Â† defined on all Y . Hence, if g ∈ D(A†), equation (1.33) holds; if g ∈ Y \D(A†), let

{gn}∞n=0 be a sequence in D(A†) such that limn→∞ gn = g, i.e. limn→∞ ‖gn − g‖Y = 0. Since

{gn}∞n=0 ⊂ D(A†), by (1.33) we have AA†gn = Pgn ∀n ∈ N or, equivalently,

AÂ†gn = Pgn ∀n ∈ N; (1.34)

then, taking the limit as n → ∞ of both members of the previous equation and using the

continuity of A, Â† and P , we finally get

AÂ†g = Pg. (1.35)

Summing up, we have found that

AÂ†g = Pg ∀g ∈ Y. (1.36)

But this means that equation Af = g has a pseudosolution, precisely Â†g, for each datum

g ∈ Y ; on the other hand, it is always possible to choose g ∈ R(A) \ R(A), so that, for such a

g, no pseudosolution of Af = g exists (see the double implication (1.17)). Hence, we have got

a contradiction.

“⇐”: since we have in this case

AA†g = Pg ∀g ∈ Y, (1.37)

we can write

‖g‖Y ≥ ‖Pg‖Y = ‖AA†g‖Y ≥ m‖A†g‖X ∀g ∈ Y, (1.38)

where the last inequality holds by virtue of lemma 1.5.5. Finally, we get

‖A†g‖X ≤ 1

m
‖g‖Y , (1.39)

i.e. A† is continuous. ¥

Theorem 1.5.6 states that if R(A) is closed, the problem of determining the generalized

solution is well-posed, while if R(A) is not closed, the determination of f † is surely ill-posed.
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1.5.1. The case of compact operators

Among the operators whose range, in general, is not closed, there are some extremely mean-

ingful classes that are frequently met in the applications: an important example is the one of

compact operators (see, e.g., [57]). Firstly we recall some basic definitions and theorems about

them.

Definition 1.5.3. Let K be a subset of a topological space; K is said compact if and only if

for any (not necessarily countable) family of open sets {Ui}i∈I such that ∪i∈IAi ⊃ K, there

exists a finite subset J ⊂ I such that ∪i∈JAi ⊃ K.

The previous definition can be summarized saying that K is called compact if and only if from

any one of its open coverings it is always possible to extract a finite subcovering.

Definition 1.5.4. A subset of a topological space is said to be relatively compact if its closure

is compact.

Remark 1.5.1. If K is a compact subset of a normed vector space X (not necessarily com-

plete), then it is bounded. Indeed, in a normed vector space we can consider a generic open

ball of centre x0 and radius r, defined as:

B(x0, r) := {x ∈ X | ‖x− x0‖X < r}. (1.40)

Then, fixed r > 0, for each point xi ∈ K we can consider the ball Bi := B(xi, r). Clearly

{Bi}i∈I is an open covering of K; since K is compact, we can extract a finite subcovering, i.e.

there exists a finite subset J ⊂ I such that K ⊂ ∪i∈JBi. If we now consider the maximum R

of the distances between the centres of the balls, i.e.

R := max
i,j∈J

‖xi − xj‖X , (1.41)

and arbitrarily choose an xi0 among the centres xi, i ∈ J , we easily realize that ∪i∈JBi ⊂
B(xi0 , R + r); hence K ⊂ B(xi0 , R + r), and this means that K is bounded. ¤

Definition 1.5.5. Let A : X → Y be a linear operator between the normed vector spaces

(not necessarily complete) X and Y ; A is said compact if it maps bounded sets onto relatively

compact sets.

Remark 1.5.2. If a linear operator is compact, then it is bounded. Indeed, if, according to

notation (1.40), we denote with B(0, 1) the closure of the open ball in X with centre in 0 ∈ X
and radius 1, we have that, by definition of compact operator, the set A

(
B(0, 1)

)
is compact

in Y : hence, by virtue of remark 1.5.1, such a set is also bounded. In particular, this implies

that there exists C > 0 such that

‖Ax‖Y ≤ C ∀x ∈ X such that ‖x‖X = 1; (1.42)
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it follows that

sup
‖x‖X=1

‖Ax‖Y ≤ C, (1.43)

i.e. A is bounded. ¤

We now state two theorems: the first one, remembering theorem 1.5.6, implies that if the

inverse problem we are interested in is modelled by a linear compact operator, then, in general,

it is ill-posed; the second one is very useful in the computational implementations, in which

also continuous problems need to be discretized in finite-dimensional spaces.

Theorem 1.5.7. Let X and Y be Banach spaces; if A ∈ B(X, Y ) is compact and its range is

closed, then the range dimension is finite (and the operator is said of finite range).

Proof. The operator A : X → R(A) is linear, continuous and surjective between two Banach

spaces. Then, by virtue of the open mapping theorem 1.3.1, given any g ∈ R(A), g = Af , the

image by A of the unitary open sphere of centre f is an open set in R(A) containing g. Since

A is compact, the closure of such an open set (which is still contained in R(A)) is compact;

thus, each element of R(A) has a compact neighbourhood in R(A). This means that R(A) is

locally compact and then, being also a normed vector space, it is of finite dimension by virtue

of a theorem by Riesz [49]. ¥

Theorem 1.5.8. Let X and Y be normed vector spaces (not necessarily complete); if A ∈
B(X,Y ) is of finite range, then it is compact.

Proof. If V ⊂ X is bounded, i.e. there exists C < ∞ such that ‖x‖X ≤ C ∀x ∈ V , then

‖Ax‖Y ≤ ‖A‖ ‖x‖X ≤ C‖A‖ ∀x ∈ V , i.e. A(V ) is bounded. Moreover, since dimR(A) = n <

∞, R(A) is closed; hence A(V ) is a closed and bounded subset of the normed vector space

of finite dimension R(A), which, as such, is always homeomorphic to an Rn (in our case, we

obviously have n = dimR(A)). By virtue of Heine-Borel’s theorem, A(V ) is compact; hence,

A is compact. ¥

Also for future purpose, we are now going to show that if X, Y are Hilbert spaces and

A : X → Y is compact, the generalized solution, if it exists, can be written explicitly in terms

of the datum g and the singular system of the operator A.

Let us briefly recall that if A is compact, then the operators A∗A and AA∗ are compact, self-

adjoint and positive11. They also have the same positive eigenvalues with the same multiplicity.

Let σ2
k be these eigenvalues, ordered in a decreasing sequence (σ2

0 ≥ σ2
1 ≥ σ2

2 ≥ . . . ): except in

11We remind that a linear operator T : X → X, with X a Hilbert space, is called positive if (x, Tx)X ≥ 0
∀x ∈ X; T is called strictly positive if (x, Tx)X > 0 ∀x ∈ X with x 6= 0. It is possible to prove that if a linear
and continuous operator is positive, then it is also self-adjoint.
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degenerate cases where they are in finite number, the sequence {σ2
k}∞k=0 tends to zero when n

tends to infinity. It can be shown that it is always possible to find vector sets {uk}∞k=0 ⊂ X

and {vk}∞k=0 ⊂ Y such that:

1. denoting with σk the positive square root of σ2
k, it holds:

Auk = σkvk, A∗vk = σkuk; (1.44)

2. the set {uk}∞k=0 ⊂ X form an orthonormal basis in N (A)⊥.

Furthermore, it trivially turns out that {uk}∞k=0 ⊂ X are all the eigenvectors (in N (A∗A)⊥ =

N (A)⊥) of the operator A∗A, while {vk}∞k=0 ⊂ Y are all the eigenvectors (in N (AA∗)⊥ =

N (A∗)⊥) of AA∗ and form an orthonormal basis in R(A).

Let us now observe that any f ∈ X can be univocally decomposed as

f = f1 + f2, with f1 ∈ N (A)⊥, f2 ∈ N (A), (1.45)

so that Af = Af1. Since it obviously holds

f1 =
∞∑

k=0

(f, uk)X uk, (1.46)

by means of the continuity and linearity of A and of the first of relations (1.44), we get

Af1 = A

(
lim
n→∞

n∑

k=0

(f, uk)X uk

)
= lim

n→∞

n∑

k=0

(f, uk)XAuk =
∞∑

k=0

(f, uk)X σkvk. (1.47)

Summing up, we have found the following relation

Af =
∞∑

k=0

σk(f, uk)X vk ∀f ∈ X, (1.48)

and in an analogous way we can get one for A∗, i.e.

A∗g =
∞∑

k=0

σk(g, vk)Y uk ∀g ∈ Y. (1.49)

Definition 1.5.6. The positive numbers σk and the vectors uk, vk, for k ∈ N, are respectively

called the singular values and the singular vectors (functions) of the compact operator A. The

set of triples {σk, uk, vk}∞k=0 is said the singular system of A; the representation (1.48) [(1.49)]

is named the singular representation of A [A∗].
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Remark 1.5.3. The singular representations (1.48) and (1.49) easily imply that ‖A‖ = σ0

and ‖A∗‖ = σ0 respectively. Let us prove this result for A (the argument for A∗ is obviously

the same). To this end, let f ∈ X be such that ‖f‖X = 1: then, by virtue of (1.48), we have

‖Af‖Y =

∥∥∥∥∥
∞∑

k=0

σk(f, uk)X vk

∥∥∥∥∥
Y

=

√√√√
∞∑

k=0

σ2
k |(f, uk)X |2 ≤ σ0

√√√√
∞∑

k=0

|(f, uk)X |2 ≤ σ0, (1.50)

where equality can hold (it suffices to take, e.g., f = u0). Hence, remembering definition12

‖A‖ := sup
‖f‖X=1

‖Af‖Y , from inequality (1.50) we immediately get ‖A‖ = σ0. ¤

Let us now consider the so-called Euler equation, which is exactly the third condition that

characterizes pseudosolutions in theorem (1.5.1), i.e.

A∗Af = A∗g. (1.51)

By inserting in both sides of the previous equation the singular representations (1.48) and

(1.49), we get

σ2
j (f, uj)X = σj(g, vj)Y ∀j ∈ N, (1.52)

that is

(f, uj)X =
1

σj
(g, vj)Y ∀j ∈ N. (1.53)

It easily follows that necessary and sufficient condition for the existence of pseudosolutions, i.e.

solutions of equation (1.51), is that

∞∑

k=0

1

σ2
k

|(g, vk)Y |2 <∞, (1.54)

which is called Picard’s condition and is basically posed on the datum g. If the Picard’s

condition holds, it is immediate to realize that the following series

∞∑

k=0

1

σk
(g, vk)Y uk (1.55)

converges to a pseudosolution, even better to the generalized solution f †, since all the vectors

uk are in N (A)⊥. Summing up, we have found the explicit representation

A†g = f † =
∞∑

k=0

1

σk
(g, vk)Y uk. (1.56)

12See remark 1.3.1, definition No 2.
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Coming back to the case of a generic operator A ∈ B(X,Y ) (also not compact), we conclude

this section 1.5 noticing that, analogously to what observed in section 1.3 about inequality (1.9),

the fact that R(A) is closed does not ensure the stability of the generalized solution. Indeed,

it is possible to prove [10] the following inequality:

‖δf †‖X
‖f †‖X ≤ C(A)

‖δg‖Y
‖g‖Y , (1.57)

where, this time, the condition number is given by

C(A) = ‖A‖‖A†‖. (1.58)

It can be shown [8] that, also in this case, it is always C(A) ≥ 1. Obviously, if C(A) À 1 and

the datum is affected by error, the generalized solution is numerically unstable. Hence, looking

for the generalized solution of an inverse problem, instead of the solution itself, does not free

us from the necessity of using regularization algorithms. Of course, this does not mean that the

concept of generalized solution is useless; on the contrary, it is fundamental just in handling

the regularization algorithms themselves.

1.6. Regularization theory: a general formulation

Given a linear inverse problem, if the generalized inverse operator is not continuous or the

problem is characterized by a very large condition number, the knowledge of the generalized

solution, if it exists, is nearly useless from the point of view of applications to real data. In

such cases, indeed, as a consequence of any measurement operation, there is always an error on

the datum; this error propagates on the generalized solution and makes it numerically unstable

and then physically meaningless. In such a situation, some methods yielding stable estimates

of the generalized solutions are needed. In scientific literature there exist various algorithms

of this kind and their description is rigorously developed in the ambit of regularization theory

(see, e.g., [33], [37], [6], [67], [52]). Here we shall only give some basic definitions and some

hints about the fundamental techniques we are going to employ in the following chapters.

In general terms, regularization is the approximation of an ill-posed problem by a one-

parameter (usually denoted with α) family of neighbouring well-posed problems. We now want

to motivate the future definition of a regularization operator and of a regularization method

by making some considerations about the fact that our aim is to approximate the generalized

solution f † = A†g of the usual (and exact) linear inverse problem

Af = g (1.59)

in the most general case in which the error or the noise affect not only the exact datum g,

but also the exact operator A, i.e. there may be also modelling errors, so that we don’t know
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neither g nor A, but only some approximations of them. In practice, we shall have to deal with

a noisy version of the previous problem, i.e.

Ahf = gδ, (1.60)

where gδ represents a perturbed version of the datum and Ah is an approximate version of the

operator; we shall work in a deterministic framework, i.e. we shall assume to know a priori the

following noise bounds:

‖gδ − g‖Y ≤ δ (1.61)

and

‖Ah − A‖ ≤ h. (1.62)

In the following, for notational convenience, we shall sometimes denote with η := (δ, h) the two

noise levels together.

Remark 1.6.1. Also for future purpose, it is useful to observe that, in any case, for each exact

datum g, its noisy version gδ can be represented as

gδ = g + wδ, (1.63)

where wδ is the noise function and is such that ‖wδ‖Y ≤ δ.

Analogously, for each exact operator A, its noisy version Ah can be represented as

Ah = A+Nh (1.64)

where Nh is the noise operator and is such that ‖Nh‖ ≤ h.

Expressions (1.63) and (1.64) may not be explicitly known, but it is always possible to

assume that they exist. In fact they are quite general and do not mean that the noise is

necessarily additive, since wδ and Nh may respectively depend on g and A. ¤

Remark 1.6.2. If the exact equation (1.59) falls within the mathematical model of a physical

phenomenon, then one has necessarily that g ∈ R(A) (otherwise the model would be inconsis-

tent, giving rise to an impossible equation). In such a case, since R(A) ⊂ D(A†), we have that

g = Af † and consequently expression (1.63) can be rewritten as

gδ = Af † + wδ. (1.65)

However, in some situations, the exact equation is or may be impossible, i.e. one may have

g /∈ R(A): as we shall see, this is, in general, just the case of the linear sampling method,

whose basic equation, although physically interpretable as a focusing condition [22], does not

actually model any physical phenomenon. Obviously, in such a circumstance representation

(1.65) may not hold. ¤
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Now, we observe that, in general, the solution of equation (1.60) does not exist, since the

random components of the noise may carry the datum outside the range of Ah (or of A, in the

exact operator case h = 0). Furthermore, in general, the kernel of Ah is not empty and there is

not continuous dependence of the solution on the data. In this ill-posed case, since A†h (or A†

if h = 0) is in general unbounded, A†hgδ (or A†gδ) is certainly not a good approximation of A†g

even if it exists (which will, in general, also not be the case, since D(A†h) (or D(A†)) is in general

a proper subset of Y ). Consequently, we have to look for some approximation, say f ηα, of f †

which does, on the one hand, depend continuously on the noisy data gδ and on the approximate

operators Ah, so that it can be computed in a stable way, and has, on the other hand, the

property that as the noise levels δ and h decrease to zero and the regularization parameter α is

chosen appropriately (whatever this means), then fηα tends to f †. The construction of fηα will

in general involve the operator Ah (or A if h = 0); although this seems to be a trivial remark,

there are situations where this is not necessarily the case: if ‖gδ‖Y ≤ δ, i.e. if the noise level is

larger than or equal to the signal, one might be best off just to take fηα := 0, independently of

the operator Ah (or A), since in such a situation the noisy datum contains no information at

all anyway. But except in this case, the operator Ah (or A) certainly has to play some role in

the construction of fηα. So it is convenient to split any regularization method into two logical

steps:

1. we regularize the (in general, unbounded) generalized inverse operator A† on D(A†) by

replacing it with a one-parameter-depending family {R(h)
α }α>0 of continuous operators13

defined on all Y . At this level, the regularization parameter α is completely free; fur-

thermore, in the construction of each R
(h)
α , the operator Ah (or A if h = 0) plays an

important role, while the datum gδ has no one. In this sense, we are considering (1.59)

as a collection of equations, one for each g ∈ D(A†);

2. then, we consider the particular equation we have to deal with, i.e. a certain g ∈ D(A†),

and as approximation of its generalized solution f † we take f ηα∗ := R
(h)
α∗ (gδ), where we are

now regarding α as a function α∗ of δ, h, gδ, Ah: such a function α∗(δ, h, gδ, Ah) will be

called parameter choice rule and two requirements for it are that if the noise levels δ, h

tend to zero, then the regularized solution fηα∗ tends to f † and α∗ itself tends to zero. We

point out that fηα∗ should be computable in a stable way (at least in principle, since R
(h)
α

is assumed to be continuous14 ∀α > 0).

13The apex (h) in notation {R(h)
α }α>0 points out that each operator R

(h)
α is constructed, in general, by means

of an explicit use of the noisy operator Ah. In the following, if h = 0, we shall often write {Rα}α>0 or Rα

instead of, respectively, {R(0)
α }α>0 or R

(0)
α , except in some specific cases, in which such a shorthand may be

misleading.
14Obviously, a priori there might be a problem of ill-conditioning; however, if a regularization method were

ill-conditioned, there would be no sense in using it.
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Summing up, we shall define regularization operators for the whole collection of equations

(1.59), with g ∈ D(A†), but parameter choice rules for a specific equation out of this collection.

Both together then form a regularization method for solving one specific equation. These

considerations lead to the following definition.

Definition 1.6.1. Given A ∈ B(X,Y ) and α0 ∈ (0,+∞], for every α ∈ (0, α0) let

R(h)
α : Y → X (1.66)

be a continuous (not necessarily linear) operator, constructed by means of a noisy version

Ah ∈ B(X, Y ) of the exact operator A. The family {R(h)
α }α>0 is called a regularization or a

regularization operator (for A†) if, for each g ∈ D(A†), there exists a parameter choice rule

α∗ : R+ × R+ × Y × B(X,Y ) → (0, α0) (1.67)

(δ, h, gδ, Ah) 7→ α∗(δ, h, gδ, Ah)

such that the two following conditions hold:

lim
(δ,h)→(0+,0+)

sup
gδ,Ah

{∥∥∥R(h)
α∗(δ,h,gδ,Ah)gδ − A†g

∥∥∥
X
| ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h

}
= 0 (1.68)

and

lim
(δ,h)→(0+,0+)

sup
gδ,Ah

{α∗(δ, h, gδ, Ah) | ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h} = 0. (1.69)

Finally, when considering a certain g ∈ D(A†) and a specific parameter choice α∗, the pair

(R
(h)
α∗ , α

∗) is called a (convergent) regularization method or regularization algorithm for solving

Af = g if conditions (1.68) and (1.69) hold for that g and for that α∗.

Thus, a regularization method consists of a regularization operator and a parameter choice

rule which together form a convergent algorithm in the sense that, if the regularization param-

eter is chosen according to that rule, then the regularized solution converges (in the norm) to

the generalized one as the noise levels tend to zero; this is assured for any collection of noisy

data and noisy operators compatible with their respective noise levels, then it is a “worst case”

concept of convergence.

Remark 1.6.3. The parameter choice rule α∗ = α∗(δ, h, gδ, Ah) depends (so far) explicitly

on the noise levels δ, h, on the noisy datum gδ and on the perturbed operator Ah. However,

it is useful to remember that we defined it for every specific g ∈ D(A†), so that α∗ depends

also on the exact datum g. Since g is not known, this dependence can only be on some

qualitative a priori knowledge about g like smoothness properties. Analogously, it is evident

from condition (1.68) that α∗ (qualitatively) depends also on the exact operator A (or at least

on its generalized inverse A†) which, in general, is unknown too. We might have denoted these

implicit dependencies by writing α∗ = α∗g,A(δ, h, gδ, Ah), but we have avoided it not to make

too heavy our notations. ¤
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Remark 1.6.4. Let us note that in definition 1.6.1 we did not require the regularization op-

erator {R(h)
α }α>0 to be a family of linear operators. If the R

(h)
α are linear, then we call the

corresponding method a linear regularization method, and the family {R(h)
α }α>0 a linear regu-

larization operator. However, it also makes sense to consider nonlinear regularization methods

for solving linear problems, like the method of conjugate gradient. ¤

Remark 1.6.5. Since each operator R
(h)
α is in general constructed by using explicitly the

noisy operator Ah (or A if h = 0), it is not useless to specify that when we write (as in (1.68))

R
(h)
α∗(δ,h,gδ,Ah), we intend that the operator Ah appearing as an argument of α∗ is exactly the

same employed to form R
(h)
α for any α > 0. ¤

Remark 1.6.6. Although the regularization parameter α is typically a real positive number,

it may also be a natural number N : this happens when dealing with iterative regularization

algorithms. In such a case, the previous definition needs trivial changes: for example, condition

(1.69) becomes:

lim
(δ,h)→(0+,0+)

sup
gδ,Ah

{N∗(δ, h, gδ, Ah) | ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h} = ∞. (1.70)

In subsection 1.7.1 we shall see TSVD as an example of iterative regularization algorithm. ¤

Definition 1.6.2. Let α∗ = α∗(δ, h, gδ, Ah) be a parameter choice rule. If there is dependence

neither on gδ , nor on Ah, but only on δ and h, then we denote such a rule with α∗(δ, h) and

we call it an a priori parameter choice rule. Otherwise, we call α∗ an a posteriori parameter

choice rule.

Thus, an a priori parameter choice rule depends only on the noise levels, not on the actual

data or the perturbed operator and, consequently, not on results obtained during the actual

computation, like the so-called residuals, defined as
∥∥∥AhR(h)

α∗ gδ − gδ

∥∥∥
Y
; such a rule may be

devised before the actual calculation, whence the name “a priori parameter choice rule”.

One could also think of parameter choice rules that depend only on gδ, Ah and not on the

noise levels δ or h. However, the following theorem due to Bakushinskii [5] shows that, for an

ill-posed problem, such rules cannot be part of a regularization algorithm satisfying definition

1.6.1.

Theorem 1.6.1. Given A ∈ B(X, Y ), let us assume that there exists a regularization {R(h)
α }α>0

for A† with a parameter choice rule α∗ which depends on gδ, Ah and not on δ or h, such that

the regularization method (R
(h)
α∗ , α

∗) is convergent for every g ∈ D(A†). Then A† is continuous

(and D(A†) = Y ).

Proof. If α∗ is independent of δ and h, i.e. α∗ = α∗(gδ, Ah), then it follows from (1.68) that,

for each g ∈ D(A†), we have

lim
(δ,h)→(0+,0+)

sup
gδ,Ah

{∥∥∥R(h)
α∗(gδ,Ah)gδ − A†g

∥∥∥
X
| ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h

}
= 0. (1.71)
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Hence, we easily get ∥∥∥R(0)
α∗(g,A)g − A†g

∥∥∥
X

= 0 ∀g ∈ D(A†); (1.72)

indeed, it suffices to observe that the left-hand side of the previous equation (1.72) is completely

independent15 of δ and h, so that, if by absurd it were s :=
∥∥∥R(0)

α∗(g,A)g − A†g
∥∥∥
X
> 0 for some

g ∈ D(A†), also the supremum internal to the limit in (1.71) would be strictly positive and

not less than s > 0 for every δ and h; thus the limit itself should be greater or equal to s,

against (1.71). Hence, by virtue of (1.72) and (1.71), for any sequence {gn}∞n=0 in D(A†) which

converges to a g in D(A†) as n→∞, we have

A†gn = R
(0)
α∗(gn,A)gn → A†g as n→∞, (1.73)

so that A† is continuous on D(A†); but then, theorem 1.5.6 and relation (1.21) imply that

D(A†) = Y . ¥

Thus, if A† is unbounded, no error-free parameter choice rule can yield a convergent regu-

larization method. However, this is an asymptotic result, so it does not imply that error-free

parameter choice rules cannot behave well for finite noise levels δ, h.

We can now ask the following questions:

1. How can one construct regularization operators?

2. How can one construct parameter choice rules that give rise to convergent regularization

methods?

3. How can these steps be performed in some “optimal” way?

With regard to the third point, we shall not deal with it: for a treatment, see, for example,

[33].

On the other hand, the following two theorems 1.6.2 and 1.6.3 give a preliminary answer to

the first and second question in the particular, but very important, case in which the operator

A is known exactly (i.e. h = 0).

Theorem 1.6.2. If the operator A is known exactly and if there exists a family {Rα}α>0 of

continuous (possibly non-linear) operators such that

lim
α→0+

∥∥Rαg − A†g
∥∥
X

= 0 ∀g ∈ D(A†), (1.74)

the family {Rα}α>0 itself is a regularization for A† and there exists, for every g ∈ D(A†), an

a priori parameter choice rule α∗ = α∗(δ) such that (Rα∗ , α
∗) is a convergent regularization

method for solving Af = g.

15Remember remark 1.6.5 and footnote 13.
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Proof. Let g ∈ D(A†) be arbitrary, but fixed. By assumption, there exists an increasing

monotonic function σ : R+ → R+, with limε→0+ σ(ε) = 0, such that, for every ε > 0, it holds
∥∥Rσ(ε)g − A†g

∥∥
X
≤ ε

2
. (1.75)

Furthermore, since each Rσ(ε) is continuous, for every ε > 0 there exists a ρ(ε) such that, if

‖z − g‖Y ≤ ρ(ε), then ∥∥Rσ(ε)z −Rσ(ε)g
∥∥
X
≤ ε

2
. (1.76)

The previous property (1.76) enables us to consider ρ(ε) as a function ρ : R+ → R+ (which

we can assume, without loss of generality, to be strictly increasing monotonic and continuous)

endowed with the property that limε→0+ ρ(ε) = 0. Hence, the inverse function ρ−1 exists on

the range of ρ, is strictly increasing monotonic and continuous, and has the property that

limδ→0+ ρ−1(δ) = 0. We can extend ρ−1 to all of R+ and thus define

α∗ : R+ → R+

δ 7→ σ(ρ−1(δ)). (1.77)

The function α∗ is increasing monotonic and has the property that limδ→0+ α∗(δ) = 0. Fur-

thermore, for each ε > 0, there is a δ > 0, namely δ := ρ(ε), such that, if ‖gδ − g‖Y ≤ δ,

then
∥∥Rα∗(δ)gδ − A†g

∥∥
X
≤

∥∥Rα∗(δ)gδ −Rα∗(δ)g
∥∥
X

+
∥∥Rα∗(δ)g − A†g

∥∥
X
≤ ε

2
+
ε

2
= ε, (1.78)

having remembered relations (1.75), (1.76) and observed that α∗(δ) = σ(ε). Thus, for the

method (Rα∗ , α
∗), conditions (1.68) and (1.69) trivially hold and the function α∗ = α∗(δ)

defines an a priori parameter choice rule. ¥

In the previous theorem 1.6.2 we have seen that, if (1.74) holds, then there exists an a priori

parameter choice rule α∗ = α∗(δ) such that (Rα∗ , α
∗) is a convergent regularization method.

Such parameter choice rules, in the particular but very frequent case of linear regularization,

can be characterized as follows.

Theorem 1.6.3. Let {Rα}α>0 be a family of linear and continuous operators such that

lim
α→0+

∥∥Rαg − A†g
∥∥
X

= 0 ∀g ∈ D(A†) (1.79)

and, for each g ∈ D(A†), let α∗ : R+ → (0, α0), α
∗ = α∗(δ) be an a priori parameter choice

rule. Then (Rα∗ , α
∗) is a convergent regularization method if and only if

lim
δ→0+

α∗(δ) = 0 (1.80)

and

lim
δ→0+

δ
∥∥Rα∗(δ)

∥∥ = 0. (1.81)
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Proof. First of all, since α∗ = α∗(δ) is assumed to be an a priori parameter choice rule, (1.80)

holds by definition in any case.

“⇐”: let us assume that (1.80) and (1.81) hold. For each g ∈ D(A†) and for any gδ ∈ Y such

that ‖gδ − g‖Y ≤ δ, we can easily get

∥∥Rα∗(δ)gδ − A†g
∥∥
X
≤

∥∥Rα∗(δ)g − A†g
∥∥
X

+
∥∥Rα∗(δ)gδ −Rα∗(δ)g

∥∥
X
≤

≤
∥∥Rα∗(δ)g − A†g

∥∥
X

+
∥∥Rα∗(δ)

∥∥ δ, (1.82)

where the last member does not depend on gδ. Hence, we get

sup
gδ

{∥∥Rα∗(δ)gδ − A†g
∥∥
X
| ‖gδ − g‖ ≤ δ

} ≤
∥∥Rα∗(δ)g − A†g

∥∥
X

+ δ
∥∥Rα∗(δ)

∥∥ . (1.83)

By virtue of (1.79), (1.80) and (1.81), inequality (1.83) implies relation (1.68).

“⇒”: let us assume, by absurd, that (1.81) does not hold (we have already noticed that (1.80)

holds by definition). Then, there exist an ε > 0 and a sequence {δn(ε)}∞n=0 ≡ {δn}∞n=0 such that

limn→∞ δn = 0 and δn‖Rα∗(δn)‖ > ε ∀n ∈ N. Hence, there is a sequence {zn}∞n=0 in Y , with

‖zn‖Y = 1 ∀n ∈ N, such that δn‖Rα∗(δn)zn‖X ≥ ε/2 ∀n ∈ N. Thus, for any g ∈ D(A†) and for

any gn ∈ Y of the form gn := g+ δnzn, so that ‖gn− g‖ ≤ δn, let us consider the element of X

given by:

Rα∗(δn)gn − A†g = (Rα∗(δn)g − A†g) + δnRα∗(δn)zn. (1.84)

It immediately follows that

∥∥Rα∗(δn)gn − A†g
∥∥
X
≥

∣∣ ∥∥(Rα∗(δn)g − A†g)
∥∥
X
− δn

∥∥Rα∗(δn)zn
∥∥
X

∣∣ ∀n ∈ N. (1.85)

The second term in the right-hand side of previous inequality, as stated before, remains not

less than ε/2, while the first one tends to zero as n→∞ by virtue of (1.80) and (1.79). Hence,

it is impossible that

lim
n→∞

sup
gn

{∥∥Rα∗(δn)gn − A†g
∥∥
X
| ‖gn − g‖ ≤ δn

}
= 0; (1.86)

this clearly implies that condition (1.68) cannot be verified, so that (Rα∗ , α
∗) cannot be a

convergent regularization method, against the hypothesis. ¥

Remark 1.6.7. Relation (1.82) represents a basic inequality in linear regularization theory

and deserves a comment. First of all, let us rewrite it, considering, for a moment, α as a free

parameter: ∥∥Rαgδ − A†g
∥∥
X
≤

∥∥Rαg − A†g
∥∥
X

+ ‖Rα‖ δ. (1.87)

The first term at the right-hand side represents the approximation error due to the use of Rα

instead of the generalized inverse operator; by virtue of equation (1.79), it tends to zero when
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α → 0+. On the other hand, the second term is an estimate of the error on the regularized

solution Rαgδ due to the presence of noise on the datum and it grows up to a very large

number or to infinity16 when α → 0+, since the bounded operators Rα are, as α → 0+, more

and more accurate approximations of the operator A†, which has, in general, very big norm or

is unbounded.

Therefore it is necessary to find a compromise between approximation and error magnifica-

tion. If we assume that the two terms at the right-hand side of inequality (1.87) are monotonic

functions of α (this condition is satisfied by all the regularizing algorithms used in practice)

and, more precisely, that the first one is an increasing function, while the second one a de-

creasing function of α, it turns out that there exists a unique value of α which minimizes the

(gδ-independent) right-hand side of inequality (1.87) and represents the optimal compromise

between accuracy and stability: we shall denote such a value of α with αopt(δ), since it is

optimal and depends, in general, on the noise level δ affecting the datum gδ.

Knowing that such an optimal value of α exists does not imply, however, that it is easily

determinable. On the contrary, estimating αopt(δ) is, in general, one of the hardest tasks

in regularization theory: the main reason for this difficulty is that the calculation of αopt(δ)

requires the knowledge of f †, and this is impossible if we know only the noisy datum gδ and not

the exact one, i.e. g. On the other hand, whenever an algorithm depending on a parameter is

employed, one has to give a rule in order to fix a suitable value of the parameter itself. Hence,

we shall have to be satisfied with a criterion verifying some basic properties and by means

of which we can choose a suitable α (depending in general both on δ and gδ, and denoted

with α∗(δ, gδ)) which is (hopefully) not too far from the optimal value αopt(δ). As already

established, we call such a criterion a parameter choice rule. ¤

As regards a possible converse of theorem 1.6.2, we can say that it actually holds in the

following sense: if (R
(h)
α∗ , α

∗) is a convergent regularization method17, then from relation (1.68)

we easily get

lim
(δ,h)→(0+,0+)

∥∥∥R(0)
α∗(δ,g,h,A)g − A†g

∥∥∥
X

= 0 ∀g ∈ D(A†). (1.88)

If α∗ is continuous in δ and h, this implies that

lim
σ→0+

∥∥R(0)
σ g − A†g

∥∥
X

= 0 ∀g ∈ D(A†); (1.89)

otherwise, this holds only over the set of σ-values which are in the range of α∗(·, ·, g, A). Sum-

ming up, when evaluated for h = 0, regularizations are, substantially, pointwise approximations

of the generalized inverse A† in D(A†).

16For more precise statements about ‖Rα‖, see theorem 1.6.6 in the following.
17Here we can admit again that the regularization operator depends on Ah; as regards limit (1.88), remember

remark 1.6.5.
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We are now going to show that such pointwise approximations of A† in D(A†) cannot be,

in general, approximations in the operator norm. In order to do this, we recall some theorems

that are well-known in functional analysis and concern the so-called Principle of Uniform

Boundedness. We shall not demonstrate them; for their proofs, see, for example, [32], part I.

Theorem 1.6.4. Let X, Y be Banach spaces, and let {Tn}∞n=0 be a sequence of bounded linear

operators on X to Y . Then the limit Tx = lim
n→∞

Tnx exists for every x in X if and only if

1. the limit Tx exists for every x in a fundamental set18, and

2. for each x in X the supremum supn ‖Tnx‖Y <∞.

When the limit Tx exists for each x in X, the operator T is linear, bounded, and

‖T‖ ≤ lim inf
n→∞

‖Tn‖ ≤ sup
n
‖Tn‖ <∞. (1.90)

Theorem 1.6.5. Let X, Y be Banach spaces, and {Tβ}β∈I a family (not necessarily countable)

of bounded linear operators on X to Y . Then the following statements are equivalent:

1. sup
β∈I

‖Tβ‖ <∞;

2. sup
β∈I

‖Tβ x‖Y <∞ ∀x ∈ X.

Now, let us suppose that the regularization {R(0)
α }α>0 ≡ {Rα}α>0 is linear and uniformly

bounded, i.e. sup
α∈(0,α0)

‖Rα‖ <∞; by theorem 1.6.5, this is equivalent to

sup
α∈(0,α0)

‖Rαg‖X <∞ ∀g ∈ Y. (1.91)

It turns out that if R(A) is non-closed, it is impossible that lim
α→0+

∥∥Rα − A†
∥∥ = 0 (regarding

Rα and A† as defined on the normed vector space D(A†)). Indeed, if, by absurd, it were so,

condition (1.74) would hold too, since convergence in operatorial norm implies strong conver-

gence; then, in particular, it should exist a sequence {αn}∞n=0 ⊂ R+ such that lim
n→∞

αn = 0+

and

lim
n→∞

∥∥Rαng − A†g
∥∥
X

= 0 ∀g ∈ D(A†). (1.92)

But D(A†) is fundamental in Y (it is even dense), thus, recalling (1.91), which clearly implies

sup
αn∈(0,α0)

‖Rαng‖X <∞ ∀g ∈ Y, (1.93)

18Let us briefly recall the concept of fundamental set. First of all, the subspace spanned by a set B in a
linear space X will be denoted by sp(B) and its closure by sp(B). Then, if sp(B) = X, the set B is called
fundamental.
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and applying theorem 1.6.4, it would exist a linear bounded operator Â† : Y → X that

extends A†. This is a contradiction, since, by theorem 1.5.6, A† is not bounded owing to the

non-closedness of R(A).

By means of analogous arguments, we can now state the theorem cited above in footnote

16.

Theorem 1.6.6. If condition (1.74) holds, regularization {Rα}α>0 is linear and R(A) is non-

closed, then it holds

lim
α→0+

‖Rα‖ = ∞. (1.94)

Proof. Indeed, let us suppose, by absurd, the contrary: then, it would exist a sequence

{αn}∞n=0 ⊂ R+ such that limn→∞ αn = 0+ and supn∈N ‖Rαn‖ < ∞, i.e., recalling theorem

1.6.5, such that (1.93) holds. On the other hand, by virtue of (1.74), also (1.92) holds. Hence,

since (1.93) and (1.92) hold together again, we can proceed and obtain the same contradiction

as before. ¥

Moreover, if (1.74) and (1.94) hold for the linear regularization {Rα}α>0, then, by applying

theorem 1.6.5, it easily follows that

∃ g ∈ Y | lim
α→0+

‖Rαg‖X = ∞. (1.95)

Such a g cannot obviously belong to D(A†), since (1.74) holds; hence, the elements g satisfying

(1.95) belong to a set W ⊂ Y \ D(A†). It turns out that under a (reasonable) additional

condition, the set W is exactly the complement of D(A†) in Y ; in fact, the following theorem

holds.

Theorem 1.6.7. Let {Rα}α>0 be a linear regularization. Then

lim
σ→0+

∥∥Rσg − A†g
∥∥
X

= 0 ∀g ∈ D(A†). (1.96)

Moreover, if

sup
α∈(0,α0)

‖ARα‖ <∞, (1.97)

then

lim
σ→0+

‖Rσg‖X = ∞ ∀g ∈ Y \D(A†). (1.98)

Here, limits (1.96) and (1.98) are to be understood as explained about limit (1.89).

Proof. Equation (1.96) follows exactly as limit (1.89): this means (in the sense described there)

that Rσ → A† pointwise on D(A†), so that ARσ → AA† pointwise on the dense set D(A†);

moreover, we have already seen (cf. relation (1.33)) that AA† = P |D(A†), where P is the usual

orthogonal projector P onto R(A). Since, by assumption, ‖ARα‖ is uniformly bounded, it
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follows, from theorems 1.6.5 and 1.6.4, that it is possible to extend continuously the operator

AA† to a continuous operator defined on all Y , i.e. P itself, such that ARσ → P pointwise on

all Y .

Now, for a certain g ∈ Y , let us define, in general, σn := α∗(δn, hn, g, A) and assume

that there is a sequence {σn}∞n=0 ⊂ R+, with limn→∞ σn = 0+, such that the set {Rσng}∞n=0

is bounded; then [13] there exists a subsequence {Rσn(k)
g}∞k=0 which converges weakly to an

x ∈ X as k → ∞. Since A is also weakly sequentially continuous19, it holds ARσn(k)
g ⇀ Ax.

On the other hand, we have ARσn(k)
g → Pg, so that Ax = Pg. Hence, by theorem 1.5.1 and

definition 1.5.2, g ∈ D(A†). Thus, if g /∈ D(A†), no bounded sequence {‖Rσng‖X}∞n=0 can exist;

hence (1.98) holds. ¥

1.7. Regularization algorithms

1.7.1. TSVD (case of exact operator)

Let us consider the case of a compact operator A, which we assume to know exactly: if

we remember representation (1.56) for the generalized solution and observe that, instead of

knowing the exact datum g (which is supposed belonging to D(A†)), we only have at disposal

a noisy version gδ of it, we would be tempted to write

f † =
∞∑

k=0

1

σk
(gδ, vk)Y uk. (1.99)

Nevertheless, as previously stated, when gδ does not satisfy the Picard’s condition (1.54) (which

typically happens, owing to the stochastic nature of the noise affecting the measured data),

this expansion has only a formal meaning. However, from equation (1.99) it is rather natural

to introduce the one-parameter family of functions in X given by

fN :=
N∑

k=0

1

σk
(gδ, vk)Y uk, N <∞. (1.100)

If we now insert (1.63) into (1.100), observe that (g, vk)Y = (Pg, vk)Y ∀k = 0, . . . , N (since

vk ∈ R(A) ∀k ∈ N, see (1.44)), remember that Pg = Af † (see condition (i) of theorem 1.5.1),

use the definition of adjoint operator and employ the second of relations (1.44), we obtain

fN =
N∑

k=0

(f †, uk)X uk +
N∑

k=0

1

σk
(wδ, vk)Y uk. (1.101)

19See, for example, [13], p. 58.
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It is clear that for increasing N the first term at the right-hand side of equation (1.101)

converges to the generalized solution, while the second term, in general, grows up (or, in case,

blows up) inducing an overwhelming effect of the noise on the solution, due to the behaviour

of the singular values at high k (i.e. to the fact that {σk}∞k=0 is a (in general, not strictly)

decreasing monotonic sequence that vanishes as k →∞). However, the next theorem and the

following remark show that it is possible to choose a finite and suitable N∗ = N∗(δ) in such a

way that fN∗ is an acceptable approximation of f †.

Theorem 1.7.1. The one-parameter family {RN}N≥0 (with N ∈ N) defined by

RNg =
N∑

k=0

1

σk
(g, vk)Y uk ∀g ∈ Y (1.102)

defines a linear regularization for A†.

Proof. First of all, it is obvious that each RN is linear and continuous. Moreover, as already

observed, (g, vk)Y = (Pg, vk)Y ∀g ∈ Y and ∀k ∈ N, so that RNg = RNPg and, in particular, if

g ∈ D(A†), RNg = RNAf
†. Then we easily get

RNg =
N∑

k=0

1

σk
(g, vk)Y uk =

N∑

k=0

1

σk
(Af †, vk)Y uk =

N∑

k=0

(f †, uk)X uk ∀g ∈ D(A†). (1.103)

Thus, for N →∞ the regularized solution RNg tends to the generalized solution, i.e.

lim
N→∞

∥∥RNg − f †
∥∥
X

= 0 ∀g ∈ D(A†). (1.104)

By virtue of theorem 1.6.2, this implies that the family {RN}N≥0 is a regularization for A†. ¥

Remark 1.7.1. Furthermore, it follows from the same theorem 1.6.2 that there exists, for

every g ∈ D(A†), an a priori parameter choice rule N∗ = N∗(δ) such that (RN∗ , N
∗) is a

convergent regularization method for solving Af = g. Now, it is easy to realize that

‖RN‖ =
1

σN
∀N ≥ 0. (1.105)

In fact, for each h ∈ Y , we can write

‖RNh‖2
X =

∥∥∥∥∥
N∑

k=0

1

σk
(h, vk)Y uk

∥∥∥∥∥

2

X

=
N∑

k=0

|(h, vk)Y |2
σ2
k

≤
N∑

k=0

|(h, vk)Y |2
σ2
N

≤ ‖h‖2
Y

σ2
N

(1.106)

and equality holds, e.g., for h = vN . Thus we immediately get

‖RNh‖X
‖h‖Y ≤ 1

σN
∀h ∈ Y \ {0} (1.107)
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and then, since equality can hold,

‖RN‖ := sup
06=h∈Y

‖RNh‖X
‖h‖Y =

1

σN
, (1.108)

i.e. (1.105). So we can apply theorem 1.6.3 to conclude that, if N∗ = N∗(δ) is an a priori

parameter choice rule, then (RN∗ , N
∗) is a convergent regularization method if and only if

lim
δ→0+

N∗(δ) = ∞, lim
δ→0+

δ

σN∗(δ)
= 0. (1.109)

It might be worthwhile observing that the two conditions (1.109) are not contradictory: for ex-

ample, if we define the a priori parameter choice rule N∗ = N∗(δ) according to the prescription

σ2
N∗+1 ≤ δ ≤ σ2

N∗ , it is easy to see that both relations (1.109) are verified. ¤

Remark 1.7.2. The regularization algorithm of theorem 1.7.1 is called, for obvious reasons,

Truncated Singular Value Decomposition (abbr. TSVD) and it is perhaps the easiest regular-

ization algorithm. It often provides coarse reconstructions, but it may be helpful when a fast

estimate of the solution of the inverse problem is needed. ¤

1.7.2. Tikhonov’s method

Case of exact operator

Tikhonov’s method is, historically, the first algorithm rigorously described in regularization

theory [64] [65]. The first step to define such a method consists in considering the one-parameter

family of minimum problems

‖Afα − g‖2
Y + α‖fα‖2

X = minimum, (1.110)

where g ∈ Y is the generic (exact or noisy) datum of the problem and α is a real positive

number. For convenience, let us define the following functional of f :

Φα[f ; g] := ‖Af − g‖2
Y + α‖f‖2

X . (1.111)

Roughly speaking, the central idea of this method is the following. If we consider an element

f that makes the so-called residual ‖Af − g‖Y too little, f itself is too close to the generalized

solution f † (if it exists), so it turns out to be substantially unstable, i.e. f may oscillate too

wildly for small variations of g (if it is actually a noisy datum gδ), and consequently it is not a

good candidate to be a regularized solution. Hence, minimization of the functional (1.111) is a

compromise between accuracy and stability, i.e. between the two opposite needs to keep small

both the residual and the “penalty term” ‖f‖X . In other words, the first term in the functional

(1.111), when small enough, guarantees that f is “nearly” a least squares solution (i.e., when
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mapped by A, it reproduces with sufficient accuracy the datum g, which is, in general, noisy),

while the second term, when small enough, tends to damp out wild instabilities in f itself.

In the following, we are going to give some theorems in order to rigorously describe

Tikhonov’s method.

Theorem 1.7.2. For each α the minimum problem (1.110) is equivalent to the so-called Euler

equation of the functional Φα[f ; g], i.e.

(A∗A+ αI)fα = A∗g. (1.112)

Proof. Indeed, fα is a solution of the minimum problem (1.110) if and only if, for all complex

numbers t and for all elements h of the Hilbert space X, we have

‖Afα − g‖2
Y + α‖fα‖2

X ≤ ‖A(fα + th)− g‖2
Y + α‖fα + th‖2

X . (1.113)

By writing the norms as scalar products one easily obtains

|t|2(‖Ah‖2
Y + α‖h‖2

X) +

+t{(Ah,Afα − g)Y + α(h, fα)X} +

+t{(Afα − g, Ah)Y + α(fα, h)X} ≥ 0 ∀t ∈ C, ∀h ∈ X, (1.114)

i.e.

|t|2(‖Ah‖2
Y + α‖h‖2

X) + 2Re{t[(Ah,Afα− g)Y + α(h, fα)X ]} ≥ 0 ∀t ∈ C, ∀h ∈ X. (1.115)

Since the term quadratic in |t| is non-negative, it is not difficult to see that condition (1.115)

can be satisfied if and only if the term linear in t is zero. Using the definition of adjoint

operator, this condition can be written as

(h,A∗Afα + αfα − A∗g)X = 0 ∀h ∈ X, (1.116)

whence the Euler equation (1.112) follows. ¥

The previous theorem states that fα is a minimum point of Φα[f ; g] if and only if it is a

solution of the Euler equation (1.112). The next theorem states that the latter has always a

unique solution, which belongs to N (A)⊥.

Theorem 1.7.3. If α > 0, equation (1.112) has a unique solution, denoted with fα, for any

g ∈ Y ; furthermore fα ∈ N (A)⊥.
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Proof. The operator at the left-hand side of equation (1.112) is strictly positive, as follows

from the inequality

(A∗Af + αf, f)X = ‖Af‖2
Y + α‖f‖2

X ≥ α‖f‖2
X ∀f ∈ X. (1.117)

Then, by applying the Cauchy-Schwarz inequality to the scalar product in the first member,

we obtain

‖(A∗A+ αI)f‖X ≥ α‖f‖X ∀f ∈ X. (1.118)

The previous inequality (1.118) has the following implications:

1. the equation (A∗A+αI)f = 0 has the unique solution f = 0, i.e. the solution of equation

(1.112) is unique;

2. the inverse operator (A∗A + αI)−1 : D((A∗A + αI)−1) ⊂ X → X is bounded (and its

norm is bounded by α−1).

We now recall that for any linear and continuous operator T : X → X, with X a Hilbert space,

it holds N (T ∗) = R(T )⊥; if we now observe that (A∗A+ αI) is self-adjoint and that its kernel

is the null space by virtue of the previous point 1, we get

{0} = N (A∗A+ αI) = R(A∗A+ αI)⊥, (1.119)

so that

R(A∗A+ αI) = X, (1.120)

i.e. D((A∗A+αI)−1) = R(A∗A+αI) is dense in X. It follows that the operator (A∗A+αI)−1

can be univocally extended to a continuous operator (which we shall denote in the same way)

defined on all X. Hence equation (1.112) has a (unique) solution ∀g ∈ X; this solution can be

written in the form:

fα = (A∗A+ αI)−1A∗g. (1.121)

Finally, in general we can obviously write

fα = f1,α + f2,α, with f1,α ∈ N (A)⊥, f2,α ∈ N (A). (1.122)

Of course, we have

‖Afα − g‖Y = ‖Af1,α − g‖Y ; (1.123)

if, by absurd, it were f2,α 6= 0, it would hold

‖fα‖X > ‖f1,α‖X , (1.124)

so that we would get

Φα[fα; g] > Φα[f1,α; g] (1.125)

and this is absurd, since fα is the minimum point of the functional Φα[f ; g]. This concludes

the proof. ¥
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Remark 1.7.3. The last point of the previous theorem, i.e. the fact that fα ∈ N (A)⊥, can

also be proved by considering expression (1.121) and showing that the range of the operator

Rα := (A∗A+ αI)−1A∗ (1.126)

is contained in N (A)⊥. For future purpose, we want to follow also this second way. Let us

start with the obvious identity

(A∗A+ αI)A∗ = A∗(AA∗ + αI). (1.127)

From the proof of the previous theorem 1.7.3, we already know that A∗A+ αI has a bounded

inverse (A∗A+αI)−1 that can be thought as defined on allX. With exactly the same arguments,

one proves that also AA∗ + αI has a bounded inverse (AA∗ + αI)−1 that can be thought as

defined on all Y : indeed, both the operators A∗A+ αI and AA∗ + αI are continuous, strictly

positive and (therefore) self-adjoint. Hence, by multiplying both the members of identity

(1.127) on the left by (A∗A + αI)−1 and on the right by (AA∗ + αI)−1, and remembering

definition (1.126), we get

Rα = A∗(AA∗ + αI)−1. (1.128)

This implies that

R(Rα) ⊂ N (A)⊥, (1.129)

since it obviously holds R(Rα) ⊂ R(A∗) ⊂ R(A∗) = N (A)⊥. ¤

We can now enunciate and prove the most important theorem of this subsection. There are

at least two quite different proofs of it; since they are equally interesting and instructive, we

give them both.

Theorem 1.7.4. The one-parameter family of operators {Rα}α>0 defined by (1.126), i.e.

Rα := (A∗A+ αI)−1A∗, (1.130)

defines a linear regularization for A†.

Proof No 1. It is obvious that each Rα is linear and continuous, since it is a composition

of two operators, i.e. (A∗A + αI)−1 and A∗, that are endowed with these two properties20.

Furthermore, remembering thatN (A∗) = R(A)⊥ and definition (1.130), we immediately realize

that

Rαg = RαPg ∀g ∈ Y, (1.131)

where P denotes, as usual, the orthogonal projection onto R(A). But when g ∈ Y is such that

Pg ∈ R(A), we have that Pg = Af †, so that

Rαg = RαAf
† ∀g ∈ D(A†). (1.132)

20About the continuity of (A∗A + αI)−1, see the proof of theorem 1.7.3.
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It follows that hypothesis (1.74) of theorem 1.6.2, which we now want to prove, can be rewritten

in our case as

lim
α→0+

∥∥RαAf
† − f †

∥∥
X

= 0. (1.133)

In order to prove condition (1.133), we shall use arguments based on the spectral theory of

linear, continuous and self-adjoint operators [11], [51], [33]. If we denote with dEλ the spectral

measure defined by the spectral family associated to the self-adjoint and positive operator A∗A,

the following integral representation holds21:

∥∥RαAf
† − f †

∥∥
X

=

∥∥∥∥∥∥∥

‖A‖2∫

0

α

λ+ α
dEλf

†

∥∥∥∥∥∥∥
X

. (1.134)

Let us consider, at first, the following limit:

lim
α→0+

‖A‖2∫

0

α

λ+ α
dEλf

†; (1.135)

for each α > 0, the function α
λ+α

of λ is integrable with respect to the spectral measure over

[0, ‖A‖2] and is bounded by 1, integrable over the same interval. Then we can apply the

dominated convergence theorem and carry the limit inside the integral. Since it is obviously:

lim
α→0+

α

λ+ α
=

{
1 if λ = 0

0 if λ ∈ (0, ‖A‖2]
(1.136)

we get

lim
α→0+

‖A‖2∫

0

α

λ+ α
dEλf

† = E0f
†, (1.137)

where E0 is the projection onto N (A∗A) = N (A), so that E0f
† = 0. Finally, by means of the

continuity of ‖ · ‖X , we have

0 =

∥∥∥∥∥∥∥
lim
α→0+

‖A‖2∫

0

α

λ+ α
dEλf

† =

∥∥∥∥∥∥∥
X

= lim
α→0+

∥∥∥∥∥∥∥

‖A‖2∫

0

α

λ+ α
dEλf

†

∥∥∥∥∥∥∥
X

, (1.138)

so that, by recalling equation (1.134), we finally get relation (1.133). By virtue of theorem

1.6.2, this implies that the family {Rα}α>0 is a (linear) regularization for A†. ¥

21We incidentally observe that representation (1.134) implies that
∥∥RαAf† − f†

∥∥
X

is an increasing function
of α.
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Proof No 2. First of all, we proceed exactly as in the previous proof until relation (1.133),

which we are going to prove. Then we observe that, by virtue of theorems 1.7.2 and 1.7.3, it

holds

RαAf
† = argmin Φα

[
f ;Af †

]
, (1.139)

i.e.

Φα

[
RαAf

†;Af †
]

= minimum. (1.140)

Moreover, we define:

fα := RαAf
†. (1.141)

Now, let {αn}∞n=0 be any sequence such that αn > 0 ∀n ∈ N and limn→∞ αn = 0. It is easy to

realize that the following inequalities or equalities hold:

αn ‖fαn‖2
X ≤ Φαn

[
fαn ;Af †

] ≤ Φαn

[
f †;Af †

]
= αn

∥∥f †
∥∥2

X
. (1.142)

Summing up, the relations (1.142) imply that

‖fαn‖X ≤
∥∥f †

∥∥
X

∀n ∈ N, (1.143)

i.e. the sequence {fαn}∞n=0 is bounded in the Hilbert space X, and therefore [13] it has a

subsequence {fαn(k)
}∞k=0 that is weakly convergent to an element f ∗ ∈ X, i.e.

fαn(k)
⇀ f ∗. (1.144)

Furthermore, it is easy to realize that the functional F : X → R defined by F (x) := ‖x‖X is

continuous and convex; therefore [7] it is also weakly lower semicontinuous, so that the first of

the following inequalities holds (the other ones are trivial):

‖f ∗‖X ≤ lim inf
k→∞

∥∥∥fαn(k)

∥∥∥
X
≤ lim sup

k→∞

∥∥∥fαn(k)

∥∥∥
X
≤

∥∥f †
∥∥
X
. (1.145)

Since also the functional G : X → R defined by G(x) :=
∥∥Ax− Ax†

∥∥
Y

is continuous and

convex, it is weakly lower semicontinuous too, so that

∥∥Af ∗ − Af †
∥∥
Y
≤ lim inf

k→∞

∥∥∥Afαn(k)
− Af †

∥∥∥
Y
≤ lim sup

k→∞

∥∥∥Afαn(k)
− Af †

∥∥∥
Y
. (1.146)

Now, it is not difficult to see that the following inequalities or equalities hold:

∥∥∥Afαn(k)
− Af †

∥∥∥
2

Y
≤ Φαn(k)

[
fαn(k)

;Af †
]
≤ Φαn(k)

[
f †;Af †

]
= αn(k)

∥∥f †∥∥2

X
, (1.147)

whence we immediately get

lim sup
k→∞

∥∥∥Afαn(k)
− Af †

∥∥∥
Y

= 0. (1.148)
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Substituting this result into (1.146), we find that Af ∗ = Af †; but the generalized solution f †

is the unique minimum norm solution and, on the other hand, we have found (see (1.145))

‖f ∗‖X ≤
∥∥f †

∥∥
X

. Hence, we have that f ∗ = f † and so, again from (1.145), we immediately get

that

lim
k→∞

∥∥∥fαn(k)

∥∥∥
X

=
∥∥f †∥∥

X
. (1.149)

Summing up, the two relations (1.144) (with f ∗ replaced by f †) and (1.149) respectively say that

the subsequence {fαn(k)
}∞k=0 converges weakly to f † and that the subsequence {‖fαn(k)

‖X}∞k=0

converges to
∥∥f †∥∥

X
. For a well-known theorem22 [7], this implies that {fαn(k)

}∞k=0 converges

strongly to f †, i.e.

lim
k→∞

∥∥∥fαn(k)
− f †

∥∥∥
X

= 0. (1.150)

Then we have found that, for each sequence {αn}∞n=0 such that αn > 0 ∀n ∈ N and lim
n→∞

αn = 0,

there exists a subsequence {αn(k)}∞k=0 such that relation (1.150) holds: it is not difficult to see

that this imply

lim
α→0+

∥∥fα − f †
∥∥
X

= 0. (1.151)

Indeed, let us suppose, by absurd, that (1.151) is not true; then, it would exist an ε > 0 such

that for any right neighbourhood U+
0,n ⊂ R+ of 0 (with 0 /∈ U+

0,n) there exists at least one value

αn(ε) ≡ αn ∈ U+
0,n of α such that ∥∥fαn − f †

∥∥
X
> ε. (1.152)

Then, let us consider a family of right neighbourhoods
{
U+

0,n

}∞
n=0

such that U+
0,0 ⊃ U+

0,1 ⊃
U+

0,2 . . . and misU+
0,n < 1/n; for each U+

0,n, let us choose arbitrarily an αn > 0 such that (1.152)

holds: thus we obtain a sequence {αn}∞n=0 (such that limn→∞ αn = 0) and the corresponding

sequence {fαn}∞n=0 in X. Hence, by virtue of the previous arguments, it is possible to extract

a subsequence
{
fαn(k)

}∞
k=0

such that (1.150) holds; on the other hand, by construction of the

subsequence itself, relation (1.152) holds too, i.e.

∥∥∥fαn(k)
− f †

∥∥∥
X
> ε ∀k ∈ N. (1.153)

This is a contradiction, therefore relation (1.151) must hold. If we remember definition (1.141),

we have found

lim
α→0+

∥∥RαAf
† − f †

∥∥
X

= 0, (1.154)

i.e. exactly relation (1.133). Summing up, we have proved, by means of theorem 1.6.2, that

{Rα}α>0 is a (linear) regularization for A†. ¥

22It is the so-called H-property, by virtue of which weak convergence and norm convergence imply strong
convergence. A Hilbert space has the H-property.
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Remark 1.7.4. It is worthwhile observing that, by virtue of theorem 1.6.2 itself, there exists,

for each g ∈ D(A†), an a priori parameter choice rule α∗ = α∗(δ) such that (Rα∗ , α
∗) is a

convergent regularization method for solving Af = g. On the other hand, it is possible to show

that

‖Rα‖ ≤ 1√
α

∀α > 0. (1.155)

Indeed, by means of relation (1.128), we can write, for any g ∈ Y and any α > 0,

‖Rαg‖2
X = (A∗(AA∗ + αI)−1g, A∗(AA∗ + αI)−1g) =

= (AA∗(AA∗ + αI)−1g, (AA∗ + αI)−1g); (1.156)

by applying the Cauchy-Schwarz inequality to the last term, one has

‖Rαg‖2
X ≤ ‖AA∗(AA∗ + αI)−1‖‖(AA∗ + αI)−1‖‖g‖2

Y . (1.157)

Now, if we denote with Λ(AA∗) the spectrum of AA∗, we get

‖AA∗(AA∗ + αI)−1‖ = sup
λ∈Λ(AA∗)

λ

λ+ α
≤ 1 (1.158)

and

‖(AA∗ + αI)−1‖ = sup
λ∈Λ(AA∗)

1

λ+ α
≤ 1

α
, (1.159)

so that relation (1.155) follows.

Hence, we can apply theorem 1.6.3 to conclude that, if α∗ = α∗(δ) is an a priori parameter

choice rule, then a sufficient condition for (Rα∗ , α
∗) to be a convergent regularization method

is that the two following (and clearly not contradictory) relations hold:

lim
δ→0+

α∗(δ) = 0, lim
δ→0+

δ√
α∗(δ)

= 0. (1.160)

If we cling only to our previous considerations, we must conclude that, since inequality (1.155)

gives only a bound for ‖Rα‖, but not an exact value, the second of conditions (1.160) is not

necessary (while the first, obviously, is). Actually, it can be shown that it is also necessary (see

[6], p. 82). ¤

Remark 1.7.5. Inequality (1.155) can be improved: indeed, it is possible to demonstrate that

‖Rα‖ ≤ 1

2
√
α

∀α > 0. (1.161)

For a proof, one can use, e.g., inequality (2.48) at p.45 in [33]. ¤
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Remark 1.7.6. If g ∈ R(A), the result obtained in the previous remark 1.7.4, i.e. the

sufficiency of conditions (1.160) for (Rα∗ , α
∗) to be a convergent regularization method, can be

obtained in a completely different way, by following a reasoning that is very similar to the one

of previous proof No 2. We shall employ this technique in the more general case of a noisy

operator Ah (see theorem 1.7.5), so that also our current situation, in which h = 0, will be

covered. ¤

Remark 1.7.7. Let us now consider the particular case in which the operator A is compact; let

{σk, uk, vk}∞k=0 be, as usual, its singular system: then, for each α > 0 the solution fα ∈ N (A)⊥

of the minimum problem (1.110) can be expanded as

fα =
∞∑

k=0

(fα, uk)X uk. (1.162)

If we now recall the singular representations (1.48), (1.49) and substitute them, together with

(1.162), in the Euler equation (1.112), we straightforwardly obtain

fα =
∞∑

k=0

σk
σ2
k + α

(g, vk)Y uk, (1.163)

where g ∈ Y is the generic (exact or noisy) datum of the problem. A comparison with (1.56)

clearly shows the stabilization: errors in (g, vk)Y are not propagated into the result with the

increasing factors 1
σk

, but only with the factors σk

σ2
k+α

, which remain bounded, till vanishing as

k → 0. ¤

Case of noisy operator

Till now, we have seen that, given the linear inverse problem

Af = gδ, (1.164)

with exact operator A and noisy datum gδ (being ‖gδ − g‖Y ≤ δ), its regularized solution,

according to Tikhonov’s method, is given by

f δα := argmin Φδ
α[f ; gδ], (1.165)

where

Φδ
α[f ; gδ] := ‖Af − gδ‖2

Y + α‖f‖2
X . (1.166)

It follows that

f δα = Rαgδ, (1.167)

where

Rα := (A∗A+ αI)−1A∗. (1.168)
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Now, if we consider the linear inverse problem

Ahf = gδ, (1.169)

with perturbed operator Ah and noisy datum gδ satisfying, as usual, the conditions

‖gδ − g‖Y ≤ δ, (1.170)

‖Ah − A‖ ≤ h, (1.171)

the most natural generalization we can think of is obviously to consider as smoothing functional

the following one23:

Φη
α[f ; gδ] := ‖Ahf − gδ‖2

Y + α‖f‖2
X (1.172)

and, consequently, to define the new regularized solution as

fηα := argmin Φη
α[f ; gδ]. (1.173)

Clearly, since theorems 1.7.2, 1.7.3 and remark 1.7.3 hold by virtue of the mere continuity of

A, they keep on holding if we substitute everywhere Ah to A: in particular, the Euler equation

of the functional Φη
α[f ; gδ] is obtained by replacing A with Ah (and fα with f ηα) in equation

(1.112), i.e.:

(A∗hAh + αI) fηα = A∗h gδ. (1.174)

Hence, we take as regularization operator the family {R(h)
α }α>0, defined by

R(h)
α := (A∗hAh + αI)−1A∗h, (1.175)

so that the regularized solution turns out to be

f ηα = R(h)
α gδ. (1.176)

Of course, by means of the same arguments used in remark 1.7.7, we can show that, if Ah

is compact and {σhk , uhk, vhk}∞k=0 is its singular system, then the following representation for fηα
holds:

f ηα =
∞∑

k=0

σhk
(σhk )

2 + α
(gδ, v

h
k )Y u

h
k. (1.177)

However, theorem 1.7.4 cannot be trivially generalized, since R
(h)
α depends on Ah and then

theorem 1.6.2 cannot be applied. Hence, in order to show that {R(h)
α }α>0 is a regularization,

we shall have to consider from the very beginning a certain class of parameter choice rules (or

a specific one, as it will be the case for the discrepancy method in section 1.8) and to deal

directly with definition 1.6.1. As an illustration of this fact, we can give the following theorem.

