

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

FROM EARLY REQUIREMENTS TO BUSINESS PROCESSES
WITH SERVICE LEVEL AGREEMENTS

Ganna Frankova, Artsiom Yautsiukhin and Magali Seguran

June 2007

Technical Report # DIT-07-037

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints Research

https://core.ac.uk/display/11829598?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

.

From Early Requirements to Business Processes
with Service Level Agreements ?

Ganna Frankova,1 Artsiom Yautsiukhin,1 and Magali Seguran2

1 Dept. of Information and Communication Technology
University of Trento
Via Sommarive, 14
38050 Povo (TN)

Italy
email: {ganna.frankova,evtiukhi}@unitn.it

2 SAP Labs France
SAP Research - Security and Trust
805, avenue du Dr.Maurice Donat

06254 Mougins Cedex
France

email: magali.seguran@sap.com

Abstract. When designing a service-based business process employing
loosely-coupled services, one is not only interested in guaranteeing a cer-
tain flow of work, but also in how the work will be performed. This
involves the consideration of non-functional properties which go from
execution time, costs, up to security and trust. Ideally, a designer would
like to have guarantees over the behavior of the services involved in the
process. These guarantees are the object of Service Level Agreements.
We propose a methodology to design service-based business processes
together with service level agreements that guarantee a certain quality
of execution, with particular emphasis on the security aspects. Starting
from an early requirements analysis modeled in the SI* formalism, we
provide a set of user-guided transformations and reasoning tools which
final output is a set of processes, in the form of Secure BPELs, together
with a set of service level agreements to be signed by participating ser-
vices. To show the potential impact on security guarantees, we illustrate
the functioning of the methodology on a e-business banking example
inspired by an actual industrial case.

1 Introduction

Web services features of autonomy, platform-independence, readiness to be de-
scribed, published, discovered, and orchestrated are increasingly exploited by
companies to build massively distributed and loosely coupled interoperable ap-
plications [27]. Enterprises not only export their services as web services, but
also develop their business process to be web service-based. Since services may

? This work has been partly supported by the IST-FP6-IP-SERENITY project

be offered by different providers, non-functional properties become of paramount
importance in defining the usability and success both of a service and of web
service-based business process.

The non-functional properties of a service can be agreed a priori between
the web service provider and consumer by specifying a Service Level Agree-
ment (SLA) [25, 13, 22]. SLA for web services is a binding contract between the
web service provider and consumer which specifies a collection of service level
requirements that are negotiated and mutually agree upon [5]. In [2] we provide
semantics of a SLA for web services considering each SLA term as containing a
guarantee, i.e, a right or obligation of the signing parties. The objects of a SLA
can take many forms: it can be a maximum response time, a cost per operation,
or it can take more complex form such as “the service should execute in less
than 5 seconds 99% of the times from 9am to 5pm”. In this work we concentrate
on the first case.

If on the one hand, experts from the industry state that enterprise business
objectives should form the fundamental basis of the SLA [1]. On the other hand,
developing an appropriate SLA that supports business goals of an enterprise is
not trivial task and requires great deal of design by an expert human operator.

The present work fills the gap among the requirements engineering method-
ologies and the actual generation of business processes based on Service-Oriented
Architectures. We propose the BP&SLA methodology for deriving service-based
business processes with service level agreements from the informally specified
early business requirements. The derived service-based business processes to-
gether with service level agreements are executable. The hierarchy of business
processes is expressed by WS-BPEL and the related SLAs are specified by WS-
Agreement. As the proposed methodology focuses on security and trust aspects,
secure features business processes are implemented in Secure BPEL [9], a spec-
ification language for secure business processes.

The remainder of the paper is organized as follows. In Section 2, we introduce
e-business banking case study that is used as a running example throughout the
paper. Section 3 is devoted to the proposed BP&SLA methodology. Related work
is discussed in Section 4. Concluding remarks are summarized in Section 5.

2 Running Example: e-Business

In any e-business scenario the quality of the execution of a process is crucial,
in particular, in the context of e-banking the security aspects are of paramount
importance. Let us consider the case of a typical loan origination process. The
scenario is provided by the courtesy of SAP 3 and is a working scenario of the
IST-FP6-IP-SERENITY project 4.
3 http://www.sap.com.
4 SERENITY (System Engineering for Security and Dependability) is a R&D project

funded by the European Union. SERENITY aims at providing security and depend-
ability in Ambient Intelligence systems. For more information refer to the Serenity
project website http://www.serenity-project.org.

The scenario presents the case of a customer who needs a loan in order
to buy a house. The selected bank employs several business processes that
have a hierarchical nature which contribute to achieving the goal of the Loan
origination super-business process. All the processes are provided by different
actors inside or outside the bank and the business processes are launching of
the loan origination process, reception of the customer, management
of the loan origination process, external credit worthiness check,
and internal credit worthiness check.

The bank is responsible for launching the loan origination process but gives
the responsibility of it to the bank manager. The loan origination process is
decomposed in two processes. The reception of the customer that consists in
checking his identity with the internal computer system and the management of
the loan origination process. The bank manager gives the responsibility to the
post-processing clerk on the management of the loan origination process.
The management of the loan origination process is decomposed in two sub-
processes check internal rating and check external rating.

When the identity is checked, a post-processing clerk sends requests to the
Credit Bureau who is in charge of providing the business process of credit
worthiness check. The credit worthiness of the customer is checked querying some
Credit Bureaus. As several Credit Bureaus can be contacted, one might be more
trusted than the others. For example, some agencies might be less trustworthy
than other ones. Indeed, the three major credit bureaus in the United States
feed information to hundreds of credit sub-stations across the United States5.
The problem is that unless the substations update their information daily the
information they retain is not always up to date. The post-processing clerk uses
the results of calculation of internal rating obtained thanks to credit scoring
methods and analyses the rating. If the internal rating process assigns a low
risk level for the customer’s application, the loan origination process moves to
a next phase, i.e, price calculation process and negotiation and signature of the
contract (see [9] for more detailed description of the loan origination process
scenario).

