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Abstract. We prove regularity results for minimizers of functionals F(u,Ω) :=
R

Ω
f(x, u,Du) dx

in the class K := {u ∈ W 1,p(x)(Ω,R) : u ≥ ψ}, where ψ : Ω → R is a fixed function and f is
quasiconvex and fulfills a growth condition of the type

L−1|z|p(x) ≤ f(x, ξ, z) ≤ L(1 + |z|p(x)),

with growth exponent p : Ω → (1,∞).

1. Introduction

The aim of this paper is to study the regularity properties for local minimizers of integral functionals
of the type

(1.1) F(u,Ω) :=

∫

Ω

f(x, u(x), Du(x)) dx,

in the class K := {u ∈W 1,p(x)(Ω,R) : u ≥ ψ}, where ψ is a fixed obstacle function, Ω is a bounded
open set in R

n and f : Ω × R × R
n → R is a Carathéodory function satisfying a growth condition

of the type

(1.2) L−1|z|p(x) ≤ f(x, ξ, z) ≤ L(1 + |z|p(x)),

for all x ∈ Ω, ξ ∈ R, z ∈ R
n, with p : Ω → (1,+∞) a continuous function and L ≥ 1. We do not

assume the functional considered in (1.1) to admit an Euler-Lagrange equation, especially not the
integrand to be twice differentiable. Our assumptions on the integrand f are quasiconvexity (see
(H2)) and p(x) growth in the sense of (H1).

Problems with non standard growth became of increasing interest in the past ten years, on one
hand since they appear for example in a natural way in the modeling of non newtonian fluids (for
example electrorheological fluids, see for instance [24]), on the other hand they are in particular
interesting from the mathematical point of view since they represent the borderline case between
standard growth and so-called (p, q) growth conditions.

It is not difficult to see that existence of local minimizers for problems of p(x) type under typical

structure conditions can generally be shown in the generalized Sobolev space W
1,p(x)
loc (Ω) (see Def-

inition 2.1 for more details). These spaces can be interesting by themselves. So there have been
made a lot of investigations on their properties, see for example [24], [8], [9], [18], [7], [17].

Mathematical investigations of regularity for problems with p(x) growth started with a first higher
integrability result of Zhikov [25] for functionals of a special type. Then Acerbi & Mingione [1], [2]
showed C0,α regularity for minimizers of functionals

∫

f(x,Du) dx under certain weak continuity
assumptions on the exponent function p. Coscia & Mingione [6] were able to show that, in order to
obtain C1,α regularity, one needs Hölder continuity of the exponent function p itself. The authors
(see [11], [19]) were able to extend results of this type to functionals

∫

f(x, u,Du) dx and to higher
order functionals

∫

f(x, u,Du, . . . , Dmu) dx with p(x) growth. All of these papers make use of the
so-called “blow up technique” in their proofs. Recently, regularity results of this type were also
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shown by the method of A−harmonic approximation by Zatorska-Goldstein and one of the authors
[21].

In this paper we are concerned with one sided obstacle problems with p(x) growth, providing reg-
ularity results in the setting of Hölder and Morrey spaces. Obstacle problems of this type in the
situation of standard growth p = const. have been studied by Choe [4], where regularity in Morrey
spaces was considered, and by one of the authors [12], where these results have been extended in a
sharp way. It turns out that the results of [12] can be used for our purposes, providing adequate
reference estimates.
To the knowledge of the authors, the present paper seems to be a first regularity result for obstacle
problems with p(x) growth.

The techniques in this paper are a combination of those in [12], providing the reference estimates,
and suitable localization and freezing techniques to treat the non standard growth exponent. The
regularity assumptions for the exponent function p enable us to establish appropriate comparison
estimates between the original minimizer and the minimizer of the frozen problem.

In the first part of the paper (see Theorem 2.8) we show C0,α regularity for minimizers of functionals
of the type

∫

f(x,Du) dx in the case where the exponent function satisfies a weak regularity condition
in the sense of (2.7) and the obstacle lies in an appropriate Morrey space. In Theorem 2.9, we extend
these results to the case of more general functionals

∫

f(x, u,Du) dx. Therefore we take use of the
so-called Ekeland variational principle, a tool that revealed to be crucial in regularity since the
paper [14]. Finally, in Theorem 2.10 we prove C1,β regularity of minimizers in the case that the
function p is C0,α and the obstacle lies in an appropriate Campanato space which is isomorphic to
some Hölder space.

The results of this paper could be used to prove estimates of Calderón-Zygmund type (as done by
Acerbi & Mingione for equations in [3] and extended to systems of higher order by one of the authors
in [20]) also for obstacle problems with p(x) growth.
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2. Notation and statements

In the sequel Ω will denote an open bounded domain in R
n and B(x,R) the open ball {y ∈ R

n :
|x− y| < R}. If u is an integrable function defined on B(x,R), we will set

(u)x,R = −

∫

B(x,R)

u(x)dx =
1

ωnRn

∫

B(x,R)

u(x)dx,

where ωn is the Lebesgue measure of B(0, 1). We shall also adopt the convention of writing BR and
(u)R instead of B(x,R) and (u)x,R respectively, when the center will not be relevant or it is clear
from the context; moreover, unless otherwise stated, all balls considered will have the same center.
Finally the letter c will freely denote a constant, not necessarily the same in any two occurrences,
while only the relevant dependences will be highlighted.

We start with the following definition.

Definition 2.1. A function u is said to belong to the generalized Sobolev space W 1,p(x)(Ω; R) if
u ∈ Lp(x)(Ω; R) and the distributional gradient Du ∈ Lp(x)(Ω; Rn). Here the generalized Lebesgue
space Lp(x)(Ω; R) is defined as the space of measurable functions f : Ω → R such that

∫

Ω

|f(x)|p(x) dx <∞.
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This is a Banach space equipped with the Luxemburg norm

||f ||Lp(x)(Ω;R) = inf

{

λ > 0 :

∫

Ω

∣

∣

∣

∣

f

λ

∣

∣

∣

∣

p(x)

dx ≤ 1

}

.

This definition can be extended in a straightforward way to the case of vector-valued functions.

Next, we will set

F(u,A) :=

∫

A

f(x, u(x), Du(x))dx

for all u ∈ W 1,1
loc (Ω) and for all A ⊂ Ω.

We adopt the following notion of local minimizer and local Q-minimizer:

Definition 2.2. We say that a function u ∈W 1,1
loc (Ω) is a local minimizer of the functional (1.1) if

|Du(x)|p(x) ∈ L1
loc(Ω) and
∫

spt ϕ

f(x, u(x), Du(x))dx ≤

∫

spt ϕ

f(x, u(x) + ϕ(x), Du(x) +Dϕ(x))dx

for all ϕ ∈W 1,1
0 (Ω) with compact support in Ω.

We shall consider the following growth, ellipticity and continuity conditions:

(H1) L−1(µ2 + |z|2)p(x)/2 ≤ f(x, ξ, z) ≤ L(µ2 + |z|2)p(x)/2 ,

(H2)

∫

Q1

[f(x0, ξ0, z0 +Dϕ(x)) − f(x0, ξ0, z0)]dx

≥L−1

∫

Q1

(µ2 + |z0|
2 + |Dϕ(x)|2)

p(x0)−2
2 |Dϕ(x)|2dx

for some 0 ≤ µ ≤ 1, for all z0 ∈ R
n, ξ0 ∈ R, x0 ∈ Ω, ϕ ∈ C∞

0 (Q1) , where Q1 = (0, 1)n,

(H3)
|f(x, ξ, z)−f(x0, ξ, z)|

≤ Lω1(|x− x0|)
[

(

µ2 + |z|2
)p(x)/2

+
(

µ2 + |z|2
)p(x0)/2

]

[

1 + | log(µ2 + |z|2)|
]

for all z ∈ R
n, ξ ∈ R, x and x0 ∈ Ω, where L ≥ 1. Here ω1 : R

+ → R
+ is a nondecreasing continuous

function, vanishing at zero, which represents the modulus of continuity of p :

(H4) |p(x) − p(y)| ≤ ω1(|x− y|).

We will always assume that ω1 satisfies the following condition:

(2.1) lim sup
R→0

ω1(R) log

(

1

R

)

< +∞ ;

thus in particular, without loss of generality, we may assume that

(2.2) ω1(R) ≤ L| logR|−1

for all R < 1.