23We recall that we denote with η := (δ, h) the two noise levels together.



1.7 Regularization algorithms 43

Theorem 1.7.5. Let, as usual, Ahf = gδ be the noisy version of the exact linear inverse

problem Af = g, with g ∈ R(A), and let relations (1.170), (1.171) hold. If {R(h)
α }α>0 is the

one-parameter family of operators defined by (1.175), i.e.

R(h)
α := (A∗hAh + αI)−1A∗h, (1.178)

and if α∗ = α∗(δ, h) is an a priori parameter choice rule such that24

lim
(δ,h)→(0+,0+)

α∗(δ, h) = 0, lim
(δ,h)→(0+,0+)

(h+ δ)2

α∗(δ, h)
= 0, (1.179)

then the pair (R
(h)
α∗ , α

∗) is a convergent regularization method for solving the exact equation

Af = g.

Proof. Let {(δn, hn)}∞n=0 be any sequence such that δn > 0, hn > 0 ∀n ∈ N and, additionally,

limn→∞(δn, hn) = (0, 0); for notational convenience, we shall denote this sequence with {ηn}∞n=0

and we shall write ηn > 0 ∀n ∈ N and limn→∞ ηn = 0. Then, let us consider, for each ηn, the

corresponding α∗n := α∗(δn, hn) > 0 and let us choose arbitrarily gδn ∈ Y and Ahn ∈ B(X,Y )

such that, respectively, ‖gδn − g‖Y ≤ δn and ‖Ahn − A‖ ≤ hn. Moreover, let us consider the

correspondent regularized solution, defined as

f ηn

α∗n := argminΦηn

α∗n [f ; gδn ]. (1.180)

It is not difficult to see that the following equalities or inequalities hold:

α∗n
∥∥fηn

α∗n

∥∥2

X
≤ Φηn

α∗n

[
fηn

α∗n ; gδn
] ≤ Φηn

α∗n

[
f †; gδn

]
=

∥∥Ahf † − gδn
∥∥2

Y
+ α∗n

∥∥f †
∥∥2

X
≤

≤ (∥∥Ahf † − Af †
∥∥
Y

+
∥∥Af † − gδn

∥∥
Y

)2
+ α∗n

∥∥f †
∥∥2

X
≤

≤ (
hn

∥∥f †
∥∥
X

+ δn
)2

+ α∗n
∥∥f †

∥∥2

X
, (1.181)

where, in the last passage, we have observed that Af † = g (since, by hypothesis, g ∈ R(A))

and remembered conditions (1.170), (1.171). From (1.181) it follows immediately that

∥∥fηn

α∗n

∥∥2

X
≤

(
hn

∥∥f †
∥∥
X

+ δn
)2

α∗n
+

∥∥f †
∥∥2

X
. (1.182)

The second of conditions (1.179) implies, in particular, that there exists a constant C > 0 such

that (
hn

∥∥f †
∥∥
X

+ δn
)2

α∗n
≤ C ∀n ∈ N. (1.183)

Relations (1.182) and (1.183) together imply that the sequence
{
fηn

α∗n

}∞
n=0

is bounded in the

Hilbert space X, and therefore [13] it has a subsequence
{
f
ηn(k)

α∗
n(k)

}∞
k=0

(which we shall denote,

24The first of the two relations (1.179) is obviously a trivial rewriting of condition (1.69) for α∗ to be an a
priori parameter choice rule. Hence, the only task of the following proof is to demonstrate condition (1.68).
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for notational convenience, with
{
fηk

α∗k

}∞
k=0

) that it is weakly convergent to an element f ∗ ∈ X,

i.e.

fηk

α∗k
⇀ f ∗. (1.184)

Hence, using the weak lower semicontinuity of the norm ‖ · ‖X [7], the second of conditions

(1.179) and inequality (1.182), we can easily get:

‖f ∗‖X ≤ lim inf
k→∞

∥∥∥f ηk

α∗k

∥∥∥
X
≤ lim sup

k→∞

∥∥∥f ηk

α∗k

∥∥∥
X
≤

∥∥f †
∥∥
X
. (1.185)

Since also the functional x 7→ ∥∥Ax− Ax†
∥∥
Y

is weakly lower semicontinuous (see proof No 2 of

theorem 1.7.4), we get

∥∥Af ∗ − Af †
∥∥
Y
≤ lim inf

k→∞

∥∥∥Af ηk

α∗k
− Af †

∥∥∥
Y
≤ lim sup

k→∞

∥∥∥Af ηk

α∗k
− Af †

∥∥∥
Y
. (1.186)

Using, in particular, the triangle inequality, the fact that Af † = g and relations (1.181), (1.182),

(1.183), we have the following inequalities:

∥∥∥Af ηk

α∗k
− Af †

∥∥∥
Y
≤

∥∥∥Afηk

α∗k
− Ahk

f ηk

α∗k

∥∥∥
Y

+
∥∥∥Ahk

fηk

α∗k
− gδk

∥∥∥
Y

+ ‖gδk − g‖Y ≤

≤ hk

∥∥∥f ηk

α∗k

∥∥∥
X

+
(
Φηk

α∗k

[
fηk

α∗k
; gδk

])1/2

+ δk ≤

≤ hk

(
C +

∥∥f †
∥∥2

X

)1/2

+
((
hk

∥∥f †
∥∥
X

+ δk
)2

+ α∗k
∥∥f †

∥∥2

X

)1/2

+ δk,

whence we immediately get

lim sup
k→∞

∥∥∥Af ηk

α∗k
− Af †

∥∥∥
Y

= 0. (1.187)

Substituting this result into (1.186), we find that Af ∗ = Af †; but the generalized solution

is the unique minimum norm solution and, on the other hand, we have found (see (1.185))

‖f ∗‖X ≤
∥∥f †

∥∥
X

. Hence, we have that f ∗ = f † and so, again from (1.185), we immediately get

that

lim
k→∞

∥∥∥fηk

α∗k

∥∥∥
X

=
∥∥f †

∥∥
X
. (1.188)

Summing up, by virtue of the H-property (see footnote 22), the two relations (1.184) (with f ∗

replaced by f †) and (1.188) imply that

lim
k→∞

∥∥∥fηk

α∗k
− f †

∥∥∥
X

= 0. (1.189)

Now, it is not difficult to see that equation (1.189) implies our thesis, i.e., according to condition

(1.68) and remembering (1.176),

lim
(δ,h)→(0+,0+)

sup
gδ,Ah

{∥∥∥fηα∗(δ,h) − f †
∥∥∥
X
| ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h

}
= 0. (1.190)
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In fact, let us suppose, by absurd, that (1.190) is not true; then, there exist an ε > 0 and a

sequence25 {ηn(ε)}∞n=0 ≡ {ηn}∞n=0, with ηn > 0 ∀n ∈ N, such that lim
n→∞

ηn = 0 and

sup
gδn ,Ahn

{∥∥fηn

α∗n − f †
∥∥
X
| ‖gδn − g‖Y ≤ δn; ‖Ahn − A‖ ≤ hn

}
> ε ∀n ∈ N. (1.191)

Inequality (1.191) clearly implies that ∀n ∈ N there exist g̃δn ∈ Y and Ãhn ∈ B(X, Y ), with

‖g̃δn − g‖Y ≤ δn and ‖Ãhn − A‖ ≤ hn, such that the corresponding regularized solution

f̃ ηn

α∗n :=
(
Ã∗hn

Ãhn + α∗nI
)−1

Ã∗hn
g̃δn (1.192)

satisfies the inequality
∥∥∥f̃ηn

α∗n − f †
∥∥∥
X
≥ ε

2
; in other terms, there exists a sequence

{
f̃ ηn

α∗n

}∞
n=0

such

that ∥∥∥f̃ ηn

α∗n − f †
∥∥∥
X
≥ ε

2
∀n ∈ N. (1.193)

On the other hand, as we have seen above, from the sequence
{
f̃ηn

α∗n

}∞
n=0

itself we can extract a

subsequence, say
{
f̃ηk

α∗k

}∞
k=0

, that verifies relation (1.189), i.e. such that

lim
k→∞

∥∥∥f̃ηk

α∗k
− f †

∥∥∥
X

= 0. (1.194)

Relations (1.193) and (1.194) are obviously contradictory, so equation (1.190) must hold. This

concludes the proof. ¥

Remark 1.7.8. It is easy to see that the arguments employed in proving the previous theorem

1.7.5 keep on holding in the more general case of an a posteriori parameter choice rule, provided

that we substitute hypotheses (1.179) with the following ones:

lim
(δ,h)→(0+,0+)

sup
gδ,Ah

{α∗(δ, h, gδ, Ah) | ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h} = 0, (1.195)

and

lim
(δ,h)→(0+,0+)

sup
gδ,Ah

{
(h+ δ)2

α∗(δ, h, gδ, Ah)
| ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h

}
= 0. (1.196)

In fact, let us remember that if, on the one hand, at the very beginning of the previous proof

we have arbitrarily chosen, for each ηn, a noisy datum gδn and a noisy operator Ahn such that,

respectively, ‖gδn − g‖Y ≤ δn and ‖Ahn − A‖ ≤ hn, on the other hand each α∗n := α∗(δn, hn)

did not depend on gδn or Ahn . Hence, the role of the uniform convergence with respect to

parameters gδ and Ah in limits (1.195), (1.196) is clearly to allow us to use again the very

same arguments of the previous proof with new values of α∗n := α∗(δn, hn, gδn , Ahn), which now

depend also on gδn and Ahn . ¤
25See also the last part of proof No 2 of theorem 1.7.4
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Remark 1.7.9. As regards the previous theorem 1.7.5, how can we proceed in the general case,

in which g ∈ D(A†), but not necessarily g ∈ R(A)? The most natural approach one can think

of is the following: we already know, from theorem 1.5.1, that f † is the generalized solution of

Af = g if and only if f † is the minimum norm solution of the Euler equation A∗Af = A∗g. In

other terms, if we construct the new exact problem

Bf = u (1.197)

by defining the new exact operator and the new exact datum respectively as

B := A∗A, u := A∗g, (1.198)

it follows immediately that the generalized solution f † of problem (1.197) exists if and, mostly

important, only if u ∈ R(B); moreover, the generalized solution of (1.197) exists if and only

if the one of problem Af = g exists, and they are, of course, the same. Summing up, when

dealing with problem (1.197), we have no more the drawback that the generalized solution may

exist without the exact datum belonging to the range of the exact operator. However, what

now remains to do is not completely straightforward. In fact, if we decide to start from the

new exact problem (1.197), we shall actually have to deal with its noisy version

BHf = u∆, (1.199)

having defined

BH := A∗hAh, u∆ := A∗hgδ (1.200)

and having denoted with H and ∆ the new noise levels on the new noisy operator BH and

the new noisy datum u∆ respectively. Hence, we could clearly restate theorem 1.7.5 replacing

everywhere A, g, h, δ, Ah, gδ, R
(h)
α respectively with B, u, H, ∆, BH , u∆, R̂

(h)
α , having obviously

defined the latter as

R̂(h)
α := (B∗

HBH + αI)−1B∗
H . (1.201)

At this level, however, such a theorem would be completely useless in any application, as far as

we know only the “physical” values δ and h of the noise levels, and not the new “mathematical”

ones ∆ and H. On the other hand, since such a theorem holds when considering ∆ and H as

free quantities that can tend to zero in whatever manner, even more so it will keep on holding

when ∆ and H tend to zero according to a certain law, endowed with suitable properties. More

precisely, such a theorem remains true if we can give an estimate of ∆, H in terms of δ, h (and,

in case, of ‖gδ‖Y , ‖Ah‖ ), i.e., as we shall see very soon, ∆(δ, h, ‖gδ‖Y , ‖Ah‖) and H(h, ‖Ah‖),
such that the three following conditions hold:

∆(δ, h, ‖gδ‖Y , ‖Ah‖) > 0, H(h, ‖Ah‖) > 0 ∀δ, h > 0; ∀‖gδ‖Y , ‖Ah‖ ≥ 0; (1.202)

lim
(δ,h)→(0+,0+)

sup
gδ,Ah

{∆(δ, h, ‖gδ‖Y , ‖Ah‖) | ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h} = 0+ (1.203)
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and

lim
h→0+

sup
Ah

{H(h, ‖Ah‖) | ‖Ah − A‖ ≤ h} = 0+. (1.204)

About the uniform convergence with respect to the parameters gδ and Ah, see the previous

remark 1.7.8.

Now, it is not so difficult to see that all three previous conditions can be satisfied. Firstly,

let us recall that [32] if T : X → Y is a linear continuous operator between two Hilbert spaces

X and Y , then it holds

‖T‖ = ‖T ∗‖; (1.205)

furthermore, if S : X → Y is another linear continuous operator between the same spaces and

a, b ∈ C, then it also holds:

(aS + bT )∗ = āS∗ + b̄T ∗, (1.206)

where ā, b̄ obviously denote the complex conjugate of a, b respectively. Moreover, if we remem-

ber that

| ‖Ah‖ − ‖A‖ | ≤ ‖Ah − A‖ , (1.207)

from inequality (1.171) we immediately have

| ‖Ah‖ − ‖A‖ | ≤ h; (1.208)

hence, recalling definitions (1.198), (1.200), representations (1.63), (1.64), properties (1.205),

(1.206) and inequality (1.208), we get

‖u∆ − u‖X = ‖A∗hgδ − A∗g‖X = ‖(A∗ +N∗
h)(g + wδ)− A∗g‖X = (1.209)

= ‖N∗
hgδ + A∗wδ‖X ≤ h‖gδ‖Y + ‖A‖δ ≤ h‖gδ‖Y + (‖Ah‖+ h)δ.

This allows us to define

∆ = ∆(δ, h, ‖gδ‖Y , ‖Ah‖) := h‖gδ‖Y + (‖Ah‖+ h)δ. (1.210)

Analogously, one gets

‖Bh −B‖ = ‖(A+Nh)
∗(A+Nh)− A∗A‖ = ‖A∗Nh +N∗

hA+N∗
hNh‖ ≤ (1.211)

≤ ‖A∗‖‖Nh‖+ ‖N∗
h‖‖A‖+ ‖Nh‖2 ≤ 2h‖A‖+ h2 ≤ 2h(‖Ah‖+ h) + h2,

so that we can define

H = H(h, ‖Ah‖) := 2h‖Ah‖+ 3h2. (1.212)

From definitions (1.210), (1.212) it follows immediately that condition (1.202) is satisfied.

Moreover, recalling again inequalities (1.170) e (1.171), we easily get

sup
gδ,Ah

{∆(δ, h, ‖gδ‖Y , ‖Ah‖) | ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h} ≤ h(‖g‖Y + δ) + (‖A‖+ 2h)δ

(1.213)



48 1 Inverse problems and regularization

and

sup
Ah

{H(h, ‖Ah‖) | ‖Ah − A‖ ≤ h} ≤ 2h(‖A‖+ h) + 3h2, (1.214)

so that conditions (1.203) and (1.204) are immediately verified. Hence, if we observe that

[H(h, ‖Ah‖) + ∆(δ, h, ‖gδ‖Y , ‖Ah‖)]2 =
[
2h‖Ah‖+ 3h2 + h‖gδ‖Y + (‖Ah‖+ h)δ

]2
, (1.215)

we can finally restate theorem 1.7.5 as follows:

Theorem 1.7.6. Let, as usual, Ahf = gδ be the noisy version of the exact linear inverse

problem Af = g, with g ∈ D(A†), and let relations (1.170), (1.171) hold. If {R(h)
α }α>0 is the

one-parameter family of operators defined by

R(h)
α :=

(
(A∗hAh)

2 + αI
)−1

A∗hAhA
∗
h, (1.216)

and if α∗ = α∗(δ, h, gδ, Ah) is an a posteriori parameter choice rule such that

lim
(δ,h)→(0+,0+)

sup
gδ,Ah

{α∗(δ, h, gδ, Ah) | ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h} = 0, (1.217)

and

lim
(δ,h)→(0+,0+)

sup
gδ,Ah

{
[2h‖Ah‖+ 3h2 + h‖gδ‖Y + (‖Ah‖+ h)δ]

2

α∗(δ, h, gδ, Ah)
| (1.218)

‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h

}
= 0,

then the pair (R
(h)
α∗ , α

∗) is a convergent regularization method for solving the exact equation

Af = g. ¤

A remarkable property of Tikhonov regularization is stated in the following theorem.

Theorem 1.7.7. Let, as usual, Ahf = gδ be the noisy version of the exact linear inverse

problem Af = g, with g ∈ D(A†), and let (cf. relations (1.175), (1.176))

fηα := (A∗hAh + αI)−1A∗hgδ (1.219)

be the Tikhonov regularized solution of the noisy problem Ahf = gδ. Furthermore, let α∗ =

α∗(δ, h, gδ, Ah) be any (a posteriori or, in case, a priori) parameter choice rule such that relation

(1.68) holds, i.e.

lim
(δ,h)→(0+,0+)

sup
gδ,Ah

{∥∥∥fηα∗(δ,h,gδ,Ah) − f †
∥∥∥
X
| ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h

}
= 0, (1.220)

where f † is, as usual, the generalized solution of the exact problem Af = g. Then, if f † 6= 0,

relation (1.69) holds too, i.e.

lim
(δ,h)→(0+,0+)

sup
gδ,Ah

{α∗(δ, h, gδ, Ah) | ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h} = 0. (1.221)
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Proof. For any α > 0, the following inequality
∣∣ ‖fηα‖X −

∥∥f †
∥∥
X

∣∣ ≤
∥∥fηα − f †

∥∥
X

(1.222)

is clearly true. Then, from relations (1.220) and (1.222) we immediately get:

lim
(δ,h)→(0+,0+)

sup
gδ,Ah

{∣∣∣
∥∥∥fηα∗(δ,h,gδ,Ah)

∥∥∥
X
− ∥∥f †∥∥

X

∣∣∣ | ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h
}

= 0, (1.223)

so that, for (δ, h) small enough and for any gδ and Ah such that, respectively, ‖gδ − g‖Y ≤ δ

and ‖Ah − A‖ ≤ h, it surely holds

∥∥∥f ηα∗(δ,h,gδ,Ah)

∥∥∥
X
≥

∥∥f †∥∥
X

2
> 0, (1.224)

being f † 6= 0 by hypothesis. Moreover, from relation (1.219), holding for a generic α > 0, we

easily obtain

A∗h (Ahf
η
α − gδ) = −αf ηα (1.225)

and then

‖A∗h (Ahf
η
α − gδ)‖X = α ‖f ηα‖X ∀α > 0. (1.226)

Thus, if we replace the generic α with α∗(δ, h, gδ, Ah) in relation (1.226), we get∥∥∥A∗h
(
Ahf

η
α∗(δ,h,gδ,Ah) − gδ

)∥∥∥
X

= α∗(δ, h, gδ, Ah)
∥∥∥fηα∗(δ,h,gδ,Ah)

∥∥∥
X
. (1.227)

Now, let us assume, for a moment, that the following limit holds (we shall give a proof of it

soon below):

lim
(δ,h)→(0+,0+)

sup
gδ,Ah

{∥∥∥A∗h
(
Ahf

η
α∗(δ,h,gδ,Ah) − gδ

)∥∥∥
X
| ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h

}
= 0;

(1.228)

hence, by virtue of relations (1.228) and (1.227), we have that

lim
(δ,h)→(0+,0+)

sup
gδ,Ah

{
α∗(δ, h, gδ, Ah)

∥∥∥f ηα∗(δ,h,gδ,Ah)

∥∥∥
X
| ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h

}
= 0.

(1.229)

Now, let us suppose, by absurd, that our thesis (1.221) is not true: then, there exist an ε > 0

and a sequence {ηn(ε)}∞n=0 ≡ {ηn}∞n=0 := {(δn, hn)}∞n=0, with ηn > 0 ∀n ∈ N, such that

limn→∞ ηn = 0 and

sup
gδn ,Ahn

{α∗(δn, hn, gδn , Ahn) | ‖gδn − g‖Y ≤ δn; ‖Ahn − A‖ ≤ hn} > ε ∀n ∈ N. (1.230)

Then, by virtue of relations (1.224) and (1.230), there exists N ∈ N such that

sup
gδn ,Ahn

{
α∗(δn, hn, gδn , Ahn)

∥∥∥f ηα∗(δn,hn,gδn ,Ahn)

∥∥∥
X
| ‖gδn − g‖Y ≤ δn; ‖Ahn − A‖ ≤ hn

}
≥

≥
∥∥f †

∥∥
X

2
sup

gδn ,Ahn

{α∗(δn, hn, gδn , Ahn) | ‖gδn − g‖Y ≤ δn; ‖Ahn − A‖ ≤ hn} >

>

∥∥f †
∥∥
X

2
ε > 0 ∀n ≥ N. (1.231)
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Inequality (1.231) and limit (1.229) are clearly contradictory: hence, summing up, if we prove

limit (1.228), our demonstration is complete.

To this end, we firstly observe that, for any α > 0, the following chain of equalities or

inequalities holds:

∥∥A∗h (Ahf
η
α − gδ)− A∗

(
Af † − g

)∥∥
X

=
∥∥A∗hAhf ηα − A∗Af † + A∗g − A∗hgδ

∥∥
X
≤

≤ ∥∥A∗hAhfηα − A∗hAhf
†∥∥
X

+
∥∥A∗hAhf † − A∗Af †

∥∥
X

+ ‖A∗g − A∗hg‖X + ‖A∗hg − A∗hgδ‖X ≤
≤ ‖A∗hAh‖

∥∥f ηα − f †
∥∥
X

+ ‖A∗hAh − A∗A‖
∥∥f †

∥∥
X

+ ‖A∗ − A∗h‖ ‖g‖Y + ‖A∗h‖ ‖g − gδ‖Y .
(1.232)

Now, remembering relations (1.205), (1.206), (1.171) and (1.208), we easily obtain:

‖A∗h‖ = ‖Ah‖ ≤ ‖A‖+ h, (1.233)

‖A∗ − A∗h‖ = ‖A− Ah‖ ≤ h, (1.234)

‖A∗hAh − A∗A‖ ≤ ‖A∗hAh − A∗hA‖+ ‖A∗hA− A∗A‖ ≤ ‖A∗h‖ ‖Ah − A‖+ ‖A∗h − A∗‖ ‖A‖ ≤
≤ ‖Ah − A‖ (‖Ah‖+ ‖A‖) ≤ h (2 ‖A‖+ h) , (1.235)

‖A∗hAh‖ ≤ ‖Ah‖2 ≤ (‖A‖+ h)2 ; (1.236)

hence, recalling also relation (1.170), the last inequality in (1.232) implies that:

∥∥A∗h (Ahf
η
α − gδ)− A∗

(
Af † − g

)∥∥
X
≤

≤ (‖A‖+ h)2
∥∥f ηα − f †

∥∥
X

+ h (2 ‖A‖+ h)
∥∥f †

∥∥
X

+ h ‖g‖Y + (‖A‖+ h) δ. (1.237)

Now we observe that
(
Af † − g

) ∈ R(A)⊥ = N (A∗), and then

A∗
(
Af † − g

)
= 0; (1.238)

substituting this result into (1.237), we immediately find:

‖A∗h (Ahf
η
α − gδ)‖X ≤ (‖A‖+ h)2

∥∥f ηα − f †
∥∥
X

+ h (2 ‖A‖+ h)
∥∥f †

∥∥
X

+ h ‖g‖Y + (‖A‖+ h) δ.

(1.239)

If we now remember hypothesis (1.220), we realize that inequality (1.239) implies limit (1.228).

This concludes the proof. ¥

1.8. The generalized discrepancy principle

1.8.1. Preliminary considerations

At first, we consider the case in which the exact operator A is known; soon afterwards, we shall

also treat the case of noisy operator Ah.
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Given the noisy linear inverse problem Af = gδ, whatever concept of solution we may have

(proper, generalized or regularized), such a solution, when mapped by A, is expected to be

able to reproduce, in a certain measure, the noisy datum gδ.

More precisely, a proper solution, if it exists (in general, not unique), reproduces the datum

exactly, i.e. ‖Af −gδ‖Y = 0, while the (noisy) generalized solution, if it exists, is the minimum

norm element in X that minimizes the distance in Y between the datum gδ and its possible

“reconstructions” as images of the operator A, i.e.

f †δ = argmin‖Af − gδ‖Y (with
∥∥f †δ

∥∥
X

= minimum). (1.240)

Of course, if proper solutions exist, the (noisy) generalized solution is a proper one too. How-

ever, we have already observed that the generalized solution is completely corrupted by noise

and then it turns out to be physically meaningless (see inequalities (1.9), (1.57) and their

respective comments soon below).

Hence, when dealing with the regularized solution f δα, what kind of requirement can we

reasonably conceive about the quantity
∥∥Af δα − gδ

∥∥
Y

(which is called residual or discrepancy),

in such a way that f δα is a stable and reliable approximation of the generalized solution f † of

the exact problem? The so-called discrepancy principle (due to Morozov [53]) yields a possible

answer to this question: in fact, it is an algorithm that gives rise to a specific a posteriori

parameter choice rule26.

Roughly speaking, the central idea of the discrepancy principle is the following. We want

to solve the exact problem Af = g, but, instead of g, we have only its noisy version gδ and

know that ‖gδ− g‖Y ≤ δ; hence, it does not make sense to look for an approximate solution f δα
with a discrepancy

∥∥Af δα − gδ
∥∥
Y
< δ, since a residual in the order of δ is the best we should

ask for: actually, since the datum gδ is noisy, there is no sense in trying to reproduce it exactly

by means of Af δα. In other terms, when we merely write the expression of the discrepancy, i.e.∥∥Af δα − gδ
∥∥
Y
, we necessarily commit an error bounded by δ, i.e. the discrepancy rises with a

“default” error not greater than δ, so that requiring
∥∥Af δα − gδ

∥∥
Y
< δ would imply that the

information contained in the discrepancy itself may be, in general, completely covered by noise.

Among the possible and technically different versions of this principle, we cite here the

simplest one, that consists in choosing a value α∗ (depending on δ and gδ) of α such that

∥∥Af δα∗ − gδ
∥∥
Y

= δ. (1.241)

Obviously, some results and theorems are needed in order to show that such a choice is “well-

posed” (i.e. not ambiguous or impossible) and, when considered together with a certain reg-

ularization operator {Rα}α>0, gives rise to a convergent regularizing algorithm (Rα∗ , α
∗). We

26Strictly speaking, this is not completely true, since, as we shall see in the following (cf., in particular,
remark 1.8.4), there are particular cases (i.e. when f† = 0 or the noise is somehow too large) in which no value
of the regularization parameter is actually selected.
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are going to see all this in the more general case of noisy operator (only for Tikhonov’s method,

although the discrepancy principle can be usefully applied in many other kinds of regulariza-

tion).

In the case of perturbed operator Ah, such that ‖Ah − A‖ ≤ h, we firstly observe that

whenever Ahx is computed for any x ∈ X, an error bounded by h‖x‖X is committed, since

obviously

‖Ahx− Ax‖Y ≤ ‖Ah − A‖‖x‖X ≤ h‖x‖X . (1.242)

Now, it trivially holds

‖Ahf ηα − gδ‖Y ≤ ‖Ahfηα‖Y + ‖gδ‖Y (1.243)

and the error that affects the first term at the right-hand side is bounded by h‖fηα‖X , while

for the second term the bound on the error is δ. Hence, when the discrepancy ‖Ahfηα − gδ‖Y is

computed, it does not make sense to look for an approximate solution fηα such that

‖Ahfηα − gδ‖Y < δ + h‖f ηα‖X , (1.244)

since the discrepancy itself is affected by a “default” error bounded by δ+h‖f ηα‖X ; the best we

can ask for is to choose a value α∗ (depending on δ, h, gδ, Ah) of α such that in (1.244) equality

holds:

‖Ahf ηα∗ − gδ‖Y = δ + h ‖f ηα∗‖X . (1.245)

This recipe is the core of the simplest form of the so-called generalized discrepancy principle;

however, we shall need two more sophisticated versions of it, one27 of which provides for the fact

that the exact datum g ∈ Y may not belong, in general, to the range of the exact operator A.

In order to explain such a principle more carefully, we need to consider the following auxiliary

functions of the regularization parameter α:

γη(α) := ‖f ηα‖2
X ; (1.246)

βη(α) := ‖Ahf ηα − gδ‖2
Y . (1.247)

These functions verify a lot of properties; here we recall only the ones we need for our purposes.

For the proofs and a more general treatment, see [67].

Lemma 1.8.1. As functions of α, it turns out that γη(α), βη(α) have the following properties:

1. they are continuous in (0,+∞);

2. γη(α) is monotonically nonincreasing, βη(α) is monotonically nondecreasing in (0,+∞);

3. if α0 > 0 is such that f ηα0
6= 0, then γη(α) is strictly decreasing in (0, α0), while βη(α) is

strictly increasing in (0, α0);

27See the next subsection 1.8.2.
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4. lim
α→+∞

γη(α) = 0;

5. lim
α→+∞

βη(α) = ‖gδ‖2
Y ;

6. lim
α→0+

βη(α) =

[
inf
f∈X

‖Ahf − gδ‖Y
]2

.

Definition 1.8.1. The following quantities:

µ := inf
f∈X

‖Af − g‖Y , (1.248)

µη(gδ, Ah) := inf
f∈X

‖Ahf − gδ‖Y , (1.249)

µ̂η(gδ, Ah) := inf
f∈X

(δ + h‖f‖X + ‖Ahf − gδ‖Y ) (1.250)

are called, respectively,

1. incompatibility measure of the exact problem Af = g;

2. (simple) incompatibility measure of the noisy problem Ahf = gδ;

3. modified incompatibility measure of the noisy problem Ahf = gδ.

Remark 1.8.1. It immediately follows from definitions (1.249) and (1.250) that, if δ > 0, it

holds:

µη(gδ, Ah) < µ̂η(gδ, Ah), (1.251)

obviously ∀gδ ∈ Y and ∀Ah ∈ B(X,Y ) such that, respectively, ‖gδ−g‖Y ≤ δ and ‖Ah−A‖ ≤ h.

On the other hand, if δ = 0 (and, consequently, gδ = g0 = g), we can only have a weak

inequality, i.e.

µη(g0, Ah) ≤ µ̂η(g0, Ah); (1.252)

indeed, in (1.252) equality can hold: to this end, it suffices that g0 ∈ R(Ah)
⊥, so that the

generalized solution f †η of the noisy problem Ahf = g0 exists and is zero. Such a remark plays

a role in the statement No 3 of theorem 1.8.3 in the following. Of course, the weak inequality

µη(gδ, Ah) ≤ µ̂η(gδ, Ah) (1.253)

holds in any case. ¤

In the following, we shall always admit that the generalized solution f † of the exact problem

exists (otherwise, clinging to our previous introductory treatment of the theory of regulariza-

tion, the study of the convergence itself of any regularization algorithm would be meaningless):

this implies that

µ =
∥∥Af † − g

∥∥
Y
. (1.254)
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1.8.2. The incompatible case

We are now going to illustrate the generalized discrepancy principle in the most general (i.e.

incompatible28) case, in which the exact datum g ∈ Y may not belong to the range R(A) of

the exact operator A. We begin by recalling the following lemma (for a proof, see [67]).

Lemma 1.8.2. The following relations hold:

µ̂η(gδ, Ah) ≥ µ; (1.255)

lim
η→0+

sup
gδ,Ah

{µ̂η(gδ, Ah) | ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h} = µ. (1.256)

However, we point out that, in general, µ̂η(gδ, Ah) may not be computed exactly, but

rather with error κ1 ≥ 0, which is supposed to match with the noise η, in the sense that

κ1 = κ1(η) → 0 as η → 0+ (for example, κ1(η) ≡ κ1(δ, h) := δ + h). We shall denote with

µ̂κ1
η (gδ, Ah) the approximate estimate of µ̂η(gδ, Ah) and assume that

µ̂η(gδ, Ah) ≤ µ̂κ1
η (gδ, Ah) ≤ µ̂η(gδ, Ah) + κ1. (1.257)

We easily observe that, if κ1(η) → 0 as η → 0+, from relations (1.256) and (1.257) it immedi-

ately follows:

lim
η→0+

sup
gδ,Ah

{
µ̂κ1
η (gδ, Ah) | ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h

}
= µ. (1.258)

Definition 1.8.2. The function of α defined as

ρ̂κ1
η (α) := ‖Ahf ηα − gδ‖2

Y −
(
δ + h‖fηα‖X + µ̂κ1

η (gδ, Ah)
)2
, (1.259)

i.e., recalling definitions (1.246) and (1.247),

ρ̂κ1
η (α) := βη(α)−

(
δ + h

√
γη(α) + µ̂κ1

η (gδ, Ah)

)2

, (1.260)

is called generalized discrepancy (for the incompatible case).

Theorem 1.8.3. The generalized discrepancy ρ̂κ1
η (α) has the following properties:

1. ρ̂κ1
η (α) is continuous and monotonically nondecreasing in (0,+∞);

2. ∃ ρ̂κ1
η,∞ := lim

α→+∞
ρ̂κ1
η (α) = ‖gδ‖2

Y −
(
δ + µ̂κ1

η (gδ, Ah)
)2

;

3. ∃ ρ̂κ1
η,0 := lim

α→0+
ρ̂κ1
η (α) ≤ [µη(gδ, Ah)]

2 − (
δ + µ̂κ1

η (gδ, Ah)
)2

{
< 0 if δ > 0

≤ 0 in any case
;

28We point out that, in the current framework, the incompatibility is possible, not necessary.
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4. if there exists (in general, not unique) an α∗1 ∈ (0,+∞) such that ρ̂κ1
η (α∗1) = 0, the

corresponding regularized solution f ηα∗1 is uniquely defined.

Proof. Properties No 1, 2 and 3 follow straightforwardly from the previous definitions 1.8.1,

1.8.2, remark 1.8.1 and lemma 1.8.1.

With regard to property No 4, we observe that since ρ̂κ1
η (α) is not, in general, strictly

monotonic, α∗1 can be defined in a non-unique manner. More precisely, the set of roots of

equation ρ̂κ1
η (α) = 0 fills, in general, a certain interval [α∗1,m, α

∗
1,M ]. Hence, if ρ̂κ1

η (α) is zero on

such an interval, the (not strict) monotonicity of βη(α) and γη(α) implies that these functions

are constant on the same interval. Now, let us consider α∗1,a, α
∗
1,b ∈ [α∗1,m, α

∗
1,M ] (with α∗1,a 6= α∗1,b)

and the corresponding regularized solutions:

fηα∗1,a
= argmin

[‖Ahf − gδ‖2
Y + α∗1,a‖f‖2

X

]
, (1.261)

fηα∗1,b
= argmin

[‖Ahf − gδ‖2
Y + α∗1,b‖f‖2

X

]
. (1.262)

Since it holds

βη(α
∗
1,a) = βη(α

∗
1,b), i.e.

∥∥∥Ahf ηα∗1,a
− gδ

∥∥∥
2

Y
=

∥∥∥Ahfηα∗1,b
− gδ

∥∥∥
2

Y
, (1.263)

and

γη(α
∗
1,a) = γη(α

∗
1,b), i.e.

∥∥∥f ηα∗1,a

∥∥∥
2

X
=

∥∥∥f ηα∗1,b

∥∥∥
2

X
, (1.264)

it follows immediately that

∥∥∥Ahf ηα∗1,a
− gδ

∥∥∥
2

Y
+ α∗1,a

∥∥∥fηα∗1,a

∥∥∥
2

X
=

∥∥∥Ahfηα∗1,b
− gδ

∥∥∥
2

Y
+ α∗1,a

∥∥∥fηα∗1,b

∥∥∥
2

X
, (1.265)

i.e. both f ηα∗1,a
and fηα∗1,b

minimize the functional ‖Ahf − gδ‖2
Y +α∗1,a‖f‖2

X ; but we already know

that the minimum point of such a functional is unique29: hence, fηα∗1,a
= fηα∗1,b

. ¥

Remark 1.8.2. Since the function ρ̂κ1
η (α) is continuous and monotonically nondecreasing in

(0,+∞), a sufficient condition for the existence of an α∗1 = α∗1(η, gδ, Ah) ∈ (0,+∞) such that

ρ̂κ1
η (α∗1(η, gδ, Ah)) = 0 is that

ρ̂κ1
η,∞ > 0 and ρ̂κ1

η,0 < 0. (1.266)

Actually, the following theorem shows that the first of conditions (1.266) implies the second

one30, as well as, even more, the strict monotonicity of ρ̂κ1
η (α) and, consequently, the uniqueness

of the solution to the equation ρ̂κ1
η (α) = 0. ¤

29Cf. theorems 1.7.2 and 1.7.3, which, as already observed soon below definition (1.173), hold also in the
case of noisy operators.

30Provided that δ2 + h2 6= 0.
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Theorem 1.8.4. Given the noisy version Ahf = gδ of the exact problem Af = g (with, as

usual, ‖gδ − g‖Y ≤ δ, ‖Ah−A‖ ≤ h), let us assume that ρ̂κ1
η,∞ > 0, i.e., recalling statement No

2 in theorem 1.8.3, that

‖gδ‖Y > δ + µ̂κ1
η (gδ, Ah). (1.267)

Then the generalized discrepancy function ρ̂κ1
η (α) is strictly increasing monotonic in (0,+∞)

and, if h > 0 ∨ δ > 0, it holds ρ̂κ1
η,0 < 0.

Proof. First of all, we have already shown, without using condition (1.267) (see statement No

3 of theorem 1.8.3), that if δ > 0, then ρ̂κ1
η,0 < 0; however, for sake of completeness (see relation

(1.275) at the end of the current proof), we have repeated such a statement here. From now

on, we shall make no assumptions about δ.

Starting from hypothesis (1.267) and recalling relations (1.257), (1.253) as well as definition

(1.249), we can write the following chain of equalities or inequalities:

‖gδ‖Y > δ + µ̂κ1
η (gδ, Ah) ≥ δ + µ̂η(gδ, Ah) ≥ δ + µη(gδ, Ah) = δ + inf

f∈X
‖Ahf − gδ‖Y , (1.268)

i.e.

‖gδ‖Y > δ + inf
f∈X

‖Ahf − gδ‖Y . (1.269)

The previous inequality implies that gδ /∈ R(Ah)
⊥; indeed, if, by absurd, it were gδ ∈ R(Ah)

⊥,

then the generalized solution f †η of the noisy problem Ahf = gδ would exist and would be

zero: then we would have inf
f∈X

‖Ahf − gδ‖Y = ‖gδ‖Y , which, substituted into (1.269), gives the

following absurd:

‖gδ‖Y > δ + ‖gδ‖Y . (1.270)

Hence, if we denote with Ph the orthogonal projection onto R(Ah), we have that

Ph gδ 6= 0. (1.271)

This implies, in particular, that there exists no value of the regularization parameter α such

that the corresponding regularized solution is zero. Indeed, let us suppose, by absurd, that

there exists a value α̃ of α such that f ηα̃ = 0: then, recalling the Euler equation (1.174), we

would get A∗h gδ = 0, i.e.

gδ ∈ N (A∗h) = R(Ah)
⊥, (1.272)

which is in contradiction with (1.271). Hence, since it holds

fηα 6= 0 ∀α > 0, (1.273)

we have, by virtue of statement No 3 in lemma 1.8.1, that γη(α) is strictly decreasing monotonic

in (0,+∞), while βη(α) is strictly increasing monotonic in (0,+∞): remembering definition

(1.260), this suffices to conclude the strictly increasing monotonicity of ρ̂κ1
η (α).
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Moreover, definition (1.246) (i.e. γη(α) := ‖fηα‖2
X) and inequality (1.273) together imply

that γη(α) > 0 ∀α > 0; hence, by virtue of the strictly decreasing monotonicity of γη(α) in

(0,+∞), it holds:

∃ γ0 := lim
α→0+

γη(α), (1.274)

with γ0 ∈ R+ or γ0 = +∞.

Finally, recalling statements No 6 of lemma 1.8.1 and No 3 of theorem 1.8.3, as well as

definitions (1.249), (1.260), we get

∃ ρ̂κ1
η,0 := lim

α→0+
ρ̂κ1
η (α) = [µη(gδ, Ah)]

2 − (
δ + h

√
γ0 + µ̂κ1

η (gδ, Ah)
)2

{
< 0 if δ > 0 ∨ h > 0 ;

≤ 0 if δ = 0 ∧ h = 0 .

(1.275)

This concludes the proof. ¥

Remark 1.8.3. Obviously, the case δ = h = 0 requires, in principle, no regularization: indeed,

in such a case the exact problem is not only a theoretical reference, but it is actually at disposal

also for computational purposes, so that we can directly determine its generalized solution f †,

which we always admit to be existing, as pointed out just before relation (1.254). As regards

the other possible cases, in which δ > 0 ∨ h > 0 and, consequently, regularization is needed,

we can summarize remark 1.8.2 and theorem 1.8.4 saying that condition (1.267) is sufficient for

the existence and the uniqueness of the zero of the generalized discrepancy function ρ̂κ1
η (α). ¤

We can now state the generalized discrepancy principle (for the incompatible case) as fol-

lows. Given the noisy version

Ahf = gδ (1.276)

of the exact problem Af = g (with, as usual, ‖gδ − g‖Y ≤ δ, ‖Ah − A‖ ≤ h),

1. if it holds

‖gδ‖Y ≤ δ + µ̂κ1
η (gδ, Ah), (1.277)

let f η = 0 be the selected approximation of the generalized solution f † of the exact

problem;

2. if it holds

‖gδ‖Y > δ + µ̂κ1
η (gδ, Ah), (1.278)

there exists a unique α∗1(η, gδ, Ah) > 0 such that ρ̂κ1
η (α∗1(η, gδ, Ah)) = 0 and then we take

f ηα∗1(η,gδ,Ah) as approximation of f †.

Now, let us put:

fη[α∗1(η,gδ,Ah)] :=





f η = 0 if ‖gδ‖Y ≤ δ + µ̂κ1
η (gδ, Ah)

f ηα∗1(η,gδ,Ah) if ‖gδ‖Y > δ + µ̂κ1
η (gδ, Ah).

(1.279)
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Theorem 1.8.5. The generalized discrepancy principle (for the incompatible case) is a regu-

larizing algorithm31 for solving Af = g, that is, remembering definition 1.6.1, the following

limits hold:

lim
η→0+

sup
gδ,Ah

{∥∥∥f η[α∗1(η,gδ,Ah)] − f †
∥∥∥
X
| ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h; ρ̂κ1

η (α∗1(η, gδ, Ah)) = 0
}

= 0,

(1.280)

lim
η→0+

sup
gδ,Ah

{
α∗1(η, gδ, Ah) | ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h; ρ̂κ1

η (α∗1(η, gδ, Ah)) = 0
}

= 0.

(1.281)

Proof. If f † = 0, then, using the triangle inequality and remembering relations (1.254), (1.255),

(1.257) and (1.170), we get:

‖gδ‖Y =
∥∥Af † − g + g − gδ

∥∥
Y
≤ µ+ δ ≤ µ̂κ1

η (uδ, Ah) + δ; (1.282)

hence inequality (1.277) holds and consequently we take fη = 0 as our approximation of f †,

which is zero too, and nothing else needs to be proved.

If f † 6= 0, then, recalling equality (1.254) and the uniqueness of the generalized solution,

we have

µ =
∥∥Af † − g

∥∥
Y
< ‖A(0)− g‖Y = ‖g‖Y , (1.283)

i.e.

µ < ‖g‖Y . (1.284)

On the other hand, since |‖gδ‖Y − ‖g‖Y | ≤ ‖gδ − g‖Y ≤ δ, it holds:

lim
δ→0

inf
gδ

{‖gδ‖Y | ‖gδ − g‖Y ≤ δ} = ‖g‖Y , (1.285)

while, remembering relation (1.258), we immediately get

lim
η→0+

sup
gδ,Ah

{(
δ + µ̂κ1

η (gδ, Ah)
) | ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h

}
= µ. (1.286)

Hence, taking into account relations (1.284), (1.285) and (1.286), we easily see that condition

(1.278) holds, at least for sufficiently small η; then, for vanishing η, we can actually take

f ηα∗1(η,gδ,Ah) as approximation of f † and prove limit (1.280) in the case fη[α∗1(η,gδ,Ah)] = f ηα∗1(η,gδ,Ah).

Moreover, by virtue of theorem 1.7.7, the proof of (1.280) in such a case implies that limit

(1.281) holds too.

Now, let

F := {(δn, hn, gδn , Ahn) | n ∈ N} (1.287)

be any set of 4-uples (δn, hn, gδn , Ahn) such that

31To this purpose, see also the following remark 1.8.4.
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1. {(δn, hn)}∞n=0 is a sequence such that δn > 0, hn > 0 ∀n ∈ N and limn→∞(δn, hn) = (0, 0);

for notational convenience, we shall denote this sequence with {ηn}∞n=0 and we shall write

ηn > 0 ∀n ∈ N and limn→∞ ηn = 0;

2. gδn ∈ Y ∀n ∈ N and

‖gδn − g‖Y ≤ δn ∀n ∈ N; (1.288)

3. Ahn ∈ B(X,Y ) ∀n ∈ N and

‖Ahn − A‖ ≤ hn ∀n ∈ N; (1.289)

4. ∀n ∈ N, ηn > 0 is taken small enough, in such a way that ∀n ∈ N there exists a (unique)

α∗1,n := α∗1(ηn, gδn , Ahn) > 0 satisfying ρ̂κ1
ηn

(α∗1,n) = 0.

Hence, ∀ (δn, hn, gδn , Ahn) ∈ F , we have a (unique) α∗1,n satisfying ρ̂κ1
ηn

(α∗1,n) = 0 and, conse-

quently, we can consider the corresponding regularized solution, defined as

f ηn

α∗1,n
:= argminΦηn

α∗1,n
[f ; gδn ]. (1.290)

By virtue of (1.290) and recalling definition (1.172), we get

∥∥∥Ahnf
ηn

α∗1,n
− gδn

∥∥∥
2

Y
+ α∗1,n

∥∥∥fηn

α∗1,n

∥∥∥
2

X
≤

∥∥Ahnf
† − gδn

∥∥2

Y
+ α∗1,n

∥∥f †
∥∥2

X
. (1.291)

Moreover, since α∗1,n is such that ρ̂κ1
ηn

(α∗1,n) = 0, remembering definition 1.8.2 we have

∥∥∥Ahnf
ηn

α∗1,n
− gδn

∥∥∥
2

Y
=

(
δn + hn

∥∥∥f ηn

α∗1,n

∥∥∥
X

+ µ̂κ1
ηn

(gδn , Ahn)
)2

, (1.292)

while from the triangle inequality, together with the usual error bounds (1.288), (1.289) and

relation (1.254), it follows that

(∥∥Ahnf
† − gδn

∥∥
Y

)2
=

(∥∥(Ahn − A)f † + g − gδn + Af † − g
∥∥
Y

)2 ≤
≤ (∥∥(Ahn − A)f †

∥∥
Y

+ ‖g − gδn‖Y +
∥∥Af † − g

∥∥
Y

)2 ≤
≤ (

hn
∥∥f †

∥∥
X

+ δn + µ
)2
. (1.293)

Substituting (1.292) and (1.293) into (1.291), we get

(
δn + hn

∥∥∥fηn

α∗1,n

∥∥∥
X

+ µ̂κ1
ηn

(gδn , Ahn)
)2

+ α∗1,n
∥∥∥fηn

α∗1,n

∥∥∥
2

X
≤ (

hn
∥∥f †

∥∥
X

+ δn + µ
)2

+ α∗1,n
∥∥f †

∥∥2

X
.

(1.294)

Now, as we have already seen in the last of inequalities (1.282), it holds

µ ≤ µ̂κ1
η (uδn , Ahn); (1.295)
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then, from relation (1.294), we immediately get (changing the order of some terms):

(
δn + µ+ hn

∥∥∥fηn

α∗1,n

∥∥∥
X

)2

+ α∗1,n
∥∥∥fηn

α∗1,n

∥∥∥
2

X
≤ (

δn + µ+ hn
∥∥f †

∥∥
X

)2
+ α∗1,n

∥∥f †
∥∥2

X
. (1.296)

Now, the real function ψ : R+ ∪ {0} → R defined as ψ(t) := (δn + µ + hnt)
2 + α∗1,nt

2 is easily

seen to be strictly increasing monotonic; then, from (1.296) (regarding t as ‖f‖X , with f ∈ X),

we have ∥∥∥f ηn

α∗1,n

∥∥∥
X
≤

∥∥f †
∥∥
X

∀n ∈ N. (1.297)

Relation (1.297) means that the sequence
{
fηn

α∗1,n

}∞
n=0

is bounded in the Hilbert space X, and

therefore [13] it has a subsequence
{
f
ηn(k)

α∗
1,n(k)

}∞
k=0

(which we shall denote, for notational conve-

nience, with
{
f ηk

α∗1,k

}∞
k=0

) that it is weakly convergent to an element f ∗ ∈ X, i.e.

f ηk

α∗1,k
⇀ f ∗. (1.298)

Furthermore, using the weak lower semicontinuity of the norm ‖ · ‖X [7] and inequality (1.297),

we can easily get:

‖f ∗‖X ≤ lim inf
k→∞

∥∥∥fηk

α∗1,k

∥∥∥
X
≤ lim sup

k→∞

∥∥∥f ηk

α∗1,k

∥∥∥
X
≤

∥∥f †
∥∥
X
. (1.299)

Since also the functional x 7→ ‖Ax − g‖Y is weakly lower semicontinuous (see proof No 2 of

theorem 1.7.4), we get

‖Af ∗ − g‖Y ≤ lim inf
k→∞

∥∥∥Af ηk

α∗1,k
− g

∥∥∥
Y
≤ lim sup

k→∞

∥∥∥Af ηk

α∗1,k
− g

∥∥∥
Y
. (1.300)

Using, in particular, the triangle inequality and relations (1.288), (1.289), (1.292), (1.297), we

have the following inequalities:

∥∥∥Af ηk

α∗1,k
− g

∥∥∥
Y
≤

∥∥∥Af ηk

α∗1,k
− Ahk

f ηk

α∗1,k

∥∥∥
Y

+
∥∥∥Ahk

fηk

α∗1,k
− gδk

∥∥∥
Y

+ ‖gδk − g‖Y ≤

≤ hk

∥∥∥f ηk

α∗1,k

∥∥∥
X

+
(
δk + hk

∥∥∥f ηk

α∗1,k

∥∥∥
X

+ µ̂κ1
ηk

(gδk , Ahk
)
)

+ δk ≤
≤ hk

∥∥f †
∥∥
X

+
(
δk + hk

∥∥f †
∥∥
X

+ µ̂κ1
ηk

(gδk , Ahk
)
)

+ δk =

= 2
(
δk + hk

∥∥f †
∥∥
X

)
+ µ̂κ1

ηk
(gδk , Ahk

), (1.301)

whence, remembering relation (1.258), we immediately get

lim sup
k→∞

∥∥∥Af ηk

α∗1,k
− g

∥∥∥
Y
≤ µ. (1.302)

Substituting this result into (1.300), we find that

‖Af ∗ − g‖Y ≤ µ; (1.303)
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if we now compare inequality (1.303) with relation (1.254), we straightforwardly deduce that

equality has to hold, i.e.:

‖Af ∗ − g‖Y = µ. (1.304)

Moreover, we remember that the generalized solution is the unique minimum norm solution

and, on the other hand, we have found (see (1.299)) ‖f ∗‖X ≤ ‖f †‖X : hence, we conclude that

f ∗ = f † and so, again from (1.299), we immediately get

lim
k→∞

∥∥∥f ηk

α∗1,k

∥∥∥
X

=
∥∥f †

∥∥
X
. (1.305)

Summing up, by virtue of the H-property (see footnote 22), the two relations (1.298) (with f ∗

replaced by f †) and (1.305) imply that

lim
k→∞

∥∥∥fηk

α∗1,k
− f †

∥∥∥
X

= 0. (1.306)

Now, it is not difficult to see that equation (1.306) implies that

lim
η→0+

sup
gδ,Ah

{∥∥∥f ηα∗1(η,gδ,Ah) − f †
∥∥∥
X
| ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h; ρ̂κ1

η (α∗1(η, gδ, Ah)) = 0
}

= 0,

(1.307)

which is just our first thesis, i.e. relation (1.280). In fact, let us suppose, by absurd, that

(1.307) is not true; then, there exist an ε > 0 and a sequence32 {ηn(ε)}∞n=0 ≡ {ηn}∞n=0, with

ηn > 0 ∀n ∈ N, such that limn→∞ ηn = 0 and ∀n ∈ N it holds

sup
gδn ,Ahn

{∥∥∥f ηn

α∗1,n
− f †

∥∥∥
X
| ‖gδn − g‖Y ≤ δn; ‖Ahn − A‖ ≤ hn; ρ̂

κ1
ηn

(α∗1(ηn, gδn , Ahn)) = 0
}
> ε.

(1.308)

Inequality (1.308) clearly implies that ∀n ∈ N there exists a 4-uple (δn, hn, g̃δn , Ãhn) ∈ F
and, consequently, a (unique) α̃∗1,n := α∗1(ηn, g̃δn , Ãhn) satisfying ρ̂κ1

ηn
(α̃∗1,n) = 0, such that the

corresponding regularized solution

f̃ ηn

α̃∗1,n
:=

(
Ã∗hn

Ãhn + α̃∗1,nI
)−1

Ã∗hn
g̃δn (1.309)

verifies the inequality
∥∥∥f̃ ηn

α̃∗1,n
− f †

∥∥∥
X
≥ ε

2
; in other terms, there exists a sequence

{
f̃ηn

α̃∗1,n

}∞
n=0

such that ∥∥∥f̃ηn

α̃∗1,n
− f †

∥∥∥
X
≥ ε

2
∀n ∈ N. (1.310)

On the other hand, as we have seen above, from the sequence
{
f̃ ηn

α̃∗1,n

}∞
n=0

itself we can extract

a subsequence, say
{
f̃ηk

α̃∗1,k

}∞
k=0

, that verifies relation (1.306), i.e. such that

lim
k→∞

∥∥∥f̃ηk

α̃∗1,k
− f †

∥∥∥
X

= 0. (1.311)

Relations (1.310) and (1.311) are obviously contradictory, so equation (1.307) must hold. ¥
32See also the last part of proof No 2 of theorem 1.7.4
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Remark 1.8.4. Strictly speaking, we should admit that the generalized discrepancy principle

introduced above is not a regularization algorithm, in the sense that it does not completely

fulfil the requirements of definition 1.6.1: indeed, as we have just seen also in the proof of the

previous theorem 1.8.5, such requirements are fully satisfied as long as f † 6= 0 and the noise

level η is small enough; otherwise, we simply choose fη = 0 as our approximation of f † and, in

such a case, it is even meaningless to speak of a value for the regularization parameter; at most,

remembering definition (1.246) and limit No 4 in lemma 1.8.1, one might imagine that when

condition (1.278) is not satisfied, the “regularized” solution fη = 0 is obtained by taking the

limit as α → +∞ of the really Tikhonov regularized solution with a generic α (cf. definition

(1.173)), i.e.

fηα := argmin Φη
α[f ; gδ], (1.312)

but the requirements of definition 1.6.1 would be not fulfilled anyway. However, these are

minor details: as a matter of fact, the generalized discrepancy principle is very useful in the

applications and its properties are, in practice, more than sufficient to regularize an inverse

problem: hence we shall always commit a slight abuse of language and keep on calling it a

regularization algorithm in the sense of definition 1.6.1. ¤

Remark 1.8.5. Of course, any numerical implementation of the generalized discrepancy princi-

ple requires the computation of an estimate µ̂κ1
η (gδ, Ah) of the modified incompatibility measure

µ̂η(gδ, Ah) (cf. relations (1.250) and (1.257)). For sake of brevity, here we shall not face such a

problem: we simply refer to [67] (pp. 58-63), in which some theorems and consequent numerical

recipes are proposed in order to satisfactorily solve it. ¤

1.8.3. The compatible case

In the previous subsection we have never assumed that the exact datum g ∈ Y should belong

to the range R(A) of the exact operator A. However, in the case in which it actually holds g ∈
R(A) (i.e. in the compatible33 case), one can formulate an alternative generalized discrepancy

principle, which is a little simpler than the previous one and will be sketched out in the current

subsection. Owing to the substantial analogy with the incompatible case and for sake of brevity,

we shall omit all the proofs (except the one, particularly simple, of the following lemma 1.8.6),

referring to [67] for them (and, more generally, for a deeper treatment).

Lemma 1.8.6. If g ∈ R(A), the following relation holds:

lim
η→0+

sup
gδ,Ah

{µη(gδ, Ah) | ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h} = 0. (1.313)

33We point out that the compatibility is necessary for the validity of the arguments of the current subsection.
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Proof. Recalling definition (1.249), denoting, as usual, with f † the generalized solution of the

exact problem (so that, in the current compatible case, it holds Af † = g, i.e. µ = 0, where

µ is given by (1.254)), using the triangle inequality and remembering the usual conditions

‖gδ − g‖Y ≤ δ, ‖Ah − A‖ ≤ h, we easily get:

µη(gδ, Ah) = inf
f∈X

‖Ahf − gδ‖Y ≤
∥∥Ahf † − gδ

∥∥
Y
≤

∥∥Ahf † − Af †
∥∥
Y

+ ‖g − gδ‖Y ≤ h
∥∥f †

∥∥
X

+ δ,

(1.314)

whence limit (1.313) immediately follows. ¥

However, we point out that, in general, µη(gδ, Ah) may not be computed exactly, but

rather with error κ2 ≥ 0, which is supposed to match with the noise η, in the sense that

κ2 = κ2(η) → 0 as η → 0+ (for example, κ2(η) ≡ κ2(δ, h) := δ + h). We shall denote with

µκ2
η (gδ, Ah) the approximate estimate of µη(gδ, Ah) and assume that

µη(gδ, Ah) ≤ µκ2
η (gδ, Ah) ≤ µη(gδ, Ah) + κ2. (1.315)

We easily observe that, if κ2(η) → 0 as η → 0+, from relations (1.313) and (1.315) it immedi-

ately follows:

lim
η→0+

sup
gδ,Ah

{
µκ2
η (gδ, Ah) | ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h

}
= 0. (1.316)

Definition 1.8.3. The function of α defined as

ρκ2
η (α) := ‖Ahfηα − gδ‖2

Y − (δ + h‖fηα‖X)2 − (
µκ2
η (gδ, Ah)

)2
, (1.317)

i.e., recalling definitions (1.246) and (1.247),

ρκ2
η (α) := βη(α)−

(
δ + h

√
γη(α)

)2

− (
µκ2
η (gδ, Ah)

)2
, (1.318)

is called generalized discrepancy (for the compatible case).

Then we can state the generalized discrepancy principle (for the compatible case) as follows.

Given the noisy version

Ahf = gδ (1.319)

of the exact problem Af = g (with g ∈ R(A) and, as usual, ‖gδ − g‖Y ≤ δ, ‖Ah − A‖ ≤ h),

1. if it holds

‖gδ‖2
Y ≤ δ2 +

(
µκ2
η (gδ, Ah)

)2
, (1.320)

let f η = 0 be the selected approximation of the generalized solution f † of the exact

problem;
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2. if it holds

‖gδ‖2
Y > δ2 +

(
µκ2
η (gδ, Ah)

)2
, (1.321)

there exists a unique α∗2(η, gδ, Ah) > 0 such that ρκ2
η (α∗2(η, gδ, Ah)) = 0 and then we take

f ηα∗2(η,gδ,Ah) as approximation of f †.

Now, let us put:

f η[α∗2(η,gδ,Ah)] :=





fη = 0 if ‖gδ‖2
Y ≤ δ2 +

(
µκ2
η (gδ, Ah)

)2
,

fηα∗2(η,gδ,Ah) if ‖gδ‖2
Y > δ2 +

(
µκ2
η (gδ, Ah)

)2
.

(1.322)

Theorem 1.8.7. The generalized discrepancy principle (for the compatible case) is a regular-

izing algorithm for solving Af = g, that is, remembering definition 1.6.1, the following limits

hold:

lim
η→0+

sup
gδ,Ah

{∥∥∥f η[α∗2(η,gδ,Ah)] − f †
∥∥∥
X
| ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h; ρκ2

η (α∗2(η, gδ, Ah)) = 0
}

= 0,

(1.323)

lim
η→0+

sup
gδ,Ah

{
α∗2(η, gδ, Ah) | ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h; ρκ2

η (α∗2(η, gδ, Ah)) = 0
}

= 0.

(1.324)

Proof. As already hinted at the very beginning of the current subsection, we omit this proof

(owing to the substantial analogy with the one of theorem 1.8.5), and directly refer to [67] for

it. However, for future purpose, we point out that, instead of inequality (1.297), it now holds:

∥∥∥f ηn

α∗2,n

∥∥∥
X
≤

∥∥f †
∥∥
X

∀n ∈ N, (1.325)

while equality (1.292) should be replaced by the following one:

∥∥∥Ahnf
ηn

α∗2,n
− gδn

∥∥∥
2

Y
=

(
δn + hn

∥∥∥fηn

α∗2,n

∥∥∥
X

)2

+
(
µκ2
ηn

(gδn , Ahn)
)2
. (1.326)

¥

Remark 1.8.6. A comment analogous to the one in remark 1.8.4 would obviously hold also

for the generalized discrepancy principle in the current compatible case. ¤

Remark 1.8.7. Of course, analogously to what observed in remark 1.8.5, any numerical im-

plementation of the generalized discrepancy principle (for the compatible case) requires the

computation of an estimate µκ2
η (gδ, Ah) of the (simple) incompatibility measure µη(gδ, Ah)

(cf. relations (1.249) and (1.315)). However, unlike the incompatible case, an estimate of
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µη(gδ, Ah) itself is, in principle, quite easy: indeed, by virtue of the direct sum decomposi-

tion Y = R(Ah) ⊕ R(Ah)
⊥, we can uniquely write gδ = g1,δ + g2,δ, with g1,δ ∈ R(Ah) and

g2,δ ∈ R(Ah)
⊥, so that it holds:

µη(gδ, Ah) = inf
f∈X

‖Ahf − gδ‖Y = inf
f∈X

(‖Ahf − g1,δ‖Y + ‖g2,δ‖Y ) =

= inf
f∈X

‖Ahf − g1,δ‖Y + ‖g2,δ‖Y = 0 + ‖g2,δ‖Y = ‖g2,δ‖Y . (1.327)

¤

1.8.4. A mixed approach (in the compatible case)

From a merely theoretical viewpoint, at least in the compatible case (i.e. when g ∈ R(A)) the

two generalized discrepancy principles introduced above seem to be somehow equivalent, in the

sense that both of them, as stated by theorems 1.8.5 and 1.8.7, satisfy the two general conditions

(1.68) and (1.69), so that they actually give rise to a regularization method. However, it should

be pointed out that such conditions concern the behaviour of the regularization algorithm

itself for vanishing noise levels δ and h, while in practice δ and h never vanish, but rather

they are somehow estimated and then fixed. Hence, the above hinted equivalence between the

two generalized discrepancy principles may not hold in effective numerical implementations

with fixed noise levels, since in general they provide two different values of the regularization

parameter which are not equally suitable to the approximate reconstruction of f † we are looking

for.

To be more precise, we firstly recall that, in the (not necessarily) incompatible case, the

value α∗1(η, gδ, Ah) of the regularization parameter α is chosen as the unique solution to the

equation ρ̂κ1
η (α) = 0; in other terms, recalling definition (1.260) and adopting the shorthand

notation

α∗1 := α∗1(η, gδ, Ah), (1.328)

we have that α∗1 itself is uniquely defined by the condition

βη(α
∗
1) =

(
δ + h

√
γη(α∗1) + µ̂κ1

η (gδ, Ah)

)2

, (1.329)

or, equivalently,

βη(α
∗
1)−

(
δ + h

√
γη(α∗1)

)2

=
(
µ̂κ1
η (gδ, Ah)

)2
+ 2µ̂κ1

η (gδ, Ah)

(
δ + h

√
γη(α∗1)

)
. (1.330)

Analogously, we recall that, in the compatible case, the value α∗2(η, gδ, Ah) of the regularization

parameter α is chosen as the unique solution to the equation ρκ2
η (α) = 0; in other terms,

recalling definition (1.318) and adopting the shorthand notation

α∗2 := α∗2(η, gδ, Ah), (1.331)
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we have that α∗2 itself is uniquely defined by the condition

βη(α
∗
2) =

(
δ + h

√
γη(α∗2)

)2

+
(
µκ2
η (gδ, Ah)

)2
, (1.332)

or, equivalently,

βη(α
∗
2)−

(
δ + h

√
γη(α∗2)

)2

=
(
µκ2
η (gδ, Ah)

)2
. (1.333)

We can now observe that, by virtue of inequality (1.253), in the particular case κ1 = κ2 = 0 the

right-hand side of equation (1.330) would be certainly greater than or equal to the right-hand

side of equation (1.333); then, the same inequality would hold also for the respective left-hand

sides of the same equations, i.e.

βη(α
∗
1)−

(
δ + h

√
γη(α∗1)

)2

≥ βη(α
∗
2)−

(
δ + h

√
γη(α∗2)

)2

, (1.334)

and, consequently, remembering the (strictly) increasing monotonicity of the function βη(α)−(
δ + h

√
γη(α)

)2

, we would get

α∗1 ≥ α∗2. (1.335)

Coming back to the most general case, insofar as we assume that there is no relation at all

between κ1 and κ2, inequality (1.335) cannot be proved, nor shall we use it in the following.

