

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

FORMALIZING THE GET-SPECIFIC DOCUMENT
CLASSIFICATION ALGORITHM

Fausto Giunchiglia, Ilya Zaihrayeu, and Uladzimir Kharkevich

March 2007

Technical Report # DIT-07-013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints Research

https://core.ac.uk/display/11829564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

.

Formalizing the Get-Specific Document
Classification Algorithm

Fausto Giunchiglia, Ilya Zaihrayeu, and Uladzimir