We shall also consider the following continuity condition with respect to the second variable

(H5) |f(x, ξ, z) − f(x, ξ0, z)| ≤ Lω2(|ξ − ξ0|)(µ
2 + |z|2)p(x)/2,

for any ξ, ξ0 ∈ R. As usual, without loss of generality, we shall suppose that ω2 is a concave, bounded
and, hence, subadditive function.

No differentiability is assumed on f with respect to x or with respect to z.
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Since all our results are local in nature, without loss of generality we shall suppose that

(2.3) 1 < γ1 ≤ p(x) ≤ γ2 ∀x ∈ Ω ,

and

(2.4)

∫

Ω

|Du(x)|
p(x)

dx < +∞ .

Finally we set

K := {u ∈W 1,p(x)(Ω; R) : u ≥ ψ},

where ψ ∈ W 1,p(x)(Ω; R) is a fixed function.

Now we recall the definition of Morrey and Campanato spaces (see for example [16]).

Definition 2.3. (Morrey spaces).
Let Ω be an open and bounded subset of R

n, let 1 ≤ p < +∞ and λ ≥ 0. By Lp,λ(Ω) we denote the
linear space of functions u ∈ Lp(Ω) such that, if we set Ω(x0, ρ) := Ω ∩B(x0, ρ), we get

||u||Lp,λ(Ω) :=

{

sup
x0∈Ω, 0<ρ< diam(Ω)

ρ−λ

∫

Ω(x0,ρ)

|u(x)|pdx

}1/p

< +∞.

It is easy to see that ||u||Lp,λ(Ω) is a norm respect to which Lp,λ(Ω) is a Banach space.

Definition 2.4. (Campanato spaces).
Let Ω be an open and bounded subset of R

n, let p ≥ 1 and λ ≥ 0. By Lp,λ(Ω) we denote the linear
space of functions u ∈ Lp(Ω) such that, if we set Ω(x0, ρ) := Ω ∩B(x0, ρ), we get

[u]p,λ =

{

sup
x0∈Ω, 0<ρ< diam(Ω)

ρ−λ

∫

Ω(x0,ρ)

|u(x) − (u)x0,ρ|
p dx

}1/p

< +∞,

where

(u)x0,ρ :=
1

|Ω(x0, ρ)|

∫

Ω(x0,ρ)

u(x) dx

is the average of u in Ω(x0, ρ).

Also in this case it is not difficult to show that Lp,λ(Ω) is a Banach space equipped with the norm

||u||Lp,λ(Ω) = ||u||Lp(Ω) + [u]p,λ.

Remark 2.5. The local variants Lp,λ
loc (Ω) and Lp,λ

loc (Ω) are defined in a standard way

u ∈ Lp,λ
loc (Ω) ⇔ u ∈ Lp,λ(Ω′) ∀Ω′

⋐ Ω

u ∈ Lp,λ
loc (Ω) ⇔ u ∈ Lp,λ(Ω′) ∀Ω′

⋐ Ω.

The interest of Campanato’s spaces lies mainly in the following result which will be used in the next
sections.

Theorem 2.6. Let Ω be a bounded open Lipschitz domain of R
n, and let n < λ < n + p. Then

the space Lp,λ(Ω) is isomorphic to C0,α(Ω̄) with α = λ−n
p . We also remark that, using Poincaré

inequality, we have that, for a weakly differentiable function v, if Dv ∈ Lp,λ(Ω), then v ∈ Lp,p+λ(Ω).

Remark 2.7. Theorem 2.6 also holds for a larger class of domains (see [16], Sect. 2.3).
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The first result we are able to obtain is for local minimizers in K of the functional

(2.5) H(u,BR) =

∫

BR

h(x,Du(x)) dx

where h : Ω×R
n → R is a continuous function fulfilling growth, ellipticity and continuity conditions

of kind (H1), (H2) and (H3).

More precisely we have:

Theorem 2.8. Let u ∈ W 1,1
loc (Ω) be a local minimizer of the functional (2.5) in K, where h is a

continuous function satisfying (H1) - (H4); suppose moreover that the function ψ fulfills the following
assumption

(2.6) Dψ ∈ Lq,λ
loc (Ω),

for some n − γ1 < λ < n, with q = γ2 r for some r > 1, where γ1 and γ2 have been introduced in
(2.3). Finally assume that the following holds

(2.7) lim
R→0

ω1(R) log

(

1

R

)

= 0.

Then u ∈ C0,α
loc (Ω) with α = 1 −

n− λ

γ1
.

The main result is instead for local minimizers of the functional (1.1) in K.

Theorem 2.9. Let u ∈ W 1,1
loc (Ω) be a local minimizer of the functional (1.1) in K, where f is a

continuous function satisfying (H1) - (H5); suppose moreover that the function ψ fulfills (2.6), for
some n− γ1 < λ < n, with q = γ2 r for some r > 1, where γ1 and γ2 have been introduced in (2.3).
Finally assume that the following holds

(2.8) lim
R→0

ω1(R) log

(

1

R

)

+ ω2(R) = 0.

Then u ∈ C0,α
loc (Ω) with α = 1 −

n− λ

γ1
.

Finally, if the Lagrangian f is more regular and the obstacle stays in a Campanato space, we have
the following result.

Theorem 2.10. Let u ∈ W 1,1
loc (Ω) be a local minimizer of the functional (1.1) in K, where f is a

function of class C2 satisfying (H1) - (H5) and the function ψ fulfills the following assumption

(2.9) Dψ ∈ Lγ1,λ
loc (Ω),

for some n < λ < n+ γ1, where γ1 has been introduced in (2.3). If we assume that

(2.10) ω1(R) + ω2(R) ≤ LRς

for some 0 < ς ≤ 1 and all R ≤ 1, then Du ∈ Lγ1,λ̃
loc (Ω) for some suitable n < λ̃ < n + γ1 and

therefore u ∈ C1,α̃
loc (Ω) with α̃ = 1 −

n− λ̃

γ1
.

3. Preliminary results

Before proving our main theorems, we need some preliminary results and establish some basic
notation.

• A higher integrability result We first prove a higher integrability result for functionals of type
(1.1).
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Lemma 3.1. Let O be an open subset of Ω, let u ∈ W 1,1
loc (O) be a local minimizer in K of the

functional (1.1) with f : O × R × R
n → R satisfying (H1), with the exponent function p satisfying

(H4), (2.1) and (2.3) and with ψ fulfilling condition (2.6). Moreover suppose that
∫

O

|Du(x)|p(x)dx ≤M1

for some constant M1. Then, there exist two positive constants c0, δ depending on n, r, γ1, γ2, L,
M1, where r is the quantity appearing in condition (2.6), such that, if BR ⋐ O, then

(

−

∫

BR/2

|Du(x)|
p(x)(1+δ)

dx

)1/(1+δ)

≤ c0 −

∫

BR

|Du(x)|
p(x)

dx(3.1)

+c0

(

−

∫

BR

(|Dψ(x)|p(x)(1+δ) + 1) dx

)1/(1+δ)

.

Proof. First step: we set
p1 := min

x∈BR

p(x), p2 := max
x∈BR

p(x),

let R/2 ≤ t < s ≤ R ≤ 1, and let η ∈ C∞
0 (BR) be a cut-off function such that 0 ≤ η ≤ 1, η ≡ 0

outside Bs, η ≡ 1 on Bt, |Dη| ≤ 2(s − t)−1. Moreover we set ϕ(x) = η(x)(u(x) − (u)R) and let
g = u − ϕ. We remark that g = u on ∂Bs while on Bt we have g = (u)R, consequently Dg = 0
on Bt. We would like to use the minimality of u in K. A priori g is not an element of K, so we
set g̃ := max{g, ψ} and Σ := {x ∈ R

n : g(x) ≥ ψ(x)}. This assures that g̃ ∈ K and so, by the
minimality of u

(3.2) F(u,Bs) ≤ F(g̃, Bs).