However, it is worthwhile noticing that in practice, as intuition itself suggests, the right-hand

side of equation (1.330) is strictly greater than the right-hand side of equation (1.333), so that,

as a matter of fact, it always holds:

α∗1 > α∗2. (1.336)

Hence, a problem naturally arises: how can we choose, between α∗1 and α∗2, the best value, i.e.

the value providing the most satisfactory regularized solution? The answer to this question is

not at all immediate and it mostly depends on the noise level affecting the datum and/or the

operator.

In order to suggest and justify a possible approach to this problem, we are now going to

summarize our experience in numerical simulation by proposing the following discussion, which,

although absolutely heuristic, could be made more precise by using tools of numerical analysis

and more convincing by means of tables collecting some numerical results. However, for sake

of brevity, we shall limit ourselves to the following remarks.

To fix our ideas, let us consider the typical situation (occurring, e.g., in implementing the

linear sampling method, as we shall see in sections 2.5 and 3.1) in which an inverse problem

set in a finite-dimensional context (maybe after an appropriate discretization of a continuous

problem) is studied and the noise affects only the operator (i.e. δ = 0): in such a case, the

exact problem can be written as

Af = g, (1.337)
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where A is a square N×N matrix (having complex entries and regarded as a linear continuous

operator from X = CN to Y = CN), g ∈ CN is the datum in the form of a column vector with

N complex-valued components and f ∈ CN is the unknown column vector (with N complex-

valued components too), while the corresponding noisy version of the exact problem (1.337)

is:

Ahf = g, (1.338)

where, as usual, we assume to know that ‖Ah −A‖ ≤ h.

As a compact operator, Ah obviously admits its own singular representation (cf. definition

1.5.6), i.e.:

Ahw =

rh−1∑
p=0

σhp (w,u
h
p)CN vhp ∀w ∈ CN , (1.339)

where rh is the rank of Ah, {σhp ,uhp ,vhp}rh−1
p=0 is the singular system of Ah and (·, ·)CN is the

canonical scalar product in CN . However, since the compact operator Ah is also a matrix,

a representation like (1.339) turns out to be one the possible ways of writing its SVD (Sin-

gular Value Decomposition): for the reader’s convenience, here we briefly recall this concept,

referring, e.g., to [9] for all the proofs and, more generally, for a much deeper treatment.

1. In its standard formulation, the general concept of SVD of a matrix34 is the following: let

T be a rectangular matrix M ×N , with rank r; then there exist a r × r diagonal matrix

Σ, with positive diagonal elements, and two isometric matrices U and V, respectively

M × r and N × r, such that the following representation for T, called singular value

decomposition of the matrix T, holds:

T = UΣV∗, (1.340)

where V∗ denotes the adjoint, i.e. the conjugate transposed of A. The diagonal elements

of Σ are called singular values of the matrix T and denoted (in decreasing order) with

σ0 ≥ σ1 ≥ . . . ≥ σr−1; moreover35 it holds ‖T‖ = σ0. We also recall that a rectangular

matrix V is called isometric if it satisfies the condition V∗V = Ir, where Ir is the r × r

identity matrix.

2. If the SVD of the matrix T is given by (1.340), then the SVD of its generalized inverse

matrix T† is given by

T† = VΣ−1U∗ (1.341)

and, consequently, ‖T†‖ =
1

σr−1

.

34If not specified otherwise, all the matrices we are speaking of have complex entries.
35Cf. also remark 1.5.3.
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3. A particular, but important, case is the one in which T is a square N ×N matrix with

rank r = N or, equivalently, with non-zero determinant: then representations (1.340)

and (1.341) keep on holding, but now T, T†, U, U∗, Σ, Σ−1, V and V∗ are all square

N × N matrices and it is easy to realize that T† = T−1. Moreover, a square isometric

matrix is unitary: then, U and V are unitary and, consequently, their determinant is a

complex number of modulus 1. Hence, recalling Binet’s theorem, we immediately have:

|detT| =
N−1∏
p=0

σp and
∣∣detT−1

∣∣ =
N−1∏
p=0

1

σp
. (1.342)

Coming back to our exact inverse problem (1.337) and its noisy version (1.338), let us firstly

assume that the determinant of the exact matrix A is different from zero (and, consequently,

R(A) = CN): then, we are in the compatible case and, consequently, we can apply both the

generalized discrepancy principles introduced above. However, it may happen that the last36

singular values σN−1 ≤ σN−2 ≤ σN−3 ≤ . . . of the matrix A are extremely small, as well as

much smaller than the first37 ones σ0 ≥ σ1 ≥ σ2 ≥ . . ., so that:

1. the modulus itself of the determinant of the matrix A is extremely small, i.e. “nearly”

zero: this means, roughly speaking, that the rows or the columns of the matrix A are

“nearly” linearly dependent or, equivalently, that we are in a “nearly” incompatible case;

2. the exact problem (1.337), although well-posed, is strongly ill-conditioned: indeed the

condition number of the matrix A, which is38

C(A) = ‖A‖ ‖A−1‖ =
σ0

σN−1

, (1.343)

turns out to be dramatically large, owing to the prevailing smallness of σN−1 in compar-

ison with the value of σ0.

Now, if we begin adding noise to A with different and increasing levels h1 < h2 < h3 < . . ., we

can typically observe the following effects:

1. the modulus of the determinant of the matrix increases, i.e.

|detA| < |detAh1| < |detAh2| < |detAh3| < . . . , (1.344)

and such an increase is very strong; in other terms, roughly speaking, adding noise

significantly decreases the probability that the rows or the columns of the matrix are

linearly dependent and, consequently, increases a lot the compatibility of the problem;

36“Last” is clearly to be intended with respect to the decreasing order, as hinted at the end of the previous
point No 1.

37Also “first” is clearly to be intended with respect to the decreasing order, as hinted at the end of the
previous point No 1.

38Cf. definition (1.10) and the previous points No 1-3.



1.8 The generalized discrepancy principle 69

2. while the largest singular value σ0 remains substantially unaltered, the smallest one

undergoes a (notable) increase, so that the condition number decreases, i.e.

C(A) > C(Ah1) > C(Ah2) > C(Ah3) > . . . , (1.345)

and such a decrease is very strong; in other terms, adding noise significantly reduces

the ill-posedness of the problem, so that, incredibly enough, it turns out to be a rough

(although completely inadequate) form of regularization.

In such a situation, it is not surprising to observe that for sufficiently small noise levels

the value α∗1 provides regularized solutions which are more satisfactory than the ones pro-

vided by α∗2: the latter value is, indeed, too small and, consequently, undersmoothing; on the

contrary, for sufficiently large noise levels, it is α∗2 that provides more satisfactory regularized

solutions than the ones provided by α∗1: the latter value is, indeed, too large and, consequently,

oversmoothing.

Hence the idea may arise of blending somehow the two regularization parameters39 or

the two regularized solutions, in such a way that when the noise is small or large enough,

one takes into account, as a matter of fact, only the regularized solution coming from the

incompatible or the compatible approach respectively, while for intermediate noise levels one

considers an appropriate combination of the two. We are now going to show that this task can

be accomplished in such a way that the resulting algorithm is still a regularization method.

Blending the two values of the regularization parameter

We consider the following convex combination of α∗1(η, gδ, Ah) and α∗2(η, gδ, Ah):

α∗b(η, gδ, Ah) := c(η)α∗1(η, gδ, Ah) + [1− c(η)]α∗2(η, gδ, Ah), (1.346)

where the function
c : (R+ ∪ {0})× (R+ ∪ {0}) −→ [0, 1]

η = (δ, h) 7−→ c(η)
(1.347)

plays the role of blending-tuner; hence, if we put

α∗m(η, gδ, Ah) := min{α∗1(η, gδ, Ah), α∗2(η, gδ, Ah)} ∀n ∈ N, (1.348)

α∗M(η, gδ, Ah) := max{α∗1(η, gδ, Ah), α∗2(η, gδ, Ah)} ∀n ∈ N, (1.349)

it clearly holds:

α∗m(η, gδ, Ah) ≤ α∗b(η, gδ, Ah) ≤ α∗M(η, gδ, Ah). (1.350)

39An example of such a procedure will be briefly presented at the end of section 3.1 (cf. relation (3.73)) and
illustrated by figures B.11, B.12.
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Moreover, we also put:

ν1 = ν1(η, gδ, Ah) := δ + µ̂κ1
η (gδ, Ah), (1.351)

ν2 = ν2(η, gδ, Ah) :=

√
δ2 + (µκ2

η (gδ, Ah))
2 . (1.352)

Then we can state the mixed discrepancy principle (for the compatible case) as follows.

Given the noisy version

Ahf = gδ (1.353)

of the exact problem Af = g (with g ∈ R(A) and, as usual, ‖gδ − g‖Y ≤ δ, ‖Ah − A‖ ≤ h),

1. if it holds

‖gδ‖Y ≤ min{ν1, ν2}, (1.354)

let f η = 0 be the selected approximation of the generalized solution f † of the exact

problem;

2. if it holds

ν1 < ‖gδ‖Y ≤ ν2, (1.355)

let f ηα∗1(η,gδ,Ah) be the selected approximation of the generalized solution f † of the exact

problem;

3. if it holds

ν2 < ‖gδ‖Y ≤ ν1, (1.356)

let f ηα∗2(η,gδ,Ah) be the selected approximation of the generalized solution f † of the exact

problem;

4. if it holds

‖gδ‖2
Y > max{ν1, ν2}, (1.357)

let f ηα∗b (η,gδ,Ah) be the selected approximation of the generalized solution f † of the exact

problem.

Now, let us put:

fη[α∗b (η,gδ,Ah)] :=





f η = 0 if ‖gδ‖Y ≤ min {ν1, ν2},
f ηα∗1(η,gδ,Ah) if ν1 < ‖gδ‖Y ≤ ν2,

f ηα∗2(η,gδ,Ah) if ν2 < ‖gδ‖Y ≤ ν1,

f ηα∗b (η,gδ,Ah) if ‖gδ‖Y > max {ν1, ν2}.

(1.358)
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Theorem 1.8.8. The mixed generalized discrepancy principle (for the compatible case) is a

regularizing algorithm for solving Af = g, that is, remembering definition 1.6.1, the following

limits hold:

lim
η→0+

sup
gδ,Ah

{∥∥∥fη[α∗b (η,gδ,Ah)] − f †
∥∥∥
X
| ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h

}
= 0, (1.359)

lim
η→0+

sup
gδ,Ah

{α∗b(η, gδ, Ah) | ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h} = 0. (1.360)

Proof. We have already seen, at the very beginning of the proof of theorem 1.8.5, that if

f † = 0, then it holds (with the current notation) ‖gδ‖Y ≤ ν1. On the other hand, if we had

proved also theorem 1.8.7, we would have shown that if f † = 0, then it also holds (with the

current notation) ‖gδ‖Y ≤ ν2: indeed f † = 0 implies, in the compatible case, that g = 0

and, consequently, the usual error bound ‖gδ − g‖Y ≤ δ simply becomes ‖gδ‖Y ≤ δ, whence

one immediately gets ‖gδ‖Y ≤ ν2. Summing up, if f † = 0, we then take fη = 0 as our

approximation of f †, which is zero too, and nothing else needs to be proved.

We have also seen, in the proof of the same theorem 1.8.5, that if f † 6= 0, then, at least

for η small enough, it holds (with the current notation) ‖gδ‖Y > ν1. On the other hand, if we

had proved also theorem 1.8.7, we would have shown that if f † 6= 0, then, at least for η small

enough, it holds (with the current notation) ‖gδ‖Y > ν2: indeed f † 6= 0 implies that g 6= 0,

then, by observing that

| ‖gδ‖Y − ‖g‖Y | ≤ ‖gδ − g‖ ≤ δ, (1.361)

we immediately find

lim
δ→0

inf
gδ

{‖gδ‖Y | ‖gδ − g‖Y ≤ δ} = ‖g‖Y > 0, (1.362)

while, on the other hand, remembering limit (1.316), we easily get (with the current notation)

lim
η→0+

sup
gδ,Ah

{ν2(η, gδ, Ah)| ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h} = 0. (1.363)

Hence, taking into account relations (1.362) and (1.363), we have that condition ‖gδ‖Y > ν2

holds, at least for η small enough. Summing up, if f † 6= 0, inequality ‖gδ‖Y > max {ν1, ν2}
is true (at least for η small enough); then, for vanishing η, we can actually take fηα∗b (η,gδ,Ah) as

approximation of f † and prove limit (1.359) in the case fη[α∗b (η,gδ,Ah)] = fηα∗b (η,gδ,Ah). Moreover, by

virtue of theorem 1.7.7, the proof of (1.359) in such a case implies that limit (1.360) holds too.

Now, by virtue of the (strict) monotonicity of the functions βη(α) and γη(α) in (0,+∞),

it is not difficult to realize that the remainder of the current proof can be obtained by simply

“recycling” the correspondent part of the proof of theorem 1.8.5. More precisely, let F be as
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in definition (1.287) and let us put:

α∗1,n := α∗1(ηn, gδn , Ahn) ∀n ∈ N, (1.364)

α∗2,n := α∗2(ηn, gδn , Ahn) ∀n ∈ N, (1.365)

α∗b,n := c(ηn)α
∗
1,n + [1− c(ηn)]α

∗
2,n ∀n ∈ N, (1.366)

α∗m,n := min{α∗1,n, α∗2,n} ∀n ∈ N, (1.367)

α∗M,n := max{α∗1,n, α∗2,n} ∀n ∈ N. (1.368)

Now, since it holds (cf. inequalities (1.297) and (1.325)):

∥∥∥fηn

α∗1,n

∥∥∥
X
≤

∥∥f †
∥∥
X

and
∥∥∥f ηn

α∗2,n

∥∥∥
X
≤

∥∥f †
∥∥
X

∀n ∈ N, (1.369)

by virtue of inequalities (1.350) and the (strictly) decreasing monotonicity of γη(α) in (0,+∞)

just recalled, we have

∥∥∥fηn

α∗M,n

∥∥∥
X
≤

∥∥∥fηn

α∗b,n

∥∥∥
X
≤

∥∥∥fηn

α∗m,n

∥∥∥
X
≤

∥∥f †
∥∥
X

∀n ∈ N, (1.370)

i.e. the sequence
{
fηn

α∗b,n

}∞
n=0

is bounded in the Hilbert space X, and therefore [13] it has a

subsequence
{
f
ηn(k)

α∗
b,n(k)

}∞
k=0

(which we shall denote, for notational convenience, with
{
fηk

α∗b,k

}∞
k=0

)

that is weakly convergent to an element f ∗ ∈ X, i.e.

f ηk

α∗b,k
⇀ f ∗. (1.371)

Now, with exactly the same arguments used for passing from relation (1.298) to inequalities

(1.300), we have:

‖f ∗‖X ≤ lim inf
k→∞

∥∥∥fηk

α∗b,k

∥∥∥
X
≤ lim sup

k→∞

∥∥∥f ηk

α∗b,k

∥∥∥
X
≤

∥∥f †
∥∥
X

(1.372)

and

‖Af ∗ − g‖Y ≤ lim inf
k→∞

∥∥∥Af ηk

α∗b,k
− g

∥∥∥
Y
≤ lim sup

k→∞

∥∥∥Af ηk

α∗b,k
− g

∥∥∥
Y
. (1.373)

Then, using, in particular, the triangle inequality and relations (1.288), (1.289), as well as the

(strictly) increasing monotonicity of βη(α) in (0,+∞), we have:

∥∥∥Afηk

α∗b,k
− g

∥∥∥
Y
≤

∥∥∥Afηk

α∗b,k
− Ahk

fηk

α∗b,k

∥∥∥
Y

+
∥∥∥Ahk

f ηk

α∗b,k
− gδk

∥∥∥
Y

+ ‖gδk − g‖Y ≤

≤ hk

∥∥∥f ηk

α∗b,k

∥∥∥
X

+
∥∥∥Ahk

fηk

α∗M,k
− gδk

∥∥∥
Y

+ δk. (1.374)

Now, if α∗M,k = α∗1,k, we have (cf. relation (1.292)):

∥∥∥Ahk
f ηk

α∗M,k
− gδk

∥∥∥
Y
≡

∥∥∥Ahk
fηk

α∗1,k
− gδk

∥∥∥
Y

= δk + hk

∥∥∥f ηk

α∗1,k

∥∥∥
X

+ µ̂κ1
ηk

(gδk , Ahk
); (1.375)
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then, remembering the first of inequalities (1.369), we can complete the chain of inequalities

(1.374) as follows:
∥∥∥Af ηk

α∗b,k
− g

∥∥∥
Y
≤ hk

∥∥f †
∥∥
X

+
(
δk + hk

∥∥f †
∥∥
X

+ µ̂κ1
ηk

(gδk , Ahk
)
)

+ δk =

= 2
(
δk + hk

∥∥f †
∥∥
X

)
+ µ̂κ1

ηk
(gδk , Ahk

). (1.376)

On the other hand, if α∗M,k = α∗2,k, we have (cf. relation (1.326)):

∥∥∥Ahk
fηk

α∗M,k
− gδk

∥∥∥
Y
≡

∥∥∥Ahk
f ηk

α∗2,k
− gδk

∥∥∥
Y

=

√(
δk + hk

∥∥∥fηk

α∗2,k

∥∥∥
X

)2

+ (µκ2
ηk(gδk , Ahk

))2; (1.377)

then, remembering the second of inequalities (1.369), we can complete the chain of inequalities

(1.374) as follows:
∥∥∥Af ηk

α∗b,k
− g

∥∥∥
Y
≤ hk

∥∥f †
∥∥
X

+

√
(δk + hk ‖f †‖X)2 + (µκ2

ηk(gδk , Ahk
))2 + δk. (1.378)

By virtue of relations (1.258), (1.316) and recalling that in the compatible case it holds µ = 0,

it follows from either (1.376) or (1.378) that it holds:

lim sup
k→∞

∥∥∥Afηk

α∗b,k
− g

∥∥∥
Y
≤ 0. (1.379)

Substituting this result into (1.373), we find that

‖Af ∗ − g‖Y ≤ 0, (1.380)

i.e., as a consequence of the definition itself of norm,

‖Af ∗ − g‖Y = 0. (1.381)

At this point, in order to prove thesis (1.359) we can follow, with minor adjustments, the same

arguments explained in the proof of theorem 1.8.5 from relation (1.304) (with µ = 0) to the

end. ¥

Remark 1.8.8. Of course, one has in practice to appropriately determine the explicit form

of the blending function c(η) ≡ c(δ, h): however, except the obvious requirement of non-

decreasing monotonicity of c(δ0, ·) for each fixed δ0 > 0 and, in the case of strongly ill-posed

exact problems, the trivial condition

lim
h→0+

c(δ0, h) = 0 ∀δ0 > 0, (1.382)

we have here no other suggestion to offer. In all the numerical experiments performed by us,

it was δ = 0 and the explicit form of c(η) = c(h) has been always chosen in an absolutely

heuristic way, even taking into account40 the value hs of the norm of the specific noise matrix

Hs which, in the numerical experiment under consideration, we add to the exact operator A

in order to simulate measurement errors. ¤
40Cf. relation (3.73).
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Remark 1.8.9. Hence, a natural criticism to all this blending approach could be that we have

simply transformed the problem of finding, for any fixed linear inverse problem, an optimal

value of the regularization parameter α into the somehow equivalent problem of finding an

optimal value of the blending parameter c: but, in any case, the real optimality problem has

not been solved (and, in general, cannot actually be solved, as pointed out in remark 1.6.7).

However, we can obviously object that the two parameters α and c are not at all on the same

level: indeed, first of all we should remember that, in many cases, at least one of the two values

α∗1(η, gδ, Ah) and α∗2(η, gδ, Ah) of α provided by the generalized discrepancy principle in its two

possible forms are satisfactory enough or, at least, give a first approximation of the optimal

value of α, while determining the best, or, at least, a suitable value of c represents a subsequent

procedure of fine tuning. Moreover, a purely heuristic (i.e. “by hand”) choice of the value of

α does not give rise, in general, to a regularization algorithm (in the sense of definition 1.6.1),

while an analogous choice of the value of c does not prevent the algorithm itself from being a

regularization method. In other terms, if, on the one hand, we cannot give a general recipe

for determining, for any linear inverse problem, a suitable and specific value of c (i.e. we can

give neither an explicit expression of the blending function c = c(η) introduced in (1.347), nor

a general computational procedure to numerically determine it), we have at least proved that

the blending procedure in itself constitutes a regularization algorithm. ¤

Blending the two regularized solutions

We consider the following convex combination of the two regularized solutions:

fηb := c(η) fηα∗1(η,gδ,Ah) + [1− c(η)] f ηα∗2(η,gδ,Ah) (1.383)

(where c = c(η) is as in (1.347)) and define (cf. relation (1.358)):

f η[b] :=





fη = 0 if ‖gδ‖Y ≤ min {ν1, ν2},
fηα∗1(η,gδ,Ah) if ν1 < ‖gδ‖Y ≤ ν2,

fηα∗2(η,gδ,Ah) if ν2 < ‖gδ‖Y ≤ ν1,

fηb if ‖gδ‖Y > max {ν1, ν2}.

(1.384)

Of course, the really non-trivial case is the fourth one, i.e.:

f η[b] = fηb . (1.385)

It is not difficult to prove that, in general, f ηb is not a Tikhonov regularized solution of the

inverse noisy problem Ahf = gδ, in the sense that there does not exist any α̂ > 0 such that (cf.

definitions (1.172) and (1.173)) it holds:

f ηb = argmin Φη
α̂[f ; gδ], (1.386)
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or, equivalently, such that f ηb is the unique solution to the Euler equation (cf. (1.174)):

(A∗hAh + α̂I) fηb = A∗h gδ. (1.387)

To this end, recalling the shorthand notations (1.328) and (1.331), we firstly remember that

f ηα∗1 := fηα∗1(η,gδ,Ah) is the unique solution to the Euler equation

(A∗hAh + α∗1I) f
η
α∗1

= A∗h gδ, (1.388)

while, analogously, f ηα∗2 := f ηα∗2(η,gδ,Ah) is the unique solution to the Euler equation

(A∗hAh + α∗2I) f
η
α∗2

= A∗h gδ. (1.389)

Hence, by multiplying for c(η) both sides of equation (1.388) and for [1 − c(η)] both sides of

(1.389), and then summing member by member the two equations so obtained, one easily gets:

A∗hAh
{
c(η) fηα∗1 + [1− c(η)] f ηα∗2

}
+ c(η)α∗1 f

η
α∗1

+ [1− c(η)]α∗2 f
η
α∗2

= A∗h {c(η) gδ + [1− c(η)] gδ} ,
(1.390)

i.e., recalling definition (1.383),

A∗hAhf
η
b + c(η)α∗1 f

η
α∗1

+ [1− c(η)]α∗2 f
η
α∗2

= A∗hgδ. (1.391)

Hence, let us now suppose, by absurd, that equation (1.387) holds for a certain α̂ > 0; since,

on the other hand, also equation (1.391) has to hold, we can subtract member by member the

two equations (1.387) and (1.391) themselves, so that we find:

α̂f ηb −
{
c(η)α∗1 f

η
α∗1

+ [1− c(η)]α∗2 f
η
α∗2

}
= 0, (1.392)

i.e., recalling definition (1.383),

α̂
{
c(η) fηα∗1 + [1− c(η)] fηα∗2

}
−

{
c(η)α∗1 f

η
α∗1

+ [1− c(η)]α∗2 f
η
α∗2

}
= 0, (1.393)

or, equivalently,

(α̂− α∗1) c(η) f
η
α∗1

+ (α̂− α∗2)[1− c(η)] fηα∗2 = 0. (1.394)

We now observe that if α∗1 6= α∗2 (as we are actually assuming, otherwise definition (1.383)

would be trivial), then, in general, f ηα∗1 and f ηα∗2 are linearly independent41: in such a case,

equality (1.394) holds if and only if

(α̂− α∗1) c(η) = 0 ∧ (α̂− α∗2)[1− c(η)] = 0; (1.395)

41To this end, it suffices to remember representation (1.177), holding in the case in which Ah is compact: if
we replace the generic α in (1.177) with two different values α∗1 and α∗2, we easily realize that the coefficients
multiplying the orthonormal elements uh

k when α = α∗1 are not proportional with the same proportionality
constant to the corresponding ones, obtained for α = α∗2: this clearly implies the linear independence of fη

α∗1
and fη

α∗2
.
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the previous relations (1.395), in turn, hold if and only if

α̂ = α∗1 ∧ c(η) = 1 ∨ α̂ = α∗2 ∧ c(η) = 0. (1.396)

But now, from definition (1.383) we immediately realize that if c(η) = 1, then fηb = fηα∗1 , while,

if c(η) = 0, then f ηb = f ηα∗2 : in both cases, the convex linear combination (1.383) is degenerate.

The previous arguments show that blending the two regularized solutions cannot be con-

sidered as a generalization or a particular case of blending the two regularization parameters:

the two procedures are intrinsically different. In other terms, blending the two regulariza-

tion parameters gives rise to a Tikhonov regularized solution fηα∗b (η,gδ,Ah), with its proper value

α∗b(η, gδ, Ah) for the regularization parameter, while blending the two regularized solutions gives

rise to a new regularized solution f ηb which is not of Tikhonov type and for which it is even

meaningless to speak of a correspondent value for the regularization parameter. However, we

can easily state the following theorem.

Theorem 1.8.9. Let f † denote, as usual, the generalized solution of the exact inverse problem

Af = g, with g ∈ R(A); then it holds:

lim
η→0+

sup
gδ,Ah

{∥∥∥fη[b] − f †
∥∥∥
X
| ‖gδ − g‖Y ≤ δ; ‖Ah − A‖ ≤ h

}
= 0. (1.397)

Proof. By virtue of the same argument used at the very beginning of the proof of theorem

1.8.8, we can show that if f † = 0, then fη[b] = f η = 0 (and nothing else needs to be proved),

while if f † 6= 0, we can always assume (at least for η small enough) that fη[b] = f ηb . Then,

recalling definition (1.383) and using the triangle inequality, we can write:

∥∥f ηb − f †
∥∥
X

=
∥∥∥c(η) fηα∗1(η,gδ,Ah) + [1− c(η)] f ηα∗2(η,gδ,Ah) −

{
c(η) f † + [1− c(η)] f †

}∥∥∥
X
≤

≤ c(η)
∥∥∥f ηα∗1(η,gδ,Ah) − f †

∥∥∥
X

+ [1− c(η)]
∥∥∥fηα∗2(η,gδ,Ah) − f †

∥∥∥
X
. (1.398)

Limits (1.280) and (1.323), together with the fact that 0 ≤ c(η) ≤ 1 ∀η ≥ 0, now suffice to

prove our thesis (1.397). ¥

We can conclude this chapter recalling, also in this case, remark 1.8.8.



CHAPTER 2

The direct and the inverse scattering

problem

In this chapter we introduce the direct and the inverse electromagnetic scattering problem

we want to deal with: we focus on the case of a penetrable medium, endowed with suitable

symmetry properties, but an analogous approach, with the proper changes, can be followed

also for many other kinds of scattering (impenetrable objects with various boundary conditions,

acoustic waves, etc.): in particular, what can be considered, from our point of view, the main

theoretical results of this chapter, i.e. the theses (2.215)-(2.220) of the general theorem 2.4.10

in section 2.4, hold substantially unchanged in all situations, provided that the hypotheses are

suitably adapted to each case.

The aim of sections 2.1, 2.2 and 2.3 is to introduce the mathematical framework in which

our direct and inverse scattering problem is posed and studied; appendix A has been written

with the principal purpose to make them more easily readable, by collecting in few pages

the most important definitions, notations, theorems and properties which form the theoretical

basis of such a framework. In general, as far as the proofs of the theorems stated in these

three sections are concerned, we simply refer to the existing literature (and mainly to [15]).

However, we occasionally give an explicit proof of some results: it happens when we have not

been able to refer to any book of our common use or when the proof itself is unusually simple

or can be helpful in the following.

In section 2.4 all the theorems are explicitly proved: this is true, in particular, for the

general theorem 2.4.10, whose results form the mathematical basis inspiring the linear sampling

method. The latter is fully explained, from a technical viewpoint, in section 2.5, while the

reasons for the importance of such a visualization method, as well as its main features, are

illustrated in the preface of this PhD thesis.

Finally, since in [15], which is our main reference book for sections 2.1, 2.2, 2.3 and 2.4,

the support of the scatterer is always supposed to take up a spatial region which is the closure
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of a C2 domain D, we maintain this smoothness hypothesis; however, the only reason for

which the authors of [15] make such an assumption, which is actually a bit restrictive, seems

to be the concern of simplifying, as far as possible, the introduction of the Sobolev spaces

appearing in the mathematical framework they need to explain. Hence, all the theorems and

results stated in this chapter should keep on holding unaltered also when D is assumed to be

a Lipschitz domain1; anyway, since for the proofs of several theorems we simply refer to [15],

without checking in detail if all the arguments are still true for less regular domains, we need

to maintain the smoothness hypothesis made in that book.

2.1. Formulation of the direct scattering problem

The aim of this section is to mathematically formulate the direct problem concerning the scat-

tering of a time-harmonic electromagnetic wave by a penetrable, orthotropic2, inhomogeneous

and cylinder-shaped medium. Since we have in mind a weak formulation of the problem in

suitable Sobolev spaces, at first we shall not be interested in specifying all the regularity prop-

erties of the functions we are going to consider and we shall simply assume that they are

smooth enough for all the passages to make sense. Of course, we shall finally state a theorem

of well-posedness, in which all the hypotheses will be explicitly declared.

Moreover, we shall set up the problem in such a way that it will be endowed with cylindrical

symmetry: this will enable us to pass from a 3D to a 2D formulation by considering a plane

section orthogonal to the axis of the cylinder; the latter will be assumed to be parallel to the

x3-axis of a cartesian orthogonal system of coordinates (x1, x2, x3) in R3. Such reduction of the

original 3D problem to a 2D one implies that the variable x = (x1, x2, x3) ∈ R3 will be replaced

by its orthogonal projection x′ = (x1, x2) ∈ R2. As usual, we shall denote with ∇×, ∇2, ∇2·,
∆2 respectively the curl operator in R3, the gradient, divergence and laplacian operators in R2,

all expressed in spatial cartesian orthogonal coordinates. Finally, if ξ = (ξ1, ξ2) and ζ = (ζ1, ζ2)

are two elements of C2, we define the operation

ξ · ζ := ξ1ζ1 + ξ2ζ2, (2.1)

which is clearly not a scalar product on C2, but it is actually the canonical scalar product on

R2 if restricted to R2 itself. Of course, it holds:

‖ξ‖C2 =

√
ξ · ξ̄ ∀ξ ∈ C2, (2.2)

1We point out that the case of Lipschitz domains is explicitly taken into account, e.g., in the following
papers: [18], [19], [20].

2The adjective “orthotropic” stands for “orthogonally anisotropic”; hence, in general, a material is or-
thotropic if its physical properties are different along mutually orthogonal directions. Of course, this is only
a quite generic definition by words; for a precise characterization in mathematical terms of what we mean by
“orthotropic”, see relations from (2.7) to (2.10) in the following.
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having denoted with ‖ξ‖C2 the usual norm of any element ξ ∈ C2. More generally, if n ∈
N \ {0, 1}, we denote with ‖ξ‖Cn and ‖x‖Rn the norm of any element ξ ∈ Cn and x ∈ Rn
respectively, while the more familiar notation |ξ| or |x| will be used to indicate the modulus of

any element ξ ∈ C or x ∈ R respectively.

Let us now consider electromagnetic wave propagation in an inhomogeneous anisotropic

medium which is geometrically described in coordinates as a subset of R3 and physically char-

acterized by the three following tensors: electric permittivity ε = ε(x), magnetic permeability

µ = µ(x) and electric conductivity σ = σ(x). For the moment, we simply assume that

each of these tensors is represented in our cartesian orthogonal coordinate system by a C3×3

matrix depending (continuously) on x. Some conditions involving the three matrices will be

imposed later. The electromagnetic wave is described by the C3-valued functions E = E(x, t)

and H = H(x, t) (called respectively electric field and magnetic field) satisfying the system of

Maxwell equations:



∇× E + µ

∂H

∂t
= 0

∇×H− ε∂E
∂t

= σE,

(2.3)

where we have used the constitutive relation (Ohm’s law) J = σE for the density current

J = J(x, t). If we consider electromagnetic waves which are time harmonic, i.e. of the form

E(x, t) = Ẽ(x)e−iωt, (2.4)

H(x, t) = H̃(x)e−iωt, (2.5)

with frequency ω > 0, and we substitute expressions (2.4) and (2.5) into the equations of

system (2.3), we find that the complex vector-valued and space dependent functions Ẽ = Ẽ(x)

and H̃ = H̃(x) (called spatial electric field and spatial magnetic field respectively) satisfy the

following system:



∇× Ẽ− iωµH̃ = 0,

∇× H̃ + (iωε− σ) Ẽ = 0.
(2.6)

We now suppose that the inhomogeneity consists of an infinitely long cylinder of penetrable,

i.e. imperfectly conductor, material. Let D ⊂ R2 be the (open) cross section of the cylinder,

having a C2 boundary ∂D, and let ν be the unit outward normal to ∂D. Moreover, we assume

that the cylinder has its axis coinciding with the x3-axis (i.e. it is the set D̄×R ⊂ R3) and that

it is embedded in a non-conducting homogeneous background, i.e. the electric permittivity and

the magnetic permeability of the background medium are positive constants ε0 > 0 and µ0 > 0

respectively, while its conductivity is σ0 = 0.
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Then we define the matrices A = A(x) and N = N(x) as

A(x) :=
1

ε0

(
ε(x) + i

σ(x)

ω

)
, (2.7)

N(x) :=
1

µ0

µ(x), (2.8)

and we further assume that the interior cylinder-shaped medium is orthotropic: this means,

in our case, that the matrices A(x) and N(x) are independent of the x3-coordinate and are of

the form:

A(x) =




a11(x) a12(x) 0

a21(x) a22(x) 0

0 0 a(x)


 , (2.9)

N(x) =




n11(x) n12(x) 0

n21(x) n22(x) 0

0 0 n(x)


 . (2.10)

If we denote with Ẽint = Ẽint(x), H̃int = H̃int(x) and Ẽext = Ẽext(x), H̃ext = H̃ext(x) the

spatial electric and magnetic fields inside the orthotropic medium and outside it respectively,

and define the relative spatial electric and magnetic fields Êint = Êint(x), Êext = Êext(x),

Ĥint = Ĥint(x), Ĥext = Ĥext(x) as

Êint :=
√
ε0 Ẽint, Êext :=

√
ε0 Ẽext, (2.11)

Ĥint :=
√
µ0 H̃int, Ĥext :=

√
µ0 H̃ext, (2.12)

it follows from system (2.6) and definitions (2.7), (2.8) that the fields Êint, Ĥint inside the

cylinder satisfy the system: 


∇× Êint − ikNĤint = 0

∇× Ĥint + ikAÊint = 0,
(2.13)

while the fields Êext, Ĥext outside the cylinder satisfy the system:




∇× Êext − ikĤext = 0

∇× Ĥext + ikÊext = 0,
(2.14)

where we have denoted with

k := ω
√
ε0µ0 (2.15)

the wavenumber in the background medium. Of course, across the boundary of the cylinder

one has to impose the continuity of the tangential components of both the (relative spatial)

electric and magnetic fields.
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If we now assume that the matrix A(x) is invertible ∀x ∈ D̄×R, we can get an expression

for Êint(x) from the second equation of system (2.13) and substitute it into the first one, so

finding the equation

∇×
[
A−1

(
∇× Ĥint

)]
− k2 NĤint = 0 (2.16)

for the relative spatial magnetic field inside the cylinder. Analogously, we can get an expression

for Êext from the second equation of system (2.14) and substitute it into the first one, so finding

the equation

∇×
(
∇× Ĥext

)
− k2 Ĥext = 0 (2.17)

for the relative spatial magnetic field outside the cylinder. Of course, the same equation as

(2.17) holds for Êext too.

Till now we have simply treated the propagation of time harmonic electromagnetic waves

in two different media; however, our aim is more specific, since it requires one to find and

study the equations describing a scattering experiment. More precisely, we now assume that a

time harmonic electromagnetic incident wave, characterized by the relative spatial electric and

magnetic fields Êi = Êi(x), Ĥi = Ĥi(x), is propagated in the background medium and then

scattered by the cylinder. This implies, in particular, that the following expressions hold:

Êext = Ês + Êi, (2.18)

Ĥext = Ĥs + Ĥi, (2.19)

where we have respectively denoted with Ês = Ês(x) and Ĥs = Ĥs(x) the relative spatial

electric and magnetic fields scattered by the cylinder. In general, the fields Êi, Ĥi characterizing

the incident wave are entire (i.e. defined onto all R3) solutions of system (2.14) (and hence

of equation (2.17) too), while the scattered fields Ês, Ĥs satisfy the Silver-Müller radiation

condition (see [54], [59]), which can be written in the following form:

lim
r→∞

sup
θ ∈ [0, π]

ϕ ∈ [0, 2π]

[
Ĥs(r, θ, ϕ)× x(r, θ, ϕ)− rÊs(r, θ, ϕ)

]
= 0, (2.20)

where we have denoted with (r, θ, ϕ) the spherical coordinates in R3, with x the position vector

of cartesian components (r sin θ cosϕ, r sin θ sinϕ, r cos θ), and with Ês(r, θ, ϕ), Ĥs(r, θ, ϕ) the

expression in spherical coordinates of the fields Ês(x), Ĥs(x) respectively3.

Let us now assume that the incident wave propagates along a direction perpendicular to

the axis of the cylinder and is TE polarized4 in such a way that

Ĥi(x) = (0, 0, ui(x)), (2.21)

3Of course, we are making a notational abuse: for example, writing Ês(r, θ, ϕ) is simply a shorthand for
Ês(r sin θ cos ϕ, r sin θ sin ϕ, r cos θ).

4“TE” is a shorthand for “Transverse Electric”: then an electromagnetic wave is TE polarized if its electric
field is orthogonal to the axis of the cylinder-shaped medium scattering the wave itself.
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being the function ui(x) independent of the third coordinate x3; from the cylindrical symmetry

of the problem, it immediately follows that there exist two x3-independent functions us(x) and

v(x) such that

Ĥs(x) = (0, 0, us(x)), (2.22)

Ĥint(x) = (0, 0, v(x)). (2.23)

If we now substitute relation (2.23) into (2.16) and remember that all the involved functions

do not depend on x3, we find that the equation (2.16) itself is equivalent to the following one:

∇2 ·A′∇2v + k2nv = 0 in D, (2.24)

where v = v(x′), n = n(x′) with x′ ∈ D and

A′ = A′(x′) :=
1

a11(x′)a22(x′)− a12(x′)a21(x′)

(
a11(x

′) a12(x
′)

a21(x
′) a22(x

′)

)
. (2.25)

Analogously, substituting relations (2.22), (2.21), (2.19) into equation (2.17) and remembering

that Ĥi is an entire solution of (2.17) itself, we find that the latter is equivalent to the Helmholtz

equation:

∆2u
s + k2us = 0 in R2 \ D̄, (2.26)

where us = us(x′) with x′ ∈ R2 \ D̄. Moreover, the transmission conditions requiring the

continuity of the tangential component of both the (relative spatial) electric and magnetic

fields can be written as:



ν × Ĥext = ν × Ĥint

ν × Êext = ν × Êint
on ∂D × R, (2.27)

i.e., recalling relations (2.18), (2.19) and the second equations of systems (2.13), (2.14),




ν ×

(
Ĥs + Ĥi

)
= ν × Ĥint

ν ×
[
∇×

(
Ĥs + Ĥi

)]
= ν ×

[
A−1

(
∇× Ĥint

)] on ∂D × R. (2.28)

If we now substitute representations (2.21), (2.22), (2.23) into system (2.28), the transmission

conditions turn out to be equivalent to the following ones:




v − us = ui

ν ·A′∇2v − ν · ∇2u
s = ν · ∇2u

i
on ∂D, (2.29)

where clearly v = v(x′), us = us(x′), u = ui(x′), ν = ν(x′) with x′ ∈ ∂D.
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Furthermore, if we define the normal and conormal derivative respectively for functions

u ∈ C1(R2 \D) and v ∈ C1(D̄) as:

∂u

∂ν
(x′) := lim

h→0+
[ν(x′) · ∇2u(x

′ + hν(x′))] ∀x′ ∈ ∂D, (2.30)

∂v

∂νA′
(x′) := lim

h→0+
[ν(x′) ·A′(x′)∇2v(x

′ − hν(x′))] ∀x′ ∈ ∂D, (2.31)

we can rewrite the second condition of system (2.29) as:

∂v

∂νA′
− ∂us

∂ν
=
∂ui

∂ν
on ∂D. (2.32)

Finally, the R2 analogue of the Silver-Müller radiation condition (2.20) is the Sommerfeld

radiation condition [63], which in our case, denoting with us(ρ′, θ′) the expression in polar

coordinates of the function us(x′) (and then making a little notational abuse, cf. footnote 3),

reads

lim
ρ′→∞

sup
θ′∈[0,2π]

[√
ρ′

(
∂us

∂ρ′
(ρ′, θ′)− ikus(ρ′, θ′)

)]
= 0. (2.33)

In the following, we shall rewrite the previous limit in the more familiar form (which is actually

a shorthand):

lim
r→∞

[√
r

(
∂us

∂r
− ikus

)]
= 0. (2.34)

Summing up and recalling relations (2.24), (2.26), (2.29), (2.32), (2.34), it turns out that

the electromagnetic scattering of a known time harmonic incident field by an orthotropic in-

homogeneity, as described above, can be mathematically formulated, roughly speaking, as the

following problem in R2: given the function ui = ui(x′), find two functions v = v(x′) and

us = us(x′) such that





∇2 ·A′∇2v + k2nv = 0 in D (a)

∆2u
s + k2us = 0 in R2 \ D̄ (b)

v − us = ui on ∂D (c)

∂v

∂νA′
− ∂us

∂ν
=
∂ui

∂ν
on ∂D (d)

lim
r→∞

[√
r

(
∂us

∂r
− ikus

)]
= 0. (e)

(2.35)

The next step is now to refine this first formulation of the problem, by making precise assump-

tions on the domain D, on the coefficients A′, n in equation (2.35)(a) and on the functional

(Sobolev) spaces to which the functions v, us, ui have to belong.

Referring to Appendix A (in particular, to sections A.1, A.8, A.9, A.10, A.13, A.14, A.15,

A.17) for a definition of all the Sobolev spaces involved, it turns out (see [15], section 5.2) that

a good mathematical (and more general) formulation of problem (2.35) is the following one.
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Problem 2.1.1. Let D ⊂ R2 be a nonempty, open and bounded set such that its boundary ∂D

is of class C2 and the exterior domain R2 \ D̄ is connected. Let ν be the unit normal vector

to ∂D, directed into the exterior of D. Let the matrix-valued function A′ : D̄ → C2×2, with

A′ =
(
a′jk

)
j,k=1,2

, satisfy the following properties:

1. the functions a′jk are continuously differentiable, i.e. a′jk ∈ C1(D̄) ∀j, k = 1, 2;

2. the matrix-valued function Re(A′) : D̄ → R2×2, defined by (Re(A′)(x′))i,j := Re(a′jk(x
′))

∀j, k = 1, 2 and ∀x′ ∈ D̄, is symmetric and verifies the condition:

∃ γ > 0 | ξ̄ · Re(A′(x′)) ξ ≥ γ ‖ξ‖2
C2 ∀ξ ∈ C2, ∀x′ ∈ D̄; (2.36)

3. the matrix-valued function Im(A′) : D̄ → R2×2, defined by (Im(A′)(x′))i,j := Im(a′jk(x
′))

∀j, k = 1, 2 and ∀x′ ∈ D̄, is symmetric and verifies the condition:

ξ̄ · Im(A′(x′)) ξ ≤ 0 ∀ξ ∈ C2, ∀x′ ∈ D̄. (2.37)

Finally, let n ∈ C(D̄) be such that Im(n(x)) ≥ 0 for all x′ ∈ D̄. Then, the problem can be

formulated in the following way:

• given (f, h) ∈ H 1
2 (∂D)⊕H− 1

2 (∂D), find (v, us) ∈ H1(D)⊕H1
∂D,loc(R2 \ D̄) such that





∇2 ·A′∇2v + k2nv = 0 in D (a)

∆2u
s + k2us = 0 in R2 \ D̄ (b)

v − us = f on ∂D (c)

∂v

∂νA′
− ∂us

∂ν
= h on ∂D (d)

lim
r→∞

[√
r

(
∂us

∂r
− ikus

)]
= 0, (e)

(2.38)

where the equations (2.38)(a)-(b) are to be intended in the weak sense, the boundary

conditions (2.38)(c)-(d) are written in the sense of the trace operators5 and the radial

derivative in (2.38)(e) can be intended in the classical sense (cf. remark 2.2.1 in the

following).

Remark 2.1.1. The scattering problem (2.35) is a particular case of problem 2.1.1. More

precisely, the interior field v and the scattered field us satisfy system (2.38) by making in the

latter the following identifications:

f = ui|∂D, h =
∂ui

∂ν

∣∣∣∣
∂D

, (2.39)

5See theorems A.15.2, A.17.1 and remarks A.17.1, A.17.2.
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where the incident field ui is such that

∆2u
i + k2ui = 0 in R2, (2.40)

i.e. ui is an entire solution of the Helmholtz equation, and the right-hand sides of both relations

(2.39) are to be intended in the sense of the trace operators. ¤

Remark 2.1.2. Owing to the symmetry of Re(A′(x′)) ∀x′ ∈ D̄, it holds:

ξ̄ · Re(A′(x′)) ξ = Re
(
ξ̄ ·A′(x′) ξ

) ∀x′ ∈ D̄, ∀ξ ∈ C2; (2.41)

analogously, owing to the symmetry of Im(A′(x′)) ∀x′ ∈ D̄, it holds:

ξ̄ · Im(A′(x′)) ξ = Im
(
ξ̄ ·A′(x′) ξ

) ∀x′ ∈ D̄, ∀ξ ∈ C2. (2.42)

¤

Remark 2.1.3. In formulating problem 2.1.1 we have made some technical hypotheses on A′

and n; then, a problem naturally arises: how much do these mathematical hypotheses match

real scattering phenomena? In order to answer this question, we should investigate the physical

meaning of our assumptions on A′ and n; however, this kind of analysis, although extremely

interesting, would lead us too far from our current purposes. Hence, we limit ourselves to

pointing out that such hypotheses are general enough to be verified by a large gamut of real

materials and we directly refer to [48] (in particular, to chapter XI) for a detailed treatment of

electromagnetic wave propagation in anisotropic media. ¤

We now observe that, in general, any boundary value problem arising in scattering theory

(like problem 2.1.1) is formulated in an unbounded domain. However, in order to solve such

a problem by means of variational methods providing weak solutions, we need to reformulate

it as an equivalent6 problem in a bounded domain. Typically, to this end an open disc ΩR,

centred at the origin and large enough to contain D̄, is introduced and at first the problem is

solved in ΩR \ D̄. Then, the next step is to extend the solution outside ΩR in such a way as to

get a solution of the original problem. In order to enable such an extension, the crucial point is

to choose an appropriate condition to be satisfied on the artificial boundary ∂ΩR by the initial

solution defined in ΩR \ D̄. It turns out (see [15], section 5.3) that such a condition involves

the so-called Dirichlet to Neumann map, which we now introduce and describe by means of

the two following definitions and the subsequent theorem.

6Some different concepts of equivalence between two problems are formulated in the following definition
2.1.3.
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Definition 2.1.1. Let ΩR := {x′ ∈ R2 | ‖x′‖R2 < R}, with R > 0, and let w ∈ H1
∂D,loc(R2\Ω̄R)

be a weak solution to the Helmholtz equation ∆2w + k2w = 0; then w is called radiating if it

satisfies the Sommerfeld radiation condition (2.34), i.e.

lim
r→∞

[√
r

(
∂w

∂r
− ikw

)]
= 0, (2.43)

where, as we shall see in remark 2.2.1, the radial derivative can be always intended in the

classical sense.

Definition 2.1.2. Let w be a weak radiating solution to the Helmholtz equation, ∂ΩR the

boundary of an open and origin-centred disk ΩR of radius R, and νR the outward unit normal

to ∂ΩR. The map T such that

T : w|∂ΩR
7→ T (w|∂ΩR

) :=
∂w

∂r

∣∣∣∣
∂ΩR

, (2.44)

where the radial derivative is intended in the classical sense, is called Dirichlet to Neumann

map. In the following, we shall simply write Tw =
∂w

∂νR
instead of T (w|∂ΩR

) =
∂w

∂r

∣∣∣∣
∂ΩR

.

It is worthwhile observing that in the previous definition 2.1.2 the restrictions w|∂ΩR
and

∂w

∂r

∣∣∣∣
∂ΩR

are not at all defined in terms of the trace operators introduced in theorems A.15.2 and

A.17.1; on the contrary, by expressing the radiating solution w as a suitable series expansion

involving the Hankel functions of the first kind, it is possible to determine
∂w

∂r

∣∣∣∣
∂ΩR

(intended in

the classical sense) starting from the knowledge of w|∂ΩR
. See theorem 5.20 in [15] for details.

Theorem 2.1.1. The Dirichlet to Neumann map T is a bounded linear operator from H
1
2 (∂ΩR)

to H− 1
2 (∂ΩR).

Proof. See theorem 5.20 in [15]. ¥

Before giving an equivalent formulation of problem 2.1.1, we first fix the concept of equi-

valence between two problems by means of the following definition.

Definition 2.1.3. Given two different problems, formulated in the same hypotheses and with

the same data, they are said

1. equivalent with regard to existence (or, briefly, existence-equivalent) if from a solution

(assumed existing) of one of the problems, one can get a solution of the other one, and

conversely;
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2. equivalent with regard to uniqueness (or, briefly, uniqueness-equivalent) if assuming the

uniqueness of the solution (if it exists) of one of the problem, one can prove the uniqueness

of the solution (if it exists) of the other one, and conversely;

3. equivalent if they are both existence-equivalent and uniqueness-equivalent.

Now we can consider the following problem, set on a bounded domain, and state its equi-

valence with the previous problem 2.1.1 by means of the subsequent theorems.

Problem 2.1.2. Let D, ν, A′, n verify the same assumptions as in problem 2.1.1; let ΩR ⊃ D̄

and T : H
1
2 (∂ΩR) → H− 1

2 (∂ΩR) be as in definition 2.1.2. Then,

• given (f, h) ∈ H 1
2 (∂D)⊕H− 1

2 (∂D), find (v, us) ∈ H1(D)⊕H1(ΩR \ D̄) such that




∇2 ·A′∇2v + k2nv = 0 in D (a)

∆2u
s + k2us = 0 in ΩR \ D̄ (b)

v − us = f on ∂D (c)

∂v

∂νA′
− ∂us

∂ν
= h on ∂D (d)

∂us

∂r
= Tus on ∂ΩR (e)

(2.45)

where, as before, the equations (2.45)(a)-(b) are to be intended in the weak sense, the

boundary conditions (2.45)(c)-(d) are written in the sense of the trace operators and the

radial derivative in (2.45)(e) can be intended in the classical sense.

Theorem 2.1.2. Problems 2.1.1 and 2.1.2 are existence-equivalent; more precisely:

1. if (v, us) ∈ H1(D)⊕H1(ΩR \ D̄) is a solution to system (2.45), then us can be extended

to a function usext ∈ H1
∂D,loc(R2 \ D̄) such that (v, usext) is a solution to system (2.38);

2. conversely, if (v, us) ∈ H1(D) ⊕ H1
∂D,loc(R2 \ D̄) is a solution to system (2.38), then us

can be restricted to the function us|ΩR\D̄ ∈ H1(ΩR \ D̄) and (v, us|ΩR\D̄) solves system

(2.45).

Proof. See section 5.4 in [15]. ¥

Theorem 2.1.3. Both problems 2.1.1 and 2.1.2 have at most one solution.

Proof. See section 5.4 in [15]. ¥

The previous theorem 2.1.3 trivially implies that problems 2.1.1 and 2.1.2 are uniqueness equi-

valent; then, remembering theorem 2.1.2, we immediately get the following result.
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Theorem 2.1.4. Problems 2.1.1 and 2.1.2 are equivalent.

In order to establish the existence of a (unique) solution to problem 2.1.2 and, even more,

its well-posedness, we shall resort to an equivalent variational formulation of it. To this end,

we still need the concept of Dirichlet eigenvalue, which is introduced in the following definition,

and an auxiliary lemma, enunciated soon after.

Definition 2.1.4. Let D be as in problem 2.1.1. The values of k2 for which there exists a

nonzero function u ∈ H1
0 (D) satisfying7

∆2u+ k2u = 0 in D (2.46)

(in the weak sense) are called the Dirichlet eigenvalues of −∆2 and the corresponding nonzero

solutions are called the eigensolutions for −∆2.

Lemma 2.1.5. Let D be as in problem 2.1.1; let ΩR be as in definition 2.1.2 and such that k2

is not a Dirichlet eigenvalue8 for −∆2 in ΩR \ D̄; finally, let f ∈ H
1
2 (∂D). Then there exists

a unique solution uf ∈ H1(ΩR \ D̄) to the following weak Dirichlet boundary value problem:




∆2uf + k2uf = 0 in ΩR \ D̄ (a)

uf = f on ∂D (b)

uf = 0 on ∂ΩR. (c)

(2.47)

Proof. See sections 5.3 and 5.4 in [15]. ¥

We can now give the equivalent variational formulation of problem 2.1.2; the equivalence

in question is stated by the subsequent theorem.

Problem 2.1.3. Let D, A′, n, ΩR, T be as in problem 2.1.2. Additionally, let ΩR be such that

k2 is not a Dirichlet eigenvalue for −∆2 in ΩR \ D̄. Then,

• given (f, h) ∈ H 1
2 (∂D)⊕H− 1

2 (∂D), find w ∈ H1(ΩR) such that
∫

D

(∇2ϕ̄ ·A′∇2w − k2n ϕ̄w
)
dx′ +

∫

ΩR\D̄

(∇2ϕ̄ · ∇2w − k2ϕ̄ w
)
dx′ −

∫

∂ΩR

ϕ̄ Tw dσ(x′) =

(2.48)

=

∫

∂D

ϕ̄ h dσ(x′)−
∫

∂ΩR

ϕ̄ Tuf dσ(x′) +

∫

ΩR\D̄

(∇2ϕ̄ · ∇2uf − k2ϕ̄ uf
)
dx′ ∀ϕ ∈ H1(ΩR),

where the boundary integrals are to be intended in the pairing sense (as explained about

definition (A.122)), uf is the same function as in lemma 2.1.5 and dx′, dσ(x′) denote

the Lebesgue measure respectively on R2 and on the proper contour.

7Note that the zero boundary condition is incorporated in the space H1
0 (D); cf. theorem A.15.3.

8It can be shown that this is always possible.
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Theorem 2.1.6. Problems 2.1.2 and 2.1.3 are equivalent9; more precisely:

• if w ∈ H1(ΩR) is the unique solution to equation (2.48), then the functions v, us defined

as

v := w|D, (2.49)

us := w|ΩR\D̄ − uf (2.50)

are such that (v, us) ∈ H1(D)⊕H1(ΩR \ D̄) is the unique solution to system (2.45);

• conversely, if (v, us) ∈ H1(D)⊕H1(ΩR \ D̄) is the unique solution to system (2.45), then

the function w defined as

w :=

{
v in D

us + uf in ΩR \ D̄
(2.51)

is such that w ∈ H1(ΩR) is the unique solution to equation (2.48).

Proof. See section 5.4 in [15]. ¥

Finally, by means of the previous variational formulation, stated in problem 2.1.3, it is pos-

sible to prove the following theorems, which state the well-posedness of the 2D direct scattering

problem for an orthotropic medium.

Theorem 2.1.7. Problem 2.1.3 is well-posed.

Proof. See section 5.4 in [15]. ¥

Theorem 2.1.8. For any data (f, h) ∈ H
1
2 (∂D) ⊕ H− 1

2 (∂D), problem 2.1.2 has a unique

solution (v, us) ∈ H1(D)⊕H1(ΩR \ D̄) which satisfies:

‖v‖H1(D) + ‖us‖H1(ΩR\D̄) ≤ C
(
‖f‖

H
1
2 (∂D)

+ ‖h‖
H−

1
2 (∂D)

)
, (2.52)

being C > 0 a positive constant independent of f and h.

Proof. See section 5.4 in [15]. ¥

9Obviously, we are assuming that also in problem 2.1.2 the disk ΩR is chosen, as it is always possible to do,
in such a way that k2 is not a Dirichlet eigenvalue for −∆2 in ΩR \ D̄.
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Remark 2.1.4. Let us put, according to the notations of chapter 1:

X := H
1
2 (∂D)⊕H− 1

2 (∂D), Y := H1(D)⊕H1(ΩR \ D̄). (2.53)

If not otherwise specified, the direct sum of Hilbert spaces (like X and Y ), which is in turn a

Hilbert space (cf. section A.1), is regarded as equipped with the norm (A.7) induced by the

scalar product (A.6) in it. However, such a norm is equivalent to the infinitely many others

defined in (A.4), (A.5); in particular, it is equivalent to the norm obtained by family (A.4)

for p = 1. Hence, since it is easy to realize that the equations and the boundary conditions

forming system (2.45) imply the linear dependence of its solution (v, us) on the data (f, h), we

can paraphrase the statement of theorem 2.1.8 by saying that solving problem 2.1.2 defines a

linear continuous operator from the Hilbert space X to the Hilbert space Y :

A : X −→ Y

(f, h) 7−→ (v, us).
(2.54)

¤

2.2. The far-field pattern of the scattered field

Our aim is now to state some mathematical properties of the scattered field us ∈ H1
∂D,loc(R2\D̄)

(cf. system (2.38) and identifications (2.39)), in particular at very large distances from the

boundary ∂D.

From now on, we shall denote a generic point in R2 simply with x instead of x′: indeed we

shall never come back to a genuine 3D framework, then there is no risk of notational ambiguity.

For all the statements and properties we are going to recall here below (up to theorem

2.2.1), we refer to sections 3.2, 3.3 in [15] and to sections 2.2, 2.3, 2.4, 3.4 in [27].

Let H
(1)
0 (t) (with t > 0) denote the Hankel function of the first kind and of order 0; it is

not difficult to show that, for a fixed y ∈ R2, the function of x defined as

Φ(x, y) :=
i

4
H

(1)
0 (k‖x− y‖R2), x 6= y, (2.55)

satisfies the Helmholtz equation

∆2u+ k2u = 0 (2.56)

in R2 \ {y}; more precisely, Φ(x, y) is a fundamental solution of the Helmholtz equation, i.e. it

satisfies the distributional equation:

∆2Φ(x, y) + k2Φ(x, y) = δ(x− y), (2.57)

where, as usual, we have indicated with δ(x− y) the Dirac delta set in y.
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It is worthwhile pointing out that Φ(x, y) satisfies the Sommerfeld radiation condition

(2.34) and that it is a real-analytic function10 of the cartesian coordinates x1, x2 of the point

x = (x1, x2), provided that x 6= y. Moreover, unlike the 3D case, the analytical expression

of Φ(x, y) in our 2D case is quite involved, so we only recall its asymptotic behaviour for

‖x− y‖R2 → 0 and for ‖x− y‖R2 →∞:

Φ(x, y) =
1

2π
log

1

‖x− y‖R2

+
i

4
− 1

2π
log

k

2
− C

2π
+O

(
‖x− y‖2

R2 log
1

‖x− y‖R2

)

as ‖x− y‖R2 → 0; (2.58)

Φ(x, y) =
i

4

√
2

πk‖x− y‖R2

exp
[
i
(
k‖x− y‖R2 − π

4

)]
+O

(
‖x− y‖−

3
2

R2

)
as ‖x− y‖R2 →∞,

(2.59)

where, in relation (2.58), C > 0 denotes the Euler’s constant.

We can now state the following theorem, which provides two useful representation formulas

for solutions of the Helmholtz equation considered respectively in a bounded domain or in its

complementary.

Theorem 2.2.1. Let D ⊂ R2 be a nonempty, open and bounded set having C2 boundary ∂D

such that the exterior domain R2 \ D̄ is connected. Then,

1. if us ∈ H1
∂D,loc(R2 \ D̄) is a weak solution of the Helmholtz equation in the exterior of

D and satisfies the Sommerfeld radiation condition, the following representation for us

holds:

us(x) =

∫

∂D

(
us(y)

∂Φ(x, y)

∂ν(y)
− ∂us

∂ν
(y)Φ(x, y)

)
dσ(y) for x ∈ R2 \ D̄; (2.60)

2. if u ∈ H1(D) is a weak solution of the Helmholtz equation in D, the following represen-

tation for u holds:

u(x) =

∫

∂D

(
∂u

∂ν
(y)Φ(x, y)− u(y)

∂Φ(x, y)

∂ν(y)

)
dσ(y) for x ∈ D. (2.61)

Proof. See section 3.3 and remark 5.8 in [15]. ¥

Remark 2.2.1. Representations (2.60), (2.61) need some comments. First of all, we observe

that by virtue of trace theorems A.15.2 (for k = 2, s = 1), A.17.1 and remarks A.17.1, A.17.2,

10In section A.4 the reader can find the definition of real-analytic function, as well as some theorems about
such kind of functions.
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it turns out that11 us|∂D, u|∂D, Φ(x, ·)|∂D ∈ H
1
2 (∂D) and

∂us

∂ν
,
∂u

∂ν
,
∂Φ(x, ·)
∂ν(·) ∈ H− 1

2 (∂D):

this implies that, in general, the boundary integrals in (2.60) and (2.61) are to be intended in

the pairing sense, as explained about definition (A.122). In order to clarify this point and to

sketch the proof of the fact that representations (2.60) and (2.61) allow one to conclude the

analyticity of us and u, let us focus on the boundary integral in (2.61) (an analogous discussion

will hold also for that in (2.60)).

As a preliminary remark, we begin by remembering that, as observed above, for a fixed y

the fundamental solution Φ(x, y) is a real-analytic function of x1, x2 (with x = (x1, x2) 6= y):

this implies, in particular (see section A.4), that for any fixed y ∈ R2 and for each x0 6= y there

exists a neighbourhood Ux0,y of x0 such that the following Taylor series representation holds:

Φ(x, y) =
∑

α∈N2

1

α!
(∂αxΦ(x0, y)) (x− x0)

α ∀x ∈ Ux0,y, (2.62)

where the subscript x in ∂αx reminds one that the partial derivatives are calculated with respect

to x = (x1, x2). Of course, all the partial derivatives of Φ(x, y) enjoy an analogous represen-

tation. Moreover, since we want to focus on the boundary integral in (2.61), we choose in

representation (2.62) y ∈ ∂D, x0 ∈ D and we can always assume that Ux0,y ∩ ∂D = ∅.
In whatever sense the boundary integral in (2.61) is to be intended, by linearity we have

that:

u(x) =

∫

∂D

∂u

∂ν
(y)Φ(x, y)dσ(y)−

∫

∂D

u(y)
∂Φ(x, y)

∂ν(y)
dσ(y) ∀x ∈ D. (2.63)

Now, let us put:

F1(x) :=

∫

∂D

∂u

∂ν
(y)Φ(x, y)dσ(y); F2(x) :=

∫

∂D

u(y)
∂Φ(x, y)

∂ν(y)
dσ(y). (2.64)

Recalling definition (A.122), we know that, in general, the previous boundary integrals are to

be intended only as a different notation for the pairing between H− 1
2 (∂D) and H

1
2 (∂D), i.e.:

F1(x) =

〈
∂u

∂ν
,Φ(x, ·)|∂D

〉

∂D

; F2(x) =

〈
∂Φ(x, ·)
∂ν(·) , u|∂D

〉

∂D

. (2.65)

We now remember that H
1
2 (∂D) is actually (see definition (A.117)) a subset of L2(∂D); hence

u|∂D ∈ L2(∂D); on the other hand, by virtue of the analyticity of Φ(x, ·) regarded now as

a function of y, one easily realizes that also
∂Φ(x, ·)
∂ν(·) ∈ L2(∂D). Hence the integral defining

F2(x) in the second of relations (2.64) does make sense on its own as a Lebesgue integral and,

by virtue of what observed just below definition (A.122), is equal to the pairing in the second

of relations (2.65). Now, if we arbitrarily choose x0 ∈ D, write a Taylor series representation

11Of course, the restrictions to ∂D are to be intended in the sense of the trace operator.
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for
∂Φ(x, y)

∂ν(y)
(regarded as a function of x) in a neighbourhood of x0 and substitute such a

representation into the (Lebesgue) integral defining F2(x), it is possible to show, by means of

an argument based on the Lebesgue’s dominated convergence theorem12, that the signs
∫
∂D

and
∑

α∈N2 commute: this yields a power series representation for F2(x) in a neighbourhood of

x0, i.e. F2(·) is real-analytic in x0; since this holds for all x0 ∈ D, F2(·) is real-analytic in D.