From the business point of view, the process is quite common, its formal
modeling and creating tools for its management in a robust and secure manner
is a challenge. Next we consider a methodology to go from early requirements all
the way to executable business processes with fixed quality of services regarding
security.

3 The BP&SLA Methodology

Judging what is the appropriate service level agreement to sign after having
defined the business objectives is far from being a straightforward task. With
the Business Processes with Service Level Agreements (BP&SLA) methodology,
we provide means to go from a high-level analysis of the business requirements

5 http://www.creditclean.com/creditbureaus.htm

all the way to the definition of the processes to be executed and the service
level agreements to be signed in order to guarantee certain quality of service.
The methodology consists of four main phases which are, referring to Figure 1,
(1) early requirements engineering, (2) business process hypergraph derivation,
(3) hierarchy of business processes derivation, and (4) constraint reasoning for
service level agreements derivation.

Fig. 1. The BP&SLA Methodology.

During the first phase the end user or domain expert provides informal re-
quirements that form the seed for developing formal processes. These early re-
quirements are formalized following the Secure Tropos methodology, an exten-
sion of the well established Tropos software engineering methodology [4, 6]. The
output of this phase is an early requirement model. The model is far from be-
ing an executable entity, but rather it is a conceptual description of the actors
involved in the business, their goals and their trust and security relations. To
transform the model into something executable, in the second and third phase,
one navigates automatically the model and asks user intervention every time
that an unambiguous choice is necessary. The results of the refinement of the
early requirements are an intermediate model necessary to perform the reason-
ing on qualities of services, the business process hypergraph, and a hierarchy of
business process ready for execution, phases 2 and 3, respectively. The business
process hypergraph is then further analysed to build a constraint problem which
represents the relationships among the various elements of the processes regard-
ing quality of service and security properties of the processes. By reasoning with
these constraints it is possible to derive the appropriate service level agreements
to be signed in order to guarantee a certain quality of service when executing the
process, phase 4. The final output of the methodology is a hierarchy of business
processes ready for execution together with service level agreements fulfilling a
specific quality of service need. Let us consider next each of these phases indi-
vidually. We do not only present the phases of the methodology, but also look

at how the application of the proposed methodology leads to a set of executable
business processes and service level agreements. We consider the loan origination
process scenario presented in the Section 2 as a running example.

Phase 1. Early Requirements Engineering

Early requirements engineering aims at analysing the organizational context
within which a system will eventually operate [33]. During an early requirements
analysis the domain actors and their dependencies on other actors for goals
to be fulfilled are identified. For early requirements model elicitation in the
context of security, one needs to reason about trust relationships and delegation
of authority.

We employ the SI*/Secure Tropos modelling framework [15, 23] to derive
and analyse both functional dependencies and security and trust requirements.
For the acquisition of the early requirements model we employ several modelling
activities. Actor modelling to identify the principal stakeholders (actors) and
their objectives (goals). Each goal might be refined by AND/OR goal decompo-
sition that AND/OR decomposes a root goal onto sub-goals. It might happen
that an actor does not have the capabilities to achieve his own objectives by
himself. In this case that actor has to delegate the objectives to other actors
that leads to their achievement outside the control of the delegator. SI*/Secure
Tropos supports two types of delegations. Delegation of execution, i.e, at-least
delegation, means that one actor delegates to another one the responsibility to
execute a service. Delegation of permission, i.e, at-most delegation, models the
transfer of entitlements from an actor to another. We use functional dependency
modelling to identify actors depending on other actors for obtaining services,
and actors which are able to provide services. Permission delegation modelling
is used to identifying actors delegating to other actors the permission on services.
SI*/Secure Tropos supports two types of trust dependencies. Trust of execution,
i.e, at-least trust, means that a one actor trusts that another one will at least
fulfill a service. While the meaning of trust of permission, i.e, at-most trust, is
that an actor trusts that another actor will at most fulfill a service, but will not
overstep it. Trust modelling aims at identifying actors trusting other actors for
services, and actors which own services.

The early requirement model for the loan origination process case study
described in Section 2 is depicted in Figure 2.

The early requirement model presents the principal entities involved, (1) ac-
tors depicted as circles and (2) interests, i.e., goals, presented as ovals. The Bank
actor has the goal to launch loan origination process. The goal is delegated
to the Bank manager actor. The delegation of execution is depicted with two lines
connected by a delegation of execution (De) graphical symbol. The Bank actor
trust the Bank manager actor on execution of the goal. The trust on execution is
depicted with two lines connected by a trust on execution (Te) graphical symbol.
In order to fulfill the goal the Bank manager actor refine it by an AND decom-
position, depicted with a goal refinement symbol marked with AND, into goals
to receive a customer and to manage loan origination. The Bank manager

Fig. 2. The Early Requirement Model.

actor delegates the last goal to the Post-processing clerk actor. Here not only
at-least delegation of execution, but also at-most delegation of permission is used.
The delegation of permission is depicted with two lines connected by a delega-
tion of permission (Dp) graphical symbol. The Post-processing clerk actor
refines the manage loan origination goal into the internal rating check
and external rating check goals. The goal is refined by an OR decomposi-
tion, depicted with a goal refinement symbol marked with OR. The external
rating check goal is delegated to the Credit Bureau 1 and Credit Bureau
2 actors. While the Post-processing clerk trusts both on delegation and on
permission to the Credit Bureau 2 actor on processing of external credit check,
there is no trust relation between the actor and the Credit Bureau 1 actor. The
trust on permission is depicted with two lines connected by a trust on permission
(Tp) graphical symbol.