Therefore we estimate by (3.2) and the growth (H1)
∫

Bt

|Du(x)|p(x)dx ≤ L

∫

Bs

f(x, u(x), Du(x))dx

(3.2)

≤ L

∫

Bs

f(x, g̃(x), Dg̃(x))dx

= LF(g̃, Bs ∩ Σ) + LF(g̃, Bs \ Σ)

= LF(g,Bs ∩ Σ) + LF(ψ,Bs \ Σ)

≤ L

∫

Bs

f(x, g(x), Dg(x)) dx + L

∫

Bs

f(x, ψ(x), Dψ(x)) dx

(H1)

≤ L2

∫

Bs

(1 + |Dg(x)|p(x)) dx+ L2

∫

Bs

(1 + |Dψ(x)|p(x)) dx

≤ L2

∫

Bs\Bt

[(1 − η(x))|Du(x)| + |u(x) − (u)R||Dη(x)|]
p(x)dx+ c̄

≤ ĉ

∫

Bs\Bt

|Du(x)|p(x)dx+ c̃

∫

Bs

∣

∣

∣

∣

u(x) − (u)R

s− t

∣

∣

∣

∣

p(x)

dx+ c̄

≤ ĉ

∫

Bs\Bt

|Du(x)|p(x)dx+ c̃
1

|s− t|p2

∫

BR

|u(x) − (u)R|
p(x)dx+ c̄ ,

where ĉ = L22γ2−1, c̃ = L222γ2−1, c̄ = L2

∫

BR

(1 + |Dψ(x)|p(x)) dx.

Now we proceed in a standard way, ‘filling the hole’ and applying [16], Lemma 6.1 to deduce
∫

BR/2

|Du(x)|p(x)dx ≤ cRp1−p2

∫

BR

∣

∣

∣

∣

u(x) − (u)R

R

∣

∣

∣

∣

p(x)

dx+ c

∫

BR

(1 + |Dψ(x)|p(x)) dx
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≤ cR−ω1(8R)

∫

BR

∣

∣

∣

∣

u(x) − (u)R

R

∣

∣

∣

∣

p(x)

dx+ c

∫

BR

(1 + |Dψ(x)|p(x)) dx

≤ c

∫

BR

∣

∣

∣

∣

u(x) − (u)R

R

∣

∣

∣

∣

p(x)

dx+ c

∫

BR

(1 + |Dψ(x)|p(x)) dx,

where we used (2.2) and c is a constant depending only on γ1, γ2, L.

According to the previous facts, we find that

(3.3) −

∫

BR/2

|Du(x)|p(x)dx ≤ c −

∫

BR

∣

∣

∣

∣

u(x) − (u)R

R

∣

∣

∣

∣

p(x)

dx + c −

∫

BR

(1 + |Dψ(x)|p(x)) dx.

Second step: Fixing ϑ = min
{
√

n+1
n , γ1

}

and taking R < R0/16, where R0 is small enough to have

ω1(8R0) ≤ ϑ − 1 and therefore 1 ≤ p2/p1ϑ ≤ ϑ2 ≤ (n + 1)/n, by Sobolev-Poincaré’s inequality we
obtain

−

∫

BR

∣

∣

∣

∣

u(x) − (u)R

R

∣

∣

∣

∣

p(x)

dx

≤ 1 + −

∫

BR

∣

∣

∣

∣

u(x) − (u)R

R

∣

∣

∣

∣

p2

dx

≤ 1 + c

(
∫

BR

(1 + |Du(x)|p(x))dx

)

(p2−p1)ϑ
p1

R
−(p2−p1)ϑn

p1

(

−

∫

BR

|Du(x)|
p1
ϑ dx

)ϑ

≤ c(M1)

(

−

∫

BR

|Du(x)|
p1
ϑ dx

)ϑ

+ c ,

where in the second inequality we use the fact that p1

ϑ ≤ p(x)
ϑ ≤ p(x) and in the last one we use

again the fact that, by (2.2), R
−(p2−p1)ϑn

p1 is bounded. So, by the second step

(3.4) −

∫

BR

∣

∣

∣

∣

u(x) − (u)R

R

∣

∣

∣

∣

p(x)

dx ≤ c

(

−

∫

BR

|Du(x)|
p(x)

ϑ dx

)ϑ

+ c .

Third step: from (3.3) and (3.4) we obtain, for all R < R0/16

−

∫

BR/2

|Du(x)|p(x)dx ≤ c1

(

−

∫

BR

|Du(x)|
p(x)

ϑ dx

)ϑ

+ c2

∫

BR

(1 + |Dψ(x)|p(x)) dx,

where c1 ≡ c1(γ1, γ2, L,M1, n) and c2 ≡ c2(γ1, γ2, L).

We now apply Gehring’s lemma (see [16], Theorem 6.6 or [15], Chapter V) and deduce that there
exists 0 < δ < r − 1 (where r appears in the higher integrability assumption (2.6) on the obstacle
function ψ) such that

(

−

∫

BR/2

|Du(x)|
p(x)(1+δ)

dx

)1/(1+δ)

≤ c0 −

∫

BR

|Du(x)|
p(x)

dx

+c0

(

−

∫

BR

(|Dψ(x)|p(x)(1+δ) + 1) dx

)1/(1+δ)

,

with c0 ≡ c0(γ1, γ2, L,M1, n, r). This concludes the proof. �

Proof. It follows from the first step of the previous proof, formula (3.3). �

• A remark about local minimizers with obstacles
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Let g : R
n → R be a function of class C2 satisfying, for some 1 < γ1 ≤ p ≤ γ2, the following growth

and ellipticity conditions

(H6) L−1(µ2 + |z|2)p/2 ≤ g(z) ≤ L(µ2 + |z|2)p/2 ,

(H7)

∫

Q1

[g(z0 +Dφ(x)) − g(z0)]dx ≥ L−1

∫

Q1

(µ2 + |z0|
2 + |Dφ(x)|2)(p−2)/2|Dφ(x)|2 dx

for some 0 ≤ µ ≤ 1, for all z0 ∈ R
n, φ ∈ C∞

0 (Q1), where Q1 = (0, 1)n, L ≥ 1. Moreover let v be a
local minimizer in the class K of the functional

(3.5) w 7→

∫

BR

g(Dw(x)) dx

with BR ⋐ Ω.

Then it is possible to prove that

(3.6)

∫

Ω

〈A(Dv(x)), Dϕ(x)〉 dx ≥ 0 ∀ϕ ∈ C∞
0 (Ω) such that ϕ ≥ 0,

where A(z) := Dg(z) and A(z) satisfies the following monotonicity and growth conditions

(3.7) 〈A(z), z〉 ≥ ν1|z|
p − c

for some ν1 ≡ ν1(γ1, γ2, L) and c ≡ c(γ1, γ2, L), and

(3.8) |A(z)| ≤ L (1 + |z|p−1).

It is also possible to show (see [13]) that g also satisfies, with ν2 ≡ ν2(γ1, γ2, L) > 0 and 0 ≤ µ ≤ 1

(3.9) D2g(z)λ⊗ λ ≥ ν2 (µ2 + |z|2)(p−2)/2 |λ|2.

• A reference estimate

Proposition 3.2. Let g : R
n → R be a function of class C2 satisfying (H6) and (H7) for some

1 < γ1 ≤ p ≤ γ2. Moreover let v be a local minimizer in K of the functional (3.5) with BR ⋐ Ω.

If in addition the function ψ fulfills (2.6) for some n − γ1 < λ < n, then for all 0 < ρ < R/2 and
any ε > 0

∫

Bρ

|Dv(x)|p dx ≤ c
[( ρ

R

)n

+ ε
]

∫

BR

(1 + |Dv(x)|p) dx+ c̄ Rλ,

where c ≡ c(γ1, γ2, L) and c̄ ≡ c̄(γ1, γ2, L, ε).

Proof. The proof of this result can be carried out as in Proposition 4.1 of [12]. One indeed has to
make sure that the constants involved only depend on the global bounds γ1 and γ2 of the exponent
function p. In this respect, the key points are Theorem 2.2 of [13] and the structure conditions (3.7),
(3.8) and (3.9). �

• A up-to-the-boundary higher integrability result

If v is a local minimizer in K of the functional (3.5), then the following up-to-the-boundary higher
integrability result can be rapidly achieved.