The proof of the analyticity of F1(·) is more involved: indeed, the integral defining F1(x) in

the first of relations (2.64) can only been intended in the pairing sense (according to the first

of relations (2.65)), since now
∂u

∂ν
∈ H− 1

2 (∂D) and, as observed just below definition (A.122),

in general it holds H− 1
2 (∂D) ⊃ L2(∂D). However, we can proceed as follows. As an element of

H− 1
2 (∂D),

∂u

∂ν
can be identified with a C-valued linear continuous functional on H

1
2 (∂D) (see

section A.14); but the latter is an Hilbert space, then, by virtue of the Riesz representation

theorem, there exists a unique element, say f∂νu, of H
1
2 (∂D) such that:

〈
∂u

∂ν
, v|∂D

〉

∂D

= (f∂νu, v)H
1
2 (∂D)

∀v ∈ H 1
2 (∂D), (2.66)

where the right-hand side of relation (2.66) denotes the scalar product in H
1
2 (∂D) between

f∂νu and v. Hence, in particular, it holds:

〈
∂u

∂ν
,Φ(x, ·)|∂D

〉

∂D

= (f∂νu,Φ(x, ·)|∂D)
H

1
2 (∂D)

. (2.67)

Moreover, recalling the notations and topics of section A.14 and, in particular, definition

(A.118), we have that13

(f∂νu,Φ(x, ·)|∂D)
H

1
2 (∂D)

=
(
[f∂νu]ζ , [Φ(x, ·)|∂D]ζ

)
H

1
2 (R)

. (2.68)

Since H
1
2 (R) is a Hilbert space (see section A.9), by virtue of the Riesz representation theorem

we can regard the scalar product at the right-hand side of relation (2.68) as the action of a

linear continuous functional T∂νu : H
1
2 (R) → C (uniquely determined by f∂νu) on [Φ(x, ·)|∂D]ζ ,

i.e.: (
[f∂νu]ζ , [Φ(x, ·)|∂D]ζ

)
H

1
2 (R)

= T∂νu [Φ(x, ·)|∂D]ζ . (2.69)

On the other hand, from theorem A.10.1 (statement No 1) we know that H
1
2 (R) = W

1
2
,2(R)

with equivalent norms; hence, a linear continuous functional on H
1
2 (R) is also a linear contin-

uous functional on W
1
2
,2(R). This allows us to regard the right-hand side of relation (2.69)

as the action of a functional in
[
W

1
2
,2(R)

]∗
on [Φ(x, ·)|∂D]ζ ∈ W

1
2
,2(R); but the latter is an

12See, for example, [35], p. 43.
13For sake of simplicity, we can assume that D is a C2 hypograph; if it is not, an analogous argument holds

by introducing a suitable partition of unity for ∂D.
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Hilbert space, then, as before, such a functional is representable in the form of a scalar product

in W
1
2
,2(R) between an element Q∂νu (uniquely determined by T∂νu) with [Φ(x, ·)|∂D]ζ itself,

i.e.:

T∂νu [Φ(x, ·)|∂D]ζ =
(
Q∂νu, [Φ(x, ·)|∂D]ζ

)
W

1
2 ,2(R)

. (2.70)

Finally, by virtue of definition (A.72) (with r = 0, s = 1/2, n = 1, Ω = R), the scalar product

at the right-hand side of equality (2.70) can be expressed in terms of the Lebesgue integral of

a function constructed in terms of [Φ(x, ·)|∂D]ζ ; analogously to the case of F2(x), this allows

one to use an argument based on the analyticity (in x) of [Φ(x, ·)|∂D]ζ and on the Lebesgue’s

dominated convergence theorem in order to prove, in turn, the analyticity of F1(·) in D.

Summing up, it is possible to deduce from representations (2.60), (2.61) that if the hypothe-

ses of theorem 2.2.1 are satisfied, then weak solutions us ∈ H1
∂D,loc(R2 \ D̄) or u ∈ H1(D) of

the Helmholtz equation are real-analytic functions of their independent variables x1, x2. Hence

these solutions, although defined, a priori, up to a set of zero measure in their domains, are

such that also their punctual values are meaningful. Moreover, the analyticity of us clearly

implies that the radial derivative operator in the Sommerfeld radiation condition (2.34) can be

always intended in the classical sense. ¤

An important consequence of representation formula (2.60) is stated in the following theo-

rem.

Theorem 2.2.2. If u ∈ H1
∂D,loc(R2) is an entire weak solution of the Helmholtz equation and

satisfies the Sommerfeld radiation condition, it is identically zero onto all R2.

Proof. Let x be an arbitrary, but fixed, point in R2 and let Ωx,r := {y ∈ R2 | ‖y − x‖R2 < r},
with r > 0: then we have that u ∈ H1

∂D,loc(R2 \ Ω̄x,r); on the other hand, also Φ(x, ·) ∈
H1
∂D,loc(R2 \ Ω̄x,r). Moreover, both u and Φ(x, ·) satisfy the Sommerfeld radiation condition.

Hence, we can apply theorem A.18.2: its thesis (A.160) in our case reads:

∫

∂D

(
u(y)

∂Φ(x, y)

∂ν(y)
− Φ(x, y)

∂u

∂ν
(y)

)
dσ(y) = 0. (2.71)

If we now compare relations (2.60) and (2.71), we immediately find that u(x) = 0. Since such

an argument holds for any x in R2, the thesis follows. ¥

Another important result following from the representation formula (2.60) and the asymp-

totic behaviour (2.59) is stated in the following theorem, which gives a mathematical character-

ization of a radiating solution of the Helmholtz equation at large distances from the scatterer.
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Theorem 2.2.3. Let D, us be as in theorem 2.2.1; let (r, ϕ) be the polar coordinates of x =

(x1, x2) ∈ R2 and x̂ := (cosϕ, sinϕ) the observation direction; then, the following asymptotic

representation holds uniformly in all directions x̂:

us(x) =
eikr√
r
u∞(ϕ) +O(r−3/2) as r →∞, (2.72)

where the C-valued function u∞ ∈ L2[0, 2π], called the far-field pattern of us, is given by:

u∞(ϕ) =
eiπ/4

√
8πk

∫

∂D

(
us(y)

∂e−ikx̂·y

∂ν(y)
− e−ikx̂·y ∂u

s(y)

∂ν

)
dσ(y). (2.73)

Proof. See sections 4.1, 6.1 in [15] and sections 2.2, 3.4 in [27]. ¥

In particular, for each y ∈ R2, the far-field pattern of the fundamental solution Φ(x, y) is

given by (see section 4.3 in [15]):

Φ∞(ϕ, y) =
eiπ/4

√
8πk

e−ik(cosϕ,sinϕ)·y, (2.74)

which we shall often write, with a slight notational abuse, as:

Φ∞(x̂, y) = γe−ikx̂·y, (2.75)

where, obviously, γ :=
eiπ/4√
8πk

.

Remark 2.2.2. Since, for a fixed y, e−ikx̂·y is a real-analytic function of ϕ (being x̂ =

(cosϕ, sinϕ)), by means of an argument similar to that used in remark 2.2.1 it is possible

to deduce from representation (2.73) (where the boundary integral is clearly to be intended in

the pairing sense) that if D is as in theorem 2.2.1, then the far-field pattern u∞ of a radiating

solution us ∈ H1
∂D,loc(R2\D̄) of the Helmholtz equation is a real-analytic function of its variable

ϕ.

Moreover, the same representation (2.73) allows one to demonstrate the continuous depen-

dence of the far-field pattern u∞ on the scattered field us; our aim is now to sketch a proof of

this property. Following the same approach and using notations analogous to those of remark

2.2.1, we can write:

u∞(ϕ) = C (G1(ϕ)−G2(ϕ)) ∀ϕ ∈ [0, 2π], (2.76)

where, having now denoted, for notational convenience, the scalar product in R2 as (·, ·)R2

instead of “·”, we have put:

C :=
eiπ/4

√
8πk

, G1(ϕ) :=

〈
∂e−ik(x̂,·)R2

∂ν(·) , us|∂D
〉

∂D

, G2(ϕ) :=

〈
∂us

∂ν
, e−ik(x̂,·)R2 |∂D

〉

∂D

; (2.77)
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the pairings in (2.77) are obviously between an element ofH− 1
2 (∂D) and an element ofH

1
2 (∂D).

Relation (2.76) clearly implies that

|u∞(ϕ)| ≤ |C| (|G1(ϕ)|+ |G2(ϕ)|) ∀ϕ ∈ [0, 2π]. (2.78)

Moreover, remembering relation (A.169), we have:

|G1(ϕ)| ≤
∥∥∥∥
∂e−ik(x̂,·)R2

∂ν(·)

∥∥∥∥
H−

1
2 (∂D)

‖us|∂D‖H 1
2 (∂D)

, (2.79)

|G2(ϕ)| ≤
∥∥∥∥
∂us

∂ν

∥∥∥∥
H−

1
2 (∂D)

∥∥e−ik(x̂,·)R2 |∂D
∥∥
H

1
2 (∂D)

. (2.80)

If we put:

f1(ϕ) :=

∥∥∥∥
∂e−ik(x̂,·)R2

∂ν(·)

∥∥∥∥
H−

1
2 (∂D)

, f2(ϕ) :=
∥∥e−ik(x̂,·)R2 |∂D

∥∥
H

1
2 (∂D)

∀ϕ ∈ [0, 2π], (2.81)

the smoothness (i.e. analyticity) of e−ik(x̂,·)R2 easily implies that f1, f2 ∈ L2[0, 2π].

Now, let us take ΩR := {x ∈ R2 | ‖x‖R2 < R} large enough, so that ΩR ⊃ D̄, and consider

the bounded and C2 domain Ω := ΩR \ D̄. Since us ∈ H1
∂D,loc(R2 \ D̄), from the definition itself

(A.144) of H1
∂D,loc(R2 \ D̄) it is evident that us ∈ H1(Ω); then we can define, in the sense of

the trace operators (see theorems A.15.2 and A.17.1), us|∂Ω ∈ H
1
2 (∂Ω) and

∂us

∂ν
∈ H− 1

2 (∂Ω).

Since ∂Ω = ∂Ωr ∪ ∂D, it is not difficult to realize that

‖us|∂D‖H 1
2 (∂D)

≤ ‖us|∂D‖H 1
2 (∂Ω)

,

∥∥∥∥
∂us

∂ν

∥∥∥∥
H−

1
2 (∂D)

≤
∥∥∥∥
∂us

∂ν

∥∥∥∥
H−

1
2 (∂Ω)

. (2.82)

Substituting relations (2.81), (2.82) into (2.79),(2.80), we immediately get:

|G1(ϕ)| ≤ f1(ϕ) ‖us|∂D‖H 1
2 (∂Ω)

, |G2(ϕ)| ≤ f2(ϕ)

∥∥∥∥
∂us

∂ν

∥∥∥∥
H−

1
2 (∂Ω)

. (2.83)

Moreover, by virtue of relations (A.131) and (A.150), it respectively holds:

‖us|∂D‖H 1
2 (∂Ω)

≤ C1 ‖us‖H1(Ω),

∥∥∥∥
∂us

∂ν

∥∥∥∥
H−

1
2 (∂Ω)

≤ C3 ‖us‖H1(Ω), (2.84)

being C1 and C3 two real positive constants (depending, in general, on Ω). By comparing

inequalities (2.83) and (2.84), we have:

|G1(ϕ)| ≤ C1 f1(ϕ) ‖us‖H1(Ω) , |G2(ϕ)| ≤ C3 f2(ϕ) ‖us‖H1(Ω) . (2.85)

Hence, if we put A1 := |C|C1 and A3 := |C|C3, by virtue of inequalities (2.78) and (2.85) we

find:

|u∞(ϕ)|2 ≤ (A1 f1(ϕ) + A2 f2(ϕ))2 ‖us‖2
H1(Ω) ∀ϕ ∈ [0, 2π]. (2.86)
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Finally, by integrating on [0, 2π] both members of the previous inequality (2.86) and then

taking their square roots, we find:

‖u∞‖L2[0,2π] ≤ L ‖us‖H1(ΩR\D̄) , (2.87)

having remembered that Ω = ΩR \ D̄ and having put:

L :=




2π∫

0

(A1 f1(ϕ) + A2 f2(ϕ))2 dϕ




1
2

. (2.88)

Relation (2.87) expresses the continuous dependence of the far-field pattern u∞ ∈ L2[0, 2π] on

the scattered field us ∈ H1
∂D,loc(R2 \ D̄). ¤

The next theorem is a classic result in scattering theory and it was first proved by Rellich

[58] and Vekua [66] in 1943. Owing perhaps to wartime conditions, Vekua’s paper remained

unknown to western scientific community and the theorem is commonly attributed only to

Rellich. In its proof, the analyticity of us plays an important role.

Theorem 2.2.4. (Rellich’s Lemma) Let D be as in theorem 2.2.1 and let us ∈ H1
∂D,loc(R2\D̄)

a solution of the Helmholtz equation such that

lim
R→∞

∫

‖y‖R2=R

|us(y)|2 dσ(y) = 0. (2.89)

Then us = 0 in R2 \ D̄.

Proof. See section 3.3 in [15]. ¥

A straightforward consequence of representation (2.72) and theorem 2.2.4 is given by the

following proposition.

Theorem 2.2.5. Let u∞ be the far-field pattern of a radiating solution us ∈ H1
∂D,loc(R2 \ D̄)

of the Helmholtz equation; if u∞(ϕ) = 0 ∀ϕ ∈ [0, 2π], then us(x) = 0 ∀x ∈ R2 \ D̄.

Proof. By virtue of (2.72), we have:

∫

‖y‖R2=R

|us(y)|2 dσ(y) =

2π∫

0

|u∞(ϕ)|2dϕ+O

(
1

R

)
as R→∞. (2.90)

Since u∞(ϕ) = 0 ∀ϕ ∈ [0, 2π], by Rellich’s lemma 2.2.4 we immediately get that us = 0 in

R2 \ D̄. ¥

Of course, by virtue of the analyticity of u∞ stated above, we can replace the hypothesis

u∞(ϕ) = 0 ∀ϕ ∈ [0, 2π] in theorem 2.2.5 with the weaker one: u∞ = 0 on a subset of [0, 2π]

containing at least an accumulation point.
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Remark 2.2.3. We observe that if two radiating fields are equal, they trivially have the same

far-field pattern; conversely, by virtue of the previous theorem 2.2.5, we easily realize that

if two radiating fields have the same far-field pattern, they are equal. Indeed, it suffices to

consider the difference of the two far-field patterns: it is zero and, on the other hand, by

superposition, it represents the far-field pattern of the radiating field obtained as difference of

the two given radiating fields; but the latter difference is zero by virtue of theorem 2.2.5, i.e.

the two radiating fields are equal. Summing up, we can say that theorem 2.2.5 establishes a

one-to-one correspondence between radiating fields and their far-field patterns.

For future reference, we state also the following theorem.

Theorem 2.2.6. Let us ∈ H1
∂D,loc(R2 \ D̄) be a radiating solution of the Helmholtz equation,

u∞ ∈ L2[0, 2π] its far-field pattern and ΩR an open disc centred at the origin and containing

D̄. Then the linear operator K, defined as

K : H
1
2 (∂ΩR)⊕H− 1

2 (∂ΩR) −→ L2[0, 2π]
(
us|∂ΩR

,
∂us

∂ν

∣∣∣∣
∂ΩR

)
7−→ u∞,

(2.91)

is compact.

Proof. See theorems 4.8 and 6.22 in [15]. ¥

Having introduced the concept of far-field pattern, we can now consider a modified and

simplified version of the direct scattering problem 2.1.1, which reads as follows.

Problem 2.2.1. Let the same hypotheses of problem 2.1.1 hold; then,

• given (f, h) ∈ H
1
2 (∂D) ⊕ H− 1

2 (∂D), find the far-field pattern u∞ ∈ L2[0, 2π] of the

scattered field us uniquely determined by system (2.38).

Such a problem obviously allows one to define a linear operator B mapping the data (f, h)

into the far-field pattern u∞ of us; by virtue of the well-posedness of problem 2.1.1 (as stated

by theorem 2.1.8) and of the continuous dependence of u∞ on us (as stated by relation (2.87)),

also problem 2.2.1 is well-posed and, in particular, the operator B is continuous. We fix this

idea in the following definition.

Definition 2.2.1. We denote with B the bounded linear operator which maps the data of

problem 2.2.1 into its solution:

B : H
1
2 (∂D)⊕H− 1

2 (∂D) −→ L2[0, 2π]

(f, h) 7−→ u∞.
(2.92)
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As we shall see in section 2.4, the operator B will play an important role in introducing

the linear sampling method. However, for the moment we limit ourselves to pointing out

that we are mostly interested in a particular case of the previous problem 2.2.1, in which the

incident field is chosen as a plane wave. More precisely, we should consider system (2.38) in

the particular case in which

f = eikx·d, h =
∂eikx·d

∂ν
, (2.93)

where d := (cos θ, sin θ) is the incidence direction. Summing up, we separately formulate the

following problem.

Problem 2.2.2. Let the same hypotheses of problem 2.1.1 hold; then,

• find the far-field pattern u∞ ∈ L2[0, 2π] of the scattered field us ∈ H1
∂D,loc(R2\D̄) uniquely

determined by the following system:





∇2 ·A′∇2v + k2nv = 0 in D (a)

∆2u
s + k2us = 0 in R2 \ D̄ (b)

v − us = eikx·d on ∂D (c)

∂v

∂νA′
− ∂us

∂ν
=
∂eikx·d

∂ν
on ∂D (d)

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0, (e)

(2.94)

where, as usual, the equations (2.94)(a)-(b) are to be intended in the weak sense, the

boundary conditions (2.94)(c)-(d) are written in the sense of the trace operators14 and

the radial derivative in (2.94)(e) can be intended in the classical sense.

From system (2.94) it clearly turns out that the interior field v(·) := v(·, θ), the scattered

field us(·) := us(·, θ) and consequently its far-field pattern u∞(·) := u∞(·, θ) depend on the

incidence angle θ; for example, we could rewrite relation (2.72) as:

us(x, θ) =
eikr√
r
u∞(ϕ, θ) +O(r−3/2) as r →∞. (2.95)

Moreover, using Green’s second identity and representation (2.73), one can obtain (see [15],

14Since the incident field is now a plane wave, i.e. a real-analytic function, one would expect (and it actually
can be shown) that under suitable smoothness assumptions on the boundary of the scatterer and on the
coefficients of the equations, the fields v and us are smooth too, e.g. C2 inside the domain and C1 up to the
boundary, so that all the derivation operators can be intended in the classical sense. This general statement
falls in the class of the so-called regularity results for the solutions of boundary value problems for elliptic
partial differential equations. Precise formulations of such results can be found, e.g., in [36] and [50].
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section 4.1) the so-called reciprocity relation, i.e.15

u∞(ϕ, θ) = u∞(θ + π, ϕ+ π) ∀ϕ, θ ∈ [0, 2π], (2.96)

which states the (physically obvious) fact that there is no difference if we send an incident field in

the direction d = (cos θ, sin θ) and observe the scattered field in the direction x̂ = (cosϕ, sinϕ)

or, conversely, we send the same incident field in the direction −x̂ and observe the scattered

field in the direction −d.

2.3. Formulation of the inverse scattering problem

The inverse scattering problem we have in mind is not one of the possible inverse ones obtained

from problem 2.1.1 (nor, strictly speaking, from problem 2.2.2) interchanging the roles of the

unknowns and of the data; anyway, it is actually a simplified version of one of the possible

inverse problems arising from the direct problem 2.2.2. It reads as follows.

Problem 2.3.1. Let the same hypotheses of problem 2.1.1 hold and let u∞(·, θ) denote the

far-field pattern of the scattered field us(·, θ) determined by system (2.94); then,

• determine the support D of the scatterer from a knowledge of the incident plane wave

and of the far-field pattern u∞(ϕ, θ) for all the incidence angles θ ∈ [0, 2π] and all the

observation angles ϕ ∈ [0, 2π].

We remark that for an orthotropic medium standard examples (see [38], [56]) show that A′

and n are not in fact uniquely determined by knowing the incident plane wave and the far-field

pattern u∞(ϕ, θ) for all θ ∈ [0, 2π] and ϕ ∈ [0, 2π], but rather, as we shall see in this section

(cf. theorem 2.3.14), what is possible to determine is the support D of the inhomogeneity.

We now introduce the following operator, which will play a central role in solving the inverse

problem 2.3.1.

Definition 2.3.1. The linear operator F : L2[0, 2π] → L2[0, 2π] defined as

(Fg)(ϕ) :=

2π∫

0

u∞(ϕ, θ)g(θ)dθ, (2.97)

where u∞(ϕ, θ) is the far-field pattern of the radiating field us determined by system (2.94), is

called the far-field operator (corresponding to (2.94)).

15In writing equality (2.96), we are clearly making a little notational abuse: indeed, if, for each θ ∈ [0, 2π],
u∞(·, θ) is defined in [0, 2π], the right-hand side is, in general, meaningful if and only if ϕ, θ ∈ [0, π]. However,
such domains of definition are merely conventional and one can easily regard u∞ as a 2π-periodic function,
defined on R2, of both the variables ϕ, θ.
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Remark 2.3.1. The far-field operator F is not only continuous, but also compact and we shall

indirectly prove this property of F in the following: indeed, we shall show (see relation (2.193))

that the factorization F = B0 ◦ H holds, where B0 is a compact restriction of B (see theorem

2.4.5) and H is a continuous operator (see definition 2.4.1 and theorem 2.4.6). ¤

The next step is to study the injectivity and the denseness of the range of the far-field

operator. To this end, we introduce the definition of Herglotz wave function.

Definition 2.3.2. Given g ∈ L2[0, 2π] and d = (cos θ, sin θ), the function defined as

vg(x) :=

2π∫

0

eikx·dg(θ)dθ (2.98)

is called a Herglotz wave function (with kernel g).

Taking into account expression (2.98), an easy argument, based on the analyticity (in x) of

eikx·d and on the Lebesgue’s dominated convergence theorem, shows that vg is a real-analytic

function that solves the Helmholtz equation in all R2.

Moreover, on the one hand, if two Herglotz wave functions have the same kernel g, they

are obviously equal; on the other, the following theorem implies that if two Herglotz wave

functions are equal, then they have the same kernel g: in other terms, there is a one-to-one

correspondence between Herglotz wave functions and their kernels.

Theorem 2.3.1. If the Herglotz wave function vg is such that vg(x) = 0 ∀x ∈ R2, then its

kernel g is the zero element in L2[0, 2π].

Proof. See sections 3.3 and 3.4 in [27]. ¥

For future reference, we introduce the following linear operator and state its main properties

in the subsequent theorem.

Definition 2.3.3. Let vg be a Herglotz wave function with kernel g ∈ L2[0, 2π]; then we define

the linear operator H1 as:

H1 : L2[0, 2π] −→ H− 1
2 (∂D)

g 7−→
(
∂vg
∂ν

+ ivg

) ∣∣∣∣
∂D

.
(2.99)

Theorem 2.3.2. The operator H1 is bounded, injective and has dense range in H− 1
2 (∂D).

Proof. See section 4.3 in [15]. ¥

The following theorem is a particular formulation of the superposition principle.
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Theorem 2.3.3. Let us(·, θ) and u∞(·, θ) be the scattered field determined by system (2.94)

and its far-field pattern respectively; let g ∈ L2[0, 2π] be given. If we replace the incident plane

wave eikx·d in system (2.94) with the incident field given by the Herglotz wave function (2.98),

then the corresponding scattered field is given by

vsg(x) :=

2π∫

0

us(x, θ)g(θ)dθ (2.100)

and its far-field pattern is

v∞(ϕ) =

2π∫

0

u∞(ϕ, θ)g(θ)dθ. (2.101)

Proof. Cf. sections 3.3 and 10.4 in [27]. ¥

Comparing relations (2.97) and (2.101), we immediately find

(Fg)(ϕ) = v∞(ϕ) ∀ϕ ∈ [0, 2π]. (2.102)

Moreover, for future reference, we observe that the function defined as

ṽg(x) :=

2π∫

0

e−ikx·dg(θ)dθ (2.103)

is also a Herglotz wave function with kernel g(θ − π).

Now we have all the ingredients needed to state the following theorem, which gives a

necessary and sufficient condition for the far-field operator F to be injective with dense range.

For future reference, we give the proof.

Theorem 2.3.4. The far-field operator F corresponding to (2.94) is injective with dense range

if and only if there does not exist a Herglotz wave function vg such that the pair (v, vg) ∈
H1(D)⊕H1(D) is a solution to the following system16:





∇2 ·A′∇2v + k2nv = 0 in D (a)

∆2vg + k2vg = 0 in D (b)

v = vg on ∂D (c)

∂v

∂νA′
=
∂vg
∂ν

on ∂D. (d)

(2.104)

16From now on, when we shall consider a boundary value problem, we shall not repeat that the partial
differential equations are to be intended in the weak sense, the boundary conditions are written in the sense of
the trace operators and, if any, the radial derivatives can be intended in the classical sense.
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Proof. First of all, we prove that the far-field operator F is injective if and only if its adjoint

operator F ∗ is injective. By definition of adjoint, we have that

(Fg, h)L2[0,2π] = (g, F ∗h)L2[0,2π] ∀g, h ∈ L2[0, 2π], (2.105)

i.e.
2π∫

0




2π∫

0

u∞(ϕ, θ)g(θ)dθ


h(ϕ) dϕ =

2π∫

0

g(ϕ)(F ∗h)(ϕ) dϕ ∀g, h ∈ L2[0, 2π]. (2.106)

If we now treat the left-hand side of the previous relation (2.106) by applying Tonelli’s and

Fubini’s theorems17, regarding u∞ and h as periodic functions of period 2π, using the reci-

procity relation (2.96), interchanging the name of the integration variables and remembering

the definition (2.97) of the operator F , we get:

(Fg, h)L2[0,2π] =

2π∫

0

2π∫

0

u∞(ϕ, θ)g(θ)h(ϕ)dθdϕ =

2π∫

0

2π∫

0

g(θ)u∞(ϕ, θ)h(ϕ)dθdϕ =

=

2π∫

0

2π∫

0

g(θ)u∞(θ + π, ϕ+ π)h(ϕ)dθdϕ =

2π∫

0

2π∫

0

g(ϕ)u∞(ϕ+ π, θ + π)h(θ)dϕdθ =

=

2π∫

0

g(ϕ)




2π∫

0

u∞(ϕ+ π, θ)h(θ − π)dθ


 dϕ =

2π∫

0

g(ϕ)(Fp)(ϕ+ π)dϕ, (2.107)

where p(θ) := h(θ − π). Hence, by comparison between the right-hand side of definition (2.106)

and the last member of equalities (2.107), we obtain:

(F ∗h)(ϕ) = (Fp)(ϕ+ π). (2.108)

The previous relation (2.108) proves that F is injective if and only if F ∗ is injective. Moreover,

since N (F ∗)⊥ = R(F ), to prove the theorem it suffices to show that F is injective if and only if

there does not exist a Herglotz wave function vg such that the pair (v, vg) ∈ H1(D)⊕H1(D) is

a solution to system (2.104), or, equivalently, that F is not injective if and only if there exists

a Herglotz wave function vg such that the pair (v, vg) ∈ H1(D)⊕H1(D) is a solution to system

(2.104). We shall follow the latter way.

Then, let us assume that F is not injective; now, Fg = 0 with g 6= 0 is equivalent, by

virtue of theorems 2.3.1, 2.3.3 and relation (2.102), to the existence of a nonzero Herglotz wave

function vg (with kernel g) such that the scattered field vsg determined by system (2.94) written

replacing eikx·d with vg has zero far-field pattern v∞. By theorem 2.2.5, we have that vsg = 0 in

R2 \ D̄; hence the transmission conditions (2.94)(c)-(d) become in our case

v = vg and
∂v

∂νA′
=
∂vg
∂ν

on ∂D, (2.109)

17See, for example, [35], p. 45.
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i.e. exactly conditions (2.104)(c)-(d). Finally, since the differential equations (2.94)(a) and

(2.104)(a) for v are identical and, on the other hand, any Herglotz wave function vg satisfies

the Helmholtz equation, i.e. (2.104)(b), we have that the pair (v, vg) ∈ H1(D)⊕H1(D) satisfies

equations (2.104)(a)-(b) as well. This concludes the proof. ¥

Motivated by the previous theorem 2.3.4, we now state, in a general form, the interior

transmission problem associated with problem 2.1.1.

Problem 2.3.2. (Interior transmission problem) Let the same hypotheses of problem 2.1.1

hold; then,

• given (f, h) ∈ H 1
2 (∂D)⊕H− 1

2 (∂D), find two functions (v, w) ∈ H1(D)⊕H1(D) solving

the system: 



∇2 ·A′∇2v + k2nv = 0 in D (a)

∆2w + k2w = 0 in D (b)

v − w = f on ∂D (c)

∂v

∂νA′
− ∂w

∂ν
= h on ∂D. (d)

(2.110)

Definition 2.3.4. The boundary value problem (2.110) with f = 0 and h = 0 is named the

homogeneous interior transmission problem. Values of k2 for which the homogeneous interior

transmission problem has a nontrivial solution are called transmission eigenvalues.

Hence, theorem 2.3.4 can be partially paraphrased saying that if k2 is not a transmission eigen-

value for the homogeneous interior transmission problem (2.104), then the far-field operator

corresponding to (2.94) is injective with dense range.

Since, as we shall see in section 2.4, the linear sampling method is based on the assumption

that k2 is not a transmission eigenvalue, it will be of particular interest to establish if and

when transmission eigenvalues exist. In the final part of this section we shall give some partial

answers to this problem. Anyway, we now begin by establishing (under suitable hypotheses)

the uniqueness of the solution to problem 2.3.2.

Theorem 2.3.5. Let the same hypotheses of problem 2.1.1 hold; moreover, let us assume that

there exists a point x0 ∈ D such that either

Im(n(x0)) > 0 (2.111)

or

Im(ξ̄ ·A′(x0) ξ) < 0 ∀ξ ∈ C2 \ (0, 0). (2.112)

Then the interior transmission problem 2.3.2 has at most one solution.
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Proof. See section 6.2 in [15]. ¥

In order to establish also the existence of a solution to problem 2.3.2, we firstly need to

study the following intermediate problem.

Problem 2.3.3. (Modified interior transmission problem) Let D, A′ be as in problem

2.3.2; let the real-valued function m ∈ C(D̄) and the (complex-valued) functions ρ1, ρ2 ∈
L2[0, 2π] be assigned. Then,

• given (f, g) ∈ H 1
2 (∂D)⊕H− 1

2 (∂D), find (v, w) ∈ H1(D)⊕H1(D) solving the system:





∇2 ·A′∇2v −mv = ρ1 in D (a)

∆2w − w = ρ2 in D (b)

v − w = f on ∂D (c)

∂v

∂νA′
− ∂w

∂ν
= h on ∂D. (d)

(2.113)

Our aim is now to reformulate system (2.113) as an equivalent variational problem and

state the well-posedness of the latter. To this end, we define the Hilbert space18

W (D) :=
{
w ∈ L2(D)⊕ L2(D) | ∇2 ·w ∈ L2(D) and ∇2 ×w = 0

}
, (2.115)

equipped with the inner product

(w1,w2)W := (w1,w2)L2(D)⊕L2(D) + (∇2 ·w1,∇2 ·w2)L2(D) (2.116)

and the norm

‖w‖2
W := ‖w‖2

L2(D)⊕L2(D) + ‖∇2 ·w‖2
L2(D). (2.117)

Now, let (ϕ,ψ) ∈ H1(D)⊕W (D) and, as usual, let ν be the unit outward normal to ∂D:

then ϕ|∂D ∈ H 1
2 (∂D) by virtue of theorem A.15.2; on the other hand, it is possible to prove19

that (ψ · ν)|∂D ∈ H− 1
2 (∂D) and to apply a generalized version of the divergence theorem to

the field ϕψ. Since ∇2 · (ϕψ) = ∇2ϕ ·ψ + ϕ∇2 ·ψ, this allows one to write:

∫

D

ϕ∇2 ·ψ dx+

∫

D

∇2ϕ ·ψ dx =

∫

∂D

ϕψ · ν dσ. (2.118)

18In definition (2.115), we use two shorthands: if w = (w1, w2) ∈ L2(D)⊕L2(D), we have (obviously, in the
weak sense):

∇2 ·w :=
∂w1

∂x1
+

∂w2

∂x2
, ∇2 ×w :=

∂w1

∂x2
− ∂w2

∂x1
. (2.114)

19We refer to chapter 5 in [15] for details.



106 2 The direct and the inverse scattering problem

If we observe that, by virtue of definition (A.122), the right-hand side of identity (2.118) is just

the duality pairing between ϕ|∂D ∈ H 1
2 (∂D) and (ψ · ν)|∂D ∈ H− 1

2 (∂D), we immediately find:

〈ϕ,ψ · ν〉∂D =

∫

D

ϕ∇2 ·ψ dx+

∫

D

∇2ϕ ·ψ dx, (2.119)

where, in the left-hand side of equality (2.119), we have omitted the sign of restriction to ∂D

as subscript of the elements involved, keeping it only as subscript of the pairing sign.

We can now give the equivalent variational formulation of problem 2.3.3; the equivalence

in question is stated by the subsequent theorem.

Problem 2.3.4. Let D, A′, m, ρ1 and ρ2 be as in problem 2.3.3. Then,

• given (f, h) ∈ H
1
2 (∂D) ⊕ H− 1

2 (∂D), find (v,w) ∈ H1(D) ⊕ W (D) such that, for all

(ϕ,ψ) ∈ H1(D)⊕W (D), it holds:

∫

D

A′∇2v · ∇2ϕ̄ dx+

∫

D

mvϕ̄ dx+

∫

D

∇2 ·w∇2ψ̄ dx+

∫

D

w · ψ̄ dx− 〈v, ψ̄ · ν〉∂D+

− 〈ϕ̄,w · ν〉∂D =

∫

D

(
ρ1ϕ̄+ ρ2∇2 · ψ̄

)
dx+ 〈ϕ̄, h〉∂D − 〈f, ψ̄ · ν〉∂D. (2.120)

Theorem 2.3.6. Problems 2.3.3 and 2.3.4 are equivalent; more precisely:

• if (v, w) ∈ H1(D) ⊕ H1(D) is the unique solution to system (2.113), then (v,∇2w) ∈
H1(D)⊕W (D) is the unique solution to equation (2.120);

• conversely, if (v,w) ∈ H1(D) ⊕W (D) is the unique solution to equation (2.120), then

the unique solution (v, w) ∈ H1(D)⊕H1(D) to system (2.113) is such that w = ∇2w.

Proof. See section 6.2 in [15]. ¥

The following theorem states, under suitable hypotheses, the well-posedness20 of problem

2.3.4.

Theorem 2.3.7. Let D, A′, m, ρ1 and ρ2 be as in problem 2.3.4; besides, let us assume that

there exists a constant γ > 1 such that, ∀x ∈ D, it holds:

Re
(
ξ̄ ·A′(x) ξ

) ≥ γ‖ξ‖2
C2 ∀ξ ∈ C2; m(x) ≥ γ. (2.121)

Then problem 2.3.4 has a unique solution (v,w) ∈ H1(D)⊕W (D), which satisfies the a priori

estimate

‖v‖H1(D) + ‖w‖W ≤ 2C
γ + 1

γ − 1

(
‖ρ1‖L2(D) + ‖ρ2‖L2(D) + ‖f‖

H
1
2 (∂D)

+ ‖h‖
H−

1
2 (∂D)

)
, (2.122)

where the constant C > 0 is independent of ρ1, ρ2, f , h and γ.

20As regards the well-posedness, from theorem 2.3.7 to theorem 2.3.11 one should remember the question of
the equivalence of the norms, as already discussed in remark 2.1.4.
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Proof. See section 6.2 in [15]. ¥

As a consequence of theorems 2.3.6 and 2.3.7, we can now state the well-posedness of

problem 2.3.3 as follows.

Theorem 2.3.8. Let the same hypotheses of theorem 2.3.7 hold; then problem 2.3.3 has a

unique solution (v, w) ∈ H1(D)⊕H1(D), which satisfies the a priori estimate:

‖v‖H1(D) + ‖w‖H1(D) ≤ C
γ + 1

γ − 1

(
‖ρ1‖L2(D) + ‖ρ2‖L2(D) + ‖f‖

H
1
2 (∂D)

+ ‖h‖
H−

1
2 (∂D)

)
, (2.123)

where the constant C > 0 is independent of ρ1, ρ2, f , h and γ.

Proof. See section 6.2 in [15]. ¥

Theorems 2.3.5 and 2.3.8 now allow one to state the well-posedness of the interior trans-

mission problem 2.3.2.

Theorem 2.3.9. Let the same hypotheses of theorem 2.3.5 hold; moreover, let us assume that

there exists a constant γ > 1 such that, ∀x ∈ D, it holds:

Re
(
ξ̄ ·A′(x) ξ

) ≥ γ‖ξ‖2
C2 ∀ξ ∈ C2. (2.124)

Then problem 2.3.2 has a unique solution (v, w) ∈ H1(D)⊕H1(D), which satisfies the a priori

estimate:

‖v‖H1(D) + ‖w‖H1(D) ≤ C
(
‖f‖

H
1
2 (∂D)

+ ‖h‖
H−

1
2 (∂D)

)
, (2.125)

where the constant C > 0 is independent of f and h.

Proof. See section 6.2 in [15]. ¥

We point out that hypothesis (2.124) implies, in particular, that ‖Re(A′)(x)‖ > 1 ∀x ∈ D:

hence, the case A′(x) = I ∀x ∈ D (where I is the identity matrix) is not contemplated by the

previous theorem. Anyway, the case of Re(A′)(x) positive definite such that ‖Re(A′)(x)‖ < 1

∀x ∈ D (which excludes again the possibility A′(x) = I ∀x ∈ D) is considered in [21]: in this

paper it is shown that, by modifying the variational approach of theorems 2.3.6 and 2.3.7, one

can prove the two following results.

Theorem 2.3.10. Let D, A′, m, ρ1 and ρ2 be as in problem 2.3.3; besides, let us assume that

there exists a constant γ > 1 such that, ∀x ∈ D, it holds:

Re
(
ξ̄ · (A′(x))−1 ξ

) ≥ γ‖ξ‖2
C2 ∀ξ ∈ C2; γ−1 ≤ m(x) < 1. (2.126)
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Then problem 2.3.3 has a unique solution (v, w) ∈ H1(D)⊕H1(D), which satisfies the a priori

estimate:

‖v‖H1(D) + ‖w‖H1(D) ≤ C
(
‖ρ1‖L2(D) + ‖ρ2‖L2(D) + ‖f‖

H
1
2 (∂D)

+ ‖h‖
H−

1
2 (∂D)

)
, (2.127)

where the constant C > 0 is independent of ρ1, ρ2, f and h.

Theorem 2.3.11. Let the same hypotheses of theorem 2.3.5 hold; moreover, let us assume that

there exists a constant γ > 1 such that, ∀x ∈ D, it holds:

Re
(
ξ̄ · (A′(x))−1 ξ

) ≥ γ‖ξ‖2
C2 ∀ξ ∈ C2. (2.128)

Then problem 2.3.2 has a unique solution (v, w) ∈ H1(D)⊕H1(D), which satisfies the a priori

estimate:

‖v‖H1(D) + ‖w‖H1(D) ≤ C
(
‖f‖

H
1
2 (∂D)

+ ‖h‖
H−

1
2 (∂D)

)
, (2.129)

where the constant C > 0 is independent of f and h.

Of course, the previous theorem 2.3.11 states the well-posedness of the interior transmission

problem 2.3.2 under the specified hypotheses.

In general, if A′ and n do not satisfy the assumptions of either theorem 2.3.9 or theorem

2.3.11, one cannot state the well-posedness of problem 2.3.2. In particular, if the hypotheses

of theorem 2.3.5 (which are included in those of theorems 2.3.9 and 2.3.11) are not verified, it

might happen that k2 is a transmission eigenvalue: this would clearly imply, by linearity, the

non-uniqueness of the solution of problem 2.3.2 itself. Anyway, do transmission eigenvalues

exist and, if so, do they form a discrete set? In general, it is not known if transmission

eigenvalues exist. The only known result concerning the existence of transmission eigenvalues

is for the case in which the matrix-valued function A′(x) is the identity matrix I for all x ∈ D
and n(x) has the particular radial form n(r) (see theorem 8.13 in [27]).

Here below we give two theorems providing partial answers to the questions just asked.

Theorem 2.3.12. Let the same hypotheses of problem 2.3.2 hold; moreover, let us assume that

Im (n(x)) = 0, Im (A′(x)) = 0 ∀x ∈ D, (2.130)

and that there exists a constant γ > 1 such that, ∀x ∈ D, it holds:

ξ̄ ·A′(x) ξ ≥ γ‖ξ‖C2 ∀ξ ∈ C2; n(x) ≥ γ. (2.131)

Then the set of transmission eigenvalues is either empty or discrete.

Proof. See section 6.2 in [15]. ¥
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Theorem 2.3.13. Let the same hypotheses of problem 2.3.2 hold; moreover, let us assume that

Im (n(x)) = 0, Im (A′(x)) = 0 ∀x ∈ D, (2.132)

and that there exists a constant γ > 1 such that, ∀x ∈ D, it holds:

ξ̄ · (A′(x))−1
ξ ≥ γ‖ξ‖C2 ∀ξ ∈ C2; γ−1 ≤ n(x) < 1. (2.133)

Then the set of transmission eigenvalues is either empty or discrete.

Proof. See section 6.2 in [15]. ¥

For the reasons explained above, theorems 2.3.12 and 2.3.13, as well as theorems 2.3.9 and

2.3.11, exclude the case A′(x) = I ∀x ∈ D; such a case can be treated either by rewriting the

system (2.110) of the interior transmission problem 2.3.2 as a boundary value problem for a

fourth order partial differential equation for the difference v−w ∈ H2(D) (see [60]) or by using

analytic projection operators (see section 8.6 in [27]). The case in which ‖Re (A′(x)) ‖ > 1 for

x ∈ D0 ⊂ D and ‖Re (A′(x)) ‖ < 1 for x ∈ D \ D̄0 is still an open problem.

We conclude this section by stating the uniqueness for the inverse medium scattering prob-

lem 2.3.1.

Theorem 2.3.14. Let the domains D1 and D2, the matrix-valued functions A′
1 and A′

2, the

functions n1 and n2 satisfy the hypotheses of problem 2.1.1 (and, consequently, of problem

2.2.2). Moreover, let us assume that there exists a constant γ > 1 such that, ∀x ∈ D, the two

following conditions hold:

1. either ξ̄ · Re(A′
1(x)) ξ ≥ γ‖ξ‖2

C2 or ξ̄ · Re(A′
1(x))

−1 ξ ≥ γ‖ξ‖2
C2 ∀ξ ∈ C2;

2. either ξ̄ · Re(A′
2(x)) ξ ≥ γ‖ξ‖2

C2 or ξ̄ · Re(A′
2(x))

−1 ξ ≥ γ‖ξ‖2
C2 ∀ξ ∈ C2.

Finally, denoting with u1
∞(·, θ) and u2

∞(·, θ) the far-field patterns of the radiating fields us1(·, θ)
and us2(·, θ) respectively determined by system (2.94) written for either D1, A′

1, n1 or D2, A′
2,

n2, let us assume that

u1
∞(ϕ, θ) = u2

∞(ϕ, θ) ∀ϕ, θ ∈ [0, 2π]. (2.134)

Then it holds D1 = D2.

Proof. See section 6.3 in [15]. ¥

This theorem clearly implies that the far-field pattern contains information enough to allow

one to determine, at least in principle, the support D of the inhomogeneity: in other terms,

under the hypotheses of theorem 2.3.14, the solution to problem 2.3.1, if it exists, is unique.

However, such a problem is an inverse one, then it involves the pathologies and the consequent

regularization methods explained in chapter 1.
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2.4. The general theorem

The next step is now to determine the range of the operator B introduced by definition 2.2.1.

To this end, it is more convenient to consider its transpose21 rather than its adjoint, since

operating with the duality relation between H
1
2 (∂D) and H− 1

2 (∂D) is much simpler then using

the corresponding inner products. By means of theorem A.19.6, we can prove the following

result for the operator B.

Theorem 2.4.1. The bounded linear operator B : H
1
2 (∂D)⊕H− 1

2 (∂D) → L2[0, 2π] has dense

range in L2[0, 2π].

Proof. The transpose operator of B is

BT : L2[0, 2π] −→ H− 1
2 (∂D)⊕H

1
2 (∂D)

g 7−→ (f̃ , h̃),
(2.135)

where the functions (f̃ , h̃) are such that the general definition (A.174) of transpose operator

is satisfied. The next step is to give a specific form for such a definition in our case and

consequently to obtain an explicit expression of f̃ , h̃ in terms of g. For notational convenience,

from now on we put

X := H
1
2 (∂D)⊕H− 1

2 (∂D), (2.136)

Y := L2[0, 2π]; (2.137)

this implies (see theorem A.1.4 and relation (A.51)):

X∗ = H− 1
2 (∂D)⊕H

1
2 (∂D), (2.138)

Y ∗ = L2[0, 2π]. (2.139)

Then definition (A.174) in our case reads

〈
BTg, (f, h)

〉
X∗,X = 〈g,B(f, h)〉Y ∗,Y ∀(f, h) ∈ X, ∀g ∈ Y ∗, (2.140)

and it can also be written, recalling (2.135), as
〈
(f̃ , h̃), (f, h)

〉
X∗,X

= 〈g,B(f, h)〉Y ∗,Y ∀(f, h) ∈ X, ∀g ∈ Y ∗, (2.141)

i.e.
〈
f̃ , f

〉
H−

1
2 (∂D),H

1
2 (∂D)

+
〈
h̃, h

〉
H

1
2 (∂D),H−

1
2 (∂D)

= 〈g,B(f, h)〉Y ∗,Y ∀(f, h) ∈ X, ∀g ∈ Y ∗.

(2.142)

21See definition A.174 and, more generally, section A.19 for some elements about transpose operators.
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Now, let us consider the Herglotz wave function ṽg(x) defined in (2.103); if the boundary

data functions (f, h) in problem 2.1.1 are given in terms of ṽg(x) as

(f, h) :=

(
ṽg|∂D, ∂ṽg

∂ν

∣∣∣
∂D

)
∈ H 1

2 (∂D)⊕H− 1
2 (∂D), (2.143)

we denote with (ṽ, ũs) ∈ H1(D) ⊕ H1
∂D,loc(R2 \ D̄) the unique solution to system (2.94) with

data (2.143).

On the other hand, let, as usual, (v, us) ∈ H1(D)⊕H1
∂D,loc(R2 \ D̄) be the unique solution

to system (2.94) itself for generic data (f, h) ∈ H 1
2 (∂D)⊕H− 1

2 (∂D) and let u∞ be the far-field

pattern of the scattered field us.

Substituting representation (2.73) for the far-field pattern of a radiating field us into the

explicit expression of the duality pairing 〈g,B(f, h)〉Y ∗,Y and applying Tonelli’s and Fubini’s

theorems, we have:

〈g,B(f, h)〉Y ∗,Y =

2π∫

0

u∞(ϕ)g(ϕ)dϕ =

=

2π∫

0

eiπ/4√
8πk




∫

∂D

(
us(y)

∂e−ikx̂·y

∂ν(y)
− e−ikx̂·y ∂u

s(y)

∂ν

)
dσ(y)


 g(ϕ)dϕ =

=
eiπ/4√
8πk

∫

∂D



us(y)

2π∫

0

∂e−ikx̂·y

∂ν(y)
g(ϕ)dϕ−




2π∫

0

e−ikx̂·yg(ϕ)dϕ


 ∂us(y)

∂ν



 dσ(y) =

=
eiπ/4√
8πk

∫

∂D

{
us(y)

∂ṽg(y)

∂ν
− ṽg(y)

∂us(y)

∂ν

}
dσ(y), (2.144)

where x̂ = (cosϕ, sinϕ). We now observe that us, ũs ∈ H1
∂D,loc(R2 \ D̄) are weak solutions of

the Helmholtz equation in R2 \ D̄ and satisfy the Sommerfeld radiation condition; then we can

apply theorem A.18.2 and, by virtue of its thesis (A.160), we have:

∫

∂D

[
us(y)

∂ũs(y)

∂ν
− ũs(y)

∂us(y)

∂ν

]
dσ(y) = 0. (2.145)

Hence, multiplying this zero term by eiπ/4√
8πk

and adding it to (2.144), as well as using the

transmission conditions (2.38)(c)-(d) first for (ṽ, ũs) and then for (v, us), we have:

〈g,B(f, h)〉Y ∗,Y =
eiπ/4

√
8πk

∫

∂D

{
us(y)

[
∂ṽg(y)

∂ν
+
∂ũs(y)

∂ν

]
− [ṽg(y) + ũs(y)]

∂us(y)

∂ν

}
dσ(y) =

=
eiπ/4

√
8πk

∫

∂D

{
us(y)

∂ṽ(y)

∂νA′
− ṽ(y)

∂us(y)

∂ν

}
dσ(y) =
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=
eiπ/4

√
8πk

∫

∂D

{
[v(y)− f(y)]

∂ṽ(y)

∂νA′
− ṽ(y)

[
∂v(y)

∂νA′
− h(y)

]}
dσ(y). (2.146)

We now observe that v, ṽ ∈ H1(D) are weak solutions of equation (2.38)(a) in D; then we can

apply theorem A.18.1 (whose hypotheses are clearly verified, since the mere definition 2.2.1

of B presupposes the hypotheses of problem 2.2.1, i.e. of problem 2.1.1) and, by virtue of its

thesis (A.155), we have:
∫

∂D

[
v(y)

∂ṽ(y)

∂νA′
− ṽ(y)

∂v(y)

∂νA′

]
dσ(y) = 0. (2.147)

Substituting this result into the last member of (2.146), we immediately get:

〈g,B(f, h)〉Y ∗,Y =
eiπ/4√
8πk

∫

∂D

{
−∂ṽ(y)
∂νA′

f(y) + ṽ(y)h(y)

}
dσ(y) =

=
eiπ/4√
8πk

〈(
− ∂ṽ

∂νA′

∣∣∣
∂D
, ṽ|∂D

)
, (f, h)

〉

X∗,X
∀(f, h) ∈ X, ∀g ∈ Y ∗.

(2.148)

This means that the dual operator BT can be characterized as

BTg =
eiπ/4

√
8πk

(
− ∂ṽ

∂νA′

∣∣∣
∂D
, ṽ|∂D

)
. (2.149)

The next step is now to show that the operator BT is injective. To this end, let us suppose

that BTg = 0, with g ∈ L2[0, 2π]. This implies that

ṽ = 0 and
∂ṽ

∂νA′
= 0 on ∂D. (2.150)

Therefore ũs satisfies the Helmholtz equation in R2\D̄, the Sommerfeld radiation condition and

the transmission conditions (2.38)(c)(d), which in our case, taking also into account relations

(2.150), read:

ũs = −ṽg and
∂ũs

∂ν
= −∂ṽg

∂ν
on ∂D. (2.151)

As we have already observed just below definition (2.98), a Herglotz wave function (as −ṽg is)

solves the Helmholtz equation in all R2 and then, in particular, in a domain D; hence, from

transmission conditions (2.151), it follows that ũs can be extended to an entire solution ũsext of

the Helmholtz equation by means of the definition:

ũsext :=

{
−ṽg in D

ũs in R2 \ D̄ (2.152)

Of course, ũsext ∈ H1
∂D,loc(R2) is an entire solution that satisfies the Sommerfeld radiation

condition: remembering theorem 2.2.2, this can only happen if ũsext is identically zero on R2,
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which implies that ṽg is zero too on D, i.e., by analyticity, on R2; by virtue of theorem 2.3.1,

it follows that g = 0, whence the injectivity of BT . Now theorem A.19.6 suffices to conclude

that the range of B is dense in L2[0, 2π]. ¥

Using the notations of the previous theorem 2.4.1 and remembering equality (2.149), from

the second of relations (A.187) we also have:

N (B) = a[R(BT )] =

{
(f0, h0) ∈ X |

〈
(f̃ , h̃), (f0, h0)

〉
X∗,X

= 0 ∀ (f̃ , h̃) ∈ R(BT )

}
=

=



(f0, h0) ∈ X | eiπ/4√

8πk

∫

∂D

[
−∂ṽ(y)
∂νA′

f0(y) + ṽ(y)h0(y)

]
dσ(y) = 0 ∀g ∈ L2[0, 2π]



 .

(2.153)

For the same reasons that led us to relation (2.147), we see that the pairs

(
v|∂D, ∂v

∂νA′

∣∣∣∣
∂D

)
,

where v ∈ H1(D) is a solution of equation (2.38)(a) in D, are in N (B). Hence, B is not

injective; however, we shall restrict the operator B in such a way that the restriction is injective

and still has dense range.

To this end, let us firstly introduce the two following vector spaces:

H :=



vg ∈ C∞(D̄) | ∃g ∈ L2[0, 2π] such that vg(x) =

2π∫

0

eikx·dg(θ)dθ



 , (2.154)

S(D) :=
{
u ∈ C2(D) ∩ C1(D̄) | ∆2u+ k2u = 0 in D

}
, (2.155)

and let us denote with H and S(D) their closure in H1(D). Of course, H is the space of the

Herglotz wave functions restricted to D, while S(D) and S(D) are respectively the space of

the classical solutions and the space of the H1 weak solutions to the Helmholtz equation in D.

As already observed soon below definition (2.98), any Herglotz wave function is real-analytic

and solves the Helmholtz equation in all R2; hence H ⊂ S(D) and, consequently, H ⊂ S(D).

Theorem 2.4.2. It holds H = S(D). In other terms, any weak solution to the Helmholtz

equation in a bounded domain D ⊂ R2 with C2 boundary ∂D can be approximated in the

H1(D)-norm by a Herglotz wave function.

Proof. Since H ⊂ S(D), it suffices to prove that S(D) ⊂ H.

Then, let u ∈ S(D); it turns out that it is possible to regard any u ∈ S(D) as a weak

solution of the so-called interior mixed boundary value problem in one of its particular cases
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(see system (8.10)-(8.12) in [15] and put in it λ = 1, ΓD = ∅); hence, by virtue of theorem 8.4

in [15], there exists a positive constant C > 0 such that

‖u‖H1(D) ≤ C

∥∥∥∥
∂u

∂ν
+ iu

∥∥∥∥
H−

1
2 (∂D)

. (2.156)

We now remember that the operator H1 : L2[0, 2π] → H− 1
2 (∂D) defined by relation (2.99) has

dense range, as stated by theorem 2.3.2. Then, for any ε > 0, there exists a Herglotz wave

function vg with kernel g ∈ L2[0, 2π] such that

∥∥∥∥
(
∂u

∂ν
+ iu

)
−

(
∂vg
∂ν

+ ivg

)∥∥∥∥
H−

1
2 (∂D)

< ε, (2.157)

i.e. ∥∥∥∥
∂(u− vg)

∂ν
+ i(u− vg)

∥∥∥∥
H−

1
2 (∂D)

< ε. (2.158)

By virtue of relation (2.156) written for (u − vg) ∈ S(D), the previous inequality (2.158)

obviously implies

‖u− vg‖H1(D) < Cε. (2.159)

This means that u ∈ H. ¥

We still need to define another space:

H(∂D) :=

{(
u|∂D, ∂u

∂ν

∣∣∣∣
∂D

)
| u ∈ H

}
. (2.160)

Lemma 2.4.3. H(∂D) is a closed subspace of H
1
2 (∂D)⊕H− 1

2 (∂D).

Proof. By virtue of trace theorems A.15.2 and A.17.1, it is obvious that H(∂D) is a subspace

of H
1
2 (∂D)⊕H− 1

2 (∂D), so we have to prove only its closedness.

To this end, let (f, h) ∈ H(∂D); then, there exists a sequence

{(
un|∂D, ∂un

∂ν

∣∣∣∣
∂D

)}∞

n=0

⊂
H

1
2 (∂D)⊕H− 1

2 (∂D) such that un ∈ H ∀n ∈ N and

lim
n→∞

∥∥∥∥
(
un|∂D, ∂un

∂ν

∣∣∣∣
∂D

)
− (f, h)

∥∥∥∥
H

1
2 (∂D)⊕H− 1

2 (∂D)

= 0. (2.161)

Since the sequence

{(
un|∂D, ∂un

∂ν

∣∣∣∣
∂D

)}∞

n=0

converges, it is bounded in H
1
2 (∂D) ⊕H− 1

2 (∂D);

hence, analogously to the proof of theorem 2.4.2, by regarding un ∈ H = S(D) ∀n ∈ N as a

weak solution of the so-called interior mixed boundary value problem in one of its particular

cases (see system (8.10)-(8.12) in [15] and put in it λ = 1, ΓD = ∅), it turns out that un satisfies

inequality (2.156) and then the sequence {un}∞n=0 is bounded in H1(D). Hence, there exists a
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subsequence
{
un(k)

}∞
k=0

⊂ H that converges weakly in H1(D) to a function22 u ∈ H. From the

(weak)23 continuity of the trace operators (see theorems A.15.2 and A.17.1), we deduce that{(
un(k)|∂D,

∂un(k)

∂ν

∣∣∣∣
∂D

)}∞

k=0

converges weakly in H
1
2 (∂D) ⊕ H− 1

2 (∂D) to

(
u|∂D, ∂u

∂ν

∣∣∣∣
∂D

)
∈

H(∂D). By the uniqueness of the limit, we have that

(f, h) =

(
u|∂D, ∂u

∂ν

∣∣∣∣
∂D

)
∈ H(∂D). (2.162)

Summing up, we have found that (f, h) ∈ H(∂D) ⇒ (f, h) ∈ H(∂D), which concludes the

proof. ¥

By virtue of the previous lemma 2.4.3, H(∂D) equipped with the scalar product induced

by H
1
2 (∂D)⊕H− 1

2 (∂D) is a Hilbert space.

Now, let us denote with B0 the restriction of the operator B to H(∂D).

Theorem 2.4.4. Let us assume that k2 is not a transmission eigenvalue; then the bounded

linear operator B0 : H(∂D) → L2[0, 2π] is injective. Furthermore, if the hypotheses of either

theorem 2.3.9 or theorem 2.3.11 are also satisfied, B0 has dense range.

Proof. Let (f, h) ∈ H(∂D) be such that B0(f, h) = 0 and let (v, us) ∈ H1(D)⊕H1
∂D,loc(R2 \ D̄)

the solution to system (2.38) corresponding to these boundary data. Then us has zero far-field

pattern, whence us = 0 in R2 \ D̄ by virtue of theorem 2.2.5. Hence, we see from system (2.38)

that v satisfies the relations:




∇2 ·A′∇2v + k2nv = 0 in D (a)

v = f on ∂D (b)

∂v

∂νA′
= h on ∂D. (c)

(2.163)

By definition of H(∂D), the functions f and h are the traces on ∂D of a H1(D) solution w to

the Helmholtz equation and of its normal derivative respectively, i.e. there exists w ∈ H1(D)

such that 



∆2w + k2w = 0 in D (a)

f = w|∂D on ∂D (b)

h =
∂w

∂ν

∣∣∣∣
∂D

on ∂D. (c)

(2.164)

22In general, while any set which is closed in the strong topology is closed also in the weak topology, the
converse is false. However, for convex sets the strong closedness coincides with the weak one (see [13], p. 57);
hence, by virtue of the convexity of H (due to the fact that it is even a vector space), we have u ∈ H, and not
merely u ∈ H1(D).

23See, for example, [13], p.58.
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From systems (2.163) and (2.164), it follows that (v, w) ∈ H1(D)⊕H1(D) solves the homoge-

neous interior transmission problem, i.e.





∇2 ·A′∇2v + k2nv = 0 in D (a)

∆2w + k2w = 0 in D (b)

v − w = 0 on ∂D (c)

∂v

∂νA′
− ∂w

∂ν
= 0 on ∂D. (d)

(2.165)

Since, by hypothesis, k2 is not a transmission eigenvalue, system (2.165) has only the trivial

solution (v, w) ≡ (0, 0) in D and then, by virtue of relations (2.164)(b)-(c), we get f = h = 0,

i.e. B0 is injective.

We still have to prove that the set R(B0) is dense in L2[0, 2π]. To this end, it clearly suffices

to demonstrate that R(B) ⊂ R(B0), since we have already proved in theorem 2.4.1 that R(B)

is dense in L2[0, 2π]. We can observe that the other inclusion R(B0) ⊂ R(B) trivially holds:

hence we shall actually prove that R(B0) = R(B).

Then, let u∞ ∈ R(B): this means that u∞ is the far-field pattern of the radiating field us

which, together with the interior field v, form the unique solution (v, us) ∈ H1(D)⊕H1
∂D,loc(R2\

D̄) of system (2.38) with certain boundary data (f, h). On the other hand, by virtue of either

theorem 2.3.9 or theorem 2.3.11, the same interior field v, together with a suitable function w ∈
H1(D), can be regarded as forming the unique solution (v, w) ∈ H1(D)⊕H1(D) of the interior

transmission problem 2.3.2 with boundary data

(
us|∂D, ∂u

s

∂ν

∣∣∣∣
∂D

)
∈ H 1

2 (∂D)⊕H− 1
2 (∂D), i.e.:





∇2 ·A′∇2v + k2nv = 0 in D (a)

∆2w + k2w = 0 in D (b)

v − w = us on ∂D (c)

∂v

∂νA′
− ∂w

∂ν
=
∂us

∂ν
on ∂D. (d)

(2.166)

Hence, by means of a comparison between systems (2.38) and (2.166), we deduce that (v, us) ∈
H1(D) ⊕ H1

∂D,loc(R2 \ D̄) is the unique solution of system (2.38) itself with boundary data
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(
w|∂D, ∂w

∂ν

∣∣∣∣
∂D

)
∈ H(∂D), i.e.:





∇2 ·A′∇2v + k2nv = 0 in D (a)

∆2u
s + k2us = 0 in R2 \ D̄ (b)

v − us = w on ∂D (c)

∂v

∂νA′
− ∂us

∂ν
=
∂w

∂ν
on ∂D (d)

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0. (e)

(2.167)

This clearly means that

B0

(
w|∂D, ∂w

∂ν

∣∣∣∣
∂D

)
= u∞, (2.168)

i.e. u∞ ∈ R(B0). Hence it holds R(B) ⊂ R(B0), and this concludes the proof. ¥

Theorem 2.4.5. The operator B0 : H(∂D) → L2[0, 2π] is compact.

Proof. Given w ∈ H, let (v, us) ∈ H1(D) ⊕H1
∂D,loc(R2 \ D̄) be the unique solution of system

(2.38) with boundary data f := w|∂D and h :=
∂w

∂ν

∣∣∣∣
∂D

. Let ΩR be an open disk of radius R,

centred at the origin and containing D̄, and let ∂ΩR be its boundary. Then, we can define the

linear operator

E : H1(D)⊕H1(ΩR \ D̄) −→ H
1
2 (∂ΩR)⊕H− 1

2 (∂ΩR)

(v, us) 7−→
(
us|∂ΩR

,
∂us

∂ν

∣∣∣∣
∂ΩR

)
.

(2.169)

Since ΩR ⊃ D̄, by putting Ω := ΩR \ D̄ we have ∂Ω = ∂ΩR ∪ ∂D ⊃ ∂D; this implies that

‖us‖
H

1
2 (∂ΩR)

≤ ‖us‖
H

1
2 (∂Ω)

,

∥∥∥∥
∂us

∂ν

∥∥∥∥
H−

1
2 (∂ΩR)

≤
∥∥∥∥
∂us

∂ν

∥∥∥∥
H−

1
2 (∂Ω)

. (2.170)

By virtue of the trace theorems A.15.2, A.17.1 (i.e., more precisely, by virtue of inequalities

(A.131) and (A.150) applied in the bounded and C2 domain Ω) and of inequalities (2.170), we

have that

‖us‖
H

1
2 (∂ΩR)

+

∥∥∥∥
∂us

∂ν

∥∥∥∥
H−

1
2 (∂ΩR)

≤ C1‖us‖H1(ΩR\D̄) + C3‖us‖H1(ΩR\D̄), (2.171)

which obviously implies

‖us‖
H

1
2 (∂ΩR)

+

∥∥∥∥
∂us

∂ν

∥∥∥∥
H−

1
2 (∂ΩR)

≤ ‖v‖H1(D) + (C1 + C3)‖us‖H1(ΩR\D̄). (2.172)
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The last inequality clearly expresses the continuity24 of the operator E. On the other hand, also

the operator A defined by (2.54) in remark 2.1.4 is continuous and its continuity is expressed by

relation (2.52); the restriction A|H(∂D) : H(∂D) → H1(D)⊕H1(ΩR\D̄) is obviously continuous

too and its continuity is expressed by relation (2.52) itself written for our case, i.e.:

‖v‖H1(D) + ‖us‖H1(ΩR\D̄) ≤ C

(
‖w‖

H
1
2 (∂D)

+

∥∥∥∥
∂w

∂ν

∥∥∥∥
H−

1
2 (∂D)

)
. (2.173)

Hence, the operator G, defined as

G := E ◦ A|H(∂D) : H(∂D) −→ H
1
2 (∂ΩR)⊕H− 1

2 (∂ΩR)
(
w|∂D, ∂w

∂ν

∣∣∣∣
∂D

)
7−→

(
us|∂ΩR

,
∂us

∂ν

∣∣∣∣
∂ΩR

)
,

(2.174)

is continuous, since it is the composition of two continuous operators; the relation expressing

its continuity follows from (2.172) and (2.173), and it can be written as

‖us‖
H

1
2 (∂ΩR)

+

∥∥∥∥
∂us

∂ν

∥∥∥∥
H−

1
2 (∂ΩR)

≤ C4

(
‖w‖

H
1
2 (∂D)

+

∥∥∥∥
∂w

∂ν

∥∥∥∥
H−

1
2 (∂D)

)
. (2.175)

If we now remember the compact operatorK defined by (2.91) in theorem 2.2.6, we immediately

realize that B0 = K◦G; hence B0 is compact, since it consists of the composition of a continuous

operator with a compact one. ¥

Definition 2.4.1. Let vg be a Herglotz wave function with kernel g ∈ L2[0, 2π]; then we define

the linear operator H as:

H : L2[0, 2π] −→ H(∂D)

g 7−→
(
vg|∂D, ∂vg

∂ν

∣∣∣∣
∂D

)
.