Phase 2. Business Process Hypergraph Derivation

The second phase of the BP&SLA methodology is devoted to creating an in-
termediate structure to reason about the business processes and their qualities.
This intermediate structure is an hypergraph, which we define as follows.

Definition 1 A business process hypergraph B is a pair 〈B, H〉 where B
is a set of business processes and H is a set of hyperarcs. A hyperarc is an
ordered pair 〈N, t〉 from an arbitrary nonempty set N ⊆ B (source set) to a

single node t ∈ N (target node). Each hyperarc is associated with a vector
of functions ϕ = [ϕ1〈N, t〉, ..., ϕn〈N, t〉] which calculate value of a target node
taking as arguments source nodes.

The business process hypergraph is obtained by navigating the early require-
ment model and refining it eventually resorting to user interaction. This is per-
formed algorithmically according to the procedure presented in Figure 3.

The algorithm takes the early requirements model, the actor with its goal
and the vector of QoS parameters as an input. Each node of the business process
hypergraph is a business process that corresponds to a goal in the early require-
ments model. As we consider the goals to be operational. Each hyperarc in the
business process hyperarc corresponds to the goal refinement (a hyperarch is
drawn as a solid line) or delegation dependency (a hyperarch is drawn by a
dashed line) in the early requirements model.

In the business process hypergraph construction algorithm, we use the
addHyperArc (sourceNode, targetNode) function to add one hyperarc in the
business process hypergraph from a single source node to the target node. While
the addHyperArcForAll (sourceSetOfNodes,targetNode,aggregationFunction)
function adds one hyperarc in the business process hypergraph from a source set
of nodes, i.e., nodei[...] to the target node. Where aggregationFunction
is a vector of aggregation functions ϕ = [ϕ1〈N, t〉, ..., ϕn〈N, t〉] assigned to the
business process hyperarc. The aggregation functions design takes into account
the structural activity associated to the corresponding business processes, i.e,
the source set of nodes, and the QoS parameter. Each aggregation function cal-
culates the value of a target node taking as arguments source nodes (with the
structural activity associated) for a particular QoS parameter.

The concept of AND goal decomposition from the early requirements model
is refined as sequential or parallel business process composition in the busi-
ness process hypergraph. Sequential business process composition corresponds
to the sequence flow structural activity and the aggregation function for se-
quential aggregation of QoS parameters is applied. The parallel flow structural
activity is used in case of parallel business process composition and the ag-
gregation function for parallel aggregation of QoS parameters is applied. The
concept of OR goal decomposition in the early requirements model is refined as
branching statement in the business process hypergraph. If the structural activ-
ity is non-deterministic choice, the aggregation function for choice aggregation
of QoS parameters is applied. In case of the design choice structural activity,
the nodes corresponding to the business processes are connected by different
hyperarc with the target node. The design choice structural activity appears in
case of presence of different alternatives for the same business process, e.g., the
same business process might be delegated to different partners that have differ-
ent service level agreement offers. The refinement of the concept of AND/OR
goal decomposition from the early requirements model can not be completely
automated, but only supported as it happens in model-driven architectures. For
instance, in case of AND goal decomposition, the system can provide assistance
in refining the decomposition into sequence flow or parallel flow structural ac-

BPHC (SI*, actor, goal, QoS)
begin

if goal is not a leaf goal
currentNode = node (goal)
for each children in AND

nodei = BPHC (SI*, actor, childGoal, QoS)
interactWithUser (sequence | parallel)
if sequence

addHyperArcForAll (nodei[...], currentNode, sequence)
if parallel

addHyperArcForAll (nodei[...], currentNode, flow)
end for
for each children in OR

interactWithUser (non deterministic choice | design choice)
if non deterministic choice

nodei = BPHC (SI*, actor, childGoal, QoS)
addHyperArcForAll (nodei[...], currentNode, switch)

end if
if design choice

nodei = BPHC (SI*, actor, childGoal, QoS)
addHyperArc (nodei, currentNode)

end if
end for
for each delegated child

nodei = BPHC (SI*, actor, childGoal, QoS)
addHyperArc (nodei, currentNode)

end for
if trust dependency

trustLevel(currentNode) = 1
for each children

trustLevel(childNode) = 1
else

trustLevel(currentNode) = 0
for each children

trustLevel(childNode) = 0
return currentNode
end if
if goal is a leaf goal

return node (goal)
end if

end

Fig. 3. Business Process Hypergraph Construction.

tivity. OR goal decomposition might be refined into non-deterministic or design
choice structural activity. While determining the proper structural activity is
the domain dependence task that involves the user interactions. In the busi-
ness process hypergraph construction algorithm we use the interactWithUser
(option1 | option2 ... | optionk) function to support the interaction with
the users with the aim to decide which structural activity to apply to for a par-
ticular goal decomposition. The users determine the proper structural activity
based on the proposed options where the only one option has to be selected.

Each node in the business process hypergraph is assigned with a vector of
QoS parameters and a trust level value (TL). The values of the QoS parameters
correspond to the QoS that can be achieved by the business process. The trust
level value denotes the level of trust between the truster and the trustee on the
fulfilling of the business process (here we employ only at-least trust). In [10], we
propose a methodology that identifies the concrete business process providing the
highest quality of service and protection among all possible design alternatives.
The idea is to take into account the level of trust of service providers and adjusts
the expected quality value correspondingly. In spite of the fact that the approach
to use the notion of trust as weighting factor is promising, the author do not
clarify how the trust values are decided. Instead in our approach the trust level
is determined from the reasoning on the presence/absence of trust dependencies
in the early requirements model. Further, the determined trust level of service
providers might be employed when there is a possibility to choose one business
process from the several alternatives suggested by different providers.

The problem of finding service level agreements for business processes is then
a problem of reasoning on the business process hypergraph.

The hypergraph corresponding to the case depicted in Figure 2 is shown in
Figure 4. Each goal of the early requirement model is associated with a node of
the hypergraph. Each node of the hypergraph is a business process.