Proposition 3.3. (see [12], Proposition 3.3) Let g : R
n → R be a continuous function fulfilling

(H6) for some γ1 ≤ p ≤ γ2. Let v be a local minimizer of the functional (3.5) in the Dirichlet class

{v ∈ u +W 1,p
0 (BR) : v ∈ K}, for some u ∈ W 1,p(BR), where the function ψ fulfills the assumption

(2.6). If moreover u ∈ W 1,q̄(BR) for a certain p < q̄ < q, then there exist p < r̄ < q̄ and c depending
on γ1, γ2, L but not on u or R such that v ∈ W 1,r̄(BR/2) and

(

−

∫

BR/2

|Dv(x)|r̄ dx

)1/r̄

≤ c

(

−

∫

BR/2

|Dv(x)|p dx

)1/p

(3.10)
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+ c

[

−

∫

BR

(1 + |Du(x)|q̄) dx

]1/q̄

+ c

[

−

∫

BR

(1 + |Dψ(x)|q̄) dx

]1/q̄

.

Proof. The proof of this result is not very difficult. We refer the reader to [5] for the proof in
the non-obstacle situation and to [12] for a short discussion on the additional difficulties due to the
obstacle function. On the other hand one has to assure that the constants only depend on the global
bounds γ1 and γ2 of the exponent function p, and not on p itself. For this discussion we refer the
reader to [19]. �

• Iteration lemma

We will use the following iteration lemma, which can for example be found in [16], for the proof of
our results.

Lemma 3.4. Let Φ(t) be a nonnegative and nondecreasing function. Suppose that

Φ(ρ) ≤ A
[( ρ

R

)α

+ ε
]

Φ(R) +BRβ ,

for all ρ ≤ R ≤ R0, with A,B, α, β nonnegative constants, β < α. Then there exists a constant
ε0 ≡ ε0(A,α, β) such that if ε < ε0, for all ρ ≤ R ≤ R0, then

Φ(ρ) ≤ c

[

( ρ

R

)β

Φ(R) +Bρβ

]

,

where c is a constant depending on α, β,A, but independent of B.

• A technical lemma

Lemma 3.5. ([5], Lemma 2.2) If p > 1 is such that there exist two constants γ1, γ2 with γ1 ≤ p ≤ γ2,
then there exists a constant c ≡ c(γ1, γ2) such that for any µ ≥ 0, ξ, η ∈ R

n

(µ2 + |ξ|2)p/2 ≤ c (µ2 + |η|2)p/2 + c (µ2 + |ξ|2 + |η|2)(p−2)/2 |ξ − η|2.

4. Proof of Theorem 2.8

A priori assumptions For the proof of Theorem 2.8 we will assume that the modulus of continuity
of our growth exponent p satisfies the condition (2.7). Therefore, in particular we may always assume
(2.2).

Step 1: Localization Let us start with Lemma 3.1 which provides a higher integrability exponent
δ such that for any Ω′ ⋐ Ω there holds

∫

Ω′

|Du|p(x)(1+δ) dx < +∞.

Let us assume that the p(x) energy on Ω is bounded, i.e. that there exists a constant M such that

(4.1)

∫

Ω

|Du|p(x) dx ≤M < +∞.

In the sequel we will explicitly point out if constants depend on this bound M .

FURTHER LOCALIZATION. Thus we end up with a maximal radius of size RM , such that there
holds ω1(8RM ) ≤ δ/4. Let O ⋐ Ω be a set whose diameter does not exceed RM . We denote

(4.2) p2 := max{p(x) : x ∈ O} = p(x0), p1 := min{p(x) : x ∈ O}.

Then there holds

p2 − p1 ≤ ω1(8RM ) ≤ δ/4;(4.3)

p2(1 + δ/4) ≤ p(x)(1 + δ/4 + ω1(R)) ≤ p(x)(1 + δ).(4.4)
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Furthermore we note that the localization together with the bound (2.2) for the modulus of conti-
nuity provides for any R ≤ 8RM ≤ 1:

(4.5) R−nω1(R) ≤ exp(nL) = c(n,L), R
−

nω1(R)

1+ω1(R) ≤ c(n,L).

HIGHER INTEGRABILITY. By our higher integrability result and the localization, we immediately
obtain

(4.6) −

∫

BR

|Du|p2 dx ≤ c

[

(

−

∫

B2R

|Du|p(x) dx

)1+δ/4

+ −

∫

B2R

|Dψ|p(x)(1+δ/4) dx+ 1

]

Step 2: Freezing

Let BR be a ball in O. We define v ∈ u+W 1,p2

0 (BR) as the unique minimum of the functional

G(v) :=

∫

BR

h(x0, Dv) dx =:

∫

BR

g(Dv) dx

in the class K. Since the functional G is frozen in the point x0, it satisfies the growth and ellipticity
conditions (H6) and (H7) with the maximal exponent p = p2. For our proof we will assume that
g ∈ C2. Removing the C2 regularity of g can then be done by a suitable approximation, arguing
exactly as in [2].

Note that by the minimizing property of v, we obtain the following bound for the p2 energy of v
(since u ∈ K):

(4.7)

∫

BR

|Dv|p2 dx ≤ L2

∫

BR

(1 + |Du|p2) dx ≤ c(M),

where in the last inequality we used (4.6), (4.1) and (2.6).

REFERENCE ESTIMATE. v is a K-minimizer of the frozen functional with constant p2 growth.
Therefore it satisfies the assumptions of Proposition 3.2 with 1 < γ1 ≤ p ≡ p2 ≤ γ2. Thus there
holds for any ε > 0 and any ρ with 2ρ < R:

(4.8)

∫

Bρ

|Dv|p2 dx ≤ c
[( ρ

R

)n

+ ε
]

∫

BR

(1 + |Dv|p2) dx+ c̄Rλ,

with c ≡ c(γ1, γ2, L) and c̄ ≡ c̄(γ1, γ2, L, ε).

COMPARISON ESTIMATE. We prove the following comparison estimate
∫

BR

(µ2 + |Du|2 + |Dv|2)
p2−2

2 |Du−Dv|2 dx

≤ c
(

ω1(R) log
(

1
R

))

[
∫

B4R

(1 + |Du|p2) dx+Rλ

]

.(4.9)

Using the differentiability of g and the ellipticity (3.9) with p = p2, we estimate

G(u) − G(v) =

∫

BR

[g(Du) − g(Dv)] dx

=

∫

BR

〈Dg(Dv), Du −Dv〉dx [= 0]

+

∫

BR

dx

∫ 1

0

(1 − t)D2g(tDu+ (1 − t)Dv)(Du −Dv) ⊗ (Du−Dv)dt(4.10)

≥ ν2

∫

BR

dx

∫ 1

0

(1 − t)(µ2 + |tDu+ (1 − t)Dv|2)(p2−2)/2|Du−Dv|2dt
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≥ c−1

∫

BR

(µ2 + |Du|2 + |Dv|2)(p2−2)/2|Du −Dv|2dx ,

with c ≡ c(γ1, γ2, L).

On the other hand we have
∫

BR

[g(Du) − g(Dv)] dx =

∫

BR

[h(x0, Du) − h(x,Du)] dx

+

∫

BR

[h(x,Du) − h(x,Dv)] dx

+

∫

BR

[h(x,Dv) − h(x0, Dv)] dx

= I(1) + I(2) + I(3).

Obviously we have I(2) ≤ 0, since u is a minimizer of the functional (2.5) in the class K and v
belongs to K. We estimate I(1), using the continuity of the integrand with respect to the variable
x, then splitting as follows:

I(1) ≤ c

∫

BR

ω1(|x− x0|)((µ
2 + |Du|2)p(x)/2 + (µ2 + |Du|2)p2/2)(1 + log(µ2 + |Du|2)) dx

≤ c ω1(R)

∫

BR∩{|Du|≥e}

|Du|p2 log |Du|p2 dx + c ω1(R)Rn

≤ c ω1(R)Rn −

∫

BR

|Du|p2 log
(

e+ |||Du|p2 ||L1(BR)

)

dx

+c ω1(R)

∫

BR

|Du|p2 log

(

e+
|Du|p2

|||Du|p2 ||L1(BR)

)

dx+ c ω1(R)Rn

= I
(1)
1 + I

(1)
2 + I

(1)
3 .