(2.176)

Theorem 2.4.6. The linear operator H : L2[0, 2π] → H(∂D) is injective and continuous.

Proof. The injectivity of H can be easily proved observing that if vg|∂D = 0, then vg = 0 in all

R2 by analyticity: by virtue of theorem 2.3.1, this implies g = 0.

As regards the continuity of H, we firstly observe that, by definition of norm in H(∂D) and

by virtue of relations (A.131), (A.150), we have:

∥∥∥∥
(
vg|∂D, ∂vg

∂ν

∣∣∣∣
∂D

)∥∥∥∥
2

H(∂D)

= ‖vg|∂D‖2

H
1
2 (∂D)

+

∥∥∥∥
∂vg
∂ν

∣∣∣∣
∂D

∥∥∥∥
2

H−
1
2 (∂D)

≤

≤ C2
1 ‖vg‖2

H1(D) + C2
3 ‖vg‖2

H1(D) = C2
4 ‖vg‖2

H1(D), (2.177)

24Here and in the remainder of the current proof one should remember the question of the equivalence of the
norms, as already discussed in remark 2.1.4.
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having obviously put C4 :=
√
C2

1 + C2
3 . Moreover, remembering the definitions (2.98) of Her-

glotz wave function and (A.50) of scalar product in L2[0, 2π] and applying the Cauchy-Schwarz

inequality, we have:

|vg(x)| =
∣∣∣∣∣∣

2π∫

0

eikx·d g(θ)dθ

∣∣∣∣∣∣
=

∣∣∣
(
g, e−ikx·d)

L2[0,2π]

∣∣∣ ≤ ‖g‖L2[0,2π] ‖e−ikx·d‖L2[0,2π] =
√

2π ‖g‖L2[0,2π].

(2.178)

We now remember (see theorem A.13.2) that H1(D) = W 1,2(D) with equivalent norms; hence,

recalling the definition of norm in W 1,2(D) (see (A.66)) and using the previous inequality

(2.178), we can write25:

‖vg‖H1(D) ≤M2

{
‖vg‖2

L2(D) + ‖∂1vg‖2
L2(D) + ‖∂2vg‖2

L2(D)

} 1
2

=

= M2

{[
1 + k2(|d1|2 + |d2|2)

] ‖vg‖2
L2(D)

} 1
2

= M2





[
1 + k2(|d1|2 + |d2|2)

] ∫

D

|vg(x)|2dx




1
2

≤

≤M2

[
1 + k2(|d1|2 + |d2|2)

] 1
2
√

2π ‖g‖L2[0,2π]

√
misD = A ‖g‖L2[0,2π], (2.179)

where M2 is a real positive constant (cf. (A.3)), (d1, d2) ∈ R2 are the components of the unit

vector d and A := M2 [1 + k2(|d1|2 + |d2|2)]
1
2
√

2π
√

misD.

Now, by comparing relations (2.177) and (2.179), we easily get:
∥∥∥∥
(
vg|∂D, ∂vg

∂ν

∣∣∣∣
∂D

)∥∥∥∥
H(∂D)

≤ C4A ‖g‖L2[0,2π]; (2.180)

the previous inequality (2.180) expresses the continuity of H. ¥

Theorem 2.4.7. If the far-field pattern u∞ ∈ L2[0, 2π] is in the range of B0, then, for every

ε > 0, there exists a gε ∈ L2[0, 2π] such that Hgε ∈ H(∂D) satisfies the inequality

‖B0(Hgε)− u∞‖L2[0,2π] ≤ ε. (2.181)

Proof. By hypothesis, u∞ ∈ R(B0): this means that there exists a function w ∈ H such that

B0

(
w|∂D, ∂w

∂ν

∣∣∣∣
∂D

)
= u∞. (2.182)

On the other hand, by definition of H, for any g ∈ L2[0, 2π] it holds:

B0 (Hg) = B0

(
vg|∂D, ∂vg

∂ν

∣∣∣∣
∂D

)
. (2.183)

25According to the notations of section A.2, we denote with ∂1 [resp. ∂2] the partial derivative operator ∂
∂x1

[resp. ∂
∂x2

].
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Then, by virtue of the linearity of B0 and of the trace operators γ1, γ2 defined in theorems

A.15.2, A.17.1 respectively, we have

B0 (Hg)− u∞ = B0

(
(vg − w) |∂D,

(
∂vg
∂ν

− ∂w

∂ν

)∣∣∣∣
∂D

)
; (2.184)

the continuity of B0 and relation (2.184) now imply:

‖B0(Hg)− u∞‖L2[0,2π] ≤ C

(
‖vg − w‖

H
1
2 (∂D)

+

∥∥∥∥
∂vg
∂ν

− ∂w

∂ν

∥∥∥∥
H−

1
2 (∂D)

)
. (2.185)

Moreover, by definition of H, for every ε′ > 0 there exists a Herglotz wave function vgε′ such

that

‖vgε′ − w‖H1(D) ≤ ε′. (2.186)

By virtue of trace theorems A.15.2 and A.17.1 (i.e., more precisely, by virtue of inequalities

(A.131) and (A.150)), from relation (2.186) it immediately follows

‖vgε′ − w‖
H

1
2 (∂D)

≤ C1 ε
′, (2.187)

∥∥∥∥
∂vgε′

∂ν
− ∂w

∂ν

∥∥∥∥
H−

1
2 (∂D)

≤ C3 ε
′. (2.188)

Substituting inequalities (2.187) and (2.188) into (2.185), we find:

∥∥∥B0(Hgε′)− u∞
∥∥∥
L2[0,2π]

≤ C (C1 ε
′ + C3 ε

′) . (2.189)

If we put C ′ := max{C C1, C C3}, from inequality (2.189) we get:

∥∥∥B0(Hgε′)− u∞
∥∥∥
L2[0,2π]

≤ 2C ′ε′. (2.190)

The last relation (2.190) becomes exactly the thesis (2.181) by choosing ε′(ε) :=
ε

2C ′
and

simply writing gε instead of gε
′(ε). ¥

Now we can turn our attention to the main goal of this section, i.e. that of finding an

approximation to the scattering inhomogeneity D; to this end, for each z ∈ R2 we consider the

so-called far-field equation in the unknown g ∈ L2[0, 2π]:

(Fg)(ϕ) = Φ∞(ϕ, z), z ∈ R2, (2.191)

where F is the far-field operator corresponding to system (2.94) (cf. definition (2.97)), while

Φ∞(ϕ, z) is the far-field pattern (given by relation (2.74)) of the fundamental solution Φ(x, z)
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to the Helmholtz equation; substituting the expressions (2.97) and (2.75) into the left-hand

and the right-hand side of equation (2.191) respectively, we obtain its explicit form:

2π∫

0

u∞(ϕ, θ)g(θ)dθ = γe−ikx̂·z, z ∈ R2, (2.192)

where x̂ = (cosϕ, sinϕ). The explicit form (2.192) of the far-field equation shows that, for

each z ∈ R2, it is a Fredholm integral equation of the first kind, in which the data function is

a known real-analytic function and the integral kernel is the far-field pattern of the radiating

field us determined by system (2.94). If we now remember theorem 2.3.3, relation (2.102),

definitions 2.2.1, 2.4.1 and that B0 := B|H(∂D), we deduce that the far-field operator F can be

factored as

F = B0 ◦ H, (2.193)

so that the far-field equation (2.191) can be written in the form:

(B0(Hg))(ϕ) = Φ∞(ϕ, z), z ∈ R2. (2.194)

In other terms, both (Fg)(ϕ) and (B0(Hg))(ϕ) are the far-field pattern of the scattered field

us = vsg (cf. (2.100), (2.101) and (2.102)) determined by system (2.38) written for boundary

data (f, h) := Hg. Hence, by virtue of the one-to-one correspondence between radiating

fields and their far-field patterns (see theorem 2.2.5 and the comment soon below), the far-

field equation implies, for z ∈ D, that this vsg coincides with Φ(·, z) in R2 \ D̄. It follows

that, for z ∈ D, g ∈ L2[0, 2π] solves the far-field equation (2.194) if and only if the pair

(v,Φ(·, z)) ∈ H1(D)⊕H1
∂D,loc(R2 \ D̄) solves system (2.38), which, for the current case, reads:





∇2 ·A′∇2v + k2nv = 0 in D (a)

∆2Φ(·, z) + k2Φ(·, z) = 0 in R2 \ D̄ (b)

v − Φ(·, z) = vg on ∂D (c)

∂v

∂νA′
− ∂Φ(·, z)

∂ν
=
∂vg
∂ν

on ∂D (d)

lim
r→∞

√
r

(
∂Φ(·, z)
∂r

− ikΦ(·, z)
)

= 0. (e)

(2.195)

Actually, since Φ(·, z) is a fundamental solution to the Helmholtz equation and satisfies the

Sommerfeld radiation condition, conditions (2.195)(b) and (2.195)(e) are identically satisfied.

Moreover, according to the same approach followed in the last part of the proof of theorem

2.3.4, we can remember that any Herglotz wave function vg solves the Helmholtz equation in
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all R2. Hence, system (2.195) is equivalent to the following interior transmission problem:




∇2 ·A′∇2v + k2nv = 0 in D (a)

∆2vg + k2vg = 0 in D (b)

v − vg = Φ(·, z) on ∂D (c)

∂v

∂νA′
− ∂vg
∂ν

=
∂Φ(·, z)
∂ν

on ∂D. (d)

(2.196)

Summing up, if z ∈ D, g ∈ L2[0, 2π] solves the far-field equation (2.194) if and only if the pair

(v, vg) ∈ H1(D)⊕H1(D) solves system (2.196); if z ∈ R2 \ D̄, this is no more true.

Now we are nearly ready to state and prove the general theorem, from which the linear

sampling method gets its inspiration. However, we still need two preliminary results, which we

give in the two following lemmas.

Lemma 2.4.8. Let z be an arbitrary point in R2 and Uz an open neighbourhood of z; then

Φ(·, z) /∈ H1(Uz).

Proof. First of all, it is not restrictive to assume that z = (0, 0) and Uz = Ωε := {x ∈
R2 | ‖x‖R2 < ε} for some ε > 0 small enough. Secondly, if we remember definition (2.55) and

use the relation26

d

dr
H

(1)
0 (r) = H

(1)
1 (r) ∀r > 0, (2.197)

taking into account the asymptotic behaviour27 of H
(1)
1 (r) for r → 0+ we easily get:

∂Φ(·, (0, 0))

∂r
(x) =

1

2π

1

‖x‖R2

+O(‖x‖R2 log ‖x‖R2) as ‖x‖R2 → 0, (2.198)

where we have denoted with
∂Φ(·, (0, 0))

∂r
(x) the value in x 6= (0, 0) of the classical radial

derivative of Φ(·, (0, 0)).

Now, let us suppose, by absurd, that Φ(·, (0, 0)) ∈ H1(Ωε): this implies, in particular, that

the weak derivatives ∂1Φ(·, (0, 0)), ∂2Φ(·, (0, 0)) exist and belong to L2(Ωε); consequently, for

each θ ∈ [0, 2π] also their linear combination

fθ(·) := cos θ ∂1Φ(·, (0, 0)) + sin θ ∂2Φ(·, (0, 0)) (2.199)

belongs to L2(Ωε). On the other hand, if we take ε′ < ε and consider the open circular corona

Ω(ε′, ε) := Ωε\Ωε′ , we obviously have that Φ(·, (0, 0)) ∈ C1(Ω(ε′, ε))∩L2(Ω(ε′, ε)) with classical

partial derivatives
∂Φ(·, (0, 0))

∂x1

,
∂Φ(·, (0, 0))

∂x2

∈ L2(Ω(ε′, ε)): then, by virtue of remark A.8.1,

the weak partial derivatives coincide with the classical ones in Ω(ε′, ε), i.e.

∂1Φ(·, (0, 0)) =
∂Φ(·, (0, 0))

∂x1

, ∂2Φ(·, (0, 0)) =
∂Φ(·, (0, 0))

∂x2

in Ω(ε′, ε). (2.200)

26See sections 3.2 and 3.3 in [15].
27See sections 3.2 and 3.3 in [15].
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Hence, by comparing definition (2.199) with equalities (2.200), we also have

fθ(·) = cos θ
∂Φ(·, (0, 0))

∂x1

+ sin θ
∂Φ(·, (0, 0))

∂x2

=
∂Φ(·, (0, 0))

∂r
in Ω(ε′, ε). (2.201)

Since the previous equality holds for all ε′ ∈ (0, ε), it actually holds in Ωε \{(0, 0)} (i.e. almost

everywhere in Ωε). Now, the behaviour of
∂Φ(·, (0, 0))

∂r
in Ωε \ {(0, 0)} is given by relation

(2.198), whose right-hand side involves the term
1

‖x‖R2

, i.e. a singularity in (0, 0). On the

other hand, a well-known general result in classical analysis is that

1

‖ · ‖Rn

∈ Lp(Ωr) ⇐⇒ 1 ≤ p < n, (2.202)

being Ωr := {x ∈ Rn | ‖x‖Rn < r} for some r > 0. Since in our case p = n = 2, we have that
∂Φ(·, (0, 0))

∂r
/∈ L2(Ωε), i.e., by virtue of equality (2.201), fθ(·) /∈ L2(Ωε). This contradicts what

previously stated about fθ and then the proof is complete. ¥

Lemma 2.4.9. Let, as usual, D be a nonempty, bounded and open subset of R2 with C2

boundary; let z∗ be an arbitrary point of ∂D and {zj}∞j=0 ⊂ D a sequence of points of D such

that lim
j→∞

‖zj − z∗‖R2 = 0. Moreover, let ΩR := {x ∈ R2 | ‖x‖R2 < R} be large enough to

contain D̄, i.e. ΩR ⊃ D̄. Then it holds:

lim
j→∞

‖Φ(·, zj)‖H1(ΩR\D̄) = ∞. (2.203)

Proof. We firstly observe that if Uz∗ is an open neighbourhood of z∗, then, by virtue of the

previous lemma 2.4.8, Φ(·, z∗) /∈ H1(Uz∗): this clearly implies that Φ(·, z∗) /∈ H1(ΩR \ D̄), i.e.

‖Φ(·, z∗)‖H1(ΩR\D̄) = ∞. (2.204)

Then, let us suppose, by absurd, that limit (2.203) does not hold: this means that there

exist a constant M > 0 and a subsequence {zjk}∞k=0 ⊂ D such that

‖Φ(·, zjk)‖H1(ΩR\D̄) ≤M ∀k ∈ N. (2.205)

Remembering that H1(ΩR \ D̄) = W 1,2(ΩR \ D̄) with equivalent norms (see theorem A.13.2,

statement No 2) and recalling definition (A.66) (with n = 2, r = 1, p = 2), relation (2.205)

implies that there exists a constant M ′ > 0 such that

∫

ΩR\D̄

∑

|α|N2≤1

|∂αΦ(x, zjk)|2 dx ≤ (M ′)2 ∀k ∈ N. (2.206)
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On the other hand, it clearly holds:

lim
k→∞

∂αΦ(x, zjk) = ∂αΦ(x, z∗) ∀x ∈ R2 \ {z∗}, ∀α ∈ N2, (2.207)

and then, in particular:

lim
k→∞

∑

|α|N2≤1

|∂αΦ(x, zjk)|2 =
∑

|α|N2≤1

|∂αΦ(x, z∗)|2 ∀x ∈ R2 \ {z∗}. (2.208)

Now, relations (2.206) and (2.208) together imply, by Fatou’s lemma28, that

∃
∫

ΩR\D̄

∑

|α|N2≤1

|∂αΦ(x, z∗)|2 dx ≤ (M ′)2. (2.209)

Remembering again the equivalence holding between the norm in W 1,2(ΩR \ D̄) and the one in

H1(ΩR \ D̄), relation (2.209) means that ‖Φ(·, z∗)‖2
H1(ΩR\D̄)

exists finite, against (2.204). This

concludes the proof. ¥

Theorem 2.4.10. [general theorem] Let D ⊂ R2 be a nonempty, open and bounded set

such that its boundary ∂D is of class C2 and the exterior domain R2 \ D̄ is connected. Let the

matrix-valued function A′ : D̄ → C2×2, with A′ =
(
a′jk

)
j,k=1,2

, satisfy the following properties:

1. the functions a′jk are continuously differentiable, i.e. a′jk ∈ C1(D̄) ∀j, k = 1, 2;

2. the matrix-valued function Re(A′) : D̄ → R2×2, defined by (Re(A′)(x))i,j := Re(a′jk(x))

∀j, k = 1, 2 and ∀x ∈ D̄, is symmetric and verifies the condition:

either

∃ γ > 1 | ξ̄ · Re(A′(x)) ξ ≥ γ ‖ξ‖2
C2 ∀ξ ∈ C2, ∀x ∈ D̄, (2.210)

or

∃ γ > 1 | ξ̄ · Re(A′(x))−1 ξ ≥ γ ‖ξ‖2
C2 ∀ξ ∈ C2, ∀x ∈ D̄; (2.211)

3. the matrix-valued function Im(A′) : D̄ → R2×2, defined by (Im(A′)(x))i,j := Im(a′jk(x))

∀j, k = 1, 2 and ∀x ∈ D̄, is symmetric and verifies the condition:

ξ̄ · Im(A′(x)) ξ ≤ 0 ∀ξ ∈ C2, ∀x ∈ D̄. (2.212)

Moreover, let n ∈ C(D̄) be such that Im(n(x)) ≥ 0 for all x ∈ D̄. Finally, let us assume that

there exists a point x0 ∈ D such that either

Im(n(x0)) > 0 (2.213)

28See, for example, [45], p. 300.
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or

ξ̄ · Im(A′(x0)) ξ < 0 ∀ξ ∈ C2 \ (0, 0). (2.214)

Then, if F is the far-field operator (2.97) corresponding to system (2.94), the following facts

hold.

1. If z ∈ D, then for every ε > 0 there exists a solution gεz ∈ L2[0, 2π] of the inequality

‖Fgεz − Φ∞(·, z)‖L2[0,2π] ≤ ε; (2.215)

moreover this solution is such that

lim
z→∂D

‖gεz‖L2[0,2π] = ∞ (2.216)

and

lim
z→∂D

‖vgε
z
‖H1(D) = ∞, (2.217)

where vgε
z

is the Herglotz wave function with kernel gεz.

2. If z ∈ R2 \ D̄, then for every ε > 0 and δ > 0 there exists a solution gε,δz ∈ L2[0, 2π] of

the inequality ∥∥Fgε,δz − Φ∞(·, z)
∥∥
L2[0,2π]

≤ ε+ δ; (2.218)

moreover this solution is such that

lim
δ→0+

‖gε,δz ‖L2[0,2π] = ∞ (2.219)

and

lim
δ→0+

‖vgε,δ
z
‖H1(D) = ∞, (2.220)

where vgε,δ
z

is the Herglotz wave function with kernel gε,δz .

Proof. We obviously distinguish two cases: z ∈ D and z ∈ R2 \ D̄.

1) Let us assume that z ∈ D. We formulate the following interior transmission problem:

find (v, w) ∈ H1(D)⊕H1(D) such that





∇2 ·A′∇2v + k2nv = 0 in D (a)

∆2w + k2w = 0 in D (b)

v − w = Φ(·, z) on ∂D (c)

∂v

∂νA′
− ∂w

∂ν
=
∂Φ(·, z)
∂ν

on ∂D. (d)

(2.221)

Since the hypotheses of either theorem 2.3.9 or theorem 2.3.11 are clearly satisfied, system

(2.221) has a unique solution (v, w) ∈ H1(D) ⊕H1(D); since, as already observed, equations

(2.195)(b) and (2.195)(e) are identically satisfied, from system (2.221) it easily follows that
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(v,Φ(·, z)) solves system (2.38) with boundary data (f, h) ∈ H(∂D) defined as f := w|∂D,

h :=
∂w

∂ν

∣∣∣∣
∂D

, i.e.





∇2 ·A′∇2v + k2nv = 0 in D (a)

∆2Φ(·, z) + k2Φ(·, z) = 0 in R2 \ D̄ (b)

v − Φ(·, z) = w on ∂D (c)

∂v

∂νA′
− ∂Φ(·, z)

∂ν
=
∂w

∂ν
on ∂D (d)

lim
r→∞

√
r

(
∂Φ(·, z)
∂r

− ikΦ(·, z)
)

= 0. (e)

(2.222)

Since the scattered field is, in this case, Φ(·, z), which has far-field pattern Φ∞(·, z), we can

conclude that Φ∞(·, z) is in the range of B0, that is, recalling (2.182),

B0

(
w|∂D, ∂w

∂ν

∣∣∣∣
∂D

)
= Φ∞(·, z). (2.223)

Then, by virtue of theorem 2.4.7, for any ε > 0, we can find a gεz such that

‖B0(Hgεz)− Φ∞(·, z)‖L2[0,2π] ≤ ε, (2.224)

which, remembering factorization (2.193), is just thesis (2.215); moreover, recalling the proof

of theorem 2.4.7 itself (in particular, relation (2.186)), we have that the corresponding Herglotz

wave function vgε
z

approximates w in the H1(D)-norm.

Our aim is now to show that if z approaches the boundary ∂D from the interior of D,

then both gεz and vgε
z

blow up in their respective norms. To this end, let z∗ be any point of the

boundary of ∂D and let {zj}∞j=0 ⊂ D be any sequence of points inD such that lim
j→∞

‖zj−z∗‖R2 =

0; for example, for L > 0 small enough, we can define such a sequence in the following way:

zj := z∗ − L

j
ν(z∗), j ∈ N, (2.225)

where ν(z∗) is the unit outward normal at z∗. We denote with (vj, wj) the unique solution to

system (2.221) corresponding to z = zj. As j →∞, the points zj approach the boundary point

z∗; hence, by virtue of lemma 2.4.9, we have

lim
j→∞

‖Φ(·, zj)‖H1(ΩR\D̄) = ∞, (2.226)

where ΩR is, as in lemma 2.4.9 itself, an open and origin-centred disk containing D̄.

Now, by means of relation (2.226) it is possible to prove that

lim
j→∞

‖wj‖H1(D) = ∞. (2.227)
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Indeed, let us assume, by absurd, that limit (2.227) does not hold: hence, there exist a subse-

quence {zjk}∞k=0 of {zj}∞j=0 and a positive constant C0 such that

‖wjk‖H1(D) ≤ C0 ∀k ∈ N. (2.228)

From the trace theorems A.15.2 and A.17.1 (i.e., more precisely, from inequalities (A.131) and

(A.150)), we immediately get:

‖wjk‖H 1
2 (∂D)

≤ C1C0 and

∥∥∥∥
∂wjk
∂ν

∥∥∥∥
H−

1
2 (∂D)

≤ C3C0 ∀k ∈ N. (2.229)

We now recall that, for any k ∈ N, the pair (vjk ,Φ(·, zjk)) is the unique solution to system (2.38)

with boundary data (f, h) :=

(
wjk |∂D,

∂wjk
∂ν

∣∣∣∣
∂D

)
; hence we can use the a priori estimate (2.52),

which, together with relations (2.229), gives:

‖vjk‖H1(D) + ‖Φ(·, zjk)‖H1(ΩR\D̄) ≤ C

(
‖wjk‖H 1

2 (∂D)
+

∥∥∥∥
∂wjk
∂ν

∥∥∥∥
H−

1
2 (∂D)

)
≤ CC0(C1 + C3),

(2.230)

which clearly contradicts relation (2.226). Hence limit (2.227) has to hold.

On the other hand, by virtue of what already observed about inequality (2.224), for any

j ∈ N there exists a Herglotz wave function vgε
zj

(with kernel gεzj
satisfying inequality (2.224)

written for zj instead of z) that approximates wj in the H1(D)-norm; more precisely, for each

ε > 0 chosen for inequality (2.224), there exists an ε′(ε), with lim
ε→0+

ε′(ε) = 0, such that

‖vgε
zj
− wj‖H1(D) ≤ ε′(ε). (2.231)

Since, by the continuity of the norm, it holds:

∣∣∣‖vgε
zj
‖H1(D) − ‖wj‖H1(D)

∣∣∣ ≤ ‖vgε
zj
− wj‖H1(D), (2.232)

relations (2.227) and (2.231) clearly imply that

lim
j→∞

‖vgε
zj
‖H1(D) = ∞. (2.233)

Moreover, remembering the definitions (2.98) of Herglotz wave function and (A.50) of scalar

product in L2[0, 2π] and applying the Cauchy-Schwarz inequality, we have:

|vgε
zj

(x)| =
∣∣∣∣∣∣

2π∫

0

eikx·d gεzj
(θ)dθ

∣∣∣∣∣∣
=

∣∣∣∣
(
gεzj
, e−ikx·d

)
L2[0,2π]

∣∣∣∣ ≤

≤ ‖gεzj
‖L2[0,2π] ‖e−ikx·d‖L2[0,2π] =

√
2π ‖gεzj

‖L2[0,2π]. (2.234)
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We now remember (see theorem A.13.2) that H1(D) = W 1,2(D) with equivalent norms; hence,

recalling the definition of norm in W 1,2(D) (see (A.66)) and using the previous inequality

(2.234), we can write29:

‖vgε
zj
‖H1(D) ≤M2

{
‖vgε

zj
‖2
L2(D) + ‖∂1vgε

zj
‖2
L2(D) + ‖∂2vgε

zj
‖2
L2(D)

} 1
2

=

= M2

{[
1 + k2(|d1|2 + |d2|2)

] ‖vgε
zj
‖2
L2(D)

} 1
2

=





[
1 + k2(|d1|2 + |d2|2)

] ∫

D

|vgε
zj

(x)|2dx




1
2

≤

≤M2

[
1 + k2(|d1|2 + |d2|2)

] 1
2
√

2π ‖gεzj
‖L2[0,2π]

√
misD = A ‖g‖L2[0,2π], (2.235)

where M2 is a real positive constant (cf. (A.3)), (d1, d2) ∈ R2 are the components of the unit

vector d and A := M2 [1 + k2(|d1|2 + |d2|2)]
1
2
√

2π
√

misD.

Finally, from limit (2.233) and relation (2.235), we immediately get:

lim
j→∞

‖gεzj
‖L2[0,2π] = ∞. (2.236)

Since limits (2.236) and (2.233) hold for any sequence {zj}∞j=0 ⊂ D such that lim
j→∞

‖zj−z∗‖R2 =

0, we conclude that the thesis limits (2.216) and (2.217) hold too.

2) Let us now assume that z ∈ R2 \ D̄. Then, by virtue of lemma 2.4.8, we have that

Φ(·, z) /∈ H1
∂D,loc(R2 \ D̄) and then Φ(·, z) cannot be a weak (i.e. in H1

∂D,loc(R2 \ D̄)) solution to

the Helmholtz equation in the exterior of D (moreover, from remark 2.2.1, we know that if it

were such a solution, Φ(·, z) would be analytic in R2 \ D̄, which is clearly not the case, owing

to its singularity in z).

This implies, in particular, that Φ∞(·, z) cannot belong to the (dense) range of the oper-

ator B0, but only to its closure. Indeed, let us suppose, by absurd, that Φ∞(·, z) ∈ R(B0):

this means that there exists a weak solution (v, us) ∈ H1(D) ⊕ H1
∂D,loc(R2 \ D̄) of system

(2.38) (for some boundary data (f, h) ∈ H(∂D)) such that the far-field pattern u∞ of the

radiating scattered field us coincides with Φ∞(·, z). Now, let us consider a disc ΩR := {(x, y) ∈
R2 | ‖(x, y)‖R2 < R} large enough to contain D̄∪{z}: of course, u∞ and Φ∞(·, z) are respectively

the far-field patterns of the radiating solutions us,Φ(·, z) ∈ H1
∂D,loc(R2 \ Ω̄R) of the Helmholtz

equation. Hence, remembering remark 2.2.3, it holds us = Φ(·, z), i.e. us−Φ(·, z) = 0, in R2\Ω̄R

and consequently, by virtue of the unique continuation property enjoyed by real-analytic func-

tions (see theorem A.4.3), us − Φ(·, z) = 0, i.e. us = Φ(·, z), in R2 \ {
D̄ ∪ Uz

}
, where Uz is an

arbitrarily small neighbourhood of z. This implies that us cannot be a real-analytic function

in R2 \ D̄, in contradiction (remembering remark 2.2.1) with the previous assumption that

us ∈ H1
∂D,loc(R2 \ D̄) is a weak and radiating solution of the Helmholtz equation.

29According to the notations of section A.2, we denote with ∂1 [resp. ∂2] the partial derivative operator ∂
∂x1

[resp. ∂
∂x2

].
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Summing up, the equation

B0(f, h) = Φ∞(·, z) (2.237)

for the unknown (f, h) ∈ H(∂D) is impossible for any z ∈ R2 \ D̄. Such an impossibility does

not derive from the presence of noise on the “datum” Φ∞(·, z) (which is properly not a datum,

since it is rather a known analytic function) or on the operator B0 (which is now supposed to

be known exactly): in fact, equation (2.237), just as the far-field equation (2.191), has been

introduced a priori and it does not describe any physical phenomenon, so it does not need

to be solvable in absence of noise (cf. remark 1.6.2). However, there is nothing preventing

us from computing the Tikhonov regularized solution (fα(z), hα(z)) of equation (2.237) for any

z ∈ R2 \ D̄; but then the question arises: how to choose the value α∗(z) of the regularization

parameter α(z)? In the current situation, it would be meaningless to apply the generalized

discrepancy principle or any other criterion taking into account the noise levels δ and h on

the datum and on the operator respectively: indeed, this would imply no regularization at all,

since here δ = h = 0, and, consequently, no kind of solution at all to equation (2.237), which

does not admit even the generalized solution, owing to the fact that Φ∞(·, z) ∈ R(B0)\R(B0).

Then, the next step is to give a class of parameter choice rules which enable us to go on with

the proof of the theorem.

To this end, we recall property No 5 of lemma 1.8.1, which we rewrite here below for the

reader’s convenience:

lim
α→0+

‖Ahfηα − gδ‖Y = inf
f∈X

[Ahf − gδ]Y , (2.238)

and which in our case reads

lim
α(z)→0+

∥∥B0(fα(z), hα(z))− Φ∞(·, z)∥∥
L2[0,2π]

= 0 ∀z ∈ R2 \ D̄, (2.239)

having remembered that now δ = h = 0 (i.e. neither the “datum” Φ∞(·, z) nor the operator B0

respectively are affected by noise) and R(B0) = L2[0, 2π]. The previous limit (2.239) implies

that for any z ∈ R2 \ D̄ and for any δ > 0 (which has clearly nothing to do with the noise level

on the “datum” Φ∞(·, z)) there exists an α0(δ, z) > 0 such that

∥∥B0(fα(z), hα(z))− Φ∞(·, z)
∥∥
L2[0,2π]

≤ δ ∀α(z) ∈ (0, α0(δ, z)). (2.240)

It follows that for any z ∈ R2 \ D̄ it is always possible to choose, as parameter choice rule, a

function α∗(·, z) : R+ → R+ mapping δ into α∗(δ, z) and verifying the two following properties:

∥∥B0(fα∗(δ,z), hα∗(δ,z))− Φ∞(·, z)
∥∥
L2[0,2π]

≤ δ ∀δ > 0, ∀z ∈ R2 \ D̄; (2.241)

lim
δ→0+

α∗(δ, z) = 0 ∀z ∈ R2 \ D̄. (2.242)

All the functions α∗(·, z) satisfying conditions (2.241) and (2.242) form the family of the pa-

rameter choice rules we are interested in: from now on, we arbitrarily choose one of them and

denote it simply with α∗(·, z).
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Furthermore, by virtue of theorem 2.4.7, for any z ∈ R2 \ D̄ and for any ε > 0 there exists

a function gεα∗(δ,z) ∈ L2[0, 2π], denoted from now on as gε,δz , such that:

∥∥B0(Hgε,δz )−B0(fα∗(δ,z), hα∗(δ,z))
∥∥
L2[0,2π]

≤ ε. (2.243)

Hence, by means of the triangle inequality and of relations (2.241), (2.243), for any z ∈ R2 \ D̄
it holds:

∥∥B0(Hgε,δz )− Φ∞(·, z)
∥∥
L2[0,2π]

≤
≤

∥∥B0(Hgε,δz )−B0(fα∗(δ,z), hα∗(δ,z))
∥∥
L2[0,2π]

+
∥∥B0(fα∗(δ,z), hα∗(δ,z))− Φ∞(·, z)

∥∥
L2[0,2π]

≤ ε+ δ,

(2.244)

which, remembering factorization (2.193), is just thesis (2.218).

We now observe that since (fα∗(δ,z), hα∗(δ,z)) ∈ D(B0) = H(∂D) for any z ∈ R2 \ D̄ and for

any δ > 0, by definition of H(∂D) there exists a function wα∗(δ,z) ∈ H such that

(fα∗(δ,z), hα∗(δ,z)) =

(
wα∗(δ,z)|∂D,

∂wα∗(δ,z)
∂ν

∣∣∣∣
∂D

)
. (2.245)

Recalling the proof of theorem 2.4.7 (in particular, relation (2.186)), we have that such a func-

tion wα∗(δ,z) is approximated in the H1(D)-norm by the Herglotz wave function vgε,δ
z

with kernel

gε,δz introduced to write relation (2.243); more precisely, for any ε > 0 chosen for inequality

(2.243), there exists an ε′(ε), with limε→0+ ε′(ε) = 0, such that

∥∥∥vgε,δ
z
− wα∗(δ,z)

∥∥∥
H1(D)

≤ ε′(ε). (2.246)

By virtue of trace theorems A.15.2, A.17.1 (i.e., more precisely, by virtue of inequalities (A.131)

and (A.150)), from relations (2.245) and (2.246) it follows:

∥∥∥vgε,δ
z
− fα∗(δ,z)

∥∥∥
H

1
2 (∂D)

=
∥∥∥vgε,δ

z
− wα∗(δ,z)

∥∥∥
H

1
2 (∂D)

≤ C1 ε
′(ε), (2.247)

∥∥∥∥
∂vgε,δ

z

∂ν
− hα∗(δ,z)

∥∥∥∥
H−

1
2 (∂D)

=

∥∥∥∥
∂vgε,δ

z

∂ν
− ∂wα∗(δ,z)

∂ν

∥∥∥∥
H−

1
2 (∂D)

≤ C3 ε
′(ε). (2.248)

Hence, taking the square of relations (2.247), (2.248) and summing them, we have:

∥∥∥∥
(
vgε,δ

z
,
∂vgε,δ

z

∂ν

)
− (

fα∗(δ,z), hα∗(δ,z)
)∥∥∥∥

2

H
1
2 (∂D)⊕H− 1

2 (∂D)

=

=
∥∥∥vgε,δ

z
− fα∗(δ,z)

∥∥∥
2

H
1
2 (∂D)

+

∥∥∥∥
∂vgε,δ

z

∂ν
− hα∗(δ,z)

∥∥∥∥
2

H−
1
2 (∂D)

≤ (
C2

1 + C2
3

)
[ε′(ε)]2. (2.249)

We now remember that the norm on H(∂D) is the restriction to H(∂D) itself of the norm on

H
1
2 (∂D)⊕H− 1

2 (∂D) (cf. the brief comment soon below lemma 2.4.3) and observe that both the
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pairs

(
vgε,δ

z
,
∂vgε,δ

z

∂ν

)∣∣∣∣
∂D

and
(
fα∗(δ,z), hα∗(δ,z)

) |∂D belong to H(∂D). Hence, as a consequence

of the continuity of such a norm, we can write:

∣∣∣∣∣
∥∥∥∥
(
vgε,δ

z
,
∂vgε,δ

z

∂ν

)∥∥∥∥
H(∂D)

−
∥∥(
fα∗(δ,z), hα∗(δ,z)

)∥∥
H(∂D)

∣∣∣∣∣ ≤

≤
∥∥∥∥
(
vgε,δ

z
,
∂vgε,δ

z

∂ν

)
− (

fα∗(δ,z), hα∗(δ,z)
)∥∥∥∥

H(∂D)

. (2.250)

By means of a comparison between relations (2.249) and (2.250), we immediately get

∣∣∣∣∣
∥∥∥∥
(
vgε,δ

z
,
∂vgε,δ

z

∂ν

)∥∥∥∥
H(∂D)

−
∥∥(
fα∗(δ,z), hα∗(δ,z)

)∥∥
H(∂D)

∣∣∣∣∣ ≤
√
C2

1 + C2
3 ε

′(ε). (2.251)

On the other hand, we have that

(
fα∗(δ,z), hα∗(δ,z)

)
= Rα∗(δ,z)Φ∞(·, z), (2.252)

where, for each δ > 0 and for each z ∈ R2 \ D̄, Rα∗(δ,z) is an operator belonging to the family

of (linear) Tikhonov’s regularization operators {Rα}α>0, defined, in our case, as (cf. equality

(1.128)):

Rα = B∗
0(B0B

∗
0 + αI)−1 ∀α > 0. (2.253)

Moreover, rewriting relation (1.158) for our case gives:

∥∥B0B
∗
0(B0B

∗
0 + αI)−1

∥∥ ≤ 1 ∀α > 0, (2.254)

then we have:

sup
α>0

‖B0Rα‖ <∞, (2.255)

i.e. hypothesis (1.97) of theorem 1.6.7 is verified; hence also its thesis (1.98) holds. In particular,

since, as already observed, Φ∞(·, z) /∈ D(B†
0), we have that

lim
σ→0+

‖RσΦ∞(·, z)‖H(∂D) = ∞ ∀z ∈ R2 \ D̄, (2.256)

where limit (2.256) is to be intended over the set of σ-values which are in the range of α∗(·, z).
By virtue of relation (2.242), we can rewrite limit (2.256) as

lim
δ→0+

∥∥Rα∗(δ,z)Φ∞(·, z)
∥∥
H(∂D)

= ∞ ∀z ∈ R2 \ D̄. (2.257)

Remembering now relations (2.251), (2.252) and (2.257), we easily get:

lim
δ→0+

∥∥∥∥
(
vgε,δ

z
,
∂vgε,δ

z

∂ν

)∥∥∥∥
H(∂D)

= ∞, (2.258)
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i.e.

lim
δ→0+

{∥∥∥vgε,δ
z

∥∥∥
H

1
2 (∂D)

+

∥∥∥∥
∂vgε,δ

z

∂ν

∥∥∥∥
H

1
2 (∂D)

}
= ∞. (2.259)

Furthermore, by applying trace theorems A.15.2 and A.17.1 again (i.e., more precisely, by

virtue of inequalities (A.131) and (A.150)), we have:

∥∥∥vgε,δ
z

∥∥∥
H

1
2 (∂D)

≤ C1 ‖vgε,δ
z
‖H1(D), (2.260)

∥∥∥∥
∂vgε,δ

z

∂ν

∥∥∥∥
H−

1
2 (∂D)

≤ C3 ‖vgε,δ
z
‖H1(D). (2.261)

Summing inequalities (2.260) and (2.261), we get:

∥∥∥vgε,δ
z

∥∥∥
H

1
2 (∂D)

+

∥∥∥∥
∂vgε,δ

z

∂ν

∥∥∥∥
H

1
2 (∂D)

≤ (C1 + C3)‖vgε,δ
z
‖H1(D). (2.262)

Taking now into account relations (2.259) and (2.262), we easily find:

lim
δ→0+

∥∥∥vgε,δ
z

∥∥∥
H1(D)

= ∞, (2.263)

which is exactly thesis (2.220).

Finally, thesis (2.219) follows from (2.220) using an argument analogous to the one employed

to prove that limit (2.236) follows from (2.233). ¥

We conclude this section by pointing out that although we have stated and proved the

general theorem for the case of a penetrable, orthotropic, inhomogeneous and cylinder-shaped

medium scattering a TE polarized electromagnetic wave, analogous theorems hold not only

for TM polarization, but also for the obstacle (i.e. impenetrable) case (with various boundary

conditions and with both TE and TM polarization), as well as for genuine 3D scatterers. We

refer to [15] (and its bibliography) for all these (and other, more general) cases.

2.5. The linear sampling method

The general theorem 2.4.10 states, in particular, that, under suitable hypotheses, an approx-

imate solution for the far-field equation exists whose L2[0, 2π]-norm blows up to infinity for

all points approaching the boundary of the scatterer from inside and stays arbitrarily large

outside. The existence of such an approximate solution is the mathematical key idea inspiring

the linear sampling method [26]: the latter, indeed, is a qualitative method for the visualization

of scatterers (under fixed-frequency scattering conditions) based on the plot of a regularized
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solution of the far-field equation, written in an angle-discretized version obtained from a finite

number of (noisy) measurements of the far-field pattern of the scattered field.

More precisely, the linear sampling method applies the regularization theory for linear

inverse problems in order to provide a regularized solution of an angle-discretized version of the

far-field equation according to the following algorithm [29]: given P ×Q (noisy) measurements

of the far-field pattern at P observation angles and for Q incident fixed-frequency fields:

• take a grid of points in R2 (or R3) covering a region in which the scatterer is known to

be located;

• for each grid point, determine the Tikhonov regularized solution of the linear system

obtained as a discretization of the far-field equation over the incidence and observation

angles;

• for each grid point, choose the optimal30 value of the regularization parameter by means

of the generalized discrepancy principle;

• for each grid point, map the Euclidean norm of the optimal regularized solution.

Hence, the linear sampling method turns out to be a qualitative method for the solution of

inverse scattering problems based on the observation that the scatterer profile can be detected

by all grid points where the Euclidean norm of the optimal regularized solution is mostly

large. Of course a visualization of the scatterer profile can be obtained by mapping the values

of an appropriate monotonically increasing or decreasing function I : R+ ∪ {0} → R of the

norm itself. The composition of I with the Euclidean norm of the optimal regularized solution

represents the so-called indicator function, defined over the grid. The scatterer profile is given

by the grid points where the indicator function is respectively small or large, depending on the

decreasing or increasing monotonicity of I.

We can now give a detailed description of the effective implementation of the linear sampling

method. To this end, we firstly observe that, in real experiments, the far-field pattern is

measured for P observation angles {ϕi}P−1
i=0 and Q incidence angles {θj}Q−1

j=0 , i.e. for observation

directions {x̂i = (cosϕi, sinϕi)}P−1
i=0 and incidence directions {dj = (cos θj, sin θj)}Q−1

j=0 . In the

following we shall assume P = Q = N , the generalization to rectangular problems being

30From now on, for sake of brevity we decide to use the adjective optimal (put before expressions like “regu-
larization parameter”, “regularized solution” or similar ones) only to intend that the value of the regularization
parameter has been chosen by means of the generalized discrepancy principle in one of its possible formula-
tions, as explained in section 1.8. Hence, in our context, the meaning of this adjective is different from the
one of remark 1.6.7 and has clearly nothing to do with the most common one (in regularization theory), which
concerns the rate of convergence of the regularized solution to the generalized one (see, for example, chapter 3
in [33]).
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straightforward. Furthermore, for sake of simplicity, we shall take

ϕi =
2πi

N
, θj =

2πj

N
, i, j = 0, . . . , N − 1. (2.264)

These values are placed into the far-field matrix F, whose elements are defined as

Fij := u∞(x̂i, dj). (2.265)

In practical applications the far-field matrix is affected by the measurement noise, and therefore

only a noisy version Fh of the far-field matrix is at disposal, such that

Fh = F + H, (2.266)

where H is the noise matrix. If, as usual, we denote with ‖ · ‖ the operatorial norm of a linear

continuous operator and regard the matrix H as a linear continuous operator in CN , we assume

to know that ‖H‖ ≤ h (cf. also relation (1.64)).

Remark 2.5.1. In our numerical simulations, we firstly compute the exact N × N far-field

matrix F by using the Nyström method [27] and define the two matrices FRe and FIm whose

elements are given by:

(FRe)ij := Re(Fij), (FIm)ij := Im(Fij) ∀i, j = 0, . . . , N − 1. (2.267)

Then we construct the N × N noise matrix H and add it to F, following the procedure we

are going to explain. We form two distinct N ×N random and real-valued matrices GRe and

GIm in such a way that each entry is randomly chosen according to a Gaussian (or normal)

distribution

fX,σ(x) =
1

σ
√

2π
exp

[−(x−X)2

2σ2

]
(2.268)

having mean value X = 0 and standard deviation σ = 1: such a random process requires an

initializing numerical value, which is arbitrarily chosen from time to time by the code user.

Then we define the two matrices HRe and HIm with elements given by:

(HRe)ij := n (FRe)ij ·(GRe)ij, (HIm)ij := n (FIm)ij ·(GIm)ij ∀i, j = 0, . . . , N−1, (2.269)

where n ∈ R+ ∪ {0} represents the noise level (e.g. n = 1%, n = 5% and so on) and the dot

products between the matrix elements are to be intended just entry by entry, having nothing

to do with the usual rows× columns matrix product. Then we form our noise matrix H as

H := HRe + iHIm, (2.270)

where obviously i =
√−1. Finally we can construct the noisy far-field matrix Fh just as in

equality (2.266).
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When, in the following, we shall have to explain our numerical experiments, in order to

refer to such a procedure as briefly as possible we shall simply say that we add n% of Gaussian

noise to the (exact) far-field matrix and n% will be called the noise level.

Obviously, for any fixed noise level, there are infinite possible realizations of the noise matrix

H. Let Hs be the specific and known noise matrix used in a certain numerical experiment and

let hs := ‖Hs‖: then, in the general relation ‖Fh−F‖ ≤ h, we shall assume that the estimated

bound h to the noise affecting the operator has just the value hs. ¤

Remark 2.5.2. We point out that the ones just described are neither the physical way in

which noise affects far-field measurements, nor the realistic way in which the bound to the noise

affecting the operator is estimated. Indeed, in real experiments, one only measures modulus

and phase (each of them with its own error), rather than real and imaginary part of a noisy

acoustic or electromagnetic field at finite (however long) distances from the scatterer. In fact,

one of our next tasks is to face the problem of simulating as realistically as possible the overall

measurement process: in particular, we need to determine nature and typical percentage values

of noise, as well as to find a way of estimating the latter by means of arguments involving only

the noisy far-field matrix Fh and based on an assessment of how far Fh is from satisfying the

reciprocity relation (2.96), which, in absence of noise, should be exactly verified. ¤

Getting on in our description of the implementation of the linear sampling method, we then

create in R2 a grid Z := {zl}L−1
l=0 of L sampling points, covering the region in which the scatterer

is located. For each zl = rl(cosψl, sinψl) ∈ Z, we perform a discretization of Φ∞(x̂, zl) (cf.

relation (2.75)) by defining the column vector

Φ∞(zl) :=
ei

π
4√

8πk

[
e−ikrl cos(ϕ0−ψl), . . . , e−ikrl cos(ϕN−1−ψl)

]T
. (2.271)

Analogously, for each zl ∈ Z, the unknown vector g(zl) is an element of CN with the i-th

component given by gi(zl) = gzl
(di). Therefore the discretized noisy version of the far-field

equation (1.13) is given, for each zl ∈ Z, by the square linear system

Fhg(zl) =
N

2π
Φ∞(zl). (2.272)

This linear system is ill-conditioned and the numerical instabilities due to the presence of

noise can be reduced by applying Tikhonov regularization method, i.e. by determining (cf.

definitions (1.172) and (1.173))

gα(zl)(zl) = argmin

{∥∥∥∥Fhg(zl)− N

2π
Φ∞(zl)

∥∥∥∥
2

CN

+ α(zl) ‖g(zl)‖2
CN

}
, (2.273)

where we have denoted with ‖ · ‖CN the Euclidean norm on CN . In order to determine an

explicit form for gα(zl)(zl), we introduce the Singular Value Decomposition (SVD) of the far-
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field matrix Fh, i.e.:

Fhw =

rh−1∑
p=0

σhp (w,u
h
p)CN vhp ∀w ∈ CN , (2.274)

where rh is the rank of Fh, {σhp ,uhp ,vhp}rh−1
p=0 is the singular system31 of Fh (regarded as a

compact linear operator from CN in itself) and (·, ·)CN is the scalar product in CN .

Remark 2.5.3. We point out that the SVD of the matrix Fh is nothing else than its singular

representation (cf. relation (1.48)) when regarded as a compact linear operator Fh : CN → CN .

For future purpose, we also recall32 that representation (2.274) implies

‖Fh‖ = σh0 (2.275)

and that the generalized solution of system (2.272) is given by33

g†h(zl) =
N

2π

rh−1∑
p=0

(
Φ∞(zl),v

h
p

)
CN

σhp
uhp . (2.276)

¤

Now, the Tikhonov regularized solution of system (2.272) can be written in terms of the

singular system of the matrix Fh as (cf. relation (1.177)):

gα(zl)(zl) =
N

2π

rh−1∑
p=0

σhp
(σhp )

2 + α(zl)
(Φ∞(zl),v

h
p)CN uhp , (2.277)

and consequently its Euclidean norm is

∥∥gα(zl)(zl)
∥∥
CN =

N

2π

√√√√
rh−1∑
p=0

(σhp )
2

[(σhp )
2 + α(zl)]2

∣∣∣
(
Φ∞(zl),vhp

)
CN

∣∣∣
2

. (2.278)

Then, the optimal regularized solution (and, consequently, its Euclidean norm) is obtained

by fixing, for each grid point zl, the value α∗(zl) of the regularization parameter α(zl) by means

of one of the different versions of the generalized discrepancy principle, as explained in section

1.8.

Remark 2.5.4. For example, let us focus on the generalized discrepancy function (1.317),

holding in the compatible case (analogous remarks can obviously be repeated for the incom-

patible case or for the mixed approach): in the current context, being δ = 0, such a function

can be written in the form

ρκ2
h (α; zl) =

∥∥∥∥Fhgα(zl)− N

2π
Φ∞(zl)

∥∥∥∥
2

CN

− h2‖gα(zl)‖2
CN −

[
µκ2
h

(
N

2π
Φ∞(zl),Fh

)]2

, (2.279)

31Cf. definition 1.5.6.
32See remark 1.5.3.
33See representation (1.56).



2.5 The linear sampling method 137

where µκ2
h

(
N
2π

Φ∞(zl),Fh

)
is an approximate estimate of the (simple) incompatibility measure

(see definition 1.8.1):

µh

(
N

2π
Φ∞(zl),Fh

)
= inf

g(zl)∈CN

∥∥∥∥Fhg(zl)− N

2π
Φ∞(zl)

∥∥∥∥
CN

, (2.280)

in such a way that (cf. inequalities (1.315))

µh

(
N

2π
Φ∞(zl),Fh

)
≤ µκ2

h

(
N

2π
Φ∞(zl),Fh

)
≤ µh

(
N

2π
Φ∞(zl),Fh

)
+ κ2(h), (2.281)

and limh→0+ κ2(h) = 0. Then, the optimal regularization parameter α∗(zl) ≡ α∗2(zl) must be

fixed, in general, L times (one for each grid point zl) by imposing that ρκ2
h (α∗2(zl); zl) = 0.

Of course, according to the generalized discrepancy principle (for the compatible case),

as formulated in subsection 1.8.3 from equation (1.319) to inequality (1.321), the problem of

finding (the unique) α∗2(zl) such that ρκ2
h (α∗2(zl); zl) = 0 is to be faced if and only if condition

(1.321) is satisfied, i.e., in our case (being δ = 0), if and only if it holds:

∥∥∥∥
N

2π
Φ∞(zl)

∥∥∥∥
CN

> µκ2
h

(
N

2π
Φ∞(zl),Fh

)
; (2.282)

otherwise, the selected approximation of the generalized solution of equation (2.272) is simply

zero. ¤

Coming back to the implementation of the linear sampling method, we point out that the

latter, in general, visualizes the scatterer profile by plotting the value of I
(‖gα∗(zl)(zl)‖CN

)
for

each zl ∈ Z, where I : R+ ∪ {0} → R is a suitable monotonic continuous function. In other

terms, the indicator function is defined as

ΨI : Z −→ R

zl 7−→ ΨI(zl) := I
(‖gα∗(zl)(zl)‖CN

)
. (2.283)

Of course, a three-dimensional plot of ΨI(zl) is only possible for a two-dimensional scat-

terer; if the latter is three-dimensional, one can only represent a three-dimensional section of

the four-dimensional plot of ΨI(zl). However, both for two-dimensional and three-dimensional

scatterers, the following problem arises: once the indicator function is available, which general

criterion can suggest the thresholding level for its values? Or, in other terms, what can be con-

sidered “large” or “small” for the indicator function, respectively depending on the increasing

or decreasing monotonicity of I? This is actually one of the open issues in the implementation

of the linear sampling method34. A heuristic answer to such a question is suggested in [28]

together with some numerical validations: we can summarize this approach as follows.

34We shall briefly present some of the open problems concerning the linear sampling method at the end of
the current section.
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Let us consider a certain scattering experiment to be performed: the scatterer, the wave-

length, the number of incidence/observation angles, the noise level and the boundary conditions

are then fixed. Now, let us substitute the original scatterer with a known disk (or, in the three-

dimensional case, a known sphere), keeping unaltered all the other physical parameters, and

compute the corresponding indicator function Ψ
(d)
I (zl) (where the superscript (d) reminds one

of the disk case), having chosen a suitable I. The next step is to determine the cut-off section

for the plot of the indicator function Ψ
(d)
I (zl) in such a way that the profile so obtained is as

similar as possible to the true circular one: this procedure determines a certain height a at

which the plot of Ψ
(d)
I (zl) is sectioned. Finally, when the original (non-circular) scatterer is

considered and the corresponding indicator function Ψ
(s)
I (zl) (where the superscript (s) now

reminds one of the original scatterer) is computed (for the same I as before), we decide to

choose the same height a as thresholding level for the plot of Ψ
(s)
I (zl).

However, in the following we shall address the problem of the choice of the cut-off level

for the indicator function by explicitly taking into account the knowledge of the scatterers to

be reconstructed: in other terms, in all the numerical experiments we shall present (except

the ones of section 3.5), the selected visualization profile will be given by the level curve of

the indicator function containing an area equal to the one contained by the theoretical profile;

on the other hand, in section 3.5 itself, a promising approach to the cut-off problem will be

outlined: as we shall see, it is based on the numerical implementation of deformable contour

models.

Some figures (with their respective captions) illustrating the implementation of the linear

sampling method, as described just above, have been collected in section B.1. In the latter

we present the reconstruction of three different impenetrable scatterers in the case of Dirichlet

boundary conditions, with a wavenumber k = 1 and for two values of the noise level n, i.e. 1%

and 10%, by using the generalized discrepancy principle in the compatible case (cf. subsection

1.8.3 and, in particular, definition (1.317) as well as its specific form (2.279) for the current

context) and by choosing

Ψ−2 ln : Z −→ R

zl 7−→ Ψ−2 ln(zl) := − ln
∥∥gα∗2(zl)(zl)

∥∥2

CN (2.284)

as indicator function (cf. definition (2.283) with I(t) := − ln t2 ≡ −2 ln t).

Figure B.1 is concerned with an ellipse having its centre in (0, 0) and semiaxes equal to 1

and 2 respectively, figure B.2 considers the case of a kite described by the parametric equation

x1(t) = 1.5 · sin t, x2(t) = cos t+ 0.65 · cos(2t)− 0.65, t ∈ [0, 2π], (2.285)

while figure B.3 involves a double scatterer, i.e. the same kite described by equation (2.285) but

centred in (−4,−4) and rotated of 45◦ clockwise, together with an ellipse again with semiaxes
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1 and 2 but centred in (4, 4) and rotated of 45◦ counterclockwise. More details can be found

in the respective captions.

We conclude the current section by observing that some crucial points concerning both the

mathematical foundation and the numerical implementation of the linear sampling method still

need to be completely understood. More precisely, as concerns a mainly theoretical viewpoint,

the state-of-the-art for the general theorem presents some open problems [16] of notable math-

ematical interest: a typical example is the determination of the formal connections between the

Tikhonov regularized solution of the (angle-discretized) far-field equation and the approximate

solution whose properties are described by the general theorem (this connection is discussed

in [4] for certain scalar cases); on the other hand, there are some general issues concerning

the implementation and performances of the linear sampling method which, if solved, could

greatly improve the effectiveness of the method and widen its applicability in the field of inverse

scattering problems of interest in applied sciences. Summing up, four of these issues (some of

which already introduced above) are touched by the following questions:

(i) is there a criterion suggesting how to choose the parameters of an “optimal” grid containing

the scatterer (i.e. number of points and sampling distance)?

(ii) is it possible to give a characterization of the indicator function in terms of its physical

meaning or analytical properties?

(iii) which is the spatial resolution power achievable by means of the linear sampling method?

(iiii) once the visualization map, i.e. the indicator function, is available, which general crite-

rion can suggest the thresholding level for its values? Or, in other terms, what can be

considered “large” or “small” for the indicator function, respectively depending on the

increasing or decreasing monotonicity of the function I?

As far as we know, item (i) has never been considered by anyone. Interesting results concerning

item (ii) are in [22], where a physical interpretation of the Euclidean norm of the optimal

regularized solution is given. As far as item (iii) is concerned, we can mention [62], in which an

interesting discussion of super-resolution related to the factorization method [44] (considered

as a modified version of the linear sampling method) is proposed. Finally, we have already

mentioned [28] for its contribution in treating item (iiii).

In the next chapter we shall deal with all four questions (i), (ii), (iii) and (iiii): more

precisely, we are going to present a new implementation of the linear sampling method in

which the set of the angle-discretized far-field equations for all sampling points is replaced by

a single functional equation formulated in a Hilbert space defined as a direct sum of L2 spaces,

so that the problem of choicing a grid of sampling points is removed; then the squared norm

of the regularized solution of such equation is used as indicator function and is analytically

determined together with its Fourier transform: this provides some theoretical hints about the



140 2 The direct and the inverse scattering problem

spatial resolution achievable by the method. Finally, as just announced above, we shall try to

face the cut-off problem by using deformable contour models.



CHAPTER 3

The linear sampling method without

sampling

Following [3], in this chapter we present a new (no-sampling) implementation of the linear

sampling method whereby the regularization parameter does not depend any longer on the

sampling point and an analytical representation for any indicator function is therefore possi-

ble without any sampling in the space. Then, for sake of simplicity, we choose a particular

indicator function whose analytical expression allows one to show that it is band-limited and,

consequently, to obtain some theoretical information about the spatial resolution achievable by

the method. Finally, we propose two further applications of our no-sampling implementation:

we discuss the possibility of using a different family of indicator functions (with no apparent

improvement in reconstruction accuracy) and we outline the technique of deformable contour

models in order to face the problem of finding a suitable cut-off value for the visualization

maps provided by the linear sampling method.

3.1. A new implementation of the linear sampling method

As we have seen in section 2.5, the indicator function (2.283) is known only on the grid Z.

On the other hand, the knowledge of its analytic form on R2 or, better, over a rectangle

TBA := (−A,A)× (−B,B) ⊂ R2 containing the scatterer (i.e. such that TBA ⊃ D̄), would open

new perspectives on both the computational effectiveness of the method and the quantitative

assessment of its performances in terms of spatial resolution, as we shall see in the following.

Then we are interested in regarding expression (2.283) as a sampled version of a function ΨI(z)

defined over TBA ; nevertheless, this is not at all a straightforward task, since, once the monotonic

function I is chosen, the dependence of ΨI(zl) (or, equivalently, of ‖gα∗(zl)(zl)‖CN ) on zl, and

therefore on any z, is explicit for Φ∞(zl) (cf. (2.278)), but only implicit, and in general not
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known explicitly, for α∗(zl).

In order to overcome this drawback, in the present section we derive a new implementation

of the algorithm, again based on the general theorem 2.4.10, whereby the optimal value of the

regularization parameter does not depend on z ∈ TBA . The starting point is to replace the finite

set of equations (2.272) by an infinite set of equations

Fhg(z) =
N

2π
Φ∞(z) ∀z ∈ TBA . (3.1)

In this framework TBA can be regarded as a continuous grid whereby the generic sampling

point zl has become a continuous variable z ∈ TBA . Then we want to modify the approach to

the method from the pointwise algebraic setting represented in equation (3.1) to a unifying

functional context, whereby regularization consists of a single procedure, which gives rise to a

single value of the regularization parameter.

This result can be accomplished within the following mathematical framework. Let us

consider the direct sum of Hilbert spaces:

[
L2(TBA )

]N
:= L2(TBA )⊕ . . .⊕ L2(TBA )︸ ︷︷ ︸

N times

, (3.2)

where L2(TBA ) denotes the usual set of Lebesgue square-integrable functions defined for almost

all (f.a.a.) z ∈ TBA and with values in C. It is convenient to adopt here a notation which is

slightly different from that of section A.6: more precisely, we shall denote with f(·) or g(·) a

generic element of L2(TBA ), with (f(·), g(·))2 the scalar product of two functions f(·), g(·)in
L2(TBA ) and with ‖f(·)‖2 the norm of a function f(·) in L2(TBA ).

Moreover, if we denote with f(·) = {fi(·)}N−1
i=0 or g(·) = {gi(·)}N−1

i=0 two generic elements of[
L2(TBA )

]N
, then1 the latter is a Hilbert space equipped with the scalar product

(f(·),g(·))2,N :=
N−1∑
i=0

(fi(·), gi(·))2 ∀f(·),g(·) ∈ [
L2(TBA )

]N
, (3.3)

and the induced norm ‖f(·)‖2,N :=
√

(f(·), f(·))2,N , which is easily seen to be given by:

‖f(·)‖2,N =

√√√√
∫

TB
A

‖f(z)‖2
CNdz . (3.4)

Remark 3.1.1. For future purpose, we can immediately prove that:

‖g(·)‖2,N ≤ 1 ⇒ ‖gi(·)‖2 ≤ 1 ∀i = 0, . . . , N − 1. (3.5)

1See section A.1
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Indeed, it holds:

‖g(·)‖2,N =

√√√√
N−1∑
i=0

(gi(·), gi(·))2 =

√√√√
N−1∑
i=0

‖gi(·)‖2
2, (3.6)

whence implication (3.5) follows. ¤

We now need to define an operator acting on N -tuples of functions in order to replace the

far-field matrix acting on N -tuples of numbers.

Definition 3.1.1. The linear operator Fh :
[
L2(TBA )

]N → [
L2(TBA )

]N
is given by

[Fhg(·)] (·) :=

{
N−1∑
j=0

(Fh)ij gj(·)
}N−1

i=0

∀g(·) ∈ [
L2(TBA )

]N
, (3.7)

where the (Fh)ij are the elements of the noisy far-field matrix.

The next step is to study some properties of Fh, in order to be able to work with it. This

task is accomplished by the following results, stated from theorem 3.1.1 to theorem 3.1.5.

Theorem 3.1.1. The linear operator Fh is bounded.

Proof. Remembering that one of the possible definitions of the norm of a linear continuous

operator T : X → Y from a normed space X to a normed space Y is (cf. remark 1.3.1)

‖T‖ := sup
‖x‖X=1

‖T(x)‖Y , (3.8)

let g(·) be any element of
[
L2(TBA )

]N
such that ‖g(·)‖2,N = 1. Then, for such a g(·) ∈[

L2(TBA )
]N

, we consider ‖[Fhg(·)](·)‖2,N and the consequent chain of equalities or inequalities

(obtained using most of the previous definitions, the fact that ‖g(·)‖2,N = 1, property (3.5)

and the Cauchy-Schwarz inequality):

‖[Fhg(·)](·)‖2,N =

=
√

([Fhg(·)](·), [Fhg(·)](·))2,N =

√√√√√



{
N−1∑
j=0

(Fh)ij gj(·)
}N−1

i=0

,

{
N−1∑
p=0

(Fh)ip gp(·)
}N−1

i=0




2,N

=

=

√√√√
N−1∑
i=0

(
N−1∑
j=0

(Fh)ij gj(·),
N−1∑
p=0

(Fh)ip gp(·)
)

2

=

√√√√
N−1∑
i=0

N−1∑
j=0

N−1∑
p=0

(Fh)ij(F̄h)ip (gj(·), gp(·))2 =

=

√√√√
N−1∑
i=0

N−1∑
p=j=0

(Fh)ij(F̄h)ij (gj(·), gj(·))2 +
N−1∑
i=0

N−1∑
j=0

N−1∑

j 6=p=0

(Fh)ij(F̄h)ip (gj(·), gp(·))2 ≤

≤
√√√√

N−1∑
i=0

max
i,j

|(Fh)ij|2
N−1∑
j=0

(gj(·), gj(·))2 +
N−1∑
i=0

N−1∑
j=0

N−1∑

j 6=p=0

|(Fh)ij(F̄h)ip| | (gj(·), gp(·))2 | ≤
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≤
√√√√N max

i,j
|(Fh)ij|2 · 1 +N max

i,j
|(Fh)ij|2

N−1∑
j=0

N−1∑

j 6=p=0

‖gj(·)‖2 ‖gp(·)‖2 ≤

≤
√
N max

i,j
|(Fh)ij|2 +N2(N − 1) max

i,j
|(Fh)ij|2 =

≤ max
i,j

|(Fh)ij|
√

(N3 −N2 +N) =: M. (3.9)

Hence the linear operator Fh :
[
L2(TBA )

]N → [
L2(TBA )

]N
is bounded and

‖Fh‖ = sup
‖g(·)‖2,N=1

‖[Fhg(·)](·)‖2,N ≤M. (3.10)

This concludes the proof. ¥

Theorem 3.1.2. Denoting, as usual, with N (Fh) and N (Fh) the kernels of the linear operators

Fh and Fh respectively, it holds:

N (Fh) =
{
f(·) ∈ [

L2(TBA )
]N | f(z) ∈ N (Fh) f.a.a. z ∈ TBA

}
. (3.11)

Furthermore, if g(·) ∈ [
L2(TBA )

]N
is such that g(z) ∈ N (Fh)

⊥ f.a.a. z ∈ TBA , then g(·) ∈
N (Fh)

⊥, where the orthogonality must be intended with respect to the corresponding scalar

product2.