The nodes Receive Customer and Manage Loan Origination are connected
by one hyperarc with the top node Launch Loan Origination Process, that
means that the business processes Receive Customer and Manage Loan Origination
contribute to satisfaction of the global goal Launch Loan Origination Process.
The dashed hyperarc leads from the delegated (here we employ only at-least
delegation) business process Manage Loan Origination to the target one. The
nodes in the business process hypergraph are assigned with vectors of QoS pa-
rameters and trust level values. The trust level is determined from the rea-
soning on the presence/absence of at-least trust dependencies in the early re-
quirement model presented in Figure 2. A vector of aggregation functions ϕ =
[ϕ1〈N, t〉, ..., ϕn〈N, t〉] is assigned to the hyperarc. The aggregation function
takes into account the structural activity associated to the Receive Customer
and Manage Loan Origination business processes and the QoS parameter. The
notion of sequential and parallel composition corresponds to a refinement of the
concept of AND goal decomposition. If the structural activity is sequence flow,
the aggregation function for sequential aggregation of QoS parameters is applied.

Fig. 4. Business Process Hypergraph.

If the structural activity is parallel flow, the aggregation function for parallel ag-
gregation of QoS parameters is used.

The nodes Internal Rating Check and External rating Check are con-
nected by one hyperarc with the target node Manage Loan Origination. The
business process External Rating Check is delegated and is expressed by the
dashed hyperarc. A vector of aggregation functions ϕ is assigned to the hyperarc.
The aggregation function takes into account the structural activity associated to
the Internal Rating Check and External Rating Check business processes
and the QoS parameter. Branching statement is a refinement of the concept of
OR goal decomposition. If the structural activity is non-deterministic choice,
the aggregation function for choice aggregation of QoS parameters is applied. If
the structural activity is design choice, the nodes Internal Rating Check and
External rating Check are connected by different hyperarc with the target
node Manage Loan Origination.

The nodes External Rating Check (1) and External rating Check (2)
are connected by two hyperarc with the target node External Rating Check.
Both the business process External Rating Check (1) and External rating
Check (2) are delegated that is expressed by the dashed hyperarcs.

Phase 3. Hierarchy of Business Processes Derivation

The third phase of the BP&SLA methodology is dedicated to hierarchy of busi-
ness processes construction. We build the hierarchy of business processes with
the aim to use it for obtaining a set of executable business processes. These

are created following the Secure BPEL specifications [9]. Where each delegated
business process is labeled with a service level agreement derived in the phase 4.

The hierarchy of business processes, as well as the business process hyper-
graph, is derived by refining the early requirements model. As we build the
hierarchy to obtain executable business processes with service level agreements,
we must clearly determine (i) the business processes, (ii) which partner proceeds
which business process, and (iii) delegation and trust dependencies among the
involved partners.

The hierarchy of business processes construction algorithm is presented in
Figure 5.

The algorithm takes the early requirements model and the actor with its
goal as an input. As for the business process hypergraph construction, we con-
sider the level of goals in the early requirements model to be the level of business
processes in the hierarchy of business processes. Further, the business process(es)
proceeded by one actor are grouped and marked with the actor that proceeds
them. In the hierarchy of business processes construction algorithm we use
the addActorLabelToNode (node) function to mark a business processes with
the actor that proceeds it. When several business processes are proceed by one
actor, we consider that there is some relation among them. The addRelation
(nodes, relationType) function of the algorithm adds a link that describes
relation among business processes in the hierarchy of business processes where
relationType is {sequence, parallel, switch, OR}. As in the case of business
process hypergraphs, determining the proper type of relation, that depends on
the structural activity, is the domain dependence task that involves the user
interactions.

The notions of delegation the SI*/Secure Tropos methodology supports al-
lows us not only to present the delegation dependencies among partners in the
hierarchical structure of business processes, but also to label with service level
agreements only the business processes that are delegated. In this work, we adopt
only the delegation of execution dependencies, but not the delegation of permis-
sion ones. We consider the fact that one needs to sign a service level agreement
with the partner only in case of transfer of responsibilities to the partner, i.e., the
business process is delegated to the partner and the partner processes it. While
if there is only a fact of transfer of entitlements, i.e., the business process is del-
egated to the partner and the partner has permissions to processes the business
process, but do not actually does it, there are no reasons for a service level agree-
ment signing. Furthermore, we employ the notion of trust dependency to show
the trust relations between the actors in the hierarchical structure of business
processes. The addDelegationArc (currentNode, childActor) function adds
a link (drawn by dashed line) that describes the delegation dependency in the
hierarchy of business processes. While the addTrustArc (actor, childActor)
function adds a link (drawn by solid line) that describes the trust dependency
in the hierarchy of business processes.

The specification language for secure business processes Secure BPEL [9] is
a dialect of WS-BPEL for the functional parts and abstracts away low level

HBP (SI*, actor, goal)
begin

if goal is not a leaf goal
currentNode = node (goal)
for each children in AND

nodei = BPHC (SI*, actor, childGoal)
interactWithUser (sequence | parallel)
if sequence

addRelation (nodei[...], sequence)
if parallel

addRelation (nodei[...], flow)
end for
for each children in OR

interactWithUser (non deterministic choice | design choice)
if non deterministic choice

nodei = BPHC (SI*, actor, childGoal)
addRelation (nodei[...], switch)

end if
if design choice

nodei = BPHC (SI*, actor, childGoal)
addRelation (nodei[...], OR)

end if
end for
for each delegated goal

nodei = BPHC (SI*, actor, childGoal)
addDelegationArc (currentNode, childActor)
addActorLabelToNode (nodei)
addActorLabelToNode (currentNode)

end for
for each trusted goal

nodei = BPHC (SI*, actor, childGoal)
addTrustArc (actor, childActor)
addActorLabelToNode (nodei)
addActorLabelToNode (currentNode)

end for
return currentNode
end if
if goal is a leaf goal

return node (goal)
end if

end

Fig. 5. Hierarchy of Business Processes Construction.

implementation details from WS-Security and WS-Federation specifications. Se-
cure BPEL allows us to describe delegation (both delegation of execution and
delegation of permission) and trust (both trust on execution and trust on per-
mission) relations among all the partners that execute sub-business processes in
the context on the global business process.