We estimate I
(1)
2 , using higher integrability (3.1), the localization (4.4), the bound M for the p(x)

energy and some basic facts from the theory of Orlicz spaces (for some details we refer to [22], see
also [2], [3])

I
(1)
2 ≤ c ω1(R)Rn

(

−

∫

BR

|Du|p2(1+δ/4) dx

)1/(1+δ/4)

≤ c ω1(R)Rn + c ω1(R)Rn

(

−

∫

BR

|Du|p(x)(1+δ/4+ω1(R)) dx

)1/(1+δ/4)

≤ c ω1(R)Rn + c(δ)ω1(R)Rn

[

(

−

∫

B2R

|Du|p(x) dx

)

1+δ/4+ω1(R)

1+δ/4

+

(

−

∫

B2R

(|Dψ|p(x)(1+δ) + 1) dx

)1/(1+δ/4)
]

≤ c ω1(R)Rn + c ω1(R)RnR−n
ω1(R)

1+δ/4

(

−

∫

B2R

|Du|p(x) dx

)(
∫

B2R

|Du|p(x) dx

)

ω1(R)

1+δ/4

+c ω1(R)RnR
(λ−n)
1+δ/4

(4.5)

≤ c ω1(R)Rn + c ω1(R)Rn

(

−

∫

B2R

(1 + |Du|p2) dx

)(
∫

B2R

|Du|p(x) dx

)

ω1(R)

1+δ/4

+c ω1(R)Rλ R(n−λ) δ/4
1+δ/4
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≤ c ω1(R) ·M ·

∫

B2R

(1 + |Du|p2) dx+ c ω1(R)Rλ.

In the last step we used the fact that R ≤ 1. We estimate I
(1)
1 , using estimates for the L logL-norm

of |Du|p2 , which can for example be found in [3]:

I
(1)
1 ≤ c ω1(R) log

(

R−ne+R−n

∫

BR

|Du|p2 dx

)
∫

BR

|Du|p2 dx

≤ c ω1(R)

∫

BR

|Du|p2 dx · log

(

e+

∫

BR

|Du|p2 dx

)

+ c ω1(R) log
(

1
R

)

∫

BR

|Du|p2 dx

≤ c(δ)ω1(R)

(

1 +

∫

BR

|Du|p2 dx

)δ/4 ∫

BR

|Du|p2 dx+ c ω1(R) log
(

1
R

)

∫

BR

|Du|p2 dx

≤ c(M,n, δ)
(

ω1(R) log
(

1
R

))

∫

BR

(1 + |Du|p2) dx.

Thus, alltogether we obtain

I(1) ≤ c
(

ω1(R) log
(

1
R

))

[
∫

B2R

(1 + |Du|p2) dx+Rλ

]

.

We estimate I(3) in an analogue way to I(1). Doing the splitting into I
(3)
1 to I

(3)
3 in the same way as

for I(1), we use higher integrability up to the boundary for v (3.10) (where we set r̄ = p2(1 + ε̃/4)
with ε̃ ∈ (0, δ) being the up-to-the-boundary higher integrability exponent) and the estimate (4.7)
for the p2 energy of v:

I
(3)
2 ≤ c ω1(R)Rn

(

−

∫

BR

|Dv|p2(1+ε̃/4) dx

)1/(1+ε̃/4)

≤ c ω1(R)Rn

[

−

∫

BR

|Dv|p2 dx+

(

−

∫

B2R

(|Du|p2(1+δ/4) + 1) dx

)
1

1+δ/4

+

(

−

∫

B2R

(|Dψ|p2(1+δ/4) + 1) dx

)
1

1+δ/4

]

≤ c ω1(R)Rn

∫

BR

(1 + |Du|p2) dx+ c ω1(R)Rn

(

−

∫

B2R

|Du|p2(1+δ/4) dx

)
1

1+δ/4

+c ω1(R)RλR(n−λ) δ/4
1+δ/4

≤ c(M)ω1(R)

∫

B4R

(1 + |Du|p2) dx+ c ω1(R)Rλ.

In the last step we used again the fact that R ≤ 1 and also an estimate analogue to the one of the

term I
(1)
2 ; that’s why the radius of the ball doubles once more. I

(3)
1 is estimated in an analogue

way to I
(1)
1 , additionally using (4.7) for passing over from the p2 energy of v to the energy of u.

Alltogether we end up with

I(3) ≤ c
(

ω1(R) log
(

1
R

))

[
∫

B4R

(1 + |Du|p2) dx+Rλ

]

.

Taking the estimates for I(1) to I(3) together, we end up with the desired comparison estimate (4.9).

CONCLUSION. Now we put together our reference estimate and the comparison estimate to deduce
a decay estimate for the p2 energy of u.
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By the technical Lemma 3.5 we now split as follows
∫

Bρ

|Du|p2 dx ≤

∫

Bρ

(µ2 + |Du|2)p2/2 dx

≤ c

∫

Bρ

(µ2 + |Dv|2)p2/2 dx

+ c

∫

Bρ

(µ2 + |Du2| + |Dv|2)
p2−2

2 |Du−Dv|2 dx

=: [A] + [B].

For [A] we use the reference estimate and estimate (4.7) to deduce (note that ρ ≤ 1)

[A] ≤ cρn +

∫

Bρ

|Dv|p2 dx

≤ c
[( ρ

R

)n

+ ε
]

∫

BR

(1 + |Dv|p2) dx+ cRλ

≤ c
[( ρ

R

)n

+ ε
]

∫

BR

(1 + |Du|p2) dx+ cRλ.

For the term [B] we use the comparison estimate (4.9)

(4.11) [B] ≤ c
(

ω1(R) log
(

1
R

))

[
∫

B4R

(1 + |Du|p2) dx+Rλ

]

.

Thus, alltogether we end up with

(4.12)

∫

Bρ

|Du|p2 dx ≤ c
[( ρ

R

)n

+ ε+ ω1(R) log
(

1
R

)

]

∫

B4R

(1 + |Du|p2) dx+ c̄Rλ,

where c ≡ c(n,L,M, γ1, γ2) and c̄ ≡ c̄(n,M,L, γ1, γ2, ε).

Step 3: Proof of the Theorem

Let BR0 be a ball whose radius is small enough to satisfy R0 ≤ RM . Then estimate (4.12) holds for
any radii 0 < ρ ≤ R ≤ R0. Let ε0 ≡ ε0(n,M,L, γ1, γ2, λ) be the quantity provided by Lemma 3.4.
We choose ε ≡ ε0/2. This fixes the dependencies of the constant in (4.12) c̄ ≡ c̄(n,L,M, γ1, γ2, λ).
Then by our assumption (2.7) we can find a radius R1 > 0 so small that ω1(R1) log(1/R1) < ε0/2
and therefore

ω1(R) log
(

1
R

)

+ ε < ε0,

for any 0 < R ≤ R1 and thus we have R1 ≡ R1(n, γ1, γ2, L,M, ω1, λ). Lemma 3.4 yields
∫

Bρ

|Du(x)|p2 dx ≤ cρλ,

with c ≡ c(n,M,L, γ1, γ2, λ), whenever 0 < ρ < R1. Since we have γ1 ≤ p2 ≤ γ2, we deduce by a
standard covering argument that

Du ∈ Lγ1,λ
loc (Ω),

and thus by Poincaré’s inequality we conclude u ∈ C0,α
loc (Ω) with α = 1 − n−λ

γ1
. �

5. Proof of Theorem 2.9

We start with a technical lemma which we will need later in the proof. The proof of a slightly
modified lemma can be found in [12].
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Proposition 5.1. Let g : R
n → R be a continuous function satisfying (H6) and (H7) with 1 <

γ1 ≤ p ≤ γ2 <∞. Let u ∈ K, BR ⋐ Ω and let v0 ∈W 1,p(Ω) be a minimizer of the functional

H(w,BR) :=

∫

BR

g(Dw(x)) dx + θ0

(
∫

BR

|Dw −Dv0|
p dx

)1/p

in the Dirichlet class
D := {w ∈ K : w = u on ∂BR},

where θ0 ≥ 0. Then, for all β > 0, for all A0 > 0 and for any ε > 0 we have
∫

Bρ

|Dv0(x)|
p dx ≤ c

[( ρ

R

)n

+ ε
]

∫

BR

(1 + |Dv0(x)|
p) dx+ c̄ Rλ

+ c θ0

(
∫

BR

|Du(x) −Dv0(x)|
p dx

)1/p

+ c θ
p

p−1

0

[

1

A0

]

pβ
p−1

+ c [A0]
pβ

∫

BR

(1 + |Du(x)|p) dx,

for any 0 < ρ < R/2, where the constants c depend only on L, γ1, γ2 while the constant c̄ depends
also on ε.