Proof. The characterization (3.11) is obvious from definition (3.7) itself.

Now, let us take any f(·) ∈ N (Fh): by virtue of relation (3.11), we have that f(z) ∈ N (Fh)

f.a.a. z ∈ TBA ; on the other hand, if g(·) ∈ [
L2(TBA )

]N
is such that g(z) ∈ N (Fh)

⊥ f.a.a.

z ∈ TBA , then it holds (remembering definition (3.3))

(f(·),g(·))2,N =

∫

TB
A

N−1∑
i=0

fi(z)ḡi(z)dz =

∫

TB
A

(f(z),g(z))CNdz = 0, (3.12)

since (f(z),g(z))CN = 0 f.a.a. z ∈ TBA . This concludes the proof. ¥

Theorem 3.1.3. The linear operator Fh is not compact.

Proof. Let us consider a countable infinite orthonormal set {ei(·)}∞i=0 of L2(TBA ) and then, for

each n ∈ N, define the following element of
[
L2(TBA )

]N
:

bn(·) :=
1√
N
{ei+nN(·)}N−1

i=0 . (3.13)

2That is (·, ·)CN for N (Fh)⊥ and (·, ·)2,N for N (Fh)⊥.
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Clearly, the set B := {bn(·)}∞n=0 ⊂
[
L2(TBA )

]N
is bounded and, more precisely, orthonormal:

indeed, remembering definitions (3.3) and (3.13), we can write:

(bn(·),bm(·))2,N =
1

N

N−1∑
i=0

(ei+nN(·), ei+mN(·))2 =
1

N

N−1∑
i=0

δnm =
1

N
Nδnm = δnm. (3.14)

Now we show that the set Fh(B), which is just the sequence {[Fhbn(·)](·)}∞n=0, is not relatively

compact in
[
L2(TBA )

]N
, since it is impossible to extract by it a subsequence verifying the Cauchy

criterion. Indeed, let us consider the following chain of equalities:

‖[Fhbn(·)](·)− [Fhbm(·)](·)‖2
2,N =

=

∥∥∥∥∥∥

{
N−1∑
j=0

(Fh)ij
ej+nN(·)√

N

}N−1

i=0

−
{
N−1∑
j=0

(Fh)ij
ej+mN(·)√

N

}N−1

i=0

∥∥∥∥∥∥

2

2,N

=

=

∥∥∥∥∥∥
1√
N

{
N−1∑
j=0

(Fh)ij [ej+nN(·)− ej+mN(·)]
}N−1

i=0

∥∥∥∥∥∥

2

2,N

=

=
1

N




{
N−1∑
j=0

(Fh)ij [ej+nN(·)− ej+mN(·)]
}N−1

i=0

,

{
N−1∑
j=0

(Fh)ij [ej+nN(·)− ej+mN(·)]
}N−1

i=0




2,N

=

=
1

N

N−1∑
i=0

(
N−1∑
j=0

(Fh)ij [ej+nN(·)− ej+mN(·)],
N−1∑
p=0

(Fh)ip [ep+nN(·)− ep+mN(·)]
)

2

=

=
1

N

N−1∑
i=0

N−1∑
j=0

N−1∑
p=0

(Fh)ij(F̄h)ip (ej+nN(·)− ej+mN(·), ep+nN(·)− ep+mN(·))2 =

=
1

N

N−1∑
i=0

N−1∑
j=0

N−1∑
p=0

(Fh)ij(F̄h)ip
[
(ej+nN(·), ep+nN(·))2 − (ej+nN(·), ep+mN(·))2 +

− (ej+mN(·), ep+nN(·))2 + (ej+mN(·), ep+mN(·))2

]
=

=
1

N

N−1∑
i=0

N−1∑
j=0

N−1∑
p=0

(Fh)ij(F̄h)ip (δjp − 2δnmδjp + δjp) =

=
1

N

N−1∑
i=0

N−1∑
j=0

N−1∑
p=0

(Fh)ij(F̄h)ip (1− 2δnm + 1) δjp =
2

N

N−1∑
i=0

N−1∑
j=0

N−1∑
p=0

(Fh)ij(F̄h)ip δjp(1− δnm).

(3.15)

Hence, if n = m, we obviously have that ‖[Fhbn(·)](·)− [Fhbm(·)](·)‖2
2,N = 0; otherwise, we
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get:

‖[Fhbn(·)](·)− [Fhbm(·)](·)‖2
2,N =

2

N

N−1∑
i=0

N−1∑
j=0

N−1∑
p=0

(Fh)ij(F̄h)ip δjp =
2

N

N−1∑
i=0

N−1∑
p=0

(Fh)ip(F̄h)ip =

=
2

N

N−1∑
i=0

N−1∑
p=0

|(Fh)ip|2. (3.16)

Of course, the last quantity is strictly positive and independent of n,m (with n 6= m); hence,

the sequence {[Fhbn(·)](·)}∞n=0 cannot verify the Cauchy criterion. ¥

Remark 3.1.2. The non-compactness of the operator Fh is not in contradiction with the

well-known compactness of the usual far-field operator F defined in (2.97) (see remark 2.3.1):

indeed Fh acts upon N -tuples of functions of the spatial variable z, while F acts upon functions

of the angular variable θ. ¤

Definition 3.1.2. For any g(·) ∈ [
L2(TBA )

]N
and any w ∈ CN (with components wi, for

i = 0, . . . , N − 1), we define (with a little notational misuse) the following element of L2(TBA ):

(g(·),w)CN : TBA −→ C (3.17)

z 7−→ (g(z),w)CN f.a.a. z ∈ TBA ,

or equivalently, in components:

(g(·),w)CN :=
N−1∑
i=0

w̄i gi(·). (3.18)

Remark 3.1.3. Remembering the singular representation (2.274) of the far-field matrix Fh,

the definition (3.7) of Fh and using the notation (3.18), we easily realize that the following

representation for Fh holds:

[Fhg(·)](·) =

{
r−1∑
p=0

σhp v
h
p,i (g(·),uhp)CN

}N−1

i=0

∀g(·) ∈ [
L2(TBA )

]N
, (3.19)

where vhp,i is the i-th component of the vector vhp ∈ CN . ¤

By virtue of the previous relation (3.19), we can prove the following result.

Theorem 3.1.4. It holds:

‖Fh‖ = σh0 . (3.20)
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Proof. As in the proof of theorem 3.1.1, let g(·) be any element of
[
L2(TBA )

]N
such that

‖g(·)‖2,N = 1. Then, for such a g(·) ∈ [
L2(TBA )

]N
, we consider ‖[Fhg(·)](·)‖2,N : by using most

of the previous definitions, the orthonormality of vectors vhp , the Cauchy-Schwarz inequality,

relation (3.4) and the fact that ‖g(·)‖2,N = 1, we get:

‖[Fhg(·)](·)‖2,N =
√

(Fhg(·),Fhg(·))2,N =

=

√√√√√



{
r−1∑
p=0

σhp v
h
p,i (g(·),uhp)CN

}N−1

i=0

,

{
r−1∑
q=0

σhq v
h
q,i (g(·),uhq )CN

}N−1

i=0




2,N

=

=

√√√√
N−1∑
i=0

(
r−1∑
p=0

σhp v
h
p,i (g(·),uhp)CN ,

r−1∑
q=0

σhq v
h
q,i (g(·),uhq )CN

)

2

=

=

√√√√
N−1∑
i=0

r−1∑
p=0

r−1∑
q=0

σhp v
h
p,i σ

h
q v̄

h
q,i

(
(g(·),uhp)CN , (g(·),uhq )CN

)
2

=

=

√√√√
r−1∑
p=0

r−1∑
q=0

N−1∑
i=0

(vhp ,v
h
q )CN σhp σ

h
q

(
(g(·),uhp)CN , (g(·),uhq )CN

)
2

=

=

√√√√
r−1∑
p=0

r−1∑
q=0

δpq σhp σ
h
q

(
(g(·),uhp)CN , (g(·),uhq )CN

)
2

=

=

√√√√
r−1∑
p=0

(σhp )
2

(
(g(·),uhp)CN , (g(·),uhp)CN

)
2
≤ (3.21)

≤ σh0

√√√√√
r−1∑
p=0

∫

TB
A

∣∣(g(z),uhp)CN

∣∣2 dz = σh0

√√√√√
∫

TB
A

r−1∑
p=0

∣∣(g(z),uhp)CN

∣∣2 dz ≤

≤ σh0

√√√√
∫

TB
A

‖g(z)‖2
CNdz = σh0 ‖g(·)‖2,N = σh0 , (3.22)

where equality always holds in all the previous passages if, e.g., we choose g(·) ∈ [
L2(TBA )

]N
such that it is a constant CN -valued function equal to

uh
0√

2A×2B
. ¥

Remark 3.1.4. Since also the norm of the matrix Fh, regarded as an operator from CN to

CN , is equal to σh0 (see relation (2.275) in remark 2.5.3), the previous result (3.20) states that

‖Fh‖ = ‖Fh‖. Now, if we remember relation (2.266) and define, in terms of the matrices F, H

respectively, the linear continuous operators F, H in the same way followed to define the linear

continuous operator Fh in terms of the matrix Fh, we easily realize that

Fh = F + H =⇒ Fh = F + H. (3.23)
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By means of an argument fully analogous to that used to prove relation (3.20), from the

previous implication (3.23) we easily obtain that

‖Fh − F‖ = ‖H‖ = ‖H‖ = ‖Fh − F‖ (3.24)

and hence

‖Fh − F‖ ≤ h =⇒ ‖Fh − F‖ ≤ h. (3.25)

This means that the bound h on the noise affecting the matrix Fh is the same as the one

affecting the operator Fh. ¤

Theorem 3.1.5. The range R(Fh) of the operator Fh is closed.

Proof. Let us consider any h(·) ∈ R(Fh) \ R(Fh); thus, there exists a sequence {gn(·)}∞n=0 ⊂[
L2(TBA )

]N
such that:

lim
n→∞

‖[Fhgn(·)](·)− h(·)‖2,N = 0; (3.26)

we want to show that:

∃t(·) ∈ [
L2(TBA )

]N
such that [Fht(·)](·) = h(·). (3.27)

Firstly, we observe that, for a generic g(·) ∈ [
L2(TBA )

]N
, it holds, by virtue of (3.21):

‖[Fhg(·)](·)‖2,N =

√√√√
r−1∑
p=0

(σhp )
2

(
(g(·),uhp)CN , (g(·),uhp)CN

)
2
≥

≥ σhr−1

√√√√
r−1∑
p=0

(
(g(·),uhp)CN , (g(·),uhp)CN

)
2

=

= σhr−1

√√√√
r−1∑
p=0

∥∥(g(·),uhp)CN

∥∥2

2
. (3.28)

Now we point out that {[Fhgn(·)](·)}∞n=0 ⊂
[
L2(TBA )

]N
is a Cauchy sequence, since it converges

by virtue of (3.26); then, ∀ε > 0, there exists N > 0 such that, for n,m ≥ N , it holds:

‖[Fhgn(·)](·)− Fhgm(·)](·)‖2,N < ε, (3.29)

i.e.

‖[Fh(gn(·)− gm(·))](·)‖2,N < ε. (3.30)

Recalling relation (3.28), inequality (3.30) implies:

σhr−1

√√√√
r−1∑
p=0

∥∥(gn(·)− gm(·),uhp)CN

∥∥2

2
< ε, (3.31)
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whence we immediately get:

r−1∑
p=0

∥∥(gn(·)− gm(·),uhp)CN

∥∥2

2
<

(
ε

σhr−1

)2

, (3.32)

and then, putting ε′ :=
ε

σhr−1

,

∥∥(gn(·)− gm(·),uhp)CN

∥∥
2
< ε′ ∀p = 0, . . . , r − 1, (3.33)

i.e. ∥∥(gn(·),uhp)CN − (gm(·),uhp)CN

∥∥
2
< ε′ ∀p = 0, . . . , r − 1. (3.34)

This means that {(gn(·),uhp)CN}∞n=0 ⊂ L2(TBA ) is a Cauchy sequence ∀p = 0, . . . , r−1 and then,

by virtue of the completeness of L2(TBA ), it converges to an element fp(·) ∈ L2(TBA ). In other

terms, ∀p = 0, . . . , r − 1, there exists fp(·) ∈ L2(TBA ) such that

lim
n→∞

∥∥(gn(·),uhp)CN − fp(·)
∥∥

2
= 0. (3.35)

Now we define the following elements of
[
L2(TBA )

]N
:

tn(·) :=
r−1∑
p=0

(gn(·),uhp)CN uhp ∀n ∈ N; (3.36)

t(·) :=
r−1∑
p=0

fp(·)uhp . (3.37)

The next step is to show that:

lim
n→∞

‖tn(·)− t(·)‖2
2,N = 0. (3.38)

To this purpose, remembering relation (3.6), let us consider the following chain of equalities or

inequalities:

‖tn(·)− t(·)‖2
2,N =

N−1∑
i=0

‖tn,i(·)− ti(·)‖2
2 =

N−1∑
i=0

∥∥∥∥∥
r−1∑
p=0

(gn(·),uhp)CN uhp,i −
r−1∑
p=0

fp(·)uhp,i
∥∥∥∥∥

2

2

=

=
N−1∑
i=0

∥∥∥∥∥
r−1∑
p=0

[
(gn(·),uhp)CN − fp(·)

]
uhp,i

∥∥∥∥∥

2

2

≤

≤
N−1∑
i=0

{
r−1∑
p=0

∥∥[
(gn(·),uhp)CN − fp(·)

]
uhp,i

∥∥
2

}2

≤

≤
N−1∑
i=0

{
r−1∑
p=0

|uhp,i|
∥∥(gn(·),uhp)CN − fp(·)

∥∥
2

}2

. (3.39)
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Recalling relation (3.35), inequality (3.39) implies limit (3.38), whence, by virtue of the conti-

nuity of Fh, we immediately get:

lim
n→∞

‖[Fhtn(·)](·)− [Fht(·)](·)‖2,N = 0. (3.40)

On the other hand, recalling representation (3.19) and the orthonormality of vectors uhp , it is

easy to realize that

[Fhtn(·)](·) = [Fhgn(·)](·), (3.41)

so that relation (3.40) can also be written as

lim
n→∞

‖[Fhgn(·)](·)− [Fht(·)](·)‖2,N = 0. (3.42)

By comparison of the two limits (3.42) and (3.26), we finally get:

[Fht(·)](·) = h(·), (3.43)

which is just our thesis (3.27). ¥

From a practical viewpoint, the introduction of the operator Fh allows one to express the

infinitely many algebraic systems (3.1) as the single functional equation in [L2(TBA )]N

[Fhg(·)](·) =
N

2π
Φ∞(·), (3.44)

where Φ∞(·) is the element in [L2(TBA )]N trivially obtained from Φ∞(z) simply regarding z as

a variable on TBA instead of a fixed point in R2.

Since, according to theorem 3.1.5, R(Fh) is closed, then, by virtue of theorem 1.5.6, the

generalized inverse operator F†h is continuous, i.e. the problem of determining the generalized

solution of the functional equation (3.44) is well-posed. Nevertheless, we know (see the last

part of section 1.3) that such a problem, as an inverse one, is, in general, ill-conditioned and

therefore a regularization method is anyway necessary. Hence, the novelty in comparison with

the traditional implementation of the linear sampling method is rather the fact that now the

regularization of equation (3.44) occurs in a way which is independent from z and therefore

provides a single value of the regularization parameter3.

At this stage there is a final computational open issue to address, which is concerned with

how to determine the regularized solution of equation (3.44) in practice. But this problem

is solved by the following theorem: indeed, it shows that, starting from the generalized and

Tikhonov regularized4 solutions of system (3.1), which for each z ∈ TBA admit the representa-

tions5

g†h(z) =
N

2π

rh−1∑
p=0

(Φ∞(z),vhp)CN

σhp
uhp (3.45)

3We point out, however, that such a value will depend on the choice of the rectangle TB
A .

4Computed for a generic (and, in particular, z-independent) value α ∈ R+ of the regularization parameter.
5See relations (2.276) and (2.277).
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and

gα(z) =
N

2π

rh−1∑
p=0

σhp
(σhp )

2 + α
(Φ∞(z),vhp)CN uhp , (3.46)

it is possible to determine, in the new functional context, the generalized and Tikhonov regu-

larized6 solutions of problem (3.44) simply regarding z as an independent variable.

Theorem 3.1.6. The generalized and Tikhonov regularized solutions of problem (3.44) are

respectively given by

g†h(·) =
N

2π

rh−1∑
p=0

(Φ∞(·),vhp)CN

σhp
uhp (3.47)

and

gα(·) =
N

2π

rh−1∑
p=0

σhp
(σhp )

2 + α
(Φ∞(·),vhp)CN uhp , (3.48)

where α is a generic real positive number7.

Proof. The generalized solution g†h(z) of equation (3.1) is the unique least-squares solution in

N (Fh)
⊥. Therefore, for any g(·) ∈ [

L2(TBA )
]N

and f.a.a. z ∈ TBA , it holds:

∥∥∥∥Fhg
†
h(z)−

N

2π
Φ∞(z)

∥∥∥∥
2

CN

≤
∥∥∥∥Fhg(z)− N

2π
Φ∞(z)

∥∥∥∥
2

CN

. (3.49)

From (3.49), we immediately get:

∫

TB
A

∥∥∥∥Fhg
†
h(z)−

N

2π
Φ∞(z)

∥∥∥∥
2

CN

dz ≤
∫

TB
A

∥∥∥∥Fhg(z)− N

2π
Φ∞(z)

∥∥∥∥
2

CN

dz. (3.50)

We now observe that, for any g(·) ∈ [L2(TBA )]N , definition (3.7) implies that

Fhg(z) = [Fhg(·)](z); (3.51)

therefore relation (3.50) can be written as

∫

TB
A

∥∥∥∥[Fhg
†
h(·)](z)−

N

2π
Φ∞(z)

∥∥∥∥
2

CN

dz ≤
∫

TB
A

∥∥∥∥[Fhg(·)](z)− N

2π
Φ∞(z)

∥∥∥∥
2

CN

dz, (3.52)

where g†h(·) is the element in [L2(TBA )]N obtained from g†h(z), as given by (3.45), when z varies

in TBA , i.e. g†h(·) has just the form (3.47). Then relation (3.4) leads to

∥∥∥∥[Fhg
†
h(·)](·)−

N

2π
Φ∞(·)

∥∥∥∥
2

2,N

≤
∥∥∥∥[Fhg(·)](·)− N

2π
Φ∞(·)

∥∥∥∥
2

2,N

. (3.53)

6Again, computed for a generic and obviously z-independent value α ∈ R+ of the regularization parameter.
7The problem of choosing a suitable value α∗ for the regularization parameter α will be addressed soon

below the proof of the current theorem 3.1.6: see, e.g., relation (3.69).
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Since this inequality holds ∀g(·) ∈ [
L2(TBA )

]N
, it immediately follows that

g†h(·) = argmin

{∥∥∥∥[Fhg(·)](·)− N

2π
Φ∞(·)

∥∥∥∥
2

2,N

}
. (3.54)

Moreover, since g†h(z) ∈ N (Fh)
⊥ ∀z ∈ TBA , from theorem 3.1.2 we have that

g†h(·) ∈ N (Fh)
⊥. (3.55)

Relations (3.54) and (3.55) together imply that g†h(·) is the generalized solution of problem

(3.44), posed in the Hilbert space
[
L2(TBA )

]N
.

As regards the Tikhonov regularized solution of the same problem (3.44), we firstly consider

the Tikhonov regularized solution of problem (3.1) for a generic α ∈ R+: we know that it is

defined as the unique element in CN such that

gα(z) := argmin

{∥∥∥∥Fhg(z)− N

2π
Φ∞(z)

∥∥∥∥
2

CN

+ α‖g(z)‖2
CN

}
∀z ∈ TBA (3.56)

and that it admits the representation (3.46).

Now, let us consider any g(·) ∈ [
L2(TBA )

]N
: by virtue of relation (3.56), we can write the

following inequality, holding f.a.a. z ∈ TBA :

∥∥∥∥Fhgα(z)− N

2π
Φ∞(z)

∥∥∥∥
2

CN

+ α‖gα(z)‖2
CN ≤

∥∥∥∥Fhg(z)− N

2π
Φ∞(z)

∥∥∥∥
2

CN

+ α‖g(z)‖2
CN . (3.57)

From the previous inequality (3.57), we immediately get:

∫

TB
A

[∥∥∥∥Fhgα(z)− N

2π
Φ∞(z)

∥∥∥∥
2

CN

+α‖gα(z)‖2
CN

]
dz ≤

≤
∫

TB
A

[∥∥∥∥Fhg(z)− N

2π
Φ∞(z)

∥∥∥∥
2

CN

+ α‖g(z)‖2
CN

]
dz. (3.58)

Using the linearity of the integral and remembering relation (3.51), we can rewrite inequality

(3.58) as:

∫

TB
A

∥∥∥∥[Fhgα(·)](z)− N

2π
Φ∞(z)

∥∥∥∥
2

CN

dz + α

∫

TB
A

‖gα(z)‖2
CNdz ≤

≤
∫

TB
A

∥∥∥∥[Fhg(·)](z)− N

2π
Φ∞(z)

∥∥∥∥
2

CN

dz + α

∫

TB
A

‖g(z)‖2
CNdz, (3.59)
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where we have denoted with gα(·) the element of
[
L2(TBA )

]N
trivially obtained from gα(z), as

given by (3.46), simply regarding z as a variable on TBA instead of a fixed point in R2: then,

gα(·) has just the form (3.48).

Recalling relation (3.4), the previous inequality can be rewritten as:

∥∥∥∥[Fhgα(·)](·)− N

2π
Φ∞(·)

∥∥∥∥
2

2,N

+α‖gα(·)‖2
2,N ≤

∥∥∥∥[Fhg(·)](·)− N

2π
Φ∞(·)

∥∥∥∥
2

2,N

+α‖g(·)‖2
2,N . (3.60)

Since the last inequality holds ∀g(·) ∈ [
L2(TBA )

]N
, it immediately follows that

gα(·) = argmin

{∥∥∥∥[Fhg(·)](·)− N

2π
Φ∞(·)

∥∥∥∥
2

2,N

+ α‖g(·)‖2
2,N

}
. (3.61)

This clearly means that gα(·), as given by (3.48), is the Tikhonov regularized solution of

problem (3.44), posed in the Hilbert space
[
L2(TBA )

]N
. This concludes the proof. ¥

In expression (3.48), α is a generic real positive number whose optimal8 value α∗ can be fixed

by applying one of the different versions of the generalized discrepancy principle, as explained

in section 1.8.

Remark 3.1.5. For example, let us focus on the generalized discrepancy function (1.317),

holding in the compatible case (analogous remarks can obviously be repeated for the incom-

patible case or for the mixed approach): in the current functional context, being δ = 0, such a

function can be written in the form9

ρκ2
h (α) =

∥∥∥∥[Fhgα(·)](·)− N

2π
Φ∞(·)

∥∥∥∥
2

2,N

− h2‖gα(·)‖2
2,N −

[
µκ2
h

(
N

2π
Φ∞(·),Fh

)]2

, (3.62)

where µκ2
h

(
N
2π

Φ∞(·),Fh
)

is an approximate estimate of the (simple) incompatibility measure

(see definition 1.8.1):

µh

(
N

2π
Φ∞(·), Fh

)
= inf

g(·)∈[L2(TB
A )]

N

∥∥∥∥Fhg(·)− N

2π
Φ∞(·)

∥∥∥∥
2,N

, (3.63)

in such a way that (cf. inequalities (1.315))

µh

(
N

2π
Φ∞(·), Fh

)
≤ µκ2

h

(
N

2π
Φ∞(·),Fh

)
≤ µh

(
N

2π
Φ∞(·),Fh

)
+ κ2(h), (3.64)

and limh→0+ κ2(h) = 0. Then, the optimal regularization parameter α∗ ≡ α∗2 must be fixed, in

general, only once by imposing that ρκ2
h (α∗2) = 0.

8Cf. footnote 30 in section 2.5.
9Cf. expression (2.279).
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Of course, according to the generalized discrepancy principle (for the compatible case),

as formulated in subsection 1.8.3 from equation (1.319) to inequality (1.321), the problem of

finding (the unique) α∗2 such that ρκ2
h (α∗2) = 0 is to be faced if and only if condition (1.321) is

satisfied, i.e., in our case (being δ = 0), if and only if it holds:
∥∥∥∥
N

2π
Φ∞(·)

∥∥∥∥
2,N

> µκ2
h

(
N

2π
Φ∞(·), Fh

)
; (3.65)

otherwise, the selected approximation of the generalized solution of equation (3.44) is simply

zero.

For future purpose, we write here below also the explicit form assumed in the current

functional context by the generalized discrepancy function (1.259), holding for the incompatible

case: since δ = 0, such a function can be written as

ρ̂κ1
h (α) =

∥∥∥∥[Fhgα(·)](·)− N

2π
Φ∞(·)

∥∥∥∥
2

2,N

−
[
h ‖gα(·)‖2,N + µ̂κ1

h

(
N

2π
Φ∞(·),Fh

)]2

, (3.66)

where µ̂κ1
h

(
N
2π

Φ∞(·),Fh
)

is an approximate estimate of the modified incompatibility measure

(see definition 1.8.1):

µ̂h

(
N

2π
Φ∞(·),Fh

)
= inf

g(·)∈[L2(TB
A )]

N

(
h ‖g(·)‖2,N +

∥∥∥∥Fhg(·)− N

2π
Φ∞(·)

∥∥∥∥
2,N

)
, (3.67)

in such a way that (cf. inequalities (1.257))

µ̂h

(
N

2π
Φ∞(·), Fh

)
≤ µ̂κ1

h

(
N

2π
Φ∞(·),Fh

)
≤ µ̂h

(
N

2π
Φ∞(·),Fh

)
+ κ1(h), (3.68)

and limh→0+ κ1(h) = 0. ¤

Now, if α∗ is the optimal value provided by the generalized discrepancy principle in one of

its possible versions, then

gα∗(·) =
N

2π

rh−1∑
p=0

σhp
(σhp )

2 + α∗
(Φ∞(·),vhp)CN uhp (3.69)

is the optimal regularized solution of the functional problem (3.44); in particular, it clearly

holds:

‖gα∗(z)‖CN =
N

2π

√√√√
rh−1∑
p=0

(σhp )
2

[(σhp )
2 + α∗]2

∣∣∣
(
Φ∞(z),vhp

)
CN

∣∣∣
2

∀z ∈ TBA . (3.70)

Moreover, once a suitable monotonic continuous function I : R+ ∪ {0} → R is chosen, we can

now define our new indicator function on all TBA as (cf. definition (2.283)):

ΨI : TBA −→ R

z 7−→ ΨI(z) := I (‖gα∗(z)‖CN ) . (3.71)
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Remark 3.1.6. We point out that, independently of the choice of I, in the analytic expression

of ΨI(z), as given by (3.71), no sampling is performed, since α∗ does not depend on z and all

the other terms in expression (3.70) are known once the measured far-field matrix is at disposal.

From a computational viewpoint, this removes the problem of deciding the parameters of the

optimal grid Z containing the scatterer (number of points, sampling distance). ¤

Remark 3.1.7. The mathematical framework for this new implementation of the linear sam-

pling method naturally implies that the optimal regularization parameter is unique, i.e. in-

dependent of z. On the other hand, it is worthwhile noticing that, although in a completely

different context, a sampling-point-independent choice of the regularization parameter is also

suggested in [22], by giving a heuristic recipe based on physical considerations. ¤

Theorem 3.1.6 provides a new implementation of the linear sampling method, whereby the

contour of the scatterer is detected by all the points where ΨI(z) becomes mostly large or small,

depending on the increasing or decreasing monotonicity of I. Hence the most natural question

is now: does this new implementation yield the same results as the traditional one based on a

sampling in the space? We can answer this question only from an empirical point of view, i.e.

by making several numerical experiments changing, from time to time, the scatterer, the noise

level, the boundary conditions, the wavenumber, the number of incidence/observation angles,

the indicator function, the criterion for its cut-off and so on. Of course, it is not possible here

to present all the numerical experiments we have made to this purpose: anyway, as far as our

experience is concerned, no significant difference between the two implementations has ever

been observed. Here we can only support and clarify such a general observation by means of

few specific experiments, which we are going to illustrate. As a starting point, we consider

exactly the same inverse scattering problems we chose in section 2.5 (with figures in section

B.1) to illustrate the traditional implementation of the linear sampling method, changing only

the mathematical framework and, consequently, the regularization procedure, as explained just

above: this means that we use the generalized discrepancy principle in the compatible case (cf.

subsection 1.8.3 and, in particular, definition (1.317), as well as its specific form (3.62) for the

current context) and we choose

Ψ−2 ln : TBA −→ R

z 7−→ Ψ−2 ln(z) := − ln ‖gα∗2(z)‖2
CN (3.72)

as indicator function (cf. definition (3.71) with I(t) := − ln t2 ≡ −2 ln t); the cut-off value of

the latter, as in the traditional implementation, is fixed by making the area defined by its level

curves equal to the one of the true scatterer.

The results are shown in figures B.4, B.5 and B.6: it can be clearly seen, mainly by compar-

ing panels (c) and (c’) of these figures, on the one hand, with the homologous panels of figures

B.1, B.2 and B.3 respectively, on the other one, that the two implementations give nearly
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indistinguishable results. Their substantial equivalence is even more evident in figure B.7, in

which, for the same scattering experiments and the same choice of I(t) := − ln t2 ≡ −2 ln t as

before, we have essentially10 overlapped the corresponding panels (c) [(c’)] of all the previous

figures B.1-B.6: for each of the six panels in figure B.7, we provide (solid line) the profile of

the true object and, superimposed, the reconstructed contours provided by the two implemen-

tations: the traditional one (dashed line) and the no-sampling one (dotted line). From these

plots the differences between the two implementations turn out to be completely negligible.

Analogous results occur when the noise level affecting the far-field pattern, the number of inci-

dence/observation angles and the wavenumber are changed. Hence, from now on we shall deal

only with the no-sampling implementation.

Let us now see what happens, in the new functional context, if we consider the same

scattering experiments and the same choice of I(t) := − ln t2 ≡ −2 ln t as before, but using this

time the generalized discrepancy principle in the incompatible case (cf. subsection 1.8.2 and,

in particular, definition (1.259), as well as its specific form (3.66) for the current context): the

results are presented in figures B.8, B.9 and B.10, which, by virtue of a comparison with the

corresponding figures B.4, B.5 and B.6 (and with the respective values of the regularization

parameters), clearly show that the generalized discrepancy principle in the incompatible case

tends to be strongly oversmoothing, mainly for sufficiently high noise levels: indeed the only

satisfactory reconstructions are the ones of panels (c) in figures B.8 and B.9, holding for a noise

level n = 1%; on the other hand, figure B.9 itself provides, for the same noise level n = 1%, a

reconstruction of the kite which seems to be somehow better than the one provided by figure

B.5, as suggested, in particular, by comparing the darkest internal regions in panels (b) of

figures B.5 and B.9. On the contrary, for a noise level n = 10%, a comparison between panels

(a’), (b’) and (c’) of figure B.5 (as well as of figures B.4 and B.6) on the one hand, and the

homologous panels of figure B.9 (as well as of figures B.8 and B.10), on the other one, clearly

shows that the generalized discrepancy principle works much worse in the incompatible case

than in the compatible one.

If we now remember the discussion of subsection 1.8.4, the idea may arise, roughly speaking,

10To tell the truth, the panels in figure B.7 have been realized some days later than figures B.1-B.6: this
implies that, although all the physical parameters (noise levels included) have been obviously set to the same
values as in figures B.1-B.6, it has not been possible to blur the exact far-field matrix F with just the same
noise matrix H (cf. equalities (2.265) and (2.266)), since the latter, as explained in remark 2.5.1, is a random
matrix depending on an initializing “seed” which, in general, is chosen differently and randomly every time, so
that we could not remember its value in past numerical experiments. This explains the very slight differences
occurring in the reconstructed profiles and the not complete concordance of the values of the regularization
parameters when one compares figures B.1-B.6, on the one hand, and figure B.7 (with its associated table B.1),
on the other one. Of course, we could have remade all the figures using, at least for the same scatterer, the
same seed, but we have considered more interesting and more convincing this kind of “double” confirm of the
substantial equivalence between the two implementations of the linear sampling method.
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of blending the reconstructions obtained by using the two generalized discrepancy principles,

at least in situations in which the noise level has an intermediate value, for example n = 5%.

Hence, we have repeated, for the ellipse and the kite, the previous scattering experiments: all

the physical and geometrical parameters are exactly the same as before (as well as the choice

of I(t) := − ln t2 ≡ −2 ln t), except that the noise level is now n = 5%. The results are shown

in figures B.11 and B.12, in which we compare, for each scatterer, the three reconstructions

obtained by using three different values of the regularization parameter: α∗2 (i.e. the zero

of the generalized discrepancy function (3.62), holding for the compatible case), α∗1 (i.e. the

zero of the generalized discrepancy function (3.66), holding for the incompatible case) and

α∗b := c α∗1 + (1− c)α∗2 (the latter is a shorthand for definition (1.346)), having heuristically11

chosen, for both the scatterers, the value of c = c(hs) as

c(hs) :=
2

π
arctan(40hs), (3.73)

where hs denotes the norm of the specific noise matrix Hs added to the exact far-field matrix

F in that particular numerical experiment. From panels (c), (c’), (c”) of figures B.11 and

B.12, we can observe that the reconstructions of both the ellipse and, even more, the kite are

improved by the blending regularization.

3.2. Band-limitedness of the indicator function

From now on, we shall choose I(t) := t2 in definition (3.71): then the selected indicator function

will be

Ψ2(z) := ‖gα∗(z)‖2
CN =

N2

4π2

rh−1∑
p=0

(σhp )
2

[(σhp )
2 + α∗]2

∣∣∣
(
Φ∞(z),vhp

)
CN

∣∣∣
2

. (3.74)

The reason for the choice of (3.74) as indicator function is that it leads to feasible analytical

results, as we are going to see. However, in section 3.3 we shall motivate this choice in a more

general framework.

Our aim is now to compute the Fourier transform of the indicator function (3.74) analyti-

cally continued onto all R2 (and still denoted with Ψ2(z)).

We begin by remembering that (cf. relations (2.75) and (2.271)):

Φ∞(z) =
ei

π
4√

8πk

[
e−ikz·x̂0 , . . . , e−ikz·x̂N−1

]T
=

=
ei

π
4√

8πk

[
e−ik(z1 cosϕ0+z2 sinϕ0), . . . , e−ik(z1 cosϕN−1+z2 sinϕN−1)

]T
, (3.75)

11Cf. remark 1.8.8.
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where z = (z1, z2) ∈ TBA . Hence, by inserting the previous expression (3.75) of Φ∞(z) into

(3.74), we obtain

Ψ2(z) =
N2

32π3k

rh−1∑
p=0

(σhp )
2

[(σhp )
2 + α∗]2

· (3.76)

·
∣∣v̄hp,0e−ik(z1 cosϕ0+z2 sinϕ0) + · · ·+ v̄hp,N−1e

−ik(z1 cosϕN−1+z2 sinϕN−1)
∣∣2 ,

where v̄hp,0, . . . , v̄hp,N−1 denote the complex conjugate of the N components of the vector vhp
for each p = 0, . . . , rh − 1. If we now consider, in particular, the term in absolute value at the

right-hand side of equality (3.76) and use the polar coordinates of the N components of each

vector vhp , i.e.:

vhp,0 = (ρhp,0, ε
h
p,0) = ρhp,0e

iεh
p,0 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

vhp,N−1 = (ρhp,N−1, ε
h
p,N−1) = ρhp,N−1e

iεh
p,N−1 , (3.77)

we get

∣∣v̄hp,0e−ik(z1 cosϕ0+z2 sinϕ0) + · · ·+ v̄hp,N−1e
−ik(z1 cosϕN−1+z2 sinϕN−1)

∣∣2 = (3.78)

=
∣∣∣ρhp,0e−i(kz1 cosϕ0+kz2 sinϕ0+εh

p,0) + · · ·+ ρhp,N−1e
−i(kz1 cosϕN−1+kz2 sinϕN−1+εh

p,N−1)
∣∣∣
2

=

=
∣∣ρhp,0 cos

[
k (z1 cosϕ0 + z2 sinϕ0) + εhp,0

]
+ . . .

· · ·+ ρhp,N−1 cos
[
k (z1 cosϕN−1 + z2 sinϕN−1) + εhp,N−1

]
+

− i
{
ρhp,0 sin

[
k (z1 cosϕ0 + z2 sinϕ0) + εhp,0

]
+ . . .

· · ·+ ρhp,N−1 sin
[
k (z1 cosϕN−1 + z2 sinϕN−1) + εhp,N−1

]}∣∣2 =

=

∣∣∣∣∣
N−1∑
i=0

ρhp,i cos
[
k (z1 cosϕi + z2 sinϕi) + εhp,i

]− i
N−1∑
i=0

ρhp,i sin
[
k (z1 cosϕi + z2 sinϕi) + εhp,i

]
∣∣∣∣∣

2

=

=

{
N−1∑
i=0

ρhp,i cos
[
k (z1 cosϕi + z2 sinϕi) + εhp,i

]
}2

+

+

{
N−1∑
i=0

ρhp,i sin
[
k (z1 cosϕi + z2 sinϕi) + εhp,i

]
}2

=

=
N−1∑
i,j=0

ρhp,i ρ
h
p,j cos

[
k (z1 cosϕi + z2 sinϕi) + εhp,i

]
cos

[
k (z1 cosϕj + z2 sinϕj) + εhp,j

]
+

+
N−1∑
i,j=0

ρhp,i ρ
h
p,j sin

[
k (z1 cosϕi + z2 sinϕi) + εhp,i

]
sin

[
k (z1 cosϕj + z2 sinϕj) + εhp,j

]
=
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=
N−1∑
i,j=0

ρhp,i ρ
h
p,j

{
cos

[
k (z1 cosϕi + z2 sinϕi) + εhp,i

]
cos

[
k (z1 cosϕj + z2 sinϕj) + εhp,j

]
+

+ sin
[
k (z1 cosϕi + z2 sinϕi) + εhp,i

]
sin

[
k (z1 cosϕj + z2 sinϕj) + εhp,j

]}
=

=
N−1∑
i,j=0

ρhp,i ρ
h
p,j cos

{
k [z1 (cosϕi − cosϕj) + z2 (sinϕi − sinϕj)] + εhp,i − εhp,j

}
, (3.79)

where, in the last passage, we have used the well-known identity:

cosα cos β + sinα sin β = cos(α− β) ∀α, β ∈ R. (3.80)

Hence, if we put

ω̂1,ij := k(cosϕi − cosϕj), (3.81)

ω̂2,ij := k(sinϕi − sinϕj), (3.82)

∆εhp,ij := εhp,i − εhp,j (3.83)

and substitute (3.81), (3.82), (3.83) into (3.79), from relation (3.76) we can obtain the following

expression for the indicator function:

Ψ2(z) =
N2

32π3k

rh−1∑
p=0

(σhp )
2

[(σhp )
2 + α∗]2

N−1∑
i,j=0

ρhp,i ρ
h
p,j cos

(
ω̂1,ij z1 + ω̂2,ij z2 + ∆εhp,ij

)
. (3.84)

Hence, Ψ2(z) consists of a finite linear combination of cosine-like functions in the variables z1

and z2. We now remember that, starting from the very beginning of the general framework we

have conceived for our no-sampling implementation of the linear sampling method, Ψ2(z) is

defined, a priori, only in TBA ; however, the right-hand side of expression (3.84) is mathematically

well-defined for all z ∈ R2 and, as such, it is easily seen to be real-analytic in R2 by applying

theorem A.4.2. Then, by virtue of the unique continuation property enjoyed by real-analytic

functions (see theorem A.4.3), we can analytically extend Ψ2(z) to all R2 simply regarding

expression (3.84) as holding not only in TBA , but also, by definition, in all R2. We shall keep

on denoting with Ψ2(z) the analytical extension in R2 of the original Ψ2(z) defined in TBA .

The next step is to compute the Fourier transform [F(Ψ2(z))](ω) ≡ [F(Ψ2)](ω) of Ψ2(z)

(with ω = (ω1, ω2) ∈ R2); of course, Ψ2(z) belongs neither to L1(R2) nor to L2(R2), but

it should be rather regarded as an element of S∗(R2) (see the brief comment after relation

(A.53)) and, consequently, the Fourier transform we need for our purposes is the operator

F : S∗(R2) → S∗(R2) defined by condition (A.62).

However, in order to compute [F(Ψ2)](ω) we can still use several tools typical of the classical

Lebesgue integration of functions, although with the proper care. Our following calculations

can be rigorously justified by the theory of distributions: for sake of brevity, here we simply

refer, e.g., to [35] (chapters III and V).
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We firstly observe that, by virtue of expression (3.84), [F(Ψ2)](ω) is determined, by linearity,

once we have computed the Fourier transform of the functions cos
(
ω̂1,ij z1 + ω̂2,ij z2 + ∆εhp,ij

)

for all p = 0, . . . , rh − 1 and for all i, j = 0, . . . , N − 1. To this end, we use the well-known

identity

cos(α + β) = cosα cos β − sinα sin β ∀α, β ∈ R (3.85)

to write:

cos
(
ω̂1,ij z1 + ω̂2,ij z2 + ∆εhp,ij

)
= cos (ω̂1,ij z1 + ω̂2,ij z2) cos

(
∆εhp,ij

)
+

− sin (ω̂1,ij z1 + ω̂2,ij z2) sin
(
∆εhp,ij

)
. (3.86)

moreover, by applying again identity (3.85) and the following one:

sin(α + β) = sinα cos β + cosα sin β ∀α, β ∈ R, (3.87)

we easily get:

cos (ω̂1,ij z1 + ω̂2,ij z2) = cos (ω̂1,ij z1) cos (ω̂2,ij z2)− sin (ω̂1,ij z1) sin (ω̂2,ij z2) , (3.88)

sin (ω̂1,ij z1 + ω̂2,ij z2) = sin (ω̂1,ij z1) cos (ω̂2,ij z2) + cos (ω̂1,ij z1) sin (ω̂2,ij z2) . (3.89)

Substituting (3.88) and (3.89) into (3.86), we have:

cos
(
ω̂1,ij z1 + ω̂2,ij z2 + ∆εhp,ij

)
=

= cos
(
∆εhp,ij

)
[cos (ω̂1,ij z1) cos (ω̂2,ij z2)− sin (ω̂1,ij z1) sin (ω̂2,ij z2)] +

− sin
(
∆εhp,ij

)
[sin (ω̂1,ij z1) cos (ω̂2,ij z2) + cos (ω̂1,ij z1) sin (ω̂2,ij z2)] ; (3.90)

then, by linearity again, it suffices to compute, for all i, j = 0, . . . , N −1, the Fourier transform

of the following functions (regarded as elements of S∗(R2)):

f1(z1, z2) := cos (ω̂1,ij z1) cos (ω̂2,ij z2) , (3.91)

f2(z1, z2) := sin (ω̂1,ij z1) sin (ω̂2,ij z2) , (3.92)

f3(z1, z2) := sin (ω̂1,ij z1) cos (ω̂2,ij z2) , (3.93)

f4(z1, z2) := cos (ω̂1,ij z1) sin (ω̂2,ij z2) , (3.94)

so that we can write:

[F (
cos

(
ω̂1,ij z1 + ω̂2,ij z2 + ∆εhp,ij

))]
(ω1, ω2) =

= cos
(
∆εhp,ij

) {[F(f1)] (ω1, ω2)− [F(f2)] (ω1, ω2)}+

− sin
(
∆εhp,ij

) {[F(f3)] (ω1, ω2) + [F(f4)] (ω1, ω2)} . (3.95)

We can now remember a general result in Fourier transform theory12: if g(z1, z2) admits the

factorization g(z1, z2) = g1(z1) g2(z2) and there exist [F(g1)](ω1), [F(g2)](ω2), then it holds:

[F(g)](ω1, ω2) = [F(g1)](ω1) [F(g2)](ω2), (3.96)

12See, e.g., [35], p. 233 and p. 284, or [55], p. 91.
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where obviously F is to be intended as acting on S∗(R2) at the left-hand side and on S∗(R) at

the right-hand side of identity (3.96).

If we use, in general, the specific definition (A.54) of the Fourier transform, two elementary

results in one-dimensional distribution theory are13:

[F(cos(ω0 t))](ω) = π [δ(ω − ω0) + δ(ω + ω0)] ∀ω0 ∈ R, (3.97)

[F(sin(ω0 t))](ω) = iπ [δ(ω + ω0)− δ(ω − ω0)] ∀ω0 ∈ R, (3.98)

where we have obviously denoted with δ(ω − ω0) the Dirac delta set in ω0. Hence, by virtue

of relations (3.96), (3.97) and (3.98), we can easily compute the Fourier transforms of the

functions given by (3.91)-(3.94) as follows:

[F(f1)](ω1, ω2) = π [δ(ω1 − ω̂1,ij) + δ(ω1 + ω̂1,ij)] · π [δ(ω2 − ω̂2,ij) + δ(ω2 + ω̂2,ij)] , (3.99)

[F(f2)](ω1, ω2) = iπ [δ(ω1 + ω̂1,ij)− δ(ω1 − ω̂1,ij)] · iπ [δ(ω2 + ω̂2,ij)− δ(ω2 − ω̂2,ij)] , (3.100)

[F(f3)](ω1, ω2) = iπ [δ(ω1 + ω̂1,ij)− δ(ω1 − ω̂1,ij)] · π [δ(ω2 − ω̂2,ij) + δ(ω2 + ω̂2,ij)] , (3.101)

[F(f4)](ω1, ω2) = π [δ(ω1 − ω̂1,ij) + δ(ω1 + ω̂1,ij)] · iπ [δ(ω2 + ω̂2,ij)− δ(ω2 − ω̂2,ij)] . (3.102)

From relations (3.99) and (3.100) we easily find:

[F(f1)](ω1, ω2)− [F(f2)](ω1, ω2) = 2π2[δ(ω1 − ω̂1,ij)δ(ω2 − ω̂2,ij) + δ(ω1 + ω̂1,ij)δ(ω2 + ω̂2,ij)],

(3.103)

while from relations (3.101) and (3.102) we get:

[F(f3)](ω1, ω2) + [F(f4)](ω1, ω2) = −2iπ2[δ(ω1 − ω̂1,ij)δ(ω2 − ω̂2,ij)− δ(ω1 + ω̂1,ij)δ(ω2 + ω̂2,ij)].

(3.104)

Finally, substituting relations (3.103) and (3.104) into equality (3.95) and remembering expres-

sion (3.84), we find that the Fourier transform of Ψ2(z) is:

[F(Ψ2)](ω1, ω2) =
N2

32π3k

rh−1∑
p=0

(σhp )
2

[(σhp )
2 + α∗]2

N−1∑
i,j=0

ρhp,i ρ
h
p,j· (3.105)

· {2π2 cos(∆εhp,ij)[δ(ω1 − ω̂1,ij)δ(ω2 − ω̂2,ij) + δ(ω1 + ω̂1,ij)δ(ω2 + ω̂2,ij)]+

+2iπ2 sin(∆εhp,ij)[δ(ω1 − ω̂1,ij)δ(ω2 − ω̂2,ij)− δ(ω1 + ω̂1,ij)δ(ω2 + ω̂2,ij)]
}
.

This expression shows that the Fourier transform of the indicator function Ψ2(z) analytically

extended to all R2 is a distribution, which can be named “Dirac brush”, whose support14 (which

is, by definition, the band of Ψ2(z)) is the compact set

S = {(ω̂1,ij, ω̂2,ij)}N−1
i,j=0. (3.106)

13See, e.g., [35], p. 256 and p. 609, or [55], p. 100.
14The definition of support of a distribution is given in section A.5; for some useful properties concerning the

support of a sum or of a product of distributions, see, e.g., [35], p. 143-150.
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From relations (3.81), (3.82) we easily have that
√

(ω̂1,ij)
2 + (ω̂2,ij)

2 ≤ 2k ∀i, j = 0, . . . , N − 1, (3.107)

i.e. the support of the Dirac brush is contained in a circle of radius 2k in the frequency space.

Moreover, if we define

Ω1 := max
i,j

[ω̂1,ij], Ω2 := max
i,j

[ω̂2,ij], (3.108)

we can say that the indicator function (3.74) is (Ω1,Ω2)-bandlimited. Hence, if we put

sinc(t) :=





sin(πt)

πt
if t 6= 0

1 if t = 0,
(3.109)

the following Shannon-Nyquist representation15 of Ψ2(z) ≡ Ψ2(z1, z2)

Ψ2(z) =
+∞∑

n1,n2=−∞
Ψ2(n1d1, n2d2) sinc

[
z1 − n1d1

d1

]
sinc

[
z2 − n2d2

d2

]
(3.110)

holds, provided that the sampling distances d1 and d2 along the z1-axis and z2-axis respectively

satisfy the following conditions16:

d1 <
π

Ω1

, d2 <
π

Ω2

, (3.111)

where
π

Ω1

and
π

Ω2

are called Nyquist distances. For example, if N is a multiple of 4, then it

holds Ω1 = Ω2 = 2k and consequently the Nyquist distances are:

π

Ω1

=
π

Ω2

=
λ

4
, (3.112)

where λ =
2π

k
is the wavelength. If N is not a multiple of 4, then

λ

4
is a strict lower bound for

the Nyquist distance.

We remark that the support (3.106) of distribution (3.105) is independent of the scatterer

and only depends on the wavenumber and on the number N of the observation/incidence

angles (of course, the Fourier transform of the indicator function does depend on the scatterer

characteristics, in particular through the singular system of the far-field matrix). As examples,

figure B.13 shows this support in the case of k = 5 and N = 8, 16, 32, 64. In order to

validate these results, we considered the scattering of N = 8 plane waves for k = 5 with the

conducting kite (2.285) in the case of Dirichlet boundary conditions, for N = 8 observation

angles. In figure B.14 we computed the numerical Fourier transform of the corresponding

indicator function (panel (a)) and compared it with the theoretical support for the same N

(panel (b)): the position of the peaks of the numerical Fourier transform coincides with the

peaks of the Dirac brush.

15See, e.g., [9], p. 23-25.
16See, e.g., [9], p. 23, or also [12], p. 83.
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3.3. Spatial resolution

Spatial resolution is the main concept in image formation theory and practice. In this regard,

the results of the previous two sections provide some hints about how to heuristically estimate

the ability of the method to recover close objects from the superposition of their noisy dis-

cretized far-field patterns. Indeed, the Shannon-Nyquist representation (3.110) implies that

Ψ2(z) cannot vary significantly on length scales smaller than the Nyquist distance λ/4, since

such representation consists of a superposition of sinc-like functions that are peaked at a dis-

tance smaller then λ/4 from one another and are very smooth between adjacent sampling

points: hence, when Ψ2(z) is chosen as indicator function, one is tempted to regard λ/4 at

least as a rough estimate of the distance under which two distinct objects begin to be seen as a

single one. However, a satisfactory solution to the problem of determining a reliable assessment

of the spatial resolution achievable by the method is still missing, since one should also take

into account the following crucial points:

1. in whatever implementation of the linear sampling method, the visualization of the scat-

terer profile is obtained by choosing a cut-off section for the 3D plot of Ψ2(z) and the

relation between the Nyquist distance for Ψ2(z) and the spatial resolution achievable for

the scatterer profile on this section still needs to be clarified; in particular, when the

cut-off criterion consists in selecting the level curve of the indicator function containing

an area equal to the one contained by the theoretical profile (i.e. the cut-off criterion

adopted by us), numerical experience suggests that the Nyquist distance often represents

a pessimistic estimate of the spatial resolution in two dimensions, i.e. situations fre-

quently occur where the cut-off section produces quite featured profiles although Ψ2(z)

varies very smoothly;

2. the way in which the cut-off section itself is performed has, in principle, a strong influence

in determining whether two close objects are distinguishable or not17: if we remember

that, till now, no general and satisfactory cut-off criterion has been formulated, we can

better realize the importance of this issue;

3. noise only affects the singular system of the far-field matrix and its presence does not

change the band of the indicator function, i.e. does not change the support of the dis-

tribution [F(Ψ2)](ω). Therefore this is a typical application where the presence of noise

does not affect, at least in principle, the theoretical spatial resolution of the method. On

17Let us think, e.g., to a three-dimensional plot formed, roughly speaking, by two similar and positive bells
blending at half-height, say a/2 > 0: if the cut-off value is greater than a/2 (and less than a), two distinct
objects will be detected, while for a cut-off value less than a/2 (and greater than 0), the corresponding section
will provide a single object.
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the other hand, the presence of noise affects the overall shape of the indicator function

and thus contributes to a general deterioration of the visualization accuracy. In other

terms, when two scatterers, as it happens in figure B.15 (which we are going to introduce

soon below), are made closer and closer (while all the other physical and geometrical

parameters are maintained unaltered), their progressive deformation is due to two dif-

ferent contributions: a growing one, deriving from the increasing proximity of the two

scatterers, and a roughly constant one, deriving from the presence of noise: then, the

latter can actually worsen the theoretically estimated resolution owing to an additional

deformation in the reconstruction of the two objects, which consequently may begin to

touch each other also when their spatial separation is greater than the Nyquist distance.

Let us now consider the following numerical experiment. We choose two conducting objects

with Dirichlet boundary conditions, an ellipse and a peanut, and we bring them nearer and

nearer: the ellipse has semiaxes equal to 1 and 2 respectively, while the peanut is obtained from

a rotation of 45◦ counterclockwise and a suitable translation18 of the prototype and zero-centred

peanut, described by the following equations:

x1(t) = f0(t) cos t, x2(t) = f0(t) sin t, t ∈ [0, 2π], (3.113)

where

f0(t) =
√

cos2 t+ 4 sin2 t. (3.114)

The exact far-field matrix F is computed, from time to time, by means of the Nyström method

[27] in the case of N = 32 incidence and observation angles, and 0.5% of Gaussian noise is

added by means of a suitable 32 × 32 noise matrix H summed to F (see relation (2.266) and

remark 2.5.1). The wavenumber is k = 1, i.e. λ/4 ' 1.57. We define the distance d between the

two objects as the distance between the closest points of the two boundaries. Then we consider

four cases: d = 5.3, 2.3, 1.8, 1.3, i.e. in two cases the distance between the objects is bigger

than the Nyquist distance, in one case it is very close to (but still bigger than) the Nyquist

distance and in the last case it is slightly smaller. We compute the indicator function Ψ2(z)

(3.74) with α∗ = α∗1 provided by the generalized discrepancy principle in the incompatible

case19 (cf. (3.66)) and determine the optimal level curves in such a way that the sum of the

areas of the true scatterers and the sum of the areas described by the level curves are equal.

The results of this experiment are plotted in figure B.15, where our theoretical assessment of

the spatial resolution is confirmed by the computational outcome.

Remark 3.3.1. All the previous results have been obtained by using a specific form for the

indicator function, i.e. for the monotonic function I. In principle, the resolution power of the

18Specified in the caption of figure B.15.
19The choice of the incompatible case in implementing the generalized discrepancy principle is explained by

the low noise level: cf. discussion in subsection 1.8.4.
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method depends on the form of I. By instance, an easy way to indefinitely widen the band is to

choose I(t) = t2n instead of I(t) = t2, with an arbitrarily large n ∈ N\{0}, so that our indicator

function Ψ2(z), given by (3.74), is to be replaced by Ψ2n(z) ≡ Ψn
2 (z). However this implies that,

in general, also the range of Ψn
2 (z) becomes arbitrarily large, so that an appropriate visualization

of a 3D plot of Ψn
2 (z) would require a (not necessarily linear) rescaling of the Cartesian axis

perpendicular to the z1Oz2-plane (and this procedure would be essentially equivalent to utilize

a different indicator function with a smaller n). From a 2D perspective, after a cut-off criterion

for the indicator function is applied, we observe that, despite regularization, random oscillations

due to the presence of noise still affect the regularized solution gα∗(z) and, consequently, its

Euclidean norm ‖gα∗(z)‖CN . Hence, for increasing values of n the correspondently decreasing

Nyquist distances tend to become comparable or smaller than the length scale on which such

oscillations deteriorate the detected scatterer profile. In other terms, if n is too large, the

theoretically estimated resolution power (heuristically identified with the Nyquist distance

itself) may become unrealistic, since it concerns length scales on which the smoothing effect of

the regularization procedure is not completely satisfactory.

Anyway, in general, the implementation of the linear sampling method proposed in section

3.1 allows one to compute the analytical form for all possible indicator functions. From this,

it is possible to infer information on the Fourier transform and therefore on the achievable

resolution. By instance, for the “traditional” choice
√

Ψ2(z) for the indicator function, it is

easy to show that the Nyquist distance is λ/2.

Summing up, in sections 3.1 and 3.2 we have chosen Ψ2(z), given by (3.74), as indicator

function, since it involves feasible analytic computations and consequently provides a detailed

and fully worked out example of the potential applications of our “no-sampling” implementa-

tion. However, Ψ2(z) is not necessarily the best indicator function, as well as our “equal-areas”

cut-off criterion is not necessarily the best way to detect the scatterer profile. ¤

3.4. Using a new family of indicator functions

Both the traditional and the no-sampling implementations of the linear sampling method get

their inspiration from the general theorem 2.4.10, which states, in particular, that, under

suitable hypotheses, an approximate solution for the far-field equation exists whose L2[0, 2π]-

norm blows up to infinity for all points approaching the boundary of the scatterer from inside

and stays arbitrarily large outside. However, one should say, more precisely, that both the

implementations are based on two particular statements of the general theorem 2.4.10, i.e.

the pairs of relations (2.215)-(2.216) and (2.218)-(2.219); in such a way, we have completely

disregarded limits (2.217) and (2.220), which are part too of the statement of theorem 2.4.10

itself.
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The reason for this exclusion is evident: indeed, relations (2.217) and (2.220) require the

computation of theH1(D)-norm of a suitable Herglotz wave function: but the domain D, where

the scatterer is placed, a priori (and, above all, in real experiments) is obviously unknown, then

such a computation would be actually impossible.

In the following, we propose a way to overcome such a drawback and, consequently, to use

also Herglotz wave functions in implementing the linear sampling method.

To this end, we firstly recall20 that, for any g ∈ L2[0, 2π], the Herglotz wave function of

kernel g

vg(x) :=

2π∫

0

eikx·dg(θ)dθ ∀x ∈ R2 (3.115)

(with d = (cos θ, sin θ)) is real-analytic on R2 and, consequently, it is also an element of H1(E)

for any non-empty, bounded, open and Lebesgue measurable subset E ⊂ R2. In particular, we

can choose E = TBA , where, as in section 3.1, TBA is a known rectangle containing the unknown

domain D; then it clearly holds:

‖vg‖H1(D) ≤ ‖vg‖H1(TB
A ) . (3.116)

Hence:

1. if z ∈ D, we can consider the function gεz ∈ L2[0, 2π] of statement No 1 in theorem 2.4.10:

then we have that vgε
z
∈ H1(TBA ) and, remembering relations (2.217) and (3.116), it holds:

lim
z→∂D

∥∥vgε
z

∥∥
H1(TB

A )
= ∞; (3.117)

2. if z ∈ R2 \ D̄, we can consider the function gε,δz ∈ L2[0, 2π] of statement No 2 in theorem

2.4.10: then we have that vgε,δ
z
∈ H1(TBA ) and, remembering relations (2.220) and (3.116),

it holds:

lim
δ→0+

∥∥∥vgε,δ
z

∥∥∥
H1(TB

A )
= ∞. (3.118)

Now, relations (3.117) and (3.118) suggest two new possible implementations of the linear

sampling method:

(i) the first one consists in reproducing, as far as possible, the traditional implementation: in

such a case, one considers the Tikhonov pointwise-regularized solution gα∗(zl)(zl), as given

by expression21 (2.277), of the discretized far-field equation (2.272). Then, putting, as

usual, θj =
2πj

N
, dj = (cos θj, sin θj) and denoting with gjα∗(zl)

(zl) the j-th component of

20See definition (2.98) and the brief comment soon below.
21Obviously, with α(zl) replaced by α∗(zl).
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the vector gα∗(zl)(zl) ∈ CN with respect to the canonical basis {ej}N−1
j=0 of RN , one defines

the following function of zl ∈ Z:

∥∥∥v[gα∗(zl)
(zl)](·)

∥∥∥
H1(TB

A )
:=

∥∥∥∥∥
2π

N

N−1∑
j=0

eik(·,dj)R2gjα∗(zl)
(zl)

∥∥∥∥∥
H1(TB

A )

∀zl ∈ Z, (3.119)

where we have denoted with (·, dj)R2 the scalar product in R2 between the independent

variable22 (i.e. x ∈ R2) and the vector dj ∈ R2. Then, the final step is to consider, as

indicator function, the following one:

ΞI : Z −→ R

zl 7−→ ΞI(zl) := I

(∥∥∥v[gα∗(zl)
(zl)](·)

∥∥∥
H1(TB

A )

)
, (3.120)

where, as usual, I : R+ ∪ {0} → R is a suitable monotonic continuous function.

(ii) the second one consists in following the no-sampling approach: in such a case, one considers

the Tikhonov no-sampling-regularized solution gα∗(·), as given by (3.69), of the functional

equation (3.44). Then, putting again θj =
2πj

N
, dj = (cos θj, sin θj) and denoting with

gjα∗(z) the value in z of the j-th component of the N -tuple gα∗(·) ∈
[
L2(TBA )

]N
, one

defines the following function of z ∈ TBA :

∥∥v[gα∗ (z)](·)
∥∥
H1(TB

A )
:=

∥∥∥∥∥
2π

N

N−1∑
j=0

eik(·,dj)R2gjα∗(z)

∥∥∥∥∥
H1(TB

A )

∀z ∈ TBA , (3.121)

where, as before, we have denoted with (·, dj)R2 the scalar product in R2 between the

independent variable (i.e. x ∈ R2) of the function whose H1(TBA )-norm is to be computed

and the vector dj ∈ R2. Then, the final step is to consider, as indicator function, the

following one:

ΞI : TBA −→ R

z 7−→ ΞI(z) := I
(∥∥v[gα∗ (z)](·)

∥∥
H1(TB

A )

)
, (3.122)

where, as usual, I : R+ ∪ {0} → R is a suitable monotonic continuous function.

A comparison between the two new implementations (i) and (ii) would clearly require that

one made several numerical experiments changing, from time to time, the scatterer, the noise

level, the boundary conditions, the wavenumber, the number of incidence/observation angles,

the indicator function, the criterion for its cut-off and so on. At present, we cannot show and

22The dot “·” instead of x points out which the independent variable is for the function whose H1(TB
A )-norm

is to be computed.
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discuss any numerical experiment concerning such a comparison: however, by virtue of the

substantial equivalence between the traditional and the previous no-sampling implementation

already observed at the end of section 3.1, it is reasonable to assume that such an equivalence

also holds for the implementations (i) and (ii) we are now considering, all the more that the two

different no-sampling implementations we are now going to compare, one using Ψ2(z) and the

other one using Ξ2(z) as indicator functions respectively, will prove, in turn, to be substantially

equivalent23.

To this end, we are now going to compute the Fourier transform of the indicator function

(3.122) for I(t) = t2, but, for sake of simplicity, we shall replace the H1(TBA )-norm with the

W 1,2(TBA )-norm: this is justified by the equivalence of the two norms (see theorem A.13.2),

which implies that the two limits (3.117), (3.118) inspiring the current alternative no-sampling

implementation also hold when, instead of theH1(TBA )-norm, one considers theW 1,2(TBA )-norm.

To make such a computation, we firstly need to obtain a handy analytic expression of the

right-hand side of definition (3.121) (rewritten using the W 1,2(TBA )-norm) as a function of z.