The hierarchy of business processes corresponding to the early requirement
model for the loan origination process case study is shown in Figure 6.

Fig. 6. Hierarchy of Business Processes.

Each goal is associated with a business process, represented by a rounded-
corner rectangle in the hierarchy. Dashed rectangles are used in order to represent
the actors that proceed the business processes. In our case these actors are the
Bank, the Bank Manager, the Post-processing Clerk, the Credit Bureau 1,
and the Credit Bureau 2.

The dependencies among actors, i.e., delegation and trust, are represented
as dashed and solid lines correspondingly. The Bank actor delegates the Launch
Loan Origination Process business process to the Bank Manager actor. The
delegation of execution dependency is depicted by dashed line marked with the
delegation of execution (De) symbol. The delegation of execution line connects
the delegated business process, i.e., the Launch Loan Origination Process
business process with the delegatee, the Bank Manager actor. The Bank actor
trust the Bank Manager actor to fulfill the Launch Loan Origination Process
business process. The trust on execution dependency is depicted by line marked
with the trust on execution (Te) symbol. The trust on execution line connects the

trusted business process, i.e., the Launch Loan Origination Process business
process, with the trustee, the Bank Manager actor.

The relation among business processes proceeded by the Bank Manager ac-
tor is defined by the structural activity associated to the Receive Customer
and Manage Loan Origination business processes. The notion of sequential and
parallel composition corresponds to a refinement of the concept of AND goal de-
composition. If the structural activity is sequence flow, the sequence relation is
applied. If the structural activity is parallel flow, the relation is the parallel one.

The relation among business processes proceeded by the Post-proceeding
Clerk actor is defined by the structural activity associated to the Internal
Rating Check and External Rating Check business processes. Branching state-
ment is a refinement of the concept of OR goal decomposition. If the struc-
tural activity is non-deterministic choice, the non-deterministic choice relation
is applied. If the structural activity is design choice, the design choice relation
is applied. The Bank Manager actor delegates the Manage Loan Origination
business process to the Post-processing Clerk actor. The delegation of execu-
tion and delegation of permission lines connects the delegated business process,
i.e., the Manage Loan Origination business process with the delegatee, the
Post-processing Clerk actor. The delegation of permission dependency is de-
picted by dashed line marked with the delegation of permission (Dp) symbol.
There are no trust dependencies between the Bank Manager and the Post-processing
Clerk actors on the Manage Loan Origination business process.

The External Rating Check business process is delegated to the Credit
Bureau 1 and the Credit Bureau 2 actors. The delegation of execution lines
connect the delegated business process, i.e., the External Rating Check busi-
ness process with the delegatee, the Credit Bureau 1 and the Credit Bureau
2 actor. There are no trust dependencies between the Bank Manager and the
Credit Bureau 1 actors on the External Rating Check business process. While
trust on execution and trust on permission lines connects the trusted business
process, i.e., the External Rating Check business process, with the trustee, the
Credit Bureau 2 actor. The trust on permission dependency is depicted by line
marked with the trust on permission (Tp) symbol.

Phase 4. Constraint reasoning for service level agreements derivation

In the last phase of the BP&SLA methodology service level agreements for busi-
ness processes are derived by reasoning on the business process hypergraph. The
reasoning technique we employ in this work is constraint programming. The
key idea is to state the relationships among the qualities of processes and their
activities as a set of constraints.

Formally, the constraint satisfaction problem is defined as follows:

– a set of variables {x1,.., xn},
– for each variable xi a finite set Di (its domain) of possible values,
– a set of constraints, i.e., relations or expressions, restricting the values that

the variables can simultaneously take [32].

We build a constraint systems by recursively navigating the business process
hierarchy and hypergraphs. The algorithm is presented in Figure 7.

CSPEC (BPH, node, CSP, QoSDomain)
begin

if node is not a leaf node
addToCSP (Var node ∈ QoSDomain)
if decomposition = AND

for all nodes
expr = expression (nodes, flow/sequence)

end for
addToCSP (Var node = expr)

end if
if decomposition = OR

for all nodes
if non deterministic choice

expr = exression (nodes, switch)
end if
if design choice

expr = expression (node, mult xi)
where xi = 0 or 1 and sum(xi) = 1

end if
end for
addToCSP (Var node = expr)

end if
end if
for every node

CSPEC (BPH, node, CSP, QoSDomain)
end for
if node is a leaf node

addToCSP (Var node ∈ QoSDomain)
end if

end

Fig. 7. Constraint System Building.

The algorithm takes the business process hypergraph, the node to start with,
and the problem domain as an input, and it builds a constraint expression for
every level of the hypergraph. Intuitively, the expression represents the quality
of service for that level. For each level a new fresh variable is added and its range
is restricted to the domain of the quality of services. Depending on what kind
of children are available for that level different kind of expressions are built. If
the children are connected with AND, the expression is built as an aggregation
of the variables representing the children nodes. In the case of choice, there are

different expressions for each child and an additional expression represents the
fact that only one child will contribute to the execution (the sum of xi).

Once the constraint expressions are built, the algorithm proceeds recursively
on all children. If the node is a leaf node, then one simply adds a variable for
that node and a constraint on the domain of the variable.