Let BR be a ball in O, where O has been defined in (4.2). We define v ∈ u + W 1,p2

0 (BR) as the
unique minimum in the class K of the following functional

(5.1) G0(v,BR) :=

∫

BR

f(x0, (u)R, Dv(x)) dx.

Since the functional G0 is frozen in the point (x0, (u)R), it satisfies the growth and ellipticity con-
ditions (H6) and (H7) with maximal exponent p = p2. From now on, since we are going to prove
local regularity results, we shall assume that, due to Theorem 2.8 in [12] , our minimizer v in K is
globally Hölder continuous, that is there exists 0 < γ < 1 and a constant [v]γ such that

(5.2) |v(x) − v(y)| ≤ [v]γ |x− y|γ

for all x, y ∈ Ω.

Remark 5.2. We use Theorem 2.8 in [12] with the choice p = p2; in this respect we have to make
sure that λ > n− p2, but this is satisfied as we are assuming that λ > n− γ1.

We start applying Lemma 3.1 in order to get a higher integrability exponent for the gradient Du,
δ > 0. Obviously, we can replace at will the exponent δ with smaller constants, so we choose

δ < min

{

γ

1 − γ
,
p2 + λ− n

n− λ

}

.

We moreover set

m̃ := min

{

λ− n+ p2

p2
, γ + γ δ − δ,

p2 + (1 + δ) (λ − n)

p2

}

and due to our assumptions it turns out that 0 < m̃ < 1. We will show that

(5.3) G0(u) − G0(v) ≤ c
(

ω1(R) log
(

1
R

)

+ ωσ
2 (Rm̃)

)

[
∫

B4R

(1 + |Du|p2) dx +Rλ

]

,

for some suitable σ > 0 we will specify later and with a constant c ≡ c(n, γ1, γ2,M,L, γ, λ). Note
here that M is the bound on the p(x) energy which has been introduced in (4.1).

Since u is a local minimizer in K of the functional (1.1), we obtain

G0(u) ≤ G0(v) +

∫

BR

[f(x0, (u)R, Du(x)) − f(x, u(x), Du(x))] dx
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+

∫

BR

[f(x, v(x), Dv(x)) − f(x0, (u)R, Dv(x))] dx

≤ G0(v) +

∫

BR

[f(x0, (u)R, Du(x)) − f(x, (u)R, Du(x))] dx

+

∫

BR

[f(x, (u)R, Du(x)) − f(x, (v)R, Du(x))] dx

+

∫

BR

[f(x, (v)R, Du(x)) − f(x, v(x), Du(x))] dx

+

∫

BR

[f(x, v(x), Du(x)) − f(x, u(x), Du(x)) dx

+

∫

BR

[f(x, v(x), Dv(x)) − f(x, (v)R, Dv(x))] dx

+

∫

BR

[f(x, (v)R, Dv(x)) − f(x, (u)R, Dv(x))] dx

+

∫

BR

[f(x, (u)R, Dv(x)) − f(x0, (u)R, Dv(x))] dx

≤ G0(v) + I(4) + I(5) + I(6) + I(7) + I(8) + I(9) + I(10),

with the obvious labelling. Note that we do not have a condition similar to (5.2) for the function u,
which forces us to split in a bit more complicated way.

At this point, the term I(4) can be estimated as I(1), giving

I(4) ≤ c
(

ω1(R) log
(

1
R

))

[
∫

B2R

(1 + |Du|p2) dx+Rλ

]

.

In a similar way, the term I(10) can be estimated as the term I(3), giving

I(10) ≤ c
(

ω1(R) log
(

1
R

))

[
∫

B4R

(1 + |Du|p2) dx+Rλ

]

.

The terms I(6) and I(8) can be estimated using (5.2) as follows

I(6) ≤ L

∫

BR

ω2(|v − (v)R|) (µ2 + |Du(x)|2)p(x)/2 dx

≤ c ω2(R
γ)

∫

BR

(1 + |Du(x)|p2 ) dx

and, using also (4.7)

I(8) ≤ L

∫

BR

ω2(|v − (v)R|) (µ2 + |Dv(x)|2)p(x)/2 dx

≤ c ω2(R
γ)

∫

BR

(1 + |Du(x)|p2) dx.

The main difficulty arises when we try to estimate the remaining terms. First of all, using Poincaré
inequality, the minimality in K of u and v respectively for the functionals (1.1) and (5.1) and also
the Caccioppoli inequality for v (which can be obtained working in a similar way as in Theorem 3.2.
in [12]), we obtain

−

∫

BR

|v(x) − u(x)| dx ≤ cR −

∫

BR

|Dv(x) −Du(x)| dx

≤ c

(

Rp2 −

∫

BR

|Dv(x) −Du(x)|p2 dx

)1/p2
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≤ c

(

Rp2 −

∫

BR

(1 + |Du|p2) dx

)1/p2

(4.6)

≤ cR+ cR

(

−

∫

B2R

|Du|p(x) dx

)(1+δ)/p2

+ cR
p2+λ−n

p2

(H1)

≤ cRm̃ + cR

[

−

∫

B2R

(1 + |Dv|p(x)) dx

]

(1+δ)
p2

≤ cRm̃ + cR

[

−

∫

B4R

(

1 +

∣

∣

∣

∣

v(x) − (v)4R

R

∣

∣

∣

∣

p2
)

dx+ cRλ−n

]

(1+δ)
p2

≤ cRm̃ + cR

[

−

∫

B4R

(

[v]p2
γ Rp2 γ

Rp2
+ 1

)

dx

]

(1+δ)
p2

≤ cRm̃,

and thus by the monotonicity of ω2

(5.4) ω2

(

−

∫

BR

|v(x) − u(x)| dx

)

≤ c ω2(R
m̃).

At this point we have

I(5) ≤ L

∫

BR

ω2

(

−

∫

BR

|u(x) − v(x)| dx

)

(

µ2 + |Du|2
)p(x)/2

dx

≤ c ω2(R
m̃)

∫

BR

(1 + |Du|p2) dx

and in a similar way, using (4.7)

I(9) ≤ L

∫

BR

ω2

(

−

∫

BR

|v(x) − u(x)| dx

)

(

µ2 + |Dv|2
)p(x)/2

dx

≤ c ω2(R
m̃)

∫

BR

(1 + |Du|p2) dx.

The term I(7) has to be treated in a slightly different way, i.e. we have

I(7) ≤ L

∫

BR

ω2(|v(x) − u(x)|) (µ2 + |Du(x)|2)p(x)/2 dx

≤ L

∫

BR

ω2(|v(x) − u(x)|) (µ2 + |Du(x)|2)p2/2 dx+ L

∫

BR

ω2(|v(x) − u(x)|) dx

≤ I
(7)
1 + I

(7)
2 .

Let us set r̃ = p2(1 + δ/4) and σ := r̃−p2

r̃ . Using the concavity of ω2 we deduce

I
(7)
1 ≤ c

[
∫

BR

(µ2 + |Du|2)r̃/2 dx

]p2/r̃ [∫

BR

ω
r̃

r̃−p2
2 (|v(x) − u(x)|) dx

]

r̃−p2
r̃

≤ cRn

[

−

∫

BR

ω2(|v(x) − u(x)|) dx

]

r̃−p2
r̃
(

−

∫

BR

(1 + |Du|p2(1+δ/4)) dx

)
1

1+δ/4

≤ cRn ωσ
2

(

−

∫

BR

(|v(x) − u(x)|) dx

) (

−

∫

BR

(1 + |Du|p(x)(1+δ/4+ω1(R))) dx

)
1

1+δ/4
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(5.4)

≤ c ωσ
2 (Rm̃)Rn





(

−

∫

B2R

|Du|p(x) dx

)

1+δ/4+ω1(R)

1+δ/4

+

(

−

∫

B2R

(|Dψ|p(x)(1+δ) + 1) dx

)
1

1+δ/4





≤ c ωσ
2 (Rm̃)Rn



R−n
ω1(R)

1+δ/4

(

−

∫

B2R

|Du|p(x) dx

) (
∫

B2R

|Du|p(x) dx

)

ω1(R)

1+δ/4

+R
λ−n

1+δ/4





≤ c(M)ωσ
2 (Rm̃)

[
∫

B2R

(1 + |Du|p2) dx+Rλ

]

.