We begin by putting:

f(x; z) :=
2π

N

N−1∑
j=0

eik(x,dj)R2gjα∗(z) ∀x, z ∈ TBA ; (3.123)

then, recalling relation (3.69) and remembering that uhp,j = (uhp , ej)CN , we have:

f(x; z) =
2π

N

N−1∑
j=0

eik(x,dj)R2 (gα∗(z), ej)CN =

=
N−1∑
j=0

eik(x,dj)R2

rh−1∑
p=0

σhp
(σhp )

2 + α∗
(Φ∞(z),vhp)CN (uhp , ej)CN =

=
N−1∑
j=0

eik(x,dj)R2

rh−1∑
p=0

uhp,j σ
h
p

(σhp )
2 + α∗

(Φ∞(z),vhp)CN =

=
N−1∑
j=0

eik(x1 cos θj+x2 sin θj) ahj (z), (3.124)

where, in the last passage, we have written in explicit form the scalar product in the exponential

and we have put:

ahj (z) :=

rh−1∑
p=0

uhp,j σ
h
p

(σhp )
2 + α∗

(Φ∞(z),vhp)CN ∀j = 0, . . . , N − 1, ∀z ∈ TBA . (3.125)

23Compare also figures (B.15) and (B.16): the latter will be introduced at the end of the current section.
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From equality (3.124) we easily get:

∂f

∂x1

(x; z) =
N−1∑
j=0

ik cos θj e
ik(x1 cos θj+x2 sin θj) ahj (z) = ik

N−1∑
j=0

eik(x1 cos θj+x2 sin θj) bhj (z), (3.126)

∂f

∂x2

(x; z) =
N−1∑
j=0

ik sin θj e
ik(x1 cos θj+x2 sin θj) ahj (z) = ik

N−1∑
j=0

eik(x1 cos θj+x2 sin θj) chj (z), (3.127)

having obviously put:

bhj (z) := cos θj a
h
j (z), chj (z) := sin θj a

h
j (z) ∀j = 0, . . . , N − 1, ∀z ∈ TBA . (3.128)

From equalities (3.124), (3.126) and (3.127) it easily follows:

|f(x; z)|2 =

∣∣∣∣∣
N−1∑
j=0

eik(x1 cos θj+x2 sin θj) ahj (z)

∣∣∣∣∣

2

, (3.129)

∣∣∣∣
∂f

∂x1

(x; z)

∣∣∣∣
2

= k2

∣∣∣∣∣
N−1∑
j=0

eik(x1 cos θj+x2 sin θj) bhj (z)

∣∣∣∣∣

2

, (3.130)

∣∣∣∣
∂f

∂x2

(x; z)

∣∣∣∣
2

= k2

∣∣∣∣∣
N−1∑
j=0

eik(x1 cos θj+x2 sin θj) chj (z)

∣∣∣∣∣

2

. (3.131)

Now, by virtue of relations (3.121), (3.123) and remembering the definition (A.66) of W 1,2(TBA )-

norm, it holds:

‖v[gα∗ (z)](·)‖2
W 1,2(TB

A ) =

∫

TB
A

|f(x; z)|2 dx+

∫

TB
A

∣∣∣∣
∂f

∂x1

(x; z)

∣∣∣∣
2

dx+

∫

TB
A

∣∣∣∣
∂f

∂x2

(x; z)

∣∣∣∣
2

dx, (3.132)

i.e., remembering equalities (3.129), (3.130) and (3.131),

‖v[gα∗ (z)](·)‖2
W 1,2(TB

A ) =

∫

TB
A

∣∣∣∣∣
N−1∑
j=0

eik(x1 cos θj+x2 sin θj) ahj (z)

∣∣∣∣∣

2

dx+ (3.133)

+ k2

∫

TB
A

∣∣∣∣∣
N−1∑
j=0

eik(x1 cos θj+x2 sin θj) bhj (z)

∣∣∣∣∣

2

dx+ k2

∫

TB
A

∣∣∣∣∣
N−1∑
j=0

eik(x1 cos θj+x2 sin θj) chj (z)

∣∣∣∣∣

2

dx.

Let us now focus on the first integral at the right-hand side of relation (3.133): we can easily

realize that, for each z ∈ TBA , the algebraic structure of the function to be integrated is

essentially the same of the square modulus in (3.78); hence, if we use polar coordinates (r, β)

for all the coefficients ahj (z), i.e. if we put:

ahj (z) = (rhj (z), β
h
j (z)) = rhj (z) e

iβh
j (z) ∀j = 0, . . . , N − 1, ∀z ∈ TBA , (3.134)
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we can make computations analogous to the ones that allowed us to pass from (3.78) to the

internal sum inside representation (3.84): this means that, by putting

ω̃1,ij := k(cos θi − cos θj), (3.135)

ω̃2,ij := k(sin θi − sin θj), (3.136)

∆βhij(z) := βhi (z)− βhj (z), (3.137)

it holds:

∣∣∣∣∣
N−1∑
j=0

eik(x1 cos θj+x2 sin θj) ahj (z)

∣∣∣∣∣

2

=
N−1∑
i,j=0

rhi (z)r
h
j (z) cos

(
ω̃1,ij x1 + ω̃2,ij x2 + ∆βhij(z)

)
, (3.138)

i.e., recalling equalities (3.129) and (3.90),

|f(x; z)|2 =
N−1∑
i,j=0

rhi (z)r
h
j (z)· (3.139)

· {cos
(
∆βhij(z)

)
[cos (ω̃1,ij x1) cos (ω̃2,ij x2)− sin (ω̃1,ij x1) sin (ω̃2,ij x2)] +

− sin
(
∆βhij(z)

)
[sin (ω̃1,ij x1) cos (ω̃2,ij x2) + cos (ω̃1,ij x1) sin (ω̃2,ij x2)]

}
.

Hence, by linearity and by Fubini’s theorem (recalling that TBA = (−A,A)× (−B,B)), in order

to compute

∫

TB
A

|f(x; z)|2 dx it suffices to determine the values of the following integrals:

Ãij :=

A∫

−A

cos (ω̃1,ij x1) dx1

B∫

−B

cos (ω̃2,ij x2) dx2, (3.140)

B̃ij :=

A∫

−A

sin (ω̃1,ij x1) dx1

B∫

−B

sin (ω̃2,ij x2) dx2, (3.141)

C̃ij :=

A∫

−A

sin (ω̃1,ij x1) dx1

B∫

−B

cos (ω̃2,ij x2) dx2, (3.142)

D̃ij :=

A∫

−A

cos (ω̃1,ij x1) dx1

B∫

−B

sin (ω̃2,ij x2) dx2. (3.143)

Since the sine function is odd, while the integration domains (−A,A) and (−B,B) are even,

we immediately conclude that

B̃ij = C̃ij = D̃ij = 0 ∀i, j = 0, . . . , N − 1; (3.144)
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as regards the quantities Ãij, they are, in general, different from zero (e.g. when i = j) and

their values are easily computable. Then, by virtue of relations (3.139), (3.140)-(3.143) and

(3.144), we get: ∫

TB
A

|f(x; z)|2 dx =
N−1∑
i,j=0

rhi (z)r
h
j (z)Ãij cos

(
∆βhij(z)

)
, (3.145)

i.e., remembering definition (3.137) and identity (3.80),

∫

TB
A

|f(x; z)|2 dx =
N−1∑
i,j=0

Ãij
[
rhi (z) cos βhi (z) r

h
j (z) cos βhj (z) + rhi (z) sin βhi (z) r

h
j (z) sin βhj (z)

]
,

(3.146)

or, equivalently, recalling the polar coordinates representation (3.134),

∫

TB
A

|f(x; z)|2 dx =
N−1∑
i,j=0

Ãij
[
Re{ahi (z)}Re{ahj (z)}+ Im{ahi (z)} Im{ahj (z)}

]
. (3.147)

In order to compute the real and imaginary parts of the complex numbers ahi (z), let us firstly

introduce, analogously to (3.77), polar coordinates for the N components of each vector uhp ,

i.e.

uhp,0 = (λhp,0, γ
h
p,0) = λhp,0e

iγh
p,0 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

uhp,N−1 = (λhp,N−1, γ
h
p,N−1) = λhp,N−1e

iγh
p,N−1 ; (3.148)

then, remembering definition (3.125) and using relations (3.75), (3.77), (3.148), we can write:

ahi (z) =

rh−1∑
p=0

λhp,i σ
h
p

(σhp )
2 + α∗

eiγh
p,i(Φ∞(z),vhp)CN =

=

rh−1∑
p=0

λhp,i σ
h
p

(σhp )
2 + α∗

eiγh
p,i

(
v̄hp,0e

−ik(z1 cosϕ0+z2 sinϕ0) + · · ·+ v̄hp,N−1e
−ik(z1 cosϕN−1+z2 sinϕN−1)

)
=

=

rh−1∑
p=0

λhp,i σ
h
p

(σhp )
2 + α∗

eiγh
p,i

N−1∑
s=0

ρhp,s e
−iεh

p,se−ik(z1 cosϕs+z2 sinϕs) =

=

rh−1∑
p=0

λhp,i σ
h
p

(σhp )
2 + α∗

N−1∑
s=0

ρhp,s e
−i(εh

p,s−γh
p,i)e−ik(z1 cosϕs+z2 sinϕs) =

=

rh−1∑
p=0

λhp,i σ
h
p

(σhp )
2 + α∗

N−1∑
s=0

ρhp,s e
−i[k(z1 cosϕs+z2 sinϕs)+εh

p,s−γh
p,i]. (3.149)

Equality (3.149) clearly implies that

Re
{
ahi (z)

}
=

rh−1∑
p=0

λhp,i σ
h
p

(σhp )
2 + α∗

N−1∑
s=0

ρhp,s cos
[
k(z1 cosϕs + z2 sinϕs) + εhp,s − γhp,i

]
, (3.150)
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Im
{
ahi (z)

}
= −

rh−1∑
p=0

λhp,i σ
h
p

(σhp )
2 + α∗

N−1∑
s=0

ρhp,s sin
[
k(z1 cosϕs + z2 sinϕs) + εhp,s − γhp,i

]
. (3.151)

By virtue of the previous relations (3.150), (3.151) and remembering identity (3.80), as well as

definitions (3.81), (3.82), we get:

Re{ahi (z)}Re{ahj (z)}+ Im{ahi (z)} Im{ahj (z)} =

=

rh−1∑
p,q=0

λhp,i σ
h
p

(σhp )
2 + α∗

λhq,j σ
h
q

(σhq )
2 + α∗

N−1∑
s,t=0

ρhp,s ρ
h
q,t·

{
cos

[
k(z1 cosϕs + z2 sinϕs) + εhp,s − γhp,i

]
cos

[
k(z1 cosϕt + z2 sinϕt) + εhq,t − γhq,j

]
+

+ sin
[
k(z1 cosϕs + z2 sinϕs) + εhp,s − γhp,i

]
sin

[
k(z1 cosϕt + z2 sinϕt) + εhq,t − γhq,j

]}
=

=

rh−1∑
p,q=0

λhp,i σ
h
p

(σhp )
2 + α∗

λhq,j σ
h
q

(σhq )
2 + α∗

N−1∑
s,t=0

ρhp,s ρ
h
q,t·

cos
{
k [z1(cosϕs − cosϕt) + z2(sinϕs − sinϕt)] + ηhp,si − ηhq,tj

}
=

=

rh−1∑
p,q=0

λhp,i σ
h
p

(σhp )
2 + α∗

λhq,j σ
h
q

(σhq )
2 + α∗

N−1∑
s,t=0

ρhp,s ρ
h
q,t cos

(
ω̂1,st z1 + ω̂2,st z2 + ∆ηhpq,sitj

)
, (3.152)

where, in the last two passages, we have obviously put:

ηhp,si := εhp,s − γhp,i, ηhq,tj := εhq,t − γhq,j, ∆ηhpq,sitj := ηhp,si − ηhq,tj. (3.153)

Hence, substituting relation (3.152) into (3.147), we find:

∫

TB
A

|f(x; z)|2 dx = (3.154)

=
N−1∑
i,j=0

Ãij

rh−1∑
p,q=0

λhp,i σ
h
p

(σhp )
2 + α∗

λhq,j σ
h
q

(σhq )
2 + α∗

N−1∑
s,t=0

ρhp,s ρ
h
q,t cos

(
ω̂1,st z1 + ω̂2,st z2 + ∆ηhpq,sitj

)
,

i.e., recalling equality (3.90),

∫

TB
A

|f(x; z)|2 dx =
N−1∑
i,j=0

Ãij

rh−1∑
p,q=0

λhp,i σ
h
p

(σhp )
2 + α∗

λhq,j σ
h
q

(σhq )
2 + α∗

N−1∑
s,t=0

ρhp,s ρ
h
q,t· (3.155)

· {cos
(
∆ηhpq,sitj

)
[cos (ω̂1,st z1) cos (ω̂2,st z2)− sin (ω̂1,st z1) sin (ω̂2,st z2)] +

− sin
(
∆ηhpq,sitj

)
[sin (ω̂1,st z1) cos (ω̂2,st z2) + cos (ω̂1,st z1) sin (ω̂2,st z2)]

}
.

The second and the third integral at the right-hand side of relation (3.133) are treated in

a way which is fully analogous to that followed for the first one; in particular, remembering
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definitions (3.128) and relations (3.130), (3.131), one easily realizes that the two following

representations hold:

∫

TB
A

∣∣∣∣
∂f

∂x1

(x; z)

∣∣∣∣
2

dx = k2

N−1∑
i,j=0

Ãij cos θi cos θj

rh−1∑
p,q=0

λhp,i σ
h
p

(σhp )
2 + α∗

λhq,j σ
h
q

(σhq )
2 + α∗

N−1∑
s,t=0

ρhp,s ρ
h
q,t· (3.156)

· {cos
(
∆ηhpq,sitj

)
[cos (ω̂1,st z1) cos (ω̂2,st z2)− sin (ω̂1,st z1) sin (ω̂2,st z2)] +

− sin
(
∆ηhpq,sitj

)
[sin (ω̂1,st z1) cos (ω̂2,st z2) + cos (ω̂1,st z1) sin (ω̂2,st z2)]

}
.

∫

TB
A

∣∣∣∣
∂f

∂x2

(x; z)

∣∣∣∣
2

dx = k2

N−1∑
i,j=0

Ãij sin θi sin θj

rh−1∑
p,q=0

λhp,i σ
h
p

(σhp )
2 + α∗

λhq,j σ
h
q

(σhq )
2 + α∗

N−1∑
s,t=0

ρhp,s ρ
h
q,t· (3.157)

· {cos
(
∆ηhpq,sitj

)
[cos (ω̂1,st z1) cos (ω̂2,st z2)− sin (ω̂1,st z1) sin (ω̂2,st z2)] +

− sin
(
∆ηhpq,sitj

)
[sin (ω̂1,st z1) cos (ω̂2,st z2) + cos (ω̂1,st z1) sin (ω̂2,st z2)]

}
.

Finally, if we substitute relations (3.155), (3.156) and (3.157) into (3.132), we find that

Ξ2(z) :=
∥∥v[gα∗ (z)](·)

∥∥2

W 1,2(TB
A )

(3.158)

consists in a finite linear combination of the four functions (3.91)-(3.94), just as it happened

for Ψ2(z) = ‖gα∗(z)‖2
CN ; although the two linear combinations are very different in the two

cases (the one for Ξ2(z) is obviously much more involved), this analogy easily implies that

the supports of the Fourier transforms of Ξ2(z) and Ψ2(z) are the same24: in other terms,

[F(Ξ2)](ω1, ω2) and [F(Ψ2)](ω1, ω2) are two different Dirac brushes having the same support,

given by (3.106). This implies that, from the viewpoint of the resolution achievable, using

Ξ2(z) or Ψ2(z) as indicator function should be equivalent. This is confirmed by a comparison

between figures (B.15) and (B.16): the latter shows the results obtained by repeating exactly

the same numerical experiment we made to create figure (B.15), except that the indicator

function is now Ξ2(z) instead of Ψ2(z).

3.5. Facing the cut-off problem: deformable models

In this section we want to test the application of deformable contour models to the visualization

maps provided by the linear sampling method in order to extract the scatterer profile: indeed,

we think that this is a very promising approach to the problem of finding a cut-off criterion for

the plots of the indicator function provided by the method itself.

In the last twenty years there has been an increasing research activity in order to be able

to reconstruct the boundary of an object starting from a given image reproducing somehow

24Obviously, like Ψ2(z), also Ξ2(z) can be analytically continued onto all R2.
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the object itself; although there are now several works on edge detection techniques or active

contours, we shall just cite the following three: [23], [24], [42], to which we refer for a much

deeper and more complete treatment than the very brief one we are going to outline in the

following.

A deformable contour is a curve25 γ0 : [0, 1] → R2; a deformable model is a couple formed

by a space Ad of admissible deformations of γ0 and a functional E : Ad → R to be minimized.

This functional represents the energy of the model and has the following form:

E(γ) :=

1∫

0

[
1

2

(
w1(s) ‖γ′(s)‖2

R2 + w2(s) ‖γ′′(s)‖2
R2

)
+ Eext(γ(s))

]
ds, (3.159)

where the prime sign “ ′ ” denotes the ordinary derivative with respect to s and

1. the maps w1 : [0, 1] → R and w2 : [0, 1] → R are weight functions that respectively

control the importance of the first-order and second-order terms imposing the regularity

of the curve; their choice determines the mechanical properties or, more precisely, the

internal forces, i.e. elasticity and rigidity respectively, of the model26

2. Eext denotes the potential energy associated to the external forces deriving from the

image map and pushing the curve to the significant lines which correspond to the desired

attributes (i.e., in our case, edges); in our LSM-oriented application, we choose

Eext := −‖∇2ΨI‖2
R2 , (3.160)

where ΨI is clearly the generic indicator function (3.71) and ∇2 denotes the gradient

operator: indeed, if we want the deformable contour to be attracted by edge points, the

potential should depend on the gradient of the image.

The functions w1, w2, γ and Eext are assumed to be smooth enough, in such a way that all

the previous and following computations involving them make sense from a classical viewpoint.

Moreover, we shall restrict the space Ad of admissible deformations by assigning the boundary

25Although in the applications we have in mind the curve is closed, the general approach we are sketching
does not require this hypothesis.

26The first-order term makes the deformable contour behave like an elastic string of zero rest-length, since
1
2

∫ 1

0
w1(s) ‖γ′(s)‖2R2 is just the elastic energy of such a string, characterized by an elastic constant w1(s)

depending on the point.
The second-order term imposes some rigidity to the string itself, which can be understood if we imagine that

for a certain ŝ ∈ [0, 1] the string has a corner: this implies that γ′(s) is discontinuous in ŝ and γ′′(s) is a Dirac
delta in ŝ, then such a corner is pointwise penalized by means of a term proportional to w2(ŝ) itself (and of
course no penalization is given if w2(ŝ) = 0). In any case, we can say that the second-order term tends to make
the deformable contour behave like a stick.

Summing up, tuning the weight functions w1 and w2 controls the relative importance of the elastic string
and stick features respectively; the resulting overall behaviour is the one of a spline.
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conditions γ(0), γ′(0), γ(1) and γ′(1); we can also use periodic curves or, in general, other

kinds of boundary conditions.

Minimizing E(γ) is a variational problem: a necessary condition for γ to be a local minimum

for the functional E(γ) is that [31] γ itself satisfies the Euler (vectorial) equation:

(w1(s) γ
′(s))′ − (w2(s) γ

′′(s))′′ −∇2Eext(γ(s)) = 0 (3.161)

with given boundary conditions γ(0), γ′(0), γ(1) and γ′(1). Since, in general, the energy E(γ)

is not convex, it may have several local minima. However, we point out that finding the global

minimum of the energy does not necessarily have a meaning: indeed, e.g., if P ∈ R2 is a point

of the plane where Eext has a global minimum, then the degenerate constant curve γ(s) = P

is a global minimum for the energy with periodic boundary conditions. On the other hand, we

are rather interested in finding a good contour in a given area: in fact, we suppose to have at

disposal a rough estimate, i.e. γ0, of the contour we want to reconstruct. Then, in order to

determine the solution to (3.161) we are interested in, we assume that the unknown curve γ

becomes dynamic, by artificially regarding it as a function of time t as well as of the original

variable s, i.e. γ = γ(s, t), so that the latter is a solution of the associated evolution problem:





∂

∂t
γ(s, t) = (w1(s) γ

′(s, t))′ − (w2(s) γ
′′(s, t))′′ −∇2Eext(γ(s, t)), (a)

γ(s, 0) = γ0(s), (b)

γ(0, t) = γ0(0), γ(1, t) = γ0(1), (c)

γ′(0, t) = γ′0(0), γ′(1, t) = γ′0(0), (d)

(3.162)

where the prime sign “ ′ ” is now to be read, in general, as ∂
∂s

, and the boundary or initial condi-

tions (3.162)(b)-(d) impose that γ is “close” enough to the initial guess γ0. When the solution

γ of (3.162) stabilizes, the term ∂γ
∂t

goes to zero and we get a solution of the static problem

(3.161). Therefore a numerical solution to (3.161) can be found by discretizing, in both s and

t, problem (3.162) and solving iteratively (in t) the discretized system so obtained, till a stable

solution is found. An accurate implementation of this iterative procedure requires some clever

devices and technicalities, which will be omitted here. We only point out that discretization

may introduce numerical instabilities, which, however, can be reduced by replacing equation

(3.162)(a) with the following one,

∂

∂t
γ(s, t) = (w1(s) γ

′(s, t))′ − (w2(s) γ
′′(s, t))′′ + F (γ(s, t)), (3.163)

where

F := −κ ∇2Eext
‖∇2Eext‖R2

, (3.164)

for a suitable κ ∈ R+, which can be chosen in a standard way.



176 3 The linear sampling method without sampling

It is worthwhile noticing that, unlike the general case (in which one has at disposal only

an image as a set of pixels), in the framework of the no-sampling implementation of the linear

sampling method the external energy term ∇2Eext does not need to be numerically computed

by means of finite-increments methods, but can be analytically determined, thus increasing the

accuracy of the procedure.

As numerical applications, we consider the following scattering experiments in the case

of Dirichlet boundary conditions, with wavenumber k = 1, indicator function Ψ−2 ln(z) :=

− ln ‖gα∗(z)‖2
CN (cf. definition (3.72)) and N = 32 incidence/observation angles:

1. an ellipse having its centre in (0, 0) and semiaxes equal to 1 and 2 respectively, with

n = 5% of Gaussian noise added to the far-field matrix and with blended regularization27

providing a value α∗b = 1.2 · 10−1 for the regularization parameter α (figure B.17, panel

(a));

2. a kite described by the parametric equation (2.285), with n = 5% of Gaussian noise added

to the far-field matrix and with blended regularization providing a value α∗b = 1.1 · 10−1

for the regularization parameter α (figure B.17, panel (b));

3. a double scatterer, i.e. the same kite described by equation (2.285) but centred in

(−4,−4) and rotated of 45◦ clockwise, together with an ellipse again with semiaxes 1 and

2 but centred in (4, 4) and rotated of 45◦ counterclockwise; the noise level is n = 10% and

the generalized discrepancy principle for the compatible case28 is used, this providing a

value α∗2 = 4.9 · 10−2 for the regularization parameter α (figure B.18).

In each figure we show the true profile of the scatterer (white line), the initial guess γ0

(red line) and reconstructed profile (blue line) obtained by applying the deformable model

described just above in this section, i.e., more precisely, by iteratively solving problem (3.162)

(with the corrections pointed out in (3.163)-(3.164)), where we have chosen (in a standard

way29) constant weight functions w1(s) = 0.02, w2(s) = 0 and put κ = 11.8; the number

of iterations has been stopped to 100, since a greater number would have provided identical

visualizations. We point out that for the double scatterer of figure B.18 all the procedure has

been implemented twice: the first time by choosing as initial guess γ0 the single circle around

27See subsection 1.8.4.
28See subsection 1.8.3: the choice of the compatible case in implementing the generalized discrepancy principle

is explained by the high noise level: cf. discussion in subsection 1.8.4.
29In any case, the algorithm is quite robust with respect to the choice of the values to be assigned to the

various parameters involved. We also point out that the standardization of the procedure according to which
such values can be fixed can represent a strong objection to the possible criticism that might be moved against
the overall approach, i.e. that the problem of choosing the cut-off threshold for the visualization maps provided
by the linear sampling method has been simply converted into the (possibly more difficult) one of determining
suitable values for the parameters appearing in the implementation of a deformable model.
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the ellipse and, after 100 iterations, the second one by choosing as initial guess γ0 the single

circle around the kite and then stopping the procedure itself after 100 iterations again. For

more details, read the captions of the figures themselves.

We think that the results shown in figures B.17 and B.18 are quite promising, all the more

that they are probably improvable with a little more careful choice of the parameters w1(s)

and w2(s); in any case, by means of the deformable contour technique just described above,

we have reconstructed, with no effort, boundaries which are closer to the true profiles than the

ones obtained in [14] by using a traditional Canny edge-detection algorithm.

3.6. Conclusions

This chapter presents a new viewpoint for the implementation of the linear sampling method

when the far-field matrix is discretized according to the same number of equidistant incidence

and observation angles. In this new framework the sampling procedure of the previous imple-

mentation is replaced by a single functional equation which is regularized by means of a single

optimization process. The advantages of this approach are two-fold. First, at a computational

level, pointwise regularization is avoided together with a notable number of time consuming

zero-finding processes for the generalized discrepancy function (as pointed out in [29], in the

traditional implementation the optimal values of the regularization parameter chosen by means

of the generalized discrepancy principle significantly depend on the sampling points and in some

cases can be even used as further indicator function for the visualization of the scatterer pro-

file). This fact may have important implications in the case of three-dimensional anisotropic

scattering, when the inversion requires a notable computational effort. Second, from the point

of view of applications, the knowledge of the analytic expression of the indicator function allows

one to deduce an approximate estimate of the resolution power of the linear sampling method

from the Shannon-Nyquist representation theorem and to improve the computational effective-

ness when deformable contour techniques are implemented in order to extract the scatterer

profile from the visualization maps provided by the method itself.

We observe that the no-sampling approach to linear sampling can be extended to other vi-

sualization methods requiring the solution of many ill-conditioned linear systems parametrized

over a sampling grid containing the scatterer, like for example the factorization method [44]

or methods which use more strongly singular sources than Φ(·, z). In particular, the same no-

sampling approach introduced in this paper can be applied to theoretically assess whether the

use, for example, of a derivative of the fundamental solution at the source point z provides a

better spatial resolution. On the other hand, establishing the relation between the regularized

solution of equation (3.44) and the approximate solution introduced by the general theorem

2.4.10 is still an open problem.
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APPENDIX A

Mathematical miscellany

The aim of this appendix A is to collect in few pages a good number of definitions, notations,

theorems and properties which are often used in this PhD thesis, mainly in chapter 2. The

various arguments are subdivided into (usually brief) sections; each section is not, in general,

self-contained, but it rather presupposes the previous ones. With few exceptions, of no theorem

we give the proof; however, just below the title of each section we indicate the bibliographical

source(s) from which the material has been drawn. This one may not be such a precise way of

giving references, but the treated topics are nearly always of common use in functional analysis

and can be found in several books: then the cited references are generally to be intended as

mere possibilities or suggestions.

A.1. Direct sum of vector spaces

References: [1], [7], [35], [68].

It is often useful to consider vector spaces constructed by means of other vector spaces. The

simplest case is represented by the direct sum of a finite number of vector spaces.

Definition A.1.1. For all j = 1, 2, . . . , n, let Xj be a vector space. We define the direct sum

X :=
⊕n

j=1Xj of these vector spaces as their Cartesian product
∏n

j=1Xj endowed, in turn,

with the structure of vector space by means of the following internal operations:

1. if x = (x1, . . . , xn) and y = (y1, . . . , yn) are two elements of
∏n

j=1Xj, we define their

sum as

x+ y := (x1 + y1, . . . , xn + yn); (A.1)

2. if x = (x1, . . . , xn) ∈
∏n

j=1Xj, we define its product by a complex number c as

c(x1, . . . , xn) := (cx1, . . . , cxn). (A.2)
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Of particular interest in functional analysis is the case in which Xj is a Banach space for

each j = 1, . . . , n. To this purpose, we firstly recall the following definition.

Definition A.1.2. Two norms ‖ · ‖(1) and ‖ · ‖(2) on a vector space V are said equivalent if

they induce the same topology on V or, in other terms, if there exist two constants M1,M2 > 0

such that

M1 ‖v‖(1) ≤ ‖v‖(2) ≤M2 ‖v‖(1) ∀v ∈ V. (A.3)

Then we can state the following theorem.

Theorem A.1.1. For all j = 1, 2, . . . , n, let Xj be a Banach space with norm ‖ · ‖Xj
; then the

direct sum X :=
⊕n

j=1Xj is a Banach space too with respect to any one of the infinitely many

equivalent norms defined as

‖x‖X;(p) :=

(
n∑
j=1

‖xj‖pXj

) 1
p

∀p ∈ [1,∞), ∀x = (x1, . . . , xn) ∈ X, (A.4)

‖x‖X;(∞) := max
1≤j≤n

‖xj‖Xj
∀x = (x1, . . . , xn) ∈ X. (A.5)

Finally, if Xj is separable [reflexive] for all j = 1, . . . , n, then X is separable [reflexive] too.

The particular case in which Xj is a Hilbert space for each j = 1, . . . , n deserves a theorem

apart.

Theorem A.1.2. For all j = 1, 2, . . . , n, let Xj be a Hilbert space with scalar product (·, ·)Xj

and corresponding induced norm ‖ · ‖Xj
; then the direct sum X :=

⊕n
j=1Xj is a Hilbert space

too if equipped with the scalar product defined as

(x, y)X :=
n∑
j=1

(xj, yj)Xj
∀ x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X. (A.6)

Of course, the scalar product (A.6) induces a corresponding norm:

‖x‖X :=
√

(x, x)X =

√√√√
n∑
j=1

(xj, xj)Xj
=

(
n∑
j=1

‖xj‖2
Xj

) 1
2

; (A.7)

this norm is clearly obtained by the family of norms (A.4) for p = 2 and is equivalent to all

the other ones belonging to the same family and defined for different values of p, as well as to

the norm (A.5).

Coming back to the case of Banach spaces, we recall the concept of dual space.
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Definition A.1.3. Let X be a normed space; then we define its dual space as X∗ := B(X,C),

i.e.

X∗ := {f : X → C | f is linear and bounded} . (A.8)

It can be proved that X∗, when equipped with the operatorial norm

‖f‖X∗ := sup
‖x‖X 6=0

|f(x)|
‖x‖X ∀f ∈ X∗, (A.9)

is complete, i.e. it is a Banach space, whether or not X is. Moreover, if X is a Hilbert space, X∗

is a Hilbert space too and they can be identified by virtue of the Riesz representation theorem,

which we recall here below.

Theorem A.1.3. [Riesz] Let X be a Hilbert space and f a linear functional on X. Then

f ∈ X∗ if and only if there exists yf ∈ X such that it holds

f(x) = (x, yf )X ∀x ∈ X. (A.10)

Moreover, yf is uniquely determined by f ∈ X∗ and ‖yf‖X = ‖f‖X∗.

As regards the direct sum of Banach spaces, we can now state the following theorem.

Theorem A.1.4. For all j = 1, 2, . . . , n, let Xj be a Banach space with norm ‖ · ‖Xj
and X∗

j

its dual with norm ‖ · ‖X∗j ; let us consider the direct sums

X :=
n⊕
j=1

Xj with norm ‖x‖X;(1) :=
n∑
j=1

‖xj‖Xj
∀x = (x1, . . . , xn) ∈ X, (A.11)

Y :=
n⊕
j=1

X∗
j with norm ‖f‖Y ;(∞) := max

1≤j≤n
‖fj‖X∗j ∀f = (f1, . . . , fn) ∈ Y ; (A.12)

then Y and X∗ are normisomorphic, i.e. there exists an isomorphism I : Y → X∗, defined as

[I(f)](x) :=
n∑
j=1

fj(xj) ∀x = (x1, . . . , xn) ∈ X, ∀f = (f1, . . . , fn) ∈ Y, (A.13)

which preserves the norms, i.e. such that

‖f‖Y ;(∞) = ‖I(f)‖X∗ ∀f = (f1, . . . , fn) ∈ Y. (A.14)

The previous theorem clearly allows one to identify Y with X∗.



182 A Mathematical miscellany

A.2. Multi-index notation

References: [41].

The so-called multi-index notation is very useful for its conciseness. With the term “multi-

index” we mean an n-tuple of non-negative integers, i.e. an element α = (α1, . . . , αn) of Nn.
For each α ∈ Nn, we define the scalars

|α|Nn := α1 + . . .+ αn (A.15)

and

α! := α1! · . . . · αn!, (A.16)

while we shall denote with cα a (complex) numerical coefficient depending on n non-negative

integers α1, . . . , αn:

cα := cα1,...,αn . (A.17)

Moreover, for any x = (x1, . . . , xn) ∈ Rn and any α ∈ Nn, we define the monomial

xα := xα1
1 · . . . · xαn

n . (A.18)

Finally, if, for each k = 1, . . . , n and for each m ∈ N, we put ∂mk :=
∂m

∂xmk
(where for m = 0

the derivation operator is clearly the identity), we can define the general partial differentiation

operator of order m ∈ N for functions defined on open subsets of Rn as

∂α := ∂α1
1 . . . ∂αn

n =
∂m

∂xα1
1 . . . ∂xαn

n

, (A.19)

where α is such that |α|Nn = m.

A.3. Spaces of continuous functions

References: [15], [35].

Now, let Ω be a non-empty open subset of Rn; then, for any r ∈ N, we define:

Cr(Ω) := {u : Ω → C | ∂αu exists and is continuous on Ω ∀α : |α|Nn ≤ r} , (A.20)

Cr(Ω̄) :=
{
u ∈ Ck(Ω) | ∂αu can be continuously extended onto Ω̄ ∀α : |α|Nn ≤ r

}
(A.21)
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and

C∞(Ω) :=
⋂
r≥0

Cr(Ω), (A.22)

C∞(Ω̄) :=
⋂
r≥0

Cr(Ω̄). (A.23)

Of course, if r ≤ s, then it holds Cs(Ω) ⊂ Cr(Ω). For u ∈ C0(Ω), we define the support of u as

suppu := {x ∈ Ω | u(x) 6= 0}. (A.24)

From now on, let K denote a compact subset of the open set Ω (this condition will be written

as K b Ω); then, for a fixed K b Ω, we define

Cr
K(Ω) := {u ∈ Cr(Ω) | suppu ⊂ K} (A.25)

and

C∞K (Ω) :=
⋂
r≥0

Cr
K(Ω). (A.26)

Moreover, we can also define1:

Cr
comp(Ω) := {u : Ω → C | ∃K b Ω such that u ∈ Cr

K(Ω)} (A.27)

and

C∞comp(Ω) := {u : Ω → C | ∃K b Ω such that u ∈ C∞K (Ω)} . (A.28)

A.4. Real-analytic functions

References: [41].

Definition A.4.1. Let Ω be a non-empty open subset of Rn and let f : Ω → R be a real-valued

function defined in Ω. For any x0 ∈ Ω, we say that f is real-analytic at x0 if there exist

coefficients (cx0)α ∈ R and a neighbourhood Ux0 of x0 (all depending on x0) such that it holds:

f(x) =
∑

α∈Nn

(cx0)α (x− x0)
α ∀x ∈ Ux0 . (A.29)

Moreover, we say that f is real-analytic in Ω if it is real-analytic at each x0 ∈ Ω and we put

Cω(Ω) := {f : Ω → R | f is real-analytic in Ω}. (A.30)

1Of course, in definitions (A.27), (A.28) the compact subset K of Ω may be different for each function u.
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Remark A.4.1. It is not restrictive to assume2 that the multiple power series (in several real

variables) at the right-hand side of relation (A.29) converges absolutely in Ux0 : of course, this

allows us not to worry about the order in which the infinitely many addenda in the series itself

are arranged. ¤

As stated by the following theorems A.4.1 and A.4.2, real-analytic functions form a subset

of C∞(Ω) and they can be characterized either by the property of local representability by

Taylor power series, or by the way their partial derivatives increase with increasing order.

Theorem A.4.1. If f ∈ Cω(Ω), then f ∈ C∞(Ω); moreover, for any x0 ∈ Ω there exist a

neighbourhood Ux0 of x0 and positive real numbers Mx0, rx0 such that it holds

f(x) =
∑

α∈Nn

1

α!
(∂αf(x0))(x− x0)

α ∀x ∈ Ux0 (A.31)

and

|∂αf(x)| ≤Mx0 |α|Nn ! r−|α|Nn

x0
∀x ∈ Ux0 , ∀α ∈ Nn. (A.32)

Theorem A.4.2. Let f be a real-valued function defined in the open subset Ω ⊂ Rn. Then

necessary and sufficient condition for f ∈ Cω(Ω) is that f ∈ C∞(Ω) and that for every compact

K b Ω there exist positive real numbers MK, rK such that it holds

|∂αf(x0)| ≤MK |α|Nn ! r
−|α|Nn

K ∀x0 ∈ K, ∀α ∈ Nn. (A.33)

Real analytic functions enjoy the property of unique continuation expressed by the following

theorem.

Theorem A.4.3. Let Ω be a connected open subset of Rn; let f ∈ Cω(Ω) and x0 ∈ Ω. Then f

is determined uniquely in Ω if we know ∂αf(x0) for all α ∈ Nn. In particular, f is determined

uniquely in Ω by its restriction to any non-empty open subset of Ω.

A.5. Distributions

References: [50].

Following the notation introduced by Schwartz [61], we denote with

2See p. 100-101 in [46] for details.
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1. E(Ω) the space C∞(Ω) equipped with the following definition of convergence of sequences:

if {ϕj}∞j=0 is a sequence in C∞(Ω), we say that

ϕj → 0 in E(Ω) as j →∞ (A.34)

if for each compact K b Ω and for each multi-index α it holds:

∂αϕj → 0 uniformly on K as j →∞; (A.35)

2. DK(Ω) the space C∞K (Ω) (for a fixed K b Ω) equipped with the following definition of

convergence of sequences: if {ϕj}∞j=0 is a sequence in C∞K (Ω), we say that

ϕj → 0 in DK(Ω) as j →∞ (A.36)

if for each multi-index α it holds:

∂αϕj → 0 uniformly on K as j →∞; (A.37)

3. D(Ω) the space C∞comp(Ω) equipped with the following definition of convergence of se-

quences: if {ϕj}∞j=0 is a sequence in C∞comp(Ω), we say that

ϕj → 0 in D(Ω) as j →∞ (A.38)

if there exists a compact K b Ω such that for each multi-index α it holds:

∂αϕj → 0 uniformly on K as j →∞. (A.39)

Moreover, we define the space of rapidly decreasing, C∞ functions:

S(Rn) :=

{
ϕ ∈ C∞(Rn) | sup

x∈Rn

∣∣xα∂βϕ(x)
∣∣ <∞ ∀α, β ∈ Nn

}
, (A.40)

equipped with the following definition of convergence of sequences: if {ϕj}∞j=0 is a sequence in

C∞(Rn), we say that

ϕj → 0 in S(Rn) as j →∞ (A.41)

if for all multi-indices α, β ∈ Nn it holds:

xα∂βϕj → 0 uniformly on Rn as j →∞. (A.42)

Now, let us consider a linear functional F : D(Ω) → C and assume that it is sequentially

continuous, i.e. for every sequence {ϕj}∞j=0 in D(Ω) it holds:

ϕj → 0 in D(Ω) as j →∞ =⇒ F (ϕj) → 0 in C as j →∞; (A.43)
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then F is called a (Schwartz) distribution on Ω. In this context, the elements of D(Ω) are

referred to as test functions on Ω. The set of all distributions on Ω is denoted by D∗(Ω). The

value F (ϕ) of F at ϕ ∈ D(Ω) will be often denoted by means of the pairing 〈F, ϕ〉Ω.

Let Ω1 be an open subset of Ω and, for any ϕ ∈ D(Ω1), let ϕ̃ ∈ D(Ω) denote the extension

of ϕ by zero. For any distribution u ∈ D∗(Ω), we define the restriction u|Ω1 ∈ D∗(Ω1) by means

of the condition

〈u|Ω1 , ϕ〉Ω1 = 〈u, ϕ̃〉Ω ∀ϕ ∈ D(Ω1). (A.44)

Moreover, we say that u = 0 on Ω1 if u|Ω1 = 0, and define the support suppu of u to be the

largest closed subset of Ω such that u = 0 on Ω \ suppu.

Analogously to D∗(Ω), one can define also the spaces E∗(Ω) and S∗(Rn). It can be proved

that E∗(Ω) coincides with the space of distributions having compact support, i.e.

E∗(Ω) = {u ∈ D∗(Ω) | supp u b Ω}. (A.45)

Furthermore, it can be shown that the inclusions D(Rn) ⊂ S(Rn) ⊂ E(Rn) are continuous with

dense image, so we have

E∗(Rn) ⊂ S∗(Rn) ⊂ D∗(Rn). (A.46)

The elements of S∗(Rn), i.e. the sequentially continuous linear functionals on S(Rn), are called

temperate distributions.

One can define partial differentiation for distributions getting inspiration from the procedure

of integration by parts, i.e.

〈∂αu, ϕ〉Ω := (−1)|α|Nn 〈u, ∂αϕ〉Ω ∀u ∈ D∗(Ω), ∀ϕ ∈ D(Ω); (A.47)

here, the sequential continuity of ∂αu, i.e. the fact that ∂αu itself is a distribution, immediately

follows from the obvious fact that if ϕj → 0 in D(Ω) as j → ∞, then ∂αϕj → 0 in D(Ω) as

j →∞ (cf. (A.38), (A.39)).

We can also define the complex conjugate ū ∈ D∗(Ω) of a distribution u ∈ D∗(Ω) by putting

〈ū, ϕ〉Ω := 〈u, ϕ̄〉Ω ∀ϕ ∈ D(Ω). (A.48)

A.6. Spaces of Lebesgue integrable functions

References: [1], [50], [51].

From now on, let Ω denote any Lebesgue measurable (and not necessarily open) subset of

Rn with strictly positive measure and let p ∈ [1,∞); then we define Lp(Ω) as the set of the
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measurable functions3 u : Ω → C such that the function |u|p is Lebesgue integrable in Ω. In

Lp(Ω) we introduce the norm

‖u‖Lp(Ω) :=




∫

Ω

|u(x)|pdx



1
p

, ∀u ∈ Lp(Ω). (A.49)

It turns out that for each p ∈ [1,∞), the set Lp(Ω) is a Banach space; in particular, for p = 2

it is a Hilbert space, with scalar product defined as

(u, v)L2(Ω) :=

∫

Ω

u(x) v(x) dx ∀u, v ∈ L2(Ω); (A.50)

another remarkable property of L2(Ω) is that, like any Hilbert space, it can be identified with

its dual by virtue of the Riesz representation theorem, i.e.

L2(Ω) = [L2(Ω)]∗. (A.51)

More precisely, any v ∈ L2(Ω) can be regarded as an element fv ∈ [L2(Ω)]∗ by putting:

fv(u) := (u, v̄)L2(Ω) =

∫

Ω

u(x) v(x) dx ∀u ∈ L2(Ω); (A.52)

moreover, it holds ‖v‖L2(Ω) = ‖fv‖[L2(Ω)]∗ .

In the same hypotheses (on Ω and p) assumed to define Lp(Ω), we denote with Lploc(Ω) the

set of the measurable functions u : Ω → C such that u ∈ Lp(K) for every compact K ⊂ Ω.

Each function u ∈ L1
loc(Ω) can be regarded as a distribution, i.e. an element of D∗(Ω), by

means of the imbedding ι : L1
loc(Ω) → D∗(Ω) defined by the following condition:

〈ιu, ϕ〉Ω :=

∫

Ω

u(x)ϕ(x)dx ∀ϕ ∈ D(Ω); (A.53)

such an imbedding allows one to identify L1
loc(Ω) with a subspace of D∗(Ω).

Moreover, a sufficient condition for a function u ∈ L1
loc(Rn) to be identifiable with a tem-

perate distribution ιu ∈ S∗(Rn) is that it is slowly growing, i.e. that there exists r ∈ R such

that u(x) = O(‖x‖rRn) as ‖x‖Rn → ∞: if such a condition is satisfied, definition (A.53) (with

Ω = Rn) can be extended to the case in which ϕ ∈ S(Rn).
Finally, since it is possible to show that Lp(Ω) ⊂ L1

loc(Ω) ∀p ∈ [1,∞), we have that any

function u ∈ Lp(Ω) can be regarded as a distribution ιu ∈ D∗(Ω).

3More properly, it is the set formed by the equivalence classes of these functions, the equivalence relation
being such that two functions defined on Ω are equivalent if and only if they are equal almost everywhere in Ω,
i.e. they (possibly) differ only on a set of zero measure. However, with a slight and useful abuse of terminology,
the elements of Lp(Ω) are commonly called functions.
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A.7. Fourier transform

References: [35], [50], [51].

If u ∈ L1(Rn), we define its Fourier transform as:

[F(u)](ω) :=

∫

Rn

u(x) e−iω·xdx ∀ω ∈ Rn; (A.54)

if v ∈ L1(Rn), we define its Fourier anti-transform as:

[F(−1)(v)](x) :=
1

(2π)n

∫

Rn

v(ω) eiω·xdω ∀x ∈ Rn. (A.55)

In general, if u ∈ L1(Rn) and no additional hypotheses are assumed, the natural inversion

formula one has in mind, i.e.

u(x) =
1

(2π)n

∫

Rn

[F(u)](ω) eiω·xdω, (A.56)

it is meaningless, since the function to be integrated does not necessarily belong to L1(Rn): in

this sense, we cannot say that the Fourier anti-transform is the inverse of the Fourier transform.

However, it can be shown that if both u and F(u) belong to L1(Rn), then the inversion formula

(A.56) is valid at every point x in which u is continuous; even more, if both u and F(u) are

continuous on all Rn and belong to L1(Rn), then

{F(−1)[F(u)]}(x) = u(x) = {F [F(−1)(u)]}(x) ∀x ∈ Rn. (A.57)

Since it can be proved that F(S(Rn)) ⊂ S(Rn), F(−1)(S(Rn)) ⊂ S(Rn) and, on the other

hand, it trivially holds S(Rn) ⊂ L1(Rn) ∩ C∞(Rn), it follows that, in particular, the inversion

formula (A.56) is valid for any u = ϕ ∈ S(Rn).
Put Mα(x) := xα for all x ∈ Rn, easy calculations show that if ϕ ∈ S(Rn), then

[F(∂αϕ)](ω) = i|α|NnMα(ω)[F(ϕ)](ω) ∀α ∈ Nn (A.58)

and

[F(Mαϕ)](ω) = i|α|Nn∂α[F(ϕ)](ω) ∀α ∈ Nn. (A.59)

Relations (A.58) and (A.59) imply that the Fourier transform defines a (sequentially) contin-

uous linear operator

F : S(Rn) → S(Rn). (A.60)
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Relations analogous to (A.58) and (A.59) also hold for F(−1) : S(Rn) → S(Rn), which is then

(sequentially) continuous too and, by virtue of relations (A.57), is the inverse of F on S(Rn).
Of course, any element ϕ ∈ S(Rn) can be regarded as a slowly growing function belonging

to L1
loc(Rn), so that ιϕ ∈ S∗(Rn). Since it clearly holds

〈ι[F(ϕ)], ψ〉Rn = 〈ϕ, ι[F(ψ)]〉Rn ∀ϕ, ψ ∈ S(Rn), (A.61)

we can easily define an extension of F to an operator, still denoted with F , from S∗(Rn) in

itself, by means of the condition4

〈F(u), ϕ〉Rn := 〈u,F(ϕ)〉Rn ∀u ∈ S∗(Rn), ∀ϕ ∈ S(Rn). (A.62)

An analogous procedure allows one to define an extension F(−1) : S∗(Rn) → S∗(Rn).
Furthermore, with arguments based on the denseness of S(Rn) in L2(Rn), Plancherel’s

theorem shows that there exists a unique operator (still denoted with F) from L2(Rn) in itself

that extends by linearity and continuity the Fourier transform restricted to S(Rn); an analogous

result (and notation) clearly holds for F(−1). Moreover, the operator F(−1) itself is the inverse

of F on L2(Rn), i.e. F(−1)F = FF(−1) = IL2(Rn), and the generalized Parseval equality holds

(2π)n(F−1(u),F−1(v))L2(Rn) = (u, v)L2(Rn) =
1

(2π)n
(F(u),F(v))L2(Rn) ∀u, v ∈ L2(Rn),

(A.63)

which clearly becomes, in the particular case u = v,

(2π)n/2‖F−1(u)‖L2(Rn) = ‖u‖L2(Rn) =
1

(2π)n/2
‖F(u)‖L2(Rn) ∀u ∈ L2(Rn). (A.64)

A.8. Sobolev spaces (first family)

References: [1], [13], [50].

Let Ω be any Lebesgue measurable and open subset of Rn with strictly positive measure and

let p ∈ [1,∞); since Lp(Ω) ⊂ L1
loc(Ω), any element u ∈ Lp(Ω) is such that, for each α ∈ Nn,

the distribution ιu (cf. definition (A.53)) has its partial derivative ∂αιu defined according to

condition (A.47). It may happen that the distribution ∂αιu is, in turn, identifiable with a

function gα ∈ Lp(Ω), i.e. that there exists a function gα ∈ Lp(Ω) such that ∂αιu = ιgα. In

such a case, we say that gα is a weak partial derivative of u and we simply write, with a slight

notational abuse, that ∂αu = gα.

4Of course, at the left-hand side of definition (A.62) the operator F is to be intended as mapping S∗(Rn)
in itself, while at the right-hand side has to be regarded as mapping S(Rn) in itself.
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We can now define the Sobolev space W r,p(Ω) of order r ∈ N based on Lp(Ω) as

W r,p(Ω) := {u ∈ Lp(Ω) | ∂αu ∈ Lp(Ω) ∀α : |α|Nn ≤ r} . (A.65)

The completeness of Lp(Ω) implies that W r,p(Ω) becomes a Banach space with the norm

defined as:

‖u‖W r,p(Ω) :=


 ∑

|α|Nn≤r

∫

Ω

|∂αu(x)|pdx



1
p

. (A.66)

It is possible to prove that the previous norm is equivalent to the following one:

‖u‖′W r,p(Ω) :=
∑

|α|Nn≤r
‖∂αu(x)‖Lp(Ω). (A.67)

Remark A.8.1. If u ∈ C1(Ω) ∩ Lp(Ω) and if
∂u

∂xi
∈ Lp(Ω) for all i = 1, . . . , n (where

∂u

∂xi
denotes the partial derivative of u in the classical sense), then u ∈ W 1,p(Ω) and the partial

derivatives of u in the classical sense coincide with the weak partial derivatives of u. ¤

We also need to define Sobolev spaces of non-integer order s ∈ [0,+∞); to this end, we

introduce the Slobodeckĭı seminorm

|u|µ,p,Ω :=




∫

Ω

∫

Ω

|u(x)− u(y)|p
‖x− y‖n+pµ

Rn

dx dy




1
p

∀µ ∈ (0, 1); (A.68)

then, for s = r + µ, we define the Sobolev space

W s,p(Ω) := {u ∈ W r,p(Ω) | |∂αu|µ,p,Ω <∞ ∀α : |α|Nn = r} (A.69)

equipped with the norm

‖u‖W s,p(Ω) :=


‖u‖pW r,p(Ω) +

∑

|α|Nn=r

|∂αu|pµ,p,Ω




1
p

. (A.70)

The case p = 2 is of particular interest: indeed, W s,2(Ω) turns out to be a Hilbert space for

all s ∈ [0,+∞). More precisely, for any integer r ≥ 0 the norm in W r,2(Ω) is induced by the

scalar product

(u, v)W r,2(Ω) :=
∑

|α|Nn≤r

∫

Ω

∂αu(x) ∂αv(x) dx, (A.71)

while for s = r + µ the norm in W s,2(Ω) is induced by the scalar product

(u, v)W s,2(Ω) := (u, v)W r,2(Ω) +
∑

|α|Nn=r

∫

Ω

∫

Ω

[∂αu(x)− ∂αu(y)] [∂αv(x)− ∂αv(y)]

‖x− y‖n+2µ
Rn

dx dy. (A.72)
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For any integer r ≥ 1, we also define the negative-order Sobolev space W−r,p(Ω) as the set

of distributions u ∈ D∗(Ω) that admit a representation of the form

u =
∑

|α|Nn≤r
∂αfα with fα ∈ Lp(Ω) ∀α : |α|Nn ≤ r, (A.73)

equipped with the norm

‖u‖W−r,p(Ω) := inf


 ∑

|α|Nn≤r
‖fα‖pLp(Ω)




1
p

, (A.74)

where the infimum is taken over all the representations of the form (A.73).

A.9. Sobolev spaces (second family)

References: [1], [50].

For any s ∈ R, we define a continuous linear operator J s : S(Rn) → S(Rn), called the Bessel

potential of order s, by

[J s(ϕ)](x) := F−1
{(

1 + ‖ω‖2
Rn

) s
2 [F(ϕ)](ω)

}
(x) ∀x ∈ Rn, (A.75)

i.e., more explicitly,

[J s(ϕ)](x) :=
1

(2π)n

∫

Rn

(
1 + ‖ω‖2

Rn

) s
2 [F(ϕ)](ω) eiω·xdω ∀x ∈ Rn. (A.76)

Definitions (A.54) and (A.75) easily imply that

{F [J s(ϕ)]}(ω) =
(
1 + ‖ω‖2

Rn

) s
2 [F(ϕ)](ω), (A.77)

then, under Fourier transformation, the action of J s is to multiply [F(ϕ)](ω) by a function

that is O(‖ω‖sRn) as ‖ω‖sRn → ∞. Therefore, remembering relation (A.58), we can regard J s

as a sort of differential operator of order s. We also point out that, for all s, t ∈ R, it holds:

J s+t = J sJ t, (J s)−1 = J −s, J 0 = IS(Rn). (A.78)

Moreover, it follows from (A.54), (A.76) and (A.77) a relation analogous to (A.61), i.e.

〈ι[J s(ϕ)], ψ〉Rn = 〈ϕ, ι[J s(ψ)]〉Rn ∀ϕ, ψ ∈ S(Rn). (A.79)
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Relation (A.79) suggests and actually allows a natural extension of the Bessel potential to

a linear operator J s : S∗(Rn) → S∗(Rn) on the space of temperate distributions, defined,

analogously to relation (A.62), by means of the following condition5:

〈J su, ψ〉 := 〈u,J sψ〉 ∀u ∈ S∗(Rn), ∀ψ ∈ S(Rn). (A.80)

For any s ∈ R, we now define the Sobolev space6

Hs(Rn) := {u ∈ S∗(Rn) | J su ∈ L2(Rn)} (A.81)

equipped with the scalar product

(u, v)Hs(Rn) := (J su,J sv)L2(Rn) ∀u, v ∈ S∗(Rn) (A.82)

and the induced norm

‖u‖Hs(Rn) :=
√

(u, u)Hs(Rn) = ‖J su‖L2(Rn) ∀u ∈ S∗(Rn). (A.83)

Then the Bessel potential

J s : Hs(Rn) → L2(Rn) (A.84)

turns out to be a unitary isomorphism and, in particular, since J 0u = u, it holds

H0(Rn) = L2(Rn). (A.85)

By virtue of relations (A.75), (A.83) and (A.64), we easily find that

‖u‖2
Hs(Rn) =

1

(2π)n

∫

Rn

(
1 + ‖ω‖2

Rn

)s | [F(u)](ω) |2 dω; (A.86)

therefore if s ≤ t and ‖u‖Ht(Rn) <∞, then ‖u‖Hs(Rn) ≤ ‖u‖Ht(Rn) and, consequently, H t(Rn) ⊂
Hs(Rn); it can be proved that this inclusion is continuous with dense image.

Several properties of Hs(Rn) straightforwardly follow from standard properties of L2(Rn).
For example, Hs(Rn) is a (separable) Hilbert space, and D(Rn) is dense in Hs(Rn) (i.e. Hs(Rn)
is the closure of D(Rn) in the norm given by (A.86)), since J s[S(Rn)] = S(Rn) is dense in

L2(Rn) and the inclusion D(Rn) ⊂ S(Rn) is continuous with dense image; moreover, by virtue

of the identification L2(Ω) = [L2(Ω)]∗, it is possible to prove that H−s(Rn) is an isometric

realization of the dual space of Hs(Rn), i.e.

H−s(Rn) = [Hs(Rn)]∗ ∀s ∈ R (A.87)

5Of course, at the left-hand side of definition (A.80) the operator J s is to be intended as mapping S∗(Rn)
in itself, while at the right-hand side has to be regarded as mapping S(Rn) in itself.

6Of course, the condition J su ∈ L2(Rn) in definition (A.81) is to be intended as a shorthand for the following
one: there exists a function v ∈ L2(Rn) ⊂ L1

loc(Rn) such that ιv = J s(u) ∈ S∗(Rn).
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and

‖u‖H−s(Rn) = sup
06=v∈Hs(Rn)

|〈u, v〉Rn |
‖v‖Hs(Rn)

∀u ∈ H−s(Rn). (A.88)

For any closed set F ⊂ Rn, we also define the associated Sobolev space of order s ∈ R as

Hs
F := {u ∈ Hs(Rn) | supp u ⊂ F} . (A.89)

The space Hs
F easily turns out to be a closed subspace of Hs(Rn) and therefore it is a Hilbert

space when equipped with the restriction of the scalar product in Hs(Rn).
Moreover, for any non-empty open set Ω ⊂ Rn, we define the associated Sobolev space of

order s ∈ R as

Hs(Ω) = {u ∈ D∗(Ω) | ∃U ∈ Hs(Rn) such that u = U |Ω} . (A.90)

Also Hs(Ω) can be endowed with a Hilbert space structure, although not straightforwardly:

in particular, it is possible to prove that the norm induced by the scalar product on Hs(Ω) is

such that

‖u‖Hs(Ω) = min
U∈Au

‖U‖Hs(Rn), (A.91)

where Au := {U ∈ Hs(Rn) | U |Ω = u}; for our purposes, equality (A.91) can be regarded as a

definition, although improperly.

Relation (A.91) itself shows that the restriction operator RΩ : Hs(Rn) → Hs(Ω) mapping

U into U |Ω is continuous and therefore, by virtue of the denseness of D(Rn) in Hs(Rn), the

space defined as

D(Ω̄) := {ϕ ∈ C∞(Ω) | ∃Φ ∈ D(Rn) such that ϕ = Φ|U} (A.92)

is dense in Hs(Ω).

We also define two other Sobolev spaces on Ω, i.e.

H̃s(Ω) := closure of D(Ω) in Hs(Rn), (A.93)

Hs
0(Ω) := closure of D(Ω) in Hs(Ω); (A.94)

they are easily endowed with a Hilbert space structure by respectively restricting the scalar

products in Hs(Rn) and in Hs(Ω). It is not difficult to realize that

H̃s(Ω) ⊂ Hs
Ω̄ and H̃s(Ω) ⊂ Hs

0(Ω), (A.95)

while the reverse inclusions hold only under suitable conditions on Ω and s (see theorems A.13.1

and A.13.3 in the following).

An element ofHs
Ω̄

is a distribution on Rn, but, provided the n-dimensional Lebesgue measure

of the boundary of Ω is zero, the restriction operator u 7→ u|Ω defines an imbedding

Hs
Ω̄ ⊂ L2(Ω) ∀s ≥ 0. (A.96)
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A.10. Links between the two families of Sobolev spaces (1)

References: [1], [50].

Before any further assumptions are made on Ω, it is already possible to show the following

relations between the two families of Sobolev spaces introduced above.

Theorem A.10.1. The following statements hold:

1. if s ≥ 0, then W s,2(Rn) = Hs(Rn) with equivalent norms;

2. for any non-empty open subset Ω ⊂ Rn, there is a continuous inclusion

Hs(Ω) ⊂ W s,2(Ω) ∀s ≥ 0; (A.97)

3. for any non-empty open subset Ω ⊂ Rn and for any integer r ≥ 0, it holds

H−r(Ω) = W−r,2(Ω) (A.98)

with equivalent norms.

A.11. Partition of unity

References: [50].

In the following, we shall need the notion of partition of unity.

Definition A.11.1. A partition of unity for an open subset E ⊂ Rn is a (finite or infinite)

set of functions {ϕj}j∈J , with ϕj ∈ C∞(Rn) ∀j ∈ J , such that

1. ϕj(x) ≥ 0 ∀x ∈ Rn and ∀j ∈ J ;

2. each point of E has a neighbourhood that intersects suppϕj for only finitely many j ∈ J ;

3.
∑

j∈J ϕj(x) = 1 ∀x ∈ E.

We point out that condition No 2 implies that the sum in condition No 3 is finite for each

x ∈ E. If E is not open, then we say that the set of functions {ϕj}j∈J forms a partition of

unity for E if it forms a partition of unity for some open neighbourhood of E.

Moreover, if {Wp}p∈P is an open cover for E, i.e. a family of open sets such that E ⊂⋃
p∈PWp, we say that a partition of unity {ϕj}j∈J is subordinate to {Wp}p∈P if for each j ∈ J

there exists pj ∈ P such that suppϕj ⊂ Wpj
.
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Theorem A.11.1. Given any open cover {Wp}p∈P of a subset E ⊂ Rn, there exists a partition

of unity {ϕj}j∈J for E subordinate to {Wp}p∈P ; moreover, {ϕj}j∈J can be chosen in such a

way that suppϕj is compact for each j ∈ J .

Corollary A.11.2. Given any countable open cover {Wp}p∈N of a subset E ⊂ Rn, there exists

a countable partition of unity {ϕj}j∈N for E such that suppϕj ⊂ Wj for each j ∈ N.

A.12. Lipschitz domains and Ck domains

References: [50].

We denote the boundary of the open subset Ω ⊂ Rn by

∂Ω = Ω̄ ∩ (Rn \ Ω). (A.99)

Till now, we have made no regularity assumptions on ∂Ω, but from now on we shall require

that, roughly speaking, ∂Ω can be locally represented as the graph of a Lipschitz function

(using different systems of Cartesian coordinates for different parts of ∂Ω, if necessary). The

simplest case occurs when there exists a function ζ : Rn−1 → R such that

Ω =
{
x = (x′, xn) ∈ Rn | xn < ζ(x′) ∀x′ := (x1, . . . , xn−1) ∈ Rn−1

}
; (A.100)

if ζ is a Lipschitz function, i.e. if there exists a constant L such that

|ζ(x′)− ζ(y′)| ≤ L ‖x′ − y′‖Rn−1 ∀x′, y′ ∈ Rn−1, (A.101)

then we say that Ω is a Lipschitz hypograph. Clearly, if Ω is given by (A.100), then its boundary

is

∂Ω := {x = (x′, xn) ∈ Rn | xn = ζ(x′) ∀x′ := (x1, . . . , xn−1) ∈ Rn−1}. (A.102)

Definition A.12.1. The open subset Ω ⊂ Rn is called a Lipschitz domain if its boundary ∂Ω

is compact and if there exist finite families {Wj}Jj=0 and {Ωj}Jj=0 of subsets of Rn having the

following properties:

1. the family {Wj}Jj=0 is a finite open cover of ∂Ω, i.e. each Wj is an open subset of Rn and

∂Ω ⊂ ⋃
jWj;

2. each Ωj can be transformed into a Lipschitz hypograph by a rigid motion, i.e. by a

rototranslation;

3. the condition Wj ∩ Ω = Wj ∩ Ωj holds for each j = 0, . . . J .
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It is worthwhile observing that although, according to definition A.12.1, the boundary of

a Lipschitz domain must be compact, the domain itself may be unbounded. In particular, if

Ω is a bounded Lipschitz domain, then Rn \ Ω̄ is an unbounded Lipschitz domain. In any

case, it is clear that a Lipschitz hypograph Ω, given by (A.100), cannot be a Lipschitz domain,

since its boundary ∂Ω, as shown by relation (A.102), is not compact, even if ζ were compactly

supported.

Sometimes, a different smoothness condition will be needed, so we extend the above ter-

minology in the following way. For any k ∈ N, we firstly say that the set (A.100) is a Ck

hypograph if the function ζ : Rn−1 → R is an element of Ck(Rn) and ∂αζ is bounded for all

α such that |α|Nn ≤ k. Then, we obviously define a Ck domain by replacing “Lipschitz” with

“Ck” throughout definition A.12.1.

Moreover, for any µ ∈ (0, 1], we can analogously define a Ck,µ domain as a Ck domain

endowed with the additional property that the kth-order partial derivatives of each function

ζj relative to the Ck hypograph Ωj are Hölder-continuous with exponent µ, i.e.

|∂αζj(x′)− ∂αζj(y
′)| ≤ L ‖x′ − y′‖µRn−1 ∀x′, y′ ∈ Rn−1, ∀α | |α|Nn = k. (A.103)

Hence, a Lipschitz domain is the same thing as a C0,1 domain; we also point out that if k ≥ 1,

then a Ck domain is also a Lipschitz domain. Moreover, if we want, we can always regard each

ζj as compactly supported, since ∂Ω is always assumed to be compact.