Once the constraint system is in place, one can perform constraint propaga-
tion to find the solution space for acceptable qualities of services. If then one
desires to have service level agreements to attach to the business processes, it
is simply a matter of performing a labeling of the solution space and obtaining
satisfying values for the qualities of services. We remark that such a solution
might not exists. in this case, the result of the methodology will be a set of
processes, but with no quality guarantees.

Here we show the generation of service level agreements based on given qual-
ity of service requirements for the execution of the business process using the
loan origination process case study.

In order to obtain the quality constraint expressions, we need to be given the
domain over which the quality of services range, e.g., integers for costs or real
numbers for response time. In the case of the proposed methodology, the QoS
Domain is a vector of QoS with corresponding possible values for the parameters.
The example of the QoS Domain we consider is the following vector: [Execution
Time (ET) ∈ N, Availability (Av) ∈ N, Time to Recover after an attack (TR)
∈ N].

Several examples of the aggregation functions for QoS are presented in [17].
The authors provide aggregation functions for such numerical QoS parameters
as cost, execution time, etc. Aggregation functions for such QoS parameters
as maximal execution time (Max ET), availability (Av) and maximal time to
recover after an attack (Max TR) for sequential, parallel and choice structural
activities are the following:

Str. activities Max ET Av Max TR

sequence ϕ =
∑k

p=1 pi ϕ = Πk
p=1pi ϕ =

∑k
p=1 pi

parallel ϕ =
∑k

p=1 pi ϕ = Πk
p=1pi ϕ =

∑k
p=1 pi

choice ϕ = max(p1, ..., pk) ϕ = min(p1, ..., pk) ϕ = max(p1, ..., pk)

The expressions we obtain navigating the business process hypergraph from Fig-
ure 4 according to the algorithm presented in Figure 7 are the following.

Maximal Execution Time (ET)
LLO=LLO.ET+sum(RC.ET,MLO)
MLO=MLO.ET+max(IRC.ET,ERC)
ERC=ERC.ET+ERC1.ET*x1+ERC2.ET*x2 when xi ∈ 0, 1 and

∑
xi = 1.

Availability (Av)
LLO=LLO.Av*Π(RC.Av,MLO)
MLO=MLO.Av*min(IRC.Av,ERC)
ERC=ERC.Av*(ERC1.Av*x1+ERC2.Av*x2) when xi ∈ 0, 1 and

∑
xi = 1.

Maximal Time to Recover after an attack (TR)
LLO=LLO.TR+sum(RC.TR,MLO)
MLO=MLO.+max(IRC.TR,ERC)
ERC=ERC.TR+ERC1.TR*x1+ERC2.TR*x2 when xi ∈ 0, 1 and

∑
xi = 1.

where LLO stands for Launch Loan Origination, RC to Receive Customer, MLO
to manage Loan Origination, IRC to Internal Rating Check, ERC to External
Rating Check, ERC1 and ERC2 to External Rating Check(1) and External Rat-
ing Check(2) business processes.

Suppose the constraint propagation for maximal execution time QoS prop-
erty for the super-process in order to achieve execution time less then 35 seconds
is performed and we get the following satisfying values for the qualities of ser-
vices: ERC1.ET=2 s, ERC2.ET=4 s, ERC.ET=10 s, IRC.ET=1 s, MLO.ET=5
s, RC.ET=7 s, and LLO.ET=8 s.

The SLAs for the delegated business processes are the following.

SLA(LLO)=LLO=LLO.ET+sum(RC.ET,MLO)=8+7+19=34 s
SLA(MLO)=MLO.ET+max(IRC.ET,ERC)=19 s
SLA(ERC)=ERC.ET+ERC1.ET*x1+ERC2.ET*x2=14 s
when xi ∈ 0, 1 and

∑
xi = 1

when MLO=MLO.ET+max(IRC.ET,ERC)=5+max(1,14)=19 s
ERC=ERC.ET+ERC1.ET*x1+ERC2.ET*x2=10+2*x1+4*x2=10+4=14 s
when xi ∈ 0, 1 and

∑
xi = 1.

Note that while choosing the business process among two alternatives Exter-
nal Rating Check(1) and External Rating Check(2) we rely on the trust levels
of the providers Credit Bureau 1 and Credit Bureau 2 correspondingly. As the
trust level of Credit Bureau 1 is 0 and the one of Credit Bureau 2 is 1, we choose
the last option.

4 Related Work

Requirements engineering for business processes in the context of web services
is gaining increasing attention in the Software Engineering and Service-Oriented
Communities. This is witnessed by a number of relevant research proposal, that
we review next. Lau and Mylopoulos [20] propose a design methodology for web
services adapted from the Tropos [6, 4] project. The work is based on the use of
goals to determine the space of alternative solutions to satisfy the goals. The key
point is that the solutions are represented by web services. The generated web
services design is expected to accommodate as many of those solutions as possible

rendering the design usable by a broader class of applications. Penserini, Perini,
Susi, and Mylopoulos [28] address the issue of refining the Tropos methodology
and tailoring it to the design of web services. The Tropos design process is ex-
tended to support a revised notion of capability that explicitly correlates actor
plans with stakeholders needs and environmental constraints. The agent capa-
bility is considered as a service. Furthermore, the authors sketch how Tropos
design-tome models can support service discovery and composition by relating
stakeholder goals to sets of services available. Even if, the idea is feasible, the
work is in an the early stage and there is a need for more precise mapping of
agent capability that is considered as a service. On the negative side, Tropos is
not tailored specifically to web service design. Therefore the proposed method-
ologies do not address the issue of integration of Web Service Business Process
Language in order to specify actual behaviour of participants in a business in-
teraction. Kazhamiakin, Pistore, and Roveri [18] propose a methodology for
business requirements modelling that uses the Tropos framework to capture the
strategic goals of the enterprise. The proposed methodology enables to produce
a concrete business process expressed by BPEL4WS description. The concrete
business process is elicited from the description of business process notions with
Tropos concepts extended with formal annotation called Formal Tropos [11].
The agent-oriented methodology Tropos is used for analysing web service re-
quirements by Aiello and Giorgini in [3]. In the approach the authors do not
model every individual web service as an agent, but rather model the whole set
of interacting services as a multi-agent system where different dependent strong
and soft goals coexist. On the contrary, our work aims not only to obtain busi-
ness processes from an early requirements analysis, but also to provide them
with service level agreements. Furthermore, the work involves Tropos that does
not support the notion of trust dependability while the Secure Tropos does.