On the other hand

I
(7)
2 ≤ cRn ω2

(

−

∫

BR

|v(x) − u(x)| dx

)

(5.4)

≤ c ω2(R
m̃)Rn.

Collecting the previous bounds and summing up we obtain

I(4) + . . . I(10) ≤ c
(

ω1(R) log
(

1
R

)

+ ωσ
2 (Rm̃)

)

[
∫

B4R

(1 + |Du|p2) dx+Rλ

]

,

with c ≡ c(n, γ1, γ2,M,L, γ, λ), which provides the desired estimate (5.3).

We set for simplicity

F (R) := ω1(R) log

(

1

R

)

+ ωσ
2 (Rm̃) .

The assumption (2.8) allows us to say that

lim
R→0

F (R) = 0 .

Now, by the minimality of v, we obtain

G0(u) ≤ inf
V

G0 +H(R) ,

where we set

H(R) := c F (R)

[
∫

B4R

(1 + |Du(x)|p2)dx +Rλ

]

and

V = {v ∈ u+W 1,1
0 (BR) : v ∈ K}.

Let V be equipped with the distance

(5.5) d(w1, w2) := H(R)
− 1

p2

(
∫

BR

|Dw1(x) −Dw2(x)|
p2dx

)1/p2

.

It is easy to see that the functional G0 is lower semicontinuous with respect to the topology induced
by the distance d. Then by [10], Theorem 1 (“Ekeland variational principle”) there exists v0 ∈ V
such that

(i)

∫

BR

|Du(x) −Dv0(x)|
p2 dx ≤ H(R),

(ii) G0(v0) ≤ G0(u),

(iii) v0 is a local minimizer in V of the functional

w 7→ H(w) := G0(w) + [H(R)]
p2−1

p2

(
∫

BR

|Dw −Dv0|
p2 dx

)1/p2

.
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Remark 5.3. We choose to apply the Ekeland variational principle with the distance (5.5) which
derives from a suitable weighted Lp2−norm instead of the corresponding L1−norm; the same trick
has been successfully applied in the paper [21]. The advantage of this choice is that we can directly
estimate the term

∫

BR

|Du(x) −Dv0(x)|
p2 dx

by means of (i) given by the Ekeland lemma without needing any further interpolation argument
(which has been instead employed for example in [5] or in [12]).

First of all, from the growth assumption (H6) with exponent p = p2 and from property (ii), as
u ∈ K, we have

(5.6) L−1

∫

BR

|Dv0(x)|
p2dx ≤ G0(v0) ≤ G0(u) ≤ L

∫

BR

(1 + |Du(x)|p2 ) dx,

Now, we apply Proposition 5.1 with the following choices: h(z) := f(x0, (u)R, z), p = p2, A0 =

F (R) and ϑ0 = [H(R)]
p2−1

p2 Then, by property (i) and using (5.6), we have for every β > 0
∫

Bρ

|Dv0(x)|
p2dx ≤ c

[( ρ

R

)n

+ ε
]

∫

BR

(1 + |Dv0(x)|
p2 ) dx+ c̄ Rλ

+c [H(R)]
p2−1

p2

(
∫

BR

|Du(x) −Dv0(x)|
p2 dx

)1/p2

+ cH(R)F (R)
p2 β
1−p2

+c [F (R)]p2β

∫

BR

(1 + |Du(x)|p2 )dx

≤ c
[( ρ

R

)n

+ ε
]

∫

BR

(1 + |Du(x)|p2) dx+ c̄ Rλ + cH(R)

+cH(R) [F (R)]
p2 β

1−p2 + c [F (R)]p2 β

∫

BR

(1 + |Du(x)|p2 ) dx,

for any 0 < ρ < R, where c ≡ c(n, γ1, γ2, L,M, λ, γ) and c̄ ≡ c̄(n, γ1, γ2, L,M, ε, λ, γ). Now we
choose β ≡ β(γ1, γ2) > 0 such that

β <
p2 − 1

p2
2

<
γ2 − 1

γ2
1

.

With this choice of β deduce

H(R)[F (R)]
p2β

1−p2 ≤ c F (R)p2β

[
∫

B4R

(1 + |Du(x)|p2 dx+Rλ

]

.

Therefore, combining the previous facts, we easily get
∫

Bρ

|Dv0(x)|
p2dx ≤ c

[( ρ

R

)n

+ ε
]

∫

BR

(1 + |Du(x)|p2) dx(5.7)

+c [F (R)]p2β

∫

B4R

(1 + |Du(x)|p2 )dx+ c̄ Rλ.

Using once more (i), we end up with
∫

Bρ

|Du(x)|p2dx ≤ c

∫

Bρ

|Dv0(x)|
p2dx + c

∫

Bρ

|Du(x) −Dv0(x)|
p2dx

≤ c
[( ρ

R

)n

+ [F (R)]p2β + ε
]

∫

B4R

(1 + |Du(x)|p2) dx + c̄ Rλ,(5.8)

for any 0 < ρ < R, where c ≡ c(n, γ1, γ2, L,M, λ, γ) and c̄ ≡ c̄(n, γ1, γ2, L,M, ε, λ, γ).
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Let BR0 be a ball such that BR0 ⊂ O. Then estimate (5.8) holds for any radii 0 < ρ ≤ R ≤ R0. Let
ε0 ≡ ε0(n,M,L, γ1, γ2, λ, γ) be the quantity provided by Lemma 3.4. We choose ε = ε0/2 and this
fixes the dependencies in (5.8) of the constant c̄ ≡ c̄(n, γ1, γ2, L,M, λ, γ). Then by our assumption
(2.8) we can find a radius R1 > 0 so small that [F (R)]p2 β < ε0/2 and therefore [F (R)]p2 β + ε < ε0
for any 0 < R ≤ R1 and thus we have R1 ≡ R1(n, γ1, γ2, L,M, ω1, ω2, λ, γ). Now Lemma 3.4 yields

∫

Bρ

|Du(x)|p2 dx ≤ c ρλ,

with c ≡ c(n,M,L, γ1, γ2, λ, γ), whenever 0 < ρ < R1. Since we have γ1 ≤ p2 ≤ γ2, we deduce by
standard covering argument that

Du ∈ Lγ1,λ
loc (Ω),

and thus by Poincaré’s inequality we conclude that u ∈ C0,α
loc (Ω) with α = 1− n−λ

γ1
. This finishes the

proof. �

6. Proof of Theorem 2.10

Le O be defined as in (4.2), BR be a ball in O and let u be a local minimizer of the functional (1.1)
in K. As in the proof of Theorem 2.8, we define

(6.1) G0(v,BR) :=

∫

BR

f(x0, (u)R, Dv(x)) dx =:

∫

BR

ḡ(Dv(x)) dx,

and let v ∈ u+W 1,p2

0 (BR) be the unique solution of the problem

(6.2) min
{

G0(w,BR) : w ∈ K ∩ u+W 1,p2

0 (BR)
}

.

We set A(η) := Dḡ(η). As f ∈ C2, then ḡ ∈ C2 and it satisfies the conditions (H6), (H7) and
(3.9) with exponent p = p2 while the linear and continuous operator A fulfills (3.7) and (3.8) with

exponent p = p2. We also introduce w ∈ v+W 1,p2

0 (BR) to be the solution of the following equation:

(6.3)

∫

BR

〈A(Dw(x)), Dϕ(x)〉 dx =

∫

BR

〈A(Dψ(x)), Dϕ(x)〉 dx ∀ϕ ∈ W 1,p2

0 (BR).

Then, by the maximum principle, we get that w ≥ ψ in BR, since v ≥ ψ on ∂BR. We also have

(6.4)

∫

BR

〈A(Dv(x)), Dv(x) −Dw(x)〉 dx ≤ 0,

since v − w ∈ W 1,p2

0 (BR) and w ≥ v in BR.

At this point let z be the solution of the following minimum problem

(6.5) min
{

G0(z,BR) : z ∈ u+W 1,p2

0 (BR)
}

,

where G0 has been introduced in (6.1). It is clear that z satisfies
∫

BR

〈A(Dz(x)), Dϕ(x)〉 dx = 0 ∀ϕ ∈ W 1,p2

0 (BR);

moreover z = w on ∂BR, so for example

(6.6)

∫

BR

〈A(Dz(x)), Dw(x) −Dz(x)〉 dx = 0.