Finally, we point out that in chapter 2 we sometimes use the expression ”domain with Ck,µ

boundary” (or similar ones) as synonymous of “Ck,µ domain”.

A.13. Links between the two families of Sobolev spaces (2)

References: [50].

Making suitable assumptions on the smoothness of the boundary ∂Ω, it is possible to prove

some further relations, besides the ones stated in section A.10, between the two families of

Sobolev spaces above introduced.

Theorem A.13.1. If Ω is a C0 domain, then

1. D(Ω̄) is dense in W s(Ω) ∀s ≥ 0;

2. D(Ω) is dense in Hs
Ω̄

or, in other words, H̃s(Ω) = Hs
Ω̄
∀s ∈ R.

Theorem A.13.2. If Ω is a Lipschitz domain, then

1. [Hs(Ω)]∗ = H̃−s(Ω) and [H̃s(Ω)]∗ = H−s(Ω) ∀s ∈ R;
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2. W s,2(Ω) = Hs(Ω) ∀s ≥ 0 with equivalent norms.

Theorem A.13.3. Let s ≥ 0. If Ω is a Lipschitz domain, then it holds

H̃s(Ω) = {u ∈ L2(Ω) | ũ ∈ Hs(Rn)} ⊂ Hs
0(Ω), (A.104)

where ũ denotes the extension of u by zero, i.e.

ũ(x) :=

{
u(x) if x ∈ Ω

0 if x ∈ Rn \ Ω.
(A.105)

In fact, it holds

H̃s(Ω) = Hs
0(Ω) ∀s ∈ [0,+∞) \

{
q ∈ Q | ∃n ∈ N such that q =

2n+ 1

2

}
. (A.106)

A.14. Sobolev spaces on the boundary

References: [15], [47], [50].

Any Lipschitz domain Ω has a surface measure σ and an outward unit normal ν that exists

σ-almost everywhere on ∂Ω. In fact, by Rademacher’s theorem, if ζ : Rn−1 → R is a Lipschitz

function, then ζ is Fréchet-differentiable almost everywhere and

ess sup ‖∇n−1ζ(x
′)‖Rn−1 ≤ √

n− 1 L, (A.107)

where we have denoted with “ess sup” the essential supremum, with ∇n−1 the classical gradient

operator in Rn−1 and with L any Lipschitz constant for ζ, according to (A.101).

If Ω is the Lipschitz hypograph (A.100), then, for any x = (x′, ζ(x′)) ∈ ∂Ω, it holds:

dσ(x) =
√

1 + ‖∇n−1ζ(x′)‖2
Rn−1 dx

′ (A.108)

and

ν(x) =
(−∇n−1ζ(x

′), 1)√
1 + ‖∇n−1ζ(x′)‖2

Rn−1

; (A.109)

in particular, relation (A.108) allows one to define the boundary integral of a function u : ∂Ω →
C as ∫

∂Ω

u(x)dσ(x) :=

∫

Rn−1

u(x′, ζ(x′))
√

1 + ‖∇n−1ζ(x′)‖2
Rn−1 dx

′ (A.110)

whenever the integral at the right-hand side exists.

If Ω is a Lipschitz domain, let {Wj}Jj=0 be a finite open cover of ∂Ω as in definition A.12.1.

By virtue of corollary A.11.2, we can choose a partition of unity {ϕj}Jj=0 for ∂Ω such that
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ϕj|Wj
∈ D(Wj) for each j = 0, . . . J . Since it holds, by definition of partition of unity,∑J

j=0 ϕj(x) = 0 for all x ∈ ∂Ω, the natural extension of definition (A.110) reads as:

∫

∂Ω

u(x)dσ(x) :=
J∑
j=0

∫

Rn−1

ϕj(x
′, ζj(x′)) u(x′, ζj(x′))

√
1 + ‖∇n−1ζj(x′)‖2

Rn−1 dx
′. (A.111)

By the way, we observe that relations (A.108), (A.109), the concept of partition of unity

and the definition of boundary integral allow one to prove the divergence theorem in more

general hypotheses than the ones traditionally assumed. Also for future purpose, we state this

result here below, denoting with ∇n· the classical divergence operator in Rn.

Theorem A.14.1. If Ω ⊂ Rn is a Lipschitz domain, ν is the outward unit normal to ∂Ω

existing σ-almost everywhere on ∂Ω and V : Rn → Rn is a C1 vector field with compact

support, then ∫

Ω

∇n ·V dx =

∫

∂Ω

V · ν dσ(x). (A.112)

Now, as regards the Sobolev spaces defined on the boundary of a domain Ω, we firstly deal

with the simplest case, in which Ω is a Lipschitz hypograph: then we can construct Sobolev

spaces on its boundary ∂Ω in terms of Sobolev spaces on Rn−1, in the following way. Let us

consider the space L2(∂Ω) ≡ L2(∂Ω, σ), i.e. the set of all the functions u : ∂Ω → C satisfying
∫

∂Ω

|u(x)|2 dσ(x) ≡
∫

Rn−1

|u(x′, ζ(x′))|2
√

1 + ‖∇n−1ζ(x′)‖2
Rn−1 dx

′ <∞, (A.113)

which is a Hilbert space when equipped with the scalar product

(u, v)L2(∂Ω) :=

∫

∂Ω

u(x)v̄(x)dσ(x) ≡

≡
∫

Rn−1

u(x′, ζ(x′)) v(x′, ζ(x′))
√

1 + ‖∇n−1ζ(x′)‖2
Rn−1 dx

′ ∀u, v ∈ L2(∂Ω)

(A.114)

and the induced norm

‖u‖L2(∂Ω) :=
√

(u, u)L2(∂Ω) . (A.115)

For any u ∈ L2(∂Ω), we put

uζ(x
′) := u(x′, ζ(x′)) for x′ ∈ Rn−1; (A.116)

then we define the space

Hs(∂Ω) := {u ∈ L2(∂Ω) | uζ ∈ Hs(Rn−1)} ∀s ∈ [0, 1], (A.117)
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which is a Hilbert space when equipped with the scalar product

(u, v)Hs(∂Ω) := (uζ , vζ)Hs(Rn−1) (A.118)

and the induced norm

‖u‖Hs(∂Ω) :=
√

(u, u)Hs(∂Ω) . (A.119)

If u ∈ L2(∂Ω), it follows that uζ
√

1 + ‖∇n−1ζ‖2
Rn−1 ∈ H−s(Rn−1) for all s ∈ (0, 1], so one

can put

‖u‖H−s(∂Ω) :=

∥∥∥∥uζ
√

1 + ‖∇n−1ζ‖2
Rn−1

∥∥∥∥
H−s(Rn−1)

∀s ∈ (0, 1] (A.120)

and define H−s(∂Ω) as the completion of L2(∂Ω) in this norm. Then, it can be shown that

H−s(∂Ω) is actually a realization of the dual space of Hs(∂Ω) and that the norm defined in

(A.120) is equivalent to that of [Hs(∂Ω)]∗, clearly defined as

‖u‖[Hs(∂Ω)]∗ := sup
0 6=v∈Hs(∂Ω)

|〈u, v〉∂Ω|
‖v‖Hs(∂Ω)

∀u ∈ [Hs(∂Ω)]∗, (A.121)

where we have obviously denoted with 〈u, v〉∂Ω the pairing between an element u ∈ [Hs(∂Ω)]∗ =

H−s(∂Ω) and an element v ∈ Hs(∂Ω). We can now introduce the following useful notation:

∫

∂Ω

u(x) v(x) dσ(x) := 〈u, v〉∂Ω ∀u ∈ H−s(∂Ω), ∀v ∈ Hs(∂Ω). (A.122)

To this purpose, we observe that while v is always an element of L2(∂Ω) (since, by virtue of

definition (A.117), it holds Hs(∂Ω) ⊂ L2(∂Ω)), in general u is not, since it is a distribution

belonging to H−s(∂Ω) ⊃ L2(∂Ω): hence the left-hand side of (A.122) is, in general, only a

different notation for the pairing at the right-hand side. However, when u ∈ L2(∂Ω)∩H−s(∂Ω),

the integral in (A.122) is well-defined on its own and it is possible to prove that it is equal to

the pairing at the right-hand side.

All the previous results can be immediately extended to the case in which not Ω itself, but

rather κ(Ω) is a Lipschitz hypograph for some rototranslation κ : Rn → Rn: to this end, it

suffices to put uζ(x
′) := u[κ−1(x′, ζ(x′))] and then to define Hs(∂Ω) in the same way as above.

Finally, if Ω is a Lipschitz domain, we can proceed as follows. Using also the notation

of definition A.12.1, let κj : Rn → Rn be a rototranslation that transforms each Ωj into a

Lipschitz hypograph and let (x′, ζj(x′)), with ζj : Rn−1 → R, be a parametric representation of

∂Ωj; finally, let uζj(x
′) := u[κ−1

j (x′, ζj(x′))]. Then we define

Hs(∂Ω) := {u ∈ L2(∂Ω) | uζj ∈ Hs(Rn−1) ∀j}. (A.123)

In order to define a scalar product in Hs(∂Ω), let {Wj}Jj=0 be a finite open cover of ∂Ω as in

definition A.12.1. By virtue of corollary A.11.2, we can choose a partition of unity {ϕj}Jj=0 for
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∂Ω such that ϕj|Wj
∈ D(Wj) for each j = 0, . . . J ; then we put

(u, v)Hs(∂Ω) :=
J∑
j=0

(ϕju, ϕjv)Hs(∂Ωj). (A.124)

It is possible to prove that definitions (A.123) and (A.124) are well-posed, in the sense that a

different choice of {Ωj}Jj=0, {Wj}Jj=0 and {ϕj}Jj=0 would yield the same space Hs(∂Ω) with an

equivalent norm, for all s such that |s| ≤ 1.

Finally, if Ω is a Ck−1,1 domain for k ∈ N \ {0}, then it is possible to analogously define

Hs(∂Ω) for each s such that |s| ≤ k.

A.15. Trace operators (1)

References: [15], [50].

In studying boundary value problems, one often needs to give a meaning to the restriction u|∂Ω

as an element of a Sobolev space on ∂Ω when u belongs to a Sobolev space on Ω. To this

purpose, the main idea is expressed by the following theorem.

Theorem A.15.1. Let γ be the trace operator defined as

γ : D(Rn) −→ D(Rn−1)

u 7−→ [γu](x′) := u(x′, 0) ∀x′ ∈ Rn−1; (A.125)

if s > 1
2
, then γ has a unique extension (still denoted with γ) to a bounded linear operator

γ : Hs(Rn) −→ Hs− 1
2 (Rn−1), (A.126)

and this extension has a continuous right inverse. In other terms, if s > 1
2
:

1. there exists a constant C > 0 such that

‖γu‖
Hs− 1

2 (Rn−1)
≤ C‖u‖Hs(Rn) ∀u ∈ Hs(Rn); (A.127)

2. there exist a linear operator η : Hs− 1
2 (Rn−1) → Hs(Rn) and a constant C ′ > 0 such that

for any f ∈ Hs− 1
2 (Rn−1) it holds γ(ηf) = f and

‖ηf‖Hs(Rn) ≤ C ′‖f‖
Hs− 1

2 (Rn−1)
. (A.128)

For Sobolev spaces on domains Ω ⊂ Rn, the following result holds.
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Theorem A.15.2. Let Ω be an open subset of Rn and let γ1 be the trace operator defined as

γ1 : D(Ω̄) −→ D(∂Ω)

u 7−→ γ1u := u|∂Ω. (A.129)

If Ω is a Ck−1,1 domain for a certain k ∈ N \ {0} and if 1
2
< s ≤ k, then γ1 has a unique

extension (still denoted with γ1) to a bounded linear operator

γ1 : Hs(Ω) −→ Hs− 1
2 (∂Ω), (A.130)

and this extension has a continuous right inverse. In other terms, under the specified hypothe-

ses:

1. there exists a constant C1 > 0 such that

‖γ1u‖Hs− 1
2 (∂Ω)

≤ C1‖u‖Hs(Ω) ∀u ∈ Hs(Ω); (A.131)

2. there exist a linear operator η1 : Hs− 1
2 (∂Ω) → Hs(Ω) and a constant C ′1 > 0 such that

for any f ∈ Hs− 1
2 (∂Ω) it holds γ1(η1f) = f and

‖η1f‖Hs(Ω) ≤ C ′1‖f‖Hs− 1
2 (∂Ω)

. (A.132)

The previous theorem holds, in particular, for 1
2
< s ≤ 1 if Ω is a C0,1 domain, i.e.

a Lipschitz domain: in such a case, however, it possible to prove a stronger result, due to

Costabel [30], establishing the boundedness of the trace operator (A.130) for 1
2
< s < 3

2
.

Finally, we give the following result, which states when and in which sense the elements of

Hs
0(Ω) are functions vanishing at the boundary of Ω.

Theorem A.15.3. Let Ω ⊂ Rn be a Ck−1,1 domain, with k ∈ N \ {0}; thus

1. if 0 ≤ s ≤ 1
2
, then Hs

0(Ω) = Hs(Ω);

2. if 1
2
< s ≤ k, then Hs

0(Ω) = {u ∈ Hs(Ω) | γ1(∂
αu) = 0 ∀α ∈ Nn : |α|Nn < s− 1

2
}.

A.16. Green identities

References: [27], [47], [50].

We denote with ∇n, ∇n· and ∆n the classical gradient, divergence and laplacian operators in

Rn. Moreover, if ξ = (ξ1, . . . , ξn) and τ = (τ1, . . . , τn) are two elements of Cn, we define the

operation

ξ · τ :=
n∑
i=1

ξiτi, (A.133)
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which is clearly not a scalar product on Cn, but it is actually the canonical scalar product on

Rn if restricted to Rn itself7.

Theorem A.16.1. Let Ω ⊂ Rn be a Lipschitz domain and ν the outward unit normal to ∂Ω

existing σ-almost everywhere on ∂Ω. Moreover, let u, v : Rn → C be two functions such that

at least one of them is compactly supported. Then:

1. if u ∈ C1(Rn) and v ∈ C2(Rn), the first Green identity holds:

∫

Ω

(∇nu · ∇nv + u∆nv) dx =

∫

∂Ω

u
∂v

∂ν
dσ; (A.134)

2. if u, v ∈ C2(Rn), the second Green identity holds:

∫

Ω

(u∆nv − v∆nu) dx =

∫

∂Ω

(
u
∂v

∂ν
− v

∂u

∂ν

)
dσ. (A.135)

Proof. To establish (A.134), it suffices to substitute in relation (A.112), expressing the diver-

gence theorem, the compactly supported, C1 vector field V := u∇nv and use the well-known

identity

∇m · (u∇nv) = ∇nu · ∇nv + u∇n · ∇nv. (A.136)

To establish (A.135), it suffices to rewrite the first Green identity interchanging u and v and

subtract it to the original one, written as in (A.134). ¥

Remark A.16.1. A more traditional formulation of the previous theorem A.16.1 states the

same identities (A.134) and (A.135) under the hypothesis that Ω is a bounded, C1 domain and

that u ∈ C1(Ω̄), v ∈ C2(Ω̄) or, respectively, that u, v ∈ C2(Ω̄). ¤

A.17. Trace operators (2)

References: [15].

Besides theorem A.15.2, we need another, more technical, trace theorem, involving the

Sobolev space H1(D,∆A′), which we are going to define. Throughout this section, we deal

with bounded, C2 domains8 in R2.

7For example, in the left-hand side integral of identity (A.134), the expression ∇nu · ∇nv is to be intended
as

∑n
i=1 ∂iu ∂iv.

8We recall that a Ck domain, by definition, is open (cf. definition A.12.1 and the subsequent comment).
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Then, let D ⊂ R2 be a bounded, C2 domain and let A′ : D̄ → C2×2, with A′ = (a′jk)j,k=1,2,

be a matrix-valued function such that a′jk ∈ C1(D̄) ∀j, k = 1, 2. Moreover, let ∇2· and ∇2 the

weak divergence and gradient operators in R2 respectively. Then we define the Sobolev space

H1(D,∆A′) :=
{
u ∈ H1(D) | ∇2 ·A′∇2u ∈ L2(D)

}
, (A.137)

equipped with the norm

‖u‖2
H1(D,∆A′ )

:= ‖u‖2
H1(D) + ‖∇2 ·A′∇2u‖2

L2(D). (A.138)

Moreover, if ν denotes the unit normal vector to ∂D, directed into the exterior of D, we can

define the conormal derivative of a function u ∈ D(D̄) as

∂u

∂νA′
:= (ν ·A′∇2u) |∂D, (A.139)

where the gradient∇2 at the right-hand side of relation (A.139) is to be intended in the classical

sense.

Theorem A.17.1. Let D ⊂ R2 be a bounded and C2 domain, let A′ : D̄ → C2×2, with

A′ = (a′jk)j,k=1,2, be a matrix-valued function such that a′jk ∈ C1(D̄) ∀j, k = 1, 2 and let

γ2 : D(D̄) → C1(∂D) be the trace operator defined as

γ2u :=
∂u

∂νA′
∀u ∈ D(D̄). (A.140)

Then γ2 has a unique extension to a bounded linear operator, still denoted with γ2,

γ2 : H1(D,∆A′) → H− 1
2 (∂D). (A.141)

In other terms, there exists a constant C2 > 0 such that

∥∥∥∥
∂u

∂νA′

∥∥∥∥
H−

1
2 (∂D)

≤ C2‖u‖H1(D,∆A′ ) ∀u ∈ H1(D,∆A′). (A.142)

Proof. See theorem 5.5 in [15]. ¥

Remark A.17.1. By means of arguments similar to the ones used in the proof of theorem

A.17.1 (see remark 5.7 in [15]) and with the help of a cutoff function for a neighbourhood of

∂D (see lemma 5.4 in [15]), it is possible to define
∂u

∂νA′
∈ H− 1

2 (∂D) for functions u belonging

to the Sobolev space

H1
∂D,loc(R2 \ D̄,∆A′) :=

{
u ∈ H1

∂D,loc(R2 \ D̄) | ∇2 ·A′∇2u ∈ L2
∂D,loc(R2 \ D̄)

}
, (A.143)
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where, in turn, being ΩR := {x ∈ R2 | ‖x‖R2 < R}:

H1
∂D,loc(R2 \ D̄) := {u : R2 \ D̄ → C | u ∈ H1

(
(R2 \ D̄) ∩ ΩR

) ∀R > 0 : (R2 \ D̄) ∩ ΩR 6= ∅},
(A.144)

L2
∂D,loc(R2 \ D̄) := {u : R2 \ D̄ → C | u ∈ L2

(
(R2 \ D̄) ∩ ΩR

) ∀R > 0 : (R2 \ D̄) ∩ ΩR 6= ∅}.
(A.145)

¤

Remark A.17.2. By putting A′ = I in theorem A.17.1 (where I is obviously the identity

matrix), we have that
∂u

∂ν
is well defined as an element of H− 1

2 (∂D) for functions u belonging

to the Sobolev space

H1(D,∆2) :=
{
u ∈ H1(D) | ∆2u ∈ L2(D)

}
, (A.146)

equipped with the norm

‖u‖2
H1(D,∆2) := ‖u‖2

H1(D) + ‖∆2u‖2
L2(D). (A.147)

In such a case, relation (A.142) obviously becomes:

∥∥∥∥
∂u

∂ν

∥∥∥∥
H−

1
2 (∂D)

≤ C2‖u‖H1(D,∆2) ∀u ∈ H1(D,∆2). (A.148)

Of notable interest for various applications is the case in which u ∈ H1(D) is a weak solution of

the Helmholtz equation ∆2u+ k2u = 0 in D (with k2 > 0): since it clearly holds ∆2u = −k2u

almost everywhere in D, we have that ∆2u ∈ L2(D) and then u ∈ H1(D,∆2). Moreover, from

definition (A.147) we easily get

‖u‖2
H1(D,∆2) = ‖u‖2

H1(D) + ‖ − k2u‖2
L2(D) ≤ (1 + k4)‖u‖2

H1(D). (A.149)

Put C3 := C2

√
1 + k4, from relations (A.148) and (A.149) it immediately follows

∥∥∥∥
∂u

∂ν

∥∥∥∥
H−

1
2 (∂D)

≤ C3‖u‖H1(D) (A.150)

for any u ∈ H1(D,∆2) satisfying the Helmholtz equation in D; relation (A.150) is often useful

in chapter 2.

By virtue of the previous remark A.17.1, analogous results clearly hold if, instead of the

bounded domain D, the unbounded domain R2 \ D̄ is considered. ¤
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A.18. Generalized Green identities and their consequences

References: [15].

As a consequence of theorem A.17.1, it is possible to extend Gauss divergence theorem to a

wider space of functions and consequently to obtain the following generalization of the first

and second Green identities: if D and A′ are as in theorem A.17.1, then it holds (see theorem

5.5 and corollary 5.6 in [15]):
∫

D

(∇2u ·A′∇2v + u∇2 ·A′∇2v) dx =

∫

∂D

u
∂v

∂νA′
dσ ∀u ∈ H1(D), ∀v ∈ H1(D,∆A′); (A.151)

∫

D

(∇2u ·A′∇2v −∇2v ·A′∇2u+ u∇2 ·A′∇2v − v∇2 ·A′∇2u) dx =

=

∫

∂D

(
u
∂v

∂νA′
− v

∂u

∂νA′

)
dσ ∀u, v ∈ H1(D,∆A′). (A.152)

Of course, if we assume that the matrix A′(x) is symmetric for all x ∈ D̄, the second Green

identity (A.152) can be written in the simpler form:
∫

D

(u∇2 ·A′∇2v − v∇2 ·A′∇2u) dx =

∫

∂D

(
u
∂v

∂νA′
− v

∂u

∂νA′

)
dσ ∀u, v ∈ H1(D,∆A′).

(A.153)

We remark that, in general, the boundary integrals at the right-hand side of identities (A.151),

(A.152) and (A.153) are to be intended in the pairing sense, as explained about definition

(A.122).

We can now state the following theorem.

Theorem A.18.1. Let D, A′ be as in theorem A.17.1, let A′(x) be symmetric for all x ∈ D̄

and let n ∈ C0(D̄); moreover, let us assume that u, v ∈ H1(D) are weak solutions of the

equation:

∇2 ·A′∇2w + k2nw = 0 in D; (A.154)

then, u and v verify the identity
∫

∂D

(
u
∂v

∂νA′
− v

∂u

∂νA′

)
dσ = 0. (A.155)

Proof. Since, by hypothesis, u, v ∈ H1(D), n ∈ C0(D̄) and

∇2 ·A′∇2u = −k2nu, ∇2 ·A′∇2v = −k2nv a.e.9 in D, (A.156)

9To be read: almost everywhere.
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it easily follows that ∇2 ·A′∇2u, ∇2 ·A′∇2v ∈ L2(D) and, consequently, u, v ∈ H1(D,∆A′).

Hence, by virtue of the assumed symmetry of the matrix A′(x) for all x ∈ D̄, we can use identity

(A.153) for the functions u, v and the domain D, and the thesis (A.155) easily follows from

observing that, by virtue of relations (A.156), the function to be integrated at the left-hand

side of (A.153) is zero almost everywhere in D. ¥

Remark A.18.1. By putting A′ = I in identities (A.151), (A.152), we obtain a simpler

and more familiar generalization of the first and second Green identities (A.134), (A.135),

respectively in the form:

∫

D

(∇2u · ∇2v + u∆2v) dx =

∫

∂D

u
∂v

∂ν
dσ ∀u ∈ H1(D), ∀v ∈ H1(D,∆2); (A.157)

∫

D

(u∆2v − v∆2u) dx =

∫

∂D

(
u
∂v

∂ν
− v

∂u

∂ν

)
dσ ∀u, v ∈ H1(D,∆2). (A.158)

¤

From the generalized second Green identity (A.158) one can deduce some technical results,

which we are going to illustrate in the next theorem.

Theorem A.18.2. Let D ⊂ R2 be a bounded and C2 domain; moreover, let us assume that

1. either u, v ∈ H1(D) are weak solutions of the Helmholtz equation ∆2w + k2w = 0 in D,

2. or u, v ∈ H1
∂D,loc(R2 \ D̄) are weak solutions of the Helmholtz equation ∆2w+ k2w = 0 in

R2 \ D̄ and satisfy the so-called Sommerfeld radiation condition10

lim
r→∞

sup
∂Ωr

[√
r

(
∂w

∂r
− ikw

)]
= 0, (A.159)

where r denotes the first of the polar coordinates in R2 and Ωr := {x ∈ R2 | ‖x‖R2 < r};

then, in both cases, u and v verify the identity:

∫

∂D

(
u
∂v

∂ν
− v

∂u

∂ν

)
dσ = 0. (A.160)

10For some hints about it, we refer to relations (2.20), (2.33), (2.34), definition 2.1.1 and remark 2.2.1: the
latter, in particular, states that the radial derivative in limit (A.159) can be always intended in the classical
sense.
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Proof. Case No 1. This is simply a particular case, with A′ = I and n = 1, of theorem A.18.1.

Case No 2. Since, by hypothesis, u, v ∈ H1
∂D,loc(R2 \ D̄) and

∆2u = −k2u, ∆2v = −k2v a.e. in R2 \ D̄, (A.161)

it easily follows that ∆2u,∆2v ∈ L2(D) and, consequently, u, v ∈ H1
∂D,loc(R2 \ D̄,∆2), where

the latter space is defined in remark A.17.1, relation (A.143), putting A′ = I.

If we now take Ωr := {x ∈ R2 | ‖x‖R2 < r} large enough, so that Ωr ⊃ D̄, and we put

Ω := Ωr \ D̄, from the definition itself of the spaces H1
∂D,loc(R2 \ D̄,∆2), H

1
∂D,loc(R2 \ D̄) and

L2
∂D,loc(R2 \ D̄) it follows that u|Ω, v|Ω ∈ H1(Ω,∆2). Hence we can use identity (A.158) for the

functions u, v and the domain Ω; observing that ∂Ω = ∂Ωr ∪ ∂D, we get:

∫

Ω

(u∆2v − v∆2u) dx =

∫

∂Ωr

(
u
∂v

∂νr
− v

∂u

∂νr

)
dσ −

∫

∂D

(
u
∂v

∂ν
− v

∂u

∂ν

)
dσ, (A.162)

where we have denoted with νr the unit outward normal to ∂Ωr, and with ν the unit outward11

normal to ∂D. Since, by virtue of relations (A.161), the function to be integrated at the

left-hand side of (A.162) is zero almost everywhere in Ω, we can rewrite relation (A.162) itself

as ∫

∂Ωr

(
u
∂v

∂νr
− v

∂u

∂νr

)
dσ =

∫

∂D

(
u
∂v

∂ν
− v

∂u

∂ν

)
dσ. (A.163)

The next step is now to prove that, by virtue of the Sommerfeld radiation condition (A.159),

it holds:

lim
r→∞

∣∣∣∣∣∣

∫

∂Ωr

(
u
∂v

∂νr
− v

∂u

∂νr

)
dσ

∣∣∣∣∣∣
= 0. (A.164)

To this end, we firstly observe that it trivially holds
∂v

∂νr
=

∂v

∂r

∣∣∣∣
∂ΩR

,
∂u

∂νr
=

∂u

∂r

∣∣∣∣
∂ΩR

; then, we

can rewrite the left-hand member of equality (A.163) as:

∫

∂Ωr

(
u
∂v

∂r
− v

∂u

∂r

)
dσ =

∫

∂Ωr

(
u
∂v

∂r
− ikuv + ikuv − v

∂u

∂r

)
dσ =

=

∫

∂Ωr

u

(
∂v

∂r
− ikv

)
dσ −

∫

∂Ωr

v

(
∂u

∂r
− iku

)
dσ. (A.165)

Now, it is possible to show, in general, that if w ∈ H1
∂D,loc(R2 \ D̄) is a weak solution of the

Helmholtz equation and satisfies the Sommerfeld radiation condition, then it is analytic in R2\D̄
(see remark 2.2.1); since Ωr ⊃ D̄, this implies, in particular, that12 u|∂Ωr , v|∂Ωr ∈ L2(∂Ωr) and

11This explains the minus sign before the second integral at right-hand side of relation (A.162).
12In the following calculations, it is convenient to regard L2(∂Ωr) as identifiable with L2[0, 2π], so that∫

∂Ωr
u(x)dσ(x) =

∫ 2π

0
u(r cos θ, r sin θ)rdθ.
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∂v

∂r

∣∣∣∣
∂Ωr

,
∂u

∂r

∣∣∣∣
∂Ωr

∈ L2(∂Ωr). Hence, it is possible to regard each of the two integrals appearing in

(A.165) as a scalar product in L2(∂Ωr) and to apply the Cauchy-Schwarz inequality; developing

our calculations for the first integral (the second one is treated analogously), we get:

∣∣∣∣∣∣

∫

∂Ωr

u

(
∂v

∂r
− ikv

)
dσ

∣∣∣∣∣∣
=

∣∣∣∣∣
(
∂v

∂r
− ikv, ū

)

L2(∂Ωr)

∣∣∣∣∣ ≤ ‖u‖L2(∂Ωr)

∥∥∥∥
∂v

∂r
− ikv

∥∥∥∥
L2(∂Ωr)

. (A.166)

Now, on the one hand it is possible to show13 (see theorem 2.4 in [27]) that

‖u‖L2(∂Ωr) = O(1) as r →∞; (A.167)

on the other hand, one can easily write:

∥∥∥∥
∂v

∂r
− ikv

∥∥∥∥
2

L2(∂Ωr)

=

∫

∂Ωr

∣∣∣∣
∂v

∂r
− ikv

∣∣∣∣
2

dσ ≤ mis(∂Ωr) sup
∂Ωr

∣∣∣∣
∂v

∂r
− ikv

∣∣∣∣
2

=

= 2πr sup
∂Ωr

∣∣∣∣
∂v

∂r
− ikv

∣∣∣∣
2

= 2π sup
∂Ωr

[
r

∣∣∣∣
∂v

∂r
− ikv

∣∣∣∣
2
]
→ 0 as r →∞,

(A.168)

where the last passage is due to condition (A.159). Hence, recalling relations (A.165), (A.166),

(A.167) and (A.168), we just get limit (A.164).

Finally, we can observe that in identity (A.163) only the left-hand side depends, a priori,

on r, while the right-hand side does not; since identity (A.163) has to hold for any r such that

Ωr ⊃ D̄, this means that the integral at left-hand side is actually constant with respect to r.

By virtue of relation (A.164), we can conclude that the value of this integral is zero for any r

such that Ωr ⊃ D̄; hence we can rewrite identity (A.163) just as thesis (A.160). ¥

A.19. Transpose operators

References: [15], [50].

Remembering definition A.1.3, we shall write 〈f, u〉 to the denote the value f(u) of the func-

tional f ∈ X∗ at the vector u ∈ X. By virtue of the definition (A.9) of the norm in B(X,C),

it holds:

|〈f, u〉| ≤ ‖f‖X∗‖u‖X . (A.169)

13The proof of this fact is quite involved, so, for sake of brevity, we do not give it here.
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By definition of X∗, if f ∈ X∗, then the linear functional 〈f, ·〉 : X → C is continuous, i.e.

lim
n→∞

‖un − u‖X = 0 ⇒ lim
n→∞

|〈f, un〉 − 〈f, u〉| = 0; (A.170)

on the other hand, it is easy to realize that, for each u ∈ X, also the linear functional 〈·, u〉 :

X∗ → C is continuous, i.e.

lim
n→∞

‖fn − f‖X∗ = 0 ⇒ lim
n→∞

|〈fn, u〉 − 〈f, u〉| = 0. (A.171)

Indeed, by virtue of the linearity of the functionals and remembering inequality (A.169), we

get:

|〈fn, u〉 − 〈f, u〉| = |〈fn − f, u〉| ≤ ‖fn − f‖X∗‖u‖X → 0 as n→∞. (A.172)

Lemma A.19.1. If 0 6= u ∈ X, then there exists a functional g ∈ X∗ such that

〈g, u〉 = ‖u‖X and ‖g‖X∗ = 1. (A.173)

Proof. See corollary 2.6 in [50]. ¥

Definition A.19.1. Let X, Y be two normed spaces and let X∗, Y ∗ be their dual spaces. For

any linear operator A : X → Y , the transpose AT : Y ∗ → X∗ is the linear operator defined by

〈ATv, u〉X∗,X = 〈v, Au〉Y ∗,Y ∀u ∈ X, ∀v ∈ Y ∗, (A.174)

where 〈·, ·〉 denotes the duality pairing between the spaces denoted at subscript14.

Theorem A.19.2. The transpose operator AT is bounded if and only if the operator A is

bounded; moreover, it holds:

‖AT‖B(Y ∗,X∗) = ‖A‖B(X,Y ). (A.175)

Proof. “⇐”: if A is bounded, then the definition (A.174) of AT and inequality (A.169) imply:
∣∣∣
〈
ATv, u

〉
X∗,X

∣∣∣ =
∣∣∣〈v,Au〉Y ∗,Y

∣∣∣ ≤ ‖v‖Y ∗‖Au‖Y ≤ ‖v‖Y ∗‖A‖B(X,Y )‖u‖X ∀u ∈ X, ∀v ∈ Y ∗.

(A.176)

From inequalities (A.176) we immediately get:
∣∣∣
〈
ATv, u

〉
X∗,X

∣∣∣
‖u‖X ≤ ‖v‖Y ∗‖A‖B(X,Y ) ∀ 0 6= u ∈ X, ∀v ∈ Y ∗, (A.177)

and then, recalling (A.9),

‖ATv‖X∗ = sup
‖u‖X 6=0

∣∣∣
〈
ATv, u

〉
X∗,X

∣∣∣
‖u‖X ≤ ‖A‖B(X,Y )‖v‖Y ∗ ∀v ∈ Y ∗. (A.178)

14Subscripts will often be omitted, with no risk of ambiguity.
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Relation (A.178) clearly implies the boundedness of AT and

‖AT‖B(Y ∗,X∗) ≤ ‖A‖B(X,Y ). (A.179)

“⇒”: conversely, let us suppose that AT is bounded, and let u ∈ X. If Au 6= 0, then, by virtue

of lemma A.19.1, there is a v ∈ Y ∗ such that

〈v,Au〉Y ∗,Y = ‖Au‖X and ‖v‖Y ∗ = 1. (A.180)

Hence, by means of relations (A.169), (A.174), (A.180) and remembering that AT is bounded

by hypothesis, we can easily write the following chain of equalities or inequalities:

‖Au‖X =
∣∣〈ATv, u〉X∗,X

∣∣ ≤ ‖ATv‖X∗‖u‖X ≤ ‖AT‖B(Y ∗,X∗)‖v‖Y ∗‖u‖X = ‖AT‖B(Y ∗,X∗)‖u‖X .
(A.181)

Summing up, for all u ∈ X such that Au 6= 0, we have found the inequality

‖Au‖X ≤ ‖AT‖B(Y ∗,X∗)‖u‖X , (A.182)

which is clearly trivial for Au = 0: hence relation (A.182) holds for all u ∈ X, then it implies

the boundedness of A and:

‖A‖B(X,Y ) ≤ ‖AT‖B(Y ∗,X∗). (A.183)

Finally, relations (A.179) and (A.183) together imply equality (A.175). ¥

To describe the relation between the range and the kernel of A and AT we use the following

terminology.

Definition A.19.2. For any subset W ⊂ X, we define its annihilator W a as the subset of X∗

given by

W a := {g ∈ X∗ | 〈g, u〉 = 0 ∀u ∈ W} ; (A.184)

similarly, for any subset V ⊂ X∗, we define its annihilator aV as the subset of X given by

aV := {u ∈ X | 〈g, u〉 = 0 ∀g ∈ V } . (A.185)

Theorem A.19.3. The subsets W a and aV previously defined are closed subspaces of X∗ and

X respectively.

Proof. The linearity of the functionals 〈·, u〉 : X∗ → C and 〈g, ·〉 : X → C trivially implies that

W a and aV are subspaces of X∗ and X respectively.

As regards their closedness, we prove it for W a (the proof for aV is completely analogous).

Let g ∈ W a ⊂ X∗: we are going to show that g ∈ W a. To this end, let us consider a sequence
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{gn}∞n=0 ⊂ W a such that limn→∞ ‖gn−g‖X∗ = 0. Then, by using relation (A.171) and observing

that 〈gn, u〉 = 0 ∀n ∈ N and ∀u ∈ W , we easily get:

〈g, u〉 = 〈 lim
n→∞

gn, u〉 = lim
n→∞

〈gn, u〉 = 0 ∀u ∈ W, (A.186)

i.e. g ∈ W a. ¥

Theorem A.19.4. The kernels and the ranges of A and AT satisfy

N (AT ) = [R(A)]a and N (A) = a[R(AT )]. (A.187)

Proof. Applying definitions (A.184) and (A.174), we obtain:

[R(A)]a = {g ∈ Y ∗ | 〈g, v〉Y ∗,Y = 0 ∀v ∈ R(A)} =

= {g ∈ Y ∗ | 〈g, Au〉Y ∗,Y = 0 ∀u ∈ X} =

=
{
g ∈ Y ∗ | 〈ATg, u〉X∗,X = 0 ∀u ∈ X}

=

=
{
g ∈ Y ∗ | ATg = 0

}
= N (AT ), (A.188)

that is the first of equalities (A.187); the second one is proved by means of an analogous

argument.

¥

Theorem A.19.5. Let X be a Hilbert space; then a subspace W ⊂ X is dense in X if and

only if W a = {0}.
Proof. “⇒”: if W = X, for any v ∈ X we can find a sequence {vn}∞n=0 ⊂ W such that

limn→∞ ‖vn − v‖X = 0. Then, if g ∈ W a, by using relation (A.170) and observing that

〈g, vn〉 = 0 ∀n ∈ N, we easily get:

〈g, v〉 = 〈g, lim
n→∞

vn〉 = lim
n→∞

〈g, vn〉 = 0. (A.189)

Since the previous argument can be used for all v ∈ X, we conclude:

〈g, v〉 = 0 ∀v ∈ X, (A.190)

i.e. g = 0 and hence W a = {0}. We note that in this part of the proof neither the structure of

Hilbert space of X nor the fact that W is a subspace are involved.

“⇐”: let us suppose that W a = {0}. This means that, if g ∈ X∗,

〈g, u〉 = 0 ∀u ∈ W ⇒ g = 0. (A.191)

Using Riesz representation theorem for linear bounded functionals acting on a Hilbert space

X, we can reformulate the previous implication (A.191) as

(fg, u)X = 0 ∀u ∈ W ⇒ fg = 0, (A.192)
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where we have denoted with (·, ·)X the scalar product in X. This means that W⊥ = {0}; on

the other hand, since W is a subspace, it holds X = W ⊕W⊥: but W⊥ = {0}, hence X = W .

¥

Since R(A) is a subspace, the first of relations (A.187) and theorem A.19.5 together imply

the following proposition.

Theorem A.19.6. Let X, Y two Hilbert spaces; the linear bounded operator A : X → Y has

dense range if and only if the transpose AT : Y ∗ → X∗ is injective.



APPENDIX B

Figures

As already pointed out at the end of the preface, in order to make the written text more easily

readable we have collected all the figures of this PhD thesis in a special appendix, i.e. the

current one. They have been subdivided into sections having the same title (and, between

square brackets, the same number) of the correspondent sections in chapters 2 and 3 (chapter

1 has no figures).
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B.1. [2.5] The linear sampling method

n = 1%,

α∗2,m = 2.2 · 10−4, α∗2,M = 3.5 · 10−2
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n = 10%,

α∗2,m = 2.1 · 10−2, α∗2,M = 7.6 · 10−1
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Figure B.1: Reconstruction of the profile of a conducting ellipse-shaped scatterer (in the case of Dirich-
let boundary conditions) by means of the traditional implementation of the linear sampling method. The
wavenumber is k = 1, the number of incidence/observation angles is N = 32, the sampling grid Z is 60 × 60
points zl ∈ Z uniformly chosen in the square [−3, 3] × [−3, 3] and a level n = 1% (for panels (a), (b), (c)) or
n = 10% (for panels (a’), (b’), (c’)) of Gaussian noise is respectively added to the exact far-field matrix, which
is computed by using the Nyström method (cf. remark 2.5.1). Panel (a) [(a’)] shows the three-dimensional
plot of the indicator function Ψ−2 ln(zl) := − ln

∥∥gα∗2(zl)(zl)
∥∥2

CN (cf. definition (2.284)), where, for each zl, the
optimal value α∗2(zl) of the regularization parameter is fixed by using the generalized discrepancy principle
in the compatible case (cf. subsection 1.8.3 and, in particular, definition (1.317), as well as its specific form
(2.279) for the current context); over the three-dimensional plot itself, we have written the corresponding noise
level n and the minimum and maximum values of the regularization parameter, according to the definitions
α∗2,m := minzl∈Z α∗2(zl) and α∗2,M := maxzl∈Z α∗2(zl). Panel (b) [(b’)] shows a two-dimensional projection (i.e.,
roughly speaking, a view from above) of the plot in panel (a) [(a’)] together with the profile (in white colour)
of the true scatterer. Panel (c) [(c’)] shows the profile of the true scatterer (dotted line) and, superimposed,
the reconstructed profile (solid line) obtained as the level curve of the plot in panel (a) [(a’)] containing an area
equal to the one contained by the true profile.
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n = 1%,

α∗2,m = 2.7 · 10−4, α∗2,M = 5.0 · 10−2
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n = 10%,

α∗2,m = 1.4 · 10−2, α∗2,M = 5.1 · 10−1
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Figure B.2: Reconstruction of the profile of a conducting kite-shaped scatterer (in the case of Dirichlet bound-
ary conditions) by means of the traditional implementation of the linear sampling method. The wavenumber
is k = 1, the number of incidence/observation angles is N = 32, the sampling grid Z is 60 × 60 points zl ∈ Z
uniformly chosen in the square [−3, 3] × [−3, 3] and 1% (for panels (a), (b), (c)) or 10% (for panels (a’), (b’),
(c’)) of Gaussian noise is respectively added to the exact far-field matrix, which is computed by using the
Nyström method (cf. remark 2.5.1). Panel (a) [(a’)] shows the three-dimensional plot of the indicator function
Ψ−2 ln(zl) := − ln

∥∥gα∗2(zl)(zl)
∥∥2

CN (cf. definition (2.284)), where, for each zl, the optimal value α∗2(zl) of the
regularization parameter is fixed by using the generalized discrepancy principle in the compatible case (cf.
subsection 1.8.3 and, in particular, definition (1.317), as well as its specific form (2.279) for the current con-
text); over the three-dimensional plot itself, we have written the corresponding noise level n and the minimum
and maximum values of the regularization parameter, according to the definitions α∗2,m := minzl∈Z α∗2(zl) and
α∗2,M := maxzl∈Z α∗2(zl). Panel (b) [(b’)] shows a two-dimensional projection (i.e., roughly speaking, a view
from above) of the plot in panel (a) [(a’)] together with the profile (in white colour) of the true scatterer. Panel
(c) [(c’)] shows the profile of the true scatterer (dotted line) and, superimposed, the reconstructed profile (solid
line) obtained as the level curve of the plot in panel (a) [(a’)] containing an area equal to the one contained by
the true profile.
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n = 1%,

α∗2,m = 2.4 · 10−4, α∗2,M = 2.3 · 10−2

−10

−5

0

5

10

−10

−5

0

5

10
−8

−6

−4

−2

0

2

4

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

(a) (b) (c)

n = 10%,

α∗2,m = 2.8 · 10−2, α∗2,M = 9.1 · 10−1
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Figure B.3: Reconstruction of the profile of a conducting double scatterer (in the case of Dirichlet boundary
conditions) by means of the traditional implementation of the linear sampling method: the scatterer consists
of a kite and an ellipse. The wavenumber is k = 1, the number of incidence/observation angles is N = 32,
the sampling grid Z is 60 × 60 points zl ∈ Z uniformly chosen in the square [−8, 8] × [−8, 8] and 1% (for
panels (a), (b), (c)) or 10% (for panels (a’), (b’), (c’)) of Gaussian noise is respectively added to the exact
far-field matrix, which is computed by using the Nyström method (cf. remark 2.5.1). Panel (a) [(a’)] shows
the three-dimensional plot of the indicator function Ψ−2 ln(zl) := − ln

∥∥gα∗2(zl)(zl)
∥∥2

CN (cf. definition (2.284)),
where, for each zl, the optimal value α∗2(zl) of the regularization parameter is fixed by using the generalized
discrepancy principle in the compatible case (cf. subsection 1.8.3 and, in particular, definition (1.317), as well
as its specific form (2.279) for the current context); over the three-dimensional plot itself, we have written the
corresponding noise level n and the minimum and maximum values of the regularization parameter, according
to the definitions α∗2,m := minzl∈Z α∗2(zl) and α∗2,M := maxzl∈Z α∗2(zl). Panel (b) [(b’)] shows a two-dimensional
projection (i.e., roughly speaking, a view from above) of the plot in panel (a) [(a’)] together with the profile
(in white colour) of the true scatterer. Panel (c) [(c’)] shows the profile of the true scatterer (dotted line) and,
superimposed, the reconstructed profile (solid line) obtained as the level curve of the plot in panel (a) [(a’)]
containing an area equal to the one contained by the true profile.
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n = 10%, α∗2 = 3.3 · 10−2
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Figure B.4: Reconstruction of the profile of a conducting ellipse-shaped scatterer (in the case of Dirichlet
boundary conditions) by means of the new (i.e. no-sampling) implementation of the linear sampling method.
The wavenumber is k = 1, the number of incidence/observation angles is N = 32 and 1% (for panels (a), (b),
(c)) or 10% (for panels (a’), (b’), (c’)) of Gaussian noise is respectively added to the exact far-field matrix, which
is computed by using the Nyström method (cf. remark 2.5.1). Panel (a) [(a’)] shows the three-dimensional plot
of the indicator function Ψ−2 ln(z) := − ln

∥∥gα∗2 (z)
∥∥2

CN considered in the open square TB
A := (−3, 3) × (−3, 3)

(cf. definition (3.72)), where the (unique) optimal value α∗2 of the regularization parameter is fixed by using
the generalized discrepancy principle in the compatible case (cf. subsection 1.8.3 and, in particular, definition
(1.317), as well as its specific form (3.62) for the current context); over the three-dimensional plot itself, we
have written the corresponding noise level n and the (unique) value α∗2 of the regularization parameter. Panel
(b) [(b’)] shows a two-dimensional projection (i.e., roughly speaking, a view from above) of the plot in panel
(a) [(a’)] together with the profile (in white colour) of the true scatterer. Panel (c) [(c’)] shows the profile of
the true scatterer (dotted line) and, superimposed, the reconstructed profile (solid line) obtained as the level
curve of the plot in panel (a) [(a’)] containing an area equal to the one contained by the true profile.
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n = 10%, α∗2 = 3.1 · 10−2
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Figure B.5: Reconstruction of the profile of a conducting kite-shaped scatterer (in the case of Dirichlet
boundary conditions) by means of the new (i.e. no-sampling) implementation of the linear sampling method.
The wavenumber is k = 1, the number of incidence/observation angles is N = 32 and 1% (for panels (a), (b),
(c)) or 10% (for panels (a’), (b’), (c’)) of Gaussian noise is respectively added to the exact far-field matrix, which
is computed by using the Nyström method (cf. remark 2.5.1). Panel (a) [(a’)] shows the three-dimensional plot
of the indicator function Ψ−2 ln(z) := − ln

∥∥gα∗2 (z)
∥∥2

CN considered in the open square TB
A := (−3, 3) × (−3, 3)

(cf. definition (3.72)), where the (unique) optimal value α∗2 of the regularization parameter is fixed by using
the generalized discrepancy principle in the compatible case (cf. subsection 1.8.3 and, in particular, definition
(1.317), as well as its specific form (3.62) for the current context); over the three-dimensional plot itself, we
have written the corresponding noise level n and the (unique) value α∗2 of the regularization parameter. Panel
(b) [(b’)] shows a two-dimensional projection (i.e., roughly speaking, a view from above) of the plot in panel
(a) [(a’)] together with the profile (in white colour) of the true scatterer. Panel (c) [(c’)] shows the profile of
the true scatterer (dotted line) and, superimposed, the reconstructed profile (solid line) obtained as the level
curve of the plot in panel (a) [(a’)] containing an area equal to the one contained by the true profile.
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n = 1%, α∗2 = 4.6 · 10−4
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n = 10%, α∗2 = 3.6 · 10−2
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Figure B.6: Reconstruction of the profile of a conducting double scatterer (in the case of Dirichlet boundary
conditions) by means of the new (i.e. no-sampling) implementation of the linear sampling method: the scatterer
consists of a kite and an ellipse. The wavenumber is k = 1, the number of incidence/observation angles is N = 32
and 1% (for panels (a), (b), (c)) or 10% (for panels (a’), (b’), (c’)) of Gaussian noise is respectively added to
the exact far-field matrix, which is computed by using the Nyström method (cf. remark 2.5.1). Panel (a) [(a’)]
shows the three-dimensional plot of the indicator function Ψ−2 ln(z) := − ln

∥∥gα∗2 (z)
∥∥2

CN considered in the open
square TB

A := (−8, 8)× (−8, 8) (cf. definition (3.72)), where the (unique) optimal value α∗2 of the regularization
parameter is fixed by using the generalized discrepancy principle in the compatible case (cf. subsection 1.8.3
and, in particular, definition (1.317), as well as its specific form (3.62) for the current context); over the
three-dimensional plot itself, we have written the corresponding noise level n and the (unique) value α∗2 of the
regularization parameter. Panel (b) [(b’)] shows a two-dimensional projection (i.e., roughly speaking, a view
from above) of the plot in panel (a) [(a’)] together with the profile (in white colour) of the true scatterer. Panel
(c) [(c’)] shows the profile of the true scatterer (dotted line) and, superimposed, the reconstructed profile (solid
line) obtained as the level curve of the plot in panel (a) [(a’)] containing an area equal to the one contained by
the true profile.
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Figure B.7: A comparison between the traditional and the no-sampling implementation of the linear sampling
method. This figure is essentially a collection of the panels (c) and (c’) of all the previous figures B.1-B.6. For
each of the six panels, we provide (solid line) the profile of the true object and, superimposed, the reconstructed
contours provided by the two implementations: the traditional one (dashed line) and the no-sampling one
(dotted line). This caption is completed by the following table B.1 and by footnote 10 in section 3.1.

scattering object panel n α∗2,m α∗2,M α∗2
ellipse (a) 1% 2.3 · 10−4 3.4 · 10−2 2.9 · 10−4

kite (b) 1% 1.7 · 10−4 1.8 · 10−2 2.6 · 10−4

kite+ellipse (c) 1% 2.4 · 10−4 2.3 · 10−2 3.9 · 10−4

ellipse (a’) 10% 2.4 · 10−2 7.1 · 10−1 3.5 · 10−2

kite (b’) 10% 1.9 · 10−2 6.5 · 10−1 3.2 · 10−2

kite+ellipse (c’) 10% 2.5 · 10−2 9.5 · 10−1 4.1 · 10−2

Table B.1: This numerical table completes the caption of the previous figure B.7. Obviously, the meaning of
the parameters n, α∗2,m, α∗2,M , α∗2 is the same as the one in figures B.1-B.6. Cf. also footnote 10 in section 3.1.
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n = 10%, α∗1 = 2.6 · 100
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Figure B.8: Reconstruction of the profile of a conducting ellipse-shaped scatterer (in the case of Dirichlet
boundary conditions) by means of the new (i.e. no-sampling) implementation of the linear sampling method.
The wavenumber is k = 1, the number of incidence/observation angles is N = 32 and 1% (for panels (a), (b),
(c)) or 10% (for panels (a’), (b’), (c’)) of Gaussian noise is respectively added to the exact far-field matrix, which
is computed by using the Nyström method (cf. remark 2.5.1). Panel (a) [(a’)] shows the three-dimensional plot
of the indicator function Ψ−2 ln(z) := − ln

∥∥gα∗1 (z)
∥∥2

CN considered in the open square TB
A := (−3, 3) × (−3, 3)

(cf. definition (3.72)), where the (unique) optimal value α∗1 of the regularization parameter is fixed by using
the generalized discrepancy principle in the incompatible case (cf. subsection 1.8.2 and, in particular, definition
(1.259), as well as its specific form (3.66) for the current context). Panel (b) [(b’)] shows a two-dimensional
projection (i.e., roughly speaking, a view from above) of the plot in panel (a) [(a’)] together with the profile
(in white colour) of the true scatterer. Panel (c) [(c’)] shows the profile of the true scatterer (dotted line) and,
superimposed, the reconstructed profile (solid line) obtained as the level curve of the plot in panel (a) [(a’)]
containing an area equal to the one contained by the true profile. Without going into details, we only point
out that the computational procedure implemented by our code in order to produce the third kind of panels
(i.e. (c) and (c’)) by means of the equal-areas criterion is such that when the three-dimensional plot (like the
one in panel (a’)) is too far from being the expected “hill-shaped” diagram, the corresponding profile (like the
one in panel (c’)), reconstructed by using such a criterion, is somehow meaningless or, anyway, unacceptable
for our purposes.
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n = 1%, α∗1 = 1.7 · 10−2
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n = 10%, α∗1 = 2.0 · 100

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(a’) (b’) (c’)

Figure B.9: Reconstruction of the profile of a conducting kite-shaped scatterer (in the case of Dirichlet
boundary conditions) by means of the new (i.e. no-sampling) implementation of the linear sampling method.
The wavenumber is k = 1, the number of incidence/observation angles is N = 32 and 1% (for panels (a), (b),
(c)) or 10% (for panels (a’), (b’), (c’)) of Gaussian noise is respectively added to the exact far-field matrix, which
is computed by using the Nyström method (cf. remark 2.5.1). Panel (a) [(a’)] shows the three-dimensional plot
of the indicator function Ψ−2 ln(z) := − ln

∥∥gα∗1 (z)
∥∥2

CN considered in the open square TB
A := (−3, 3) × (−3, 3)

(cf. definition (3.72)), where the (unique) optimal value α∗1 of the regularization parameter is fixed by using
the generalized discrepancy principle in the incompatible case (cf. subsection 1.8.2 and, in particular, definition
(1.259), as well as its specific form (3.66) for the current context). Panel (b) [(b’)] shows a two-dimensional
projection (i.e., roughly speaking, a view from above) of the plot in panel (a) [(a’)] together with the profile
(in white colour) of the true scatterer. Panel (c) [(c’)] shows the profile of the true scatterer (dotted line) and,
superimposed, the reconstructed profile (solid line) obtained as the level curve of the plot in panel (a) [(a’)]
containing an area equal to the one contained by the true profile. Without going into details, we only point
out that the computational procedure implemented by our code in order to produce the third kind of panels
(i.e. (c) and (c’)) by means of the equal-areas criterion is such that when the three-dimensional plot (like the
one in panel (a’)) is too far from being the expected “hill-shaped” diagram, the corresponding profile (like the
one in panel (c’)), reconstructed by using such a criterion, is somehow meaningless or, anyway, unacceptable
for our purposes.
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n = 1%, α∗1 = 1.3 · 10−1
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n = 10%, α∗1 = 9.1 · 100
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Figure B.10: Reconstruction of the profile of a conducting double scatterer (in the case of Dirichlet boundary
conditions) by means of the new (i.e. no-sampling) implementation of the linear sampling method: the scatterer
consists of a kite and an ellipse. The wavenumber is k = 1, the number of incidence/observation angles is N = 32
and 1% (for panels (a), (b), (c)) or 10% (for panels (a’), (b’), (c’)) of Gaussian noise is respectively added to
the exact far-field matrix, which is computed by using the Nyström method (cf. remark 2.5.1). Panel (a)
[(a’)] shows the three-dimensional plot of the indicator function Ψ−2 ln(z) := − ln

∥∥gα∗1 (z)
∥∥2

CN considered in
the open square TB

A := (−8, 8) × (−8, 8) (cf. definition (3.72)), where the (unique) optimal value α∗1 of the
regularization parameter is fixed by using the generalized discrepancy principle in the incompatible case (cf.
subsection 1.8.2 and, in particular, definition (1.259), as well as its specific form (3.66) for the current context).
Panel (b) [(b’)] shows a two-dimensional projection (i.e., roughly speaking, a view from above) of the plot in
panel (a) [(a’)] together with the profile (in white colour) of the true scatterer. Panel (c) [(c’)] shows the profile
of the true scatterer (dotted line) and, superimposed, the reconstructed profile (solid line) obtained as the level
curve of the plot in panel (a) [(a’)] containing an area equal to the one contained by the true profile. Without
going into details, we only point out that the computational procedure implemented by our code in order to
produce the third kind of panels (i.e. (c) and (c’)) by means of the equal-areas criterion is such that when the
three-dimensional plot (like the one in panel (a’)) is too far from being the expected “hill-shaped” diagram, the
corresponding profile (like the one in panel (c’)), reconstructed by using such a criterion, is somehow meaningless
or, anyway, unacceptable for our purposes.
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n = 5%, α∗2 = 1.1 · 10−2
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n = 5%, α∗1 = 7.8 · 10−1
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n = 5%, c = 1.3 · 10−1

α∗b = 1.1 · 10−1
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Figure B.11: The captions of panels (a), (b), (c) and (a’), (b’), (c’) are respectively the same as the ones of
figures B.4 and B.8, except that the noise level is now 5%. Panels (a”), (b”), (c”) show the analogous results
obtained by means of the blended regularization, consisting in choosing α∗b := c α∗1 + (1 − c)α∗2 (the latter is
a shorthand for definition (1.346)) as optimal value of the regularization parameter. The value of c = c(hs) is
heuristically chosen as c(hs) := [2 arctan(40 hs)]/π, where hs denotes the norm of the specific noise matrix Hs

added to the exact far-field matrix F in this particular numerical experiment. A comparison between panels
(c), (c’) and (c”) seems to indicate the latter as the one providing the best reconstruction of the ellipse.
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n = 5%, α∗1 = 7.4 · 10−1
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n = 5%, c = 1.4 · 10−1

α∗b = 1.1 · 10−1

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3
−0.5

0

0.5

1

1.5

2

2.5

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(a”) (b”) (c”)

Figure B.12: The captions of panels (a), (b), (c) and (a’), (b’), (c’) are respectively the same as the ones of
figures B.5 and B.9, except that the noise level is now 5%. Panels (a”), (b”), (c”) show the analogous results
obtained by means of the blended regularization, consisting in choosing α∗b := c α∗1 + (1 − c)α∗2 (the latter is
a shorthand for definition (1.346)) as optimal value of the regularization parameter. The value of c = c(hs) is
heuristically chosen as c(hs) := [2 arctan(40 hs)]/π, where hs denotes the norm of the specific noise matrix Hs

added to the exact far-field matrix F in this particular numerical experiment. A comparison between panels
(c), (c’) and (c”) clearly indicates the latter as the one providing the best reconstruction of the kite.
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B.3. [3.2] Band-limitedness of the indicator function
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Figure B.13: Support (3.106) of the Fourier transform (3.105) of the indicator function (3.74) in the case in
which the wavenumber is k = 5 and the number of incidence/observation angles is N = 8 (panel (a)), N = 16
(panel (b)), N = 32 (panel (c)), N = 64 (panel (d)).
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Figure B.14: Scattering of N = 8 plane waves with a conducting kite in the case of Dirichlet boundary
conditions, for a wavenumber k = 5 and N = 8 observation angles. The numerical Fourier transform of the
corresponding indicator function (panel (a)) is computed and is compared with the Dirac brush in the same
scattering situation (panel (b)).
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B.4. [3.3] Spatial resolution

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

(a) (b)

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

(c) (d)

Figure B.15: Validation of the theoretical assessment of the spatial resolution in the case of two conducting
scatterers: an ellipse and a peanut (dashed lines). The far-field pattern is computed in the case of N = 32
incidence and observation angles, and 0.5% Gaussian noise is added (cf. remark 2.5.1). The wavenumber
is k = 1, i.e. λ/4 ' 1.57. The indicator function is Ψ2(z) (given by (3.74)) considered in the open square
TB

A := (−8, 8) × (−8, 8), with α∗ = α∗1 provided by the generalized discrepancy principle in the incompatible
case (cf. subsection 1.8.2 and, in particular, definition (1.259), as well as its specific form (3.66) for the current
context). The reconstructed profiles of the two scatterers (solid lines) are obtained by sectioning the plot of
Ψ2(z) in such a way that the sum of the areas of the true scatterers and the sum of the areas described by the
level curves are equal. This caption is completed by the following table B.2.

panel Ce Cp d α∗1
(a) (−4; 0) (4; 0) 5.3 3.3 · 10−2

(b) (−2.5; 0) (2.5; 0) 2.3 3.9 · 10−2

(c) (−2.25; 0) (2.25; 0) 1.8 3.2 · 10−2

(d) (−2; 0) (2; 0) 1.3 2.8 · 10−2

Table B.2: This numerical table completes the caption of the previous figure B.15. For each panel, we give
the centres of the ellipse (Ce) and of the peanut (Cp), the distance d between the two scatterers and the value
α∗1 of the regularization parameter.
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Figure B.16: The caption of this figure is the same as the one of the previous figure B.15 (table B.2 included),
except that the indicator function is now Ξ2(z) (given by (3.158)) instead of Ψ2(z) (given by (3.74)).
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B.5. [3.5] Deformable models
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Figure B.17: Implementation of the deformable contour technique to extract the profile of a conducting
ellipse-shaped (panel (a)) or kite-shaped (panel (b)) scatterer (in the case of Dirichlet boundary conditions).
The wavenumber is k = 1, the number of incidence/observation angles is N = 32 and a level n = 5% of Gaussian
noise is added to the respective exact far-field matrices, which are computed by using the Nyström method (cf.
remark 2.5.1). Each panel consists, first of all, of a two-dimensional projection “from above” of the indicator
function Ψ−2 ln(z) := − ln ‖gα∗b (z)‖2CN considered in the open square TB

A := (−3, 3) × (−3, 3) (cf. definition
(3.72)), where the (unique) optimal value α∗b of the regularization parameter is fixed by means of the blended
regularization (see subsection 1.8.4), i.e. as α∗b := c α∗1 + (1 − c)α∗2 (the latter is a shorthand for definition
(1.346)). The value of c = c(hs) is heuristically chosen as c(hs) := [2 arctan(40 hs)]/π, where hs denotes the
norm of the specific noise matrix Hs added to exact far-field matrix F in the particular numerical experiment
which is being performed. Some numerical values of interest are written in the following table B.3, which
completes the caption of this figure. The physical and geometrical parameters of the two experiments made
to realize panels (a) and (b) are the same as the ones made for figures B.11 and B.12 respectively; however,
for the same reasons explained by footnote 10 in section 3.1, the values of the regularization parameters α∗1,
α∗2 and α∗b contained in table B.3 are slightly different from the corresponding ones in figures B.11 and B.12.
Finally, in each panel of this figure B.17 we also show the true profile of the scatterer (white line), the initial
guess γ0 (red line: it is a circle of radius 2.5) and the reconstructed profile (blue line) obtained by applying
the deformable model described in section 3.5 and stopping the procedure after 100 iterations (since a greater
number would have provided identical visualizations).

scattering object panel n α∗1 α∗2 c α∗b
ellipse (a) 5% 9.0 · 10−1 1.3 · 10−2 1.2 · 10−1 1.2 · 10−1

kite (b) 5% 7.9 · 10−1 9.0 · 10−3 8.7 · 10−1 1.1 · 10−1

Table B.3: This numerical table completes the caption of the previous figure B.17: as explained here, the
values of the parameters α∗1, α∗2, α∗b are very similar to the corresponding ones in figures B.11 and B.12.
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Figure B.18: Implementation of the deformable contour technique to extract the profile of a conducting
double scatterer (in the case of Dirichlet boundary conditions). The wavenumber is k = 1, the number of
incidence/observation angles is N = 32 and a level n = 10% of Gaussian noise is added to the exact far-field
matrix, which is computed by using the Nyström method (cf. remark 2.5.1). This figure consists, first of all, of
a two-dimensional projection “from above” of the indicator function Ψ−2 ln(z) := − ln ‖gα∗2 (z)‖2CN considered in
the open square TB

A := (−8, 8)× (−8, 8) (cf. definition (3.72)), where the (unique) optimal value α∗2 = 4.9 ·10−2

of the regularization parameter is fixed by using the generalized discrepancy principle in the compatible case
(cf. subsection 1.8.3 and, in particular, definition (1.317), as well as its specific form (3.62) for the current
context). The physical and geometrical parameters of the experiment made to realize this figure are the same
as the ones made for panels (a’), (b’) and (c’) in figure B.6; however, for the same reasons explained by footnote
10 in section 3.1, the value α∗2 of the regularization parameter is different from the corresponding one in panel
(a’) of figure B.6. Finally, in this figure B.18 we also show the true profile of the scatterer (white line), the
initial guess γ0 (red line: two circles of radius 2.5 and centres in (−4,−4) and (4, 4)) and the reconstructed
profile (blue line) obtained by applying the deformable model described in section 3.5 and adapted to the case
of two objects; more precisely, all the procedure has been implemented twice: the first time by choosing as
initial guess γ0 the single circle around the ellipse and, after 100 iterations, the second one by choosing as initial
guess γ0 the single circle around the kite and then stopping the procedure itself after 100 iterations again (since
a greater number would have provided identical visualizations).
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