Georg, Ray and France [12] propose the use of aspects for designing a secure
system. The work illustrates how an aspect-oriented approach to modeling allows
to encapsulate the concerns of security, availability of services and timeliness so
they can be woven into a secure system design. The weaving strategy identifies
security aspects based on the kinds of possible attacks and the mechanisms that
allows the detection, prevention, and recovery from such attacks. Haley, Laney,
and Nuseibeh [16] represent security requirements as crosscutting threat de-
scriptions using aspect-oriented software development crosscutting concepts and
problem frames. Security requirements are seen as constraints on functional re-
quirements intended to reduce the scope of vulnerabilities. This allows to analyze
secure requirements along with other constraints when producing specification
for the problem. Cheng, Konrad, Campbell, and Wassermann [7] propose the
use of security patterns for modeling and analysing secure systems. The authors
describe a collection of security patterns using a template that addresses dif-
ficulties inherent to the development of secure-critical systems. Employing the
patterns, it is possible to gain insight into the issue of modeling and analysing
security concerns starting from the requirements engineering phase. On the neg-

ative site, the approaches do not support the design of software in general and
service-based business processes in particular.

Service level agreement issues are gaining attention and have been addressed
in a number of recent works. However, the research mainly focuses on service level
agreement specification, negotiation and monitoring of SLAs [31, 25]. Several lan-
guages for SLA specification have been proposed, most notably, WSLA [22], WS-
Agreement [13], SLAng [19], WSOL [30]. Presently, SLA negotiation is mainly
a manual process and full or partial automation is needed. Theoretical bases
of SLA negotiation are provided by Demirkan, Goul and Soper [8]. The authors
identify negotiation support system requirements. The critical issue is a common
understanding of the terms among negotiating parties [24]. Using templates is
a proposed solution [29]. Gimpel at al. [14] propose PANDA - Policy-driven
Automated Negotiations Decision-making Approach. The approach automates
decision-making within negotiation. Fundamental concepts of non-functional
SLA monitoring are presented in [26] which discusses on the separation of the
computation and communication infrastructure of the provider, service points
of presence and metric collection approaches. The WS-Agreement is supported
by the definition of a managing architecture: CREMONA - An Architecture and
Library for Creation and Monitoring of WS-Agreement [21].

The issue of service level agreement generation we touch upon in the present
work, is not well developed. An approach proposed by Cappiello, Comuzzi, and
Plebani [5] presents a negotiation model to support the automatic generation
of service level agreement on-the-fly. The authors developed a model to express
web service quality, provider capabilities, and user requirements that is further
employed in the negotiation model to generate service level agreement. In our
approach, we tie business processes with service level agreements. We do not
focus on SLA negotiation, while we take into account early requirements the
user of the business process provide, the structure of the business process and
security and trust concepts.

5 Concluding Remarks

The service level agreements an enterprise has with its service providers must
support the business goals it wants to achieve. The issue of making a SLA that
favors the business objectives requires significant commitment of resources from
the enterprise side.

The presented work proposes the BP&SLA methodology for designing service-
based business processes with service level agreements attached. The contribu-
tion allows for bridging the gap between the informally specified early business
requirements the user provides and the executable business process together with
the service level agreements the enterprise benefits from and achieves its busi-
ness objectives. As the activities about assignment of responsibilities on business
processes, need to be carefully considered from the security point of view, the
proposed methodology focuses on security and trust aspects. The framework

supports the Secure BPEL language that allows for secure business processes
specification.

Considering current web service standards stack, the output of the methodol-
ogy is related to the following two standards: WS-BPEL to express the hierarchy
of business processes and WS-Agreement for expressing the related SLAs. Secure
BPEL [9], a specification language for secure business processes, is a dialect of
WS-BPEL for the functional parts and abstracts away low level implementa-
tion details from WS-Security, WS-Trust and WS-Federation standards. Secure
BPEL allows to describe delegation and trust relations among all the partners
that execute sub-business processes in the context on the global business process.

The trust dependencies among involved parties are represented in the struc-
tures of the methodology, but are not exploited. As next step, we plan to refine
and explore how the trust level of the provider affects the choice of the business
process. Furthermore, we will focus on the multi-requirement analysis, which
requires the identification of a decision-making function that selects the more
preferable set of attributes. Also we extend the approach to ensure that the
obtained business process with service level agreements is compliant with the
stated requirements. Concerning the implementation of the methodology, a tool
supporting the early requirements model refinement into the executable secure
business process implemented by the Secure BPEL language is currently being
developed in the framework of the IST-FP6-IP-SERENITY project.

Acknowledgments

The authors thank Marco Aiello, Fabio Massacci, and Fabio Casati for fruitful
discussion. Ganna Frankova thanks the University of Groningen for hosting her
while part of the presented research was performed.

References

1. SLA: Getting it Right. Voice&Data, March 05 2005.
2. M. Aiello, G. Frankova, and D. Malfatti. What’s in an Agreement? An Analysis and

an Extension of WS-Agreement. In Proceedings of the 3rd International Conference
on Service-Oriented Computing, 2005.

3. M. Aiello and P. Giorgini. Applying the Tropos Methodology for Analysing Web
Services Requirements and Reasoning about Qualities of Services. CEPIS Upgrade
- The European journal of the informatics professional, 5(4):20–26, 2004.