We prove Theorem 2.10 by comparison to the minimizer z of the frozen problem in the whole class u+
W 1,p2

0 (BR) which can be shown to fulfill a nice estimate. Additionally we need a suitable comparison
estimate between z and the original minimizer u which is established via some comparison steps
between. First we start with a reference estimate for z, then we compare z and w, after that w and
v. Finally we compare v and u. Note that all comparisons between the functions v, w and z can
be cited from [12], since these functions are solutions or minimizers, respectively, of suitable frozen
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problems with constant exponent p2. Therefore we shorten these steps, only citing the results and
the structure conditions needed, referring the reader to [12] for a more detailed discussion.

Using the estimates (2.4) and (2.5) in [23] we deduce the reference estimate

(6.7) −

∫

Bρ

|Dz(x) − (Dz)ρ|
p2 dx ≤ c

( ρ

R

)β p2

−

∫

BR

(1 + |Dz(x)|p2 ) dx,

where c > 0, 0 < β < 1 and both c and β depend only on γ1, γ2, L.

Using the fact that by Theorem 2.6 we have

Dψ ∈ Lγ1,λ(Ω) ⇒ Dψ ∈ C0,α(Ω̄)

where α = λ−n
γ1

, we obtain for any p2 > 1

(6.8) |A(Dψ(x)) −A(Dψ(y))| ≤ c |x− y|α(p2−1).

This allows us to deduce

(6.9)

∫

BR

|Dw(x) −Dz(x)|p2 dx ≤ c(L)R
α(p2−1)

2

∫

BR

(1 + |Dw(x)|p2 ) dx.

On the other hand by the minimality of z we immediately deduce

(6.10)

∫

BR

|Dz(x)|p2 dx ≤ c(L)

∫

BR

(1 + |Dw(x)|p2 ) dx.

Moreover, using (3.7), (3.8) and (6.3), we deduce the following estimate

(6.11)

∫

BR

|Dw(x)|p2 dx ≤ c

∫

BR

(|Dv(x)|p2 + 1) dx,

with c ≡ c(L, γ1, γ2, α).

This, together with (6.10) and the minimality of v in K, yields

(6.12)

∫

BR

|Dz(x)|p2 dx ≤ c

∫

BR

(1 + |Du(x)|p2 ) dx,

with c ≡ c(L, γ1, γ2, α).

The comparison between v and w can be established in an analogue way, obtaining

(6.13)

∫

BR

|Dv(x) −Dw(x)|p2 dx ≤ cR
α(p2−1)

2

∫

BR

(|Dv(x)|p2 + 1) dx.

Now we compare u and v. First of all we show that under the new assumption (2.9) on the obstacle
function we get

(6.14)

∫

BR

|Dψ(x)|p2 dx ≤ cRn.

In fact, using (6.8), which holds for all p2 ≥ 1, and (3.7), we have
∫

BR

|Dψ(x)|p2 dx ≤
1

ν1

∫

BR

〈A(Dψ(x)), Dψ(x)〉 dx + cRn

≤
1

ν1

∫

BR

〈A(Dψ(x)) − (A(Dψ))R, Dψ(x)〉 dx + cRn

≤
Rα(p2−1)

ν1

∫

BR

(|Dψ(x)|p2 + 1) dx+ cRn

≤
1

2

∫

BR

(|Dψ(x)|p2 + 1) dx+ cRn,
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where we also used the fact that Rα (p2−1)

ν1
≤ 1

2 , assumption which is not restrictive as we are proving
local regularity results.

Going through the proof of Lemma 3.1 and using estimate (6.14) one can easily see that we have
higher integrability for u in the following sense

(6.15)

(

−

∫

BR/2

|Du(x)|
p(x)(1+δ)

dx

)1/(1+δ)

≤ c0 −

∫

BR

(|Du(x)|
p(x)

+ 1) dx.

A similar argument together with Proposition 3.3 allows us to conclude

(6.16)

(

−

∫

BR/2

|Dv(x)|r̄ dx

)1/r̄

≤ c

(

−

∫

BR/2

|Dv(x)|p dx

)1/p

+ c

[

−

∫

BR

(1 + |Du(x)|q̄) dx

]1/q̄

.

At this point it is clear that, working as in the proof of Theorem 2.9 but using this time (6.15) and
(6.16) instead of (3.1) and (3.10) respectively, we obtain

G0(u) − G0(v) ≤ c (ω1(R) log
(

1
R

)

+ ωσ
2 (Rm̃))

[
∫

B4R

(|Du(x)|p2 + 1) dx+Rn

]

which in turn entails, using assumption (2.10) and recalling the definition of m̃ and σ given in
Section 5

G0(u) − G0(v) ≤ cRζ

[
∫

B4R

(|Du(x)|p2 + 1) dx

]

where ζ ≡ ζ(n, γ1, γ2, δ, γ, λ, ς). Arguing in a standard way, as we did in (4.10), and distinguishing
the cases p2 ≥ 2 and 1 < p2 < 2, we end up with

(6.17)

∫

BR

|Du(x) −Dv(x)|p2 dx ≤ cRζ/2

[
∫

B4R

(|Du(x)|p2 + 1) dx

]

.

Thus summing up, taking together the estimates (6.9), (6.11), (6.13) and (6.17), additionally setting

M := min

{

α(p2 − 1)

2
,
ζ

2

}

we conclude, using the minimality of v in K
∫

BR

|Dz(x) −Du(x)|p2 dx

≤

∫

BR

|Dz(x) −Dw(x)|p2 dx+

∫

BR

|Dw(x) −Dv(x)|p2 dx+

∫

BR

|Dv(x) −Du(x)|p2 dx

≤ cRM

∫

B4R

(1 + |Du(x)|p2 ) dx.(6.18)

Combining this comparison estimate with the reference estimate (6.7) and using (6.12) we deduce
for any 0 < ρ < R/2

∫

Bρ

|Du(x) − (Du)ρ|
p2 dx

≤

∫

Bρ

|Dz(x) − (Dz)ρ|
p2 dx+

∫

Bρ

|Dz(x) −Du(x)|p2 dx

≤ c
( ρ

R

)βp2+n
∫

BR

(1 + |Dz(x)|p2 ) dx+ cRM

∫

B4R

(1 + |Du(x)|p2 ) dx

≤ c

[

( ρ

R

)β p2+n

+ RM

]
∫

B4R

(|Du(x)|p2 + 1) dx.
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On the other hand, using Theorem 2.2 of [13], (6.18) and (6.12), we get
∫

Bρ

|Du(x)|p2 dx ≤

∫

Bρ

|Dz(x)|p2 dx+

∫

BR

|Dz(x) −Du(x)|p2 dx

≤ c
( ρ

R

)n
∫

BR

(1 + |Dz(x)|p2) dx+ cRM

∫

B4R

(|Du(x)|p2 + 1) dx

≤ c
[( ρ

R

)n

+RM
]

∫

B4R

|Du(x)|p2 dx + cRn.

Now, by a standard iteration lemma, we are able to deduce the existence of a radius R0 such that
for all R ≤ R0

∫

BR

|Du(x)|p2 dx ≤ cRn−τ

for all 0 < τ < 1. For our purposes, we can choose any τ <
p2βM

n+ p2β
, for example τ :=

1

2

p2Mβ

n+ p2β
.

At this point we choose ρ such that ρ =
1

2
R1+θ where θ :=

M

n+ β p2
. With such a choice of ρ, θ

and τ, we have that

(6.19)

∫

Bρ

|Du(x) − (Du)ρ|
p2 dx ≤ c(L, γ1, γ2, α) ρλ̃

where

λ̃ := n+
p2 βM

2(n+ p2 β + M)
.

But the choice of R was arbitrary, so without loss of generality we may assume that (6.19) holds
for all 0 < ρ ≤ R0. Now we would like to conclude by Theorem 2.6; thus we have to make sure that
λ̃ < n+ γ1. If β < (2γ1)/γ2, this is true, otherwise we can choose M sufficiently small (this is not

restrictive). Thus Theorem 2.6 gives that Du ∈ C0,α̃
loc (Ω) with α̃ = 1−

n− λ̃

γ1
. This yields the thesis.

�
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[5] G. Cupini, N. Fusco, R. Petti: Hölder continuity of local minimizers, J. Math. Anal. Appl., 235 (1999),
578-597.
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