4. P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. TROPOS:
An Agent-Oriented Software Development Methodology. Journal of Autonomous
Agents and Multi-Agent Systems, 8(3):203–236, 2004.

5. C. Cappiello, M. Comuzzi, and P. Plebani. On Automated Generation of Web Ser-
vice Level Agreements. In Proceedings of the International Conference on Advanced
Information Systems Engineering, 2007.

6. J. Castro, M. Kolp, and J. Mylopoulos. Towards Requirements-Driven Information
Systems Engineering: The Tropos Project. Information Systems, 27(6):365–389,
September 2002.

7. B. H. C. Cheng, S. Konrad, L.A. Campbell, and R. Wassermann. Using Security
Patterns to Model and Analyze Security Requirements. In IEEE Workshop on
Requirements for High Assurance Systems, Monterey, California, USA, September
2003.

8. H. Demirkan, M. Goul, and D. S. Soper. Service Level Agreement Negotiation: A
Theory-based Exploratory Study as a Starting Point for Identifying Negotiation
Support System Requirements. In Proceedings of the 38th Hawaii International
Conference on System Sciences, 2005.

9. G. Frankova, F. Massacci, and M. Seguran. From Early Requirements Analy-
sis towards Secure Workflows. Technical report, University of Trento, 2007.
http://eprints.biblio.unitn.it.

10. G. Frankova and A. Yautsiukhin. Service and Protection Level Agreements for
Business Processes. European Young Researchers Workshop on Service Oriented
Computing, 2007.

11. A. Fuxman, L. Liu, j. Mylopoulos, M. Pistore, M. Roveri, and P. Traverso. Spec-
ifying and Analyzing Early Requirements in Tropos. Requirements Engineering,
9(2):132–150, May 2004.

12. G. Georg, I. Ray, and R. France. Using Aspects to Design a Secure System. In Pro-
ceedings of IEEE International Conference on Engineering of Complex Computer
Systems, 2002.

13. GGF. Web Services Agreement Specification (WS-Agreement), September 2005.
14. H. Gimpel, H. Ludwig, A. Dan, and B. Kearney. PANDA: Specifying Policies for

Automated Negotiations of Service Contracts. In Proceedings of the First Interna-
tional Conference on Service Oriented Computing, 2003.

15. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Requirements Engineer-
ing for Trust Management: Model, Methodology, and Reasoning. International
Journal of Information Security, 5(4):257–274, October 2006.

16. C.B. Haley, R.C. Laney, and B. Nuseibeh. Deriving Security Requirements from
Crosscutting Threat Descriptions. In Proceedings of International Conference on
Aspect-Oriented Software Development, 2004.

17. M.C. Jaeger, G. Rojec-Goldmann, and G. Mühl. QoS Aggregation in Web Ser-
vice Compositions. In Proceedings of the IEEE International Conference on e-
Technology, e-Commerce and e-Service, 2005.

18. R. Kazhamiakin, M. Pistore, and M. Roveri. A Framework for Integrating Business
Processes and Business Requirements. In Proceeding of the Enterprise Distributed
Object Computing Conference, 2004.

19. D.D. Lamanna, J. Skene, and W. Emmerich. SLAng: A Language for Defining
Service Level Agreements. In Proceedings of the 9th IEEE Workshop on Future
Trends of Distributed Computing Systems, 2003.

20. D. Lau and J. Mylopoulos. Designing Web Services with Tropos. In Proceedings
of IEEE International Conference on Web Services, 2004.

21. H. Ludwig, A. Dan, and R. Kearney. CREMONA: an Architecture and Library
for Creation and Monitoring of WS-Agreements. In Proceedings of the Second
International Conference on Service-Oriented Computing, 2004.

22. H. Ludwig, A. Keller, A. Dan, R.P. King, and R. Franck. Web Service Level
Agreement (WSLA) Language Specification. Version 1.0. IBM Corporation, Jan-
uary 2003.

23. F. Massacci, J. Mylopoulos, and N. Zannone. An Ontology for Secure Socio-
Technical Systems. Handbook of Ontologies for Business Interaction, 2007.

24. Strbel Michael. Engineering Electronic Negotiations. Kluwer Academic Publishers,
New York, 2002.

25. C. Molina-Jimenez, J. Pruyne, and A. van Moorsel. The Role of Agreements in IT
Management Software. Architecting Dependable Systems III, pages 36–58, 2005.

26. C. Molina-Jimenez, S.K. Shrivastava, J. Crowcroft, and P. Gevros. On the Moni-
toring of Contractual Service Level Agreements. In Proceedings of the First IEEE
International Workshop on Electronic Contracting, 2004.

27. M. P. Papazoglou and D. Georgakopoulos. Service Oriented Computing. Commu-
nications of the ACM, 46(10), 2003.

28. L. Penserini, A. Perini, A. Susi, and J. Mylopoulos. From Stakeholder Needs
to Service Requirements. In Proceeding of International Workshop on Service-
Oriented Computing: Consequences for Engineering Requirements, 2006.

29. D. M. Reeves, M. P. Wellman, and B. N. Grosof. Automated Negotiation from
Declarative Contract Descriptions. Computational Intelligence, 18(4):482–500, No-
vember 2002.

30. V. Tosic. WSOL Version 1.2. Technical Report SCE-04-11, Department of Systems
and Computer Engineering, Carleton University, July 2004.

31. J.J.M. Trienekens, J.J. Bouman, and M. van der Zwan. Specification of Service
Level Agreements: Problems, Principles and Practices. Software Quality Journal,
12(1):43–57, March 2004.

32. E. Tsang. Foundations of Constraint Satisfaction. Academic Press, London, 1995.
33. E. Yu. Towards Modeling and Reasoning Support for Early Requirements Engi-

neering. In Proceedings of the 3rd IEEE International Symposium on Requirements
Engineering, 1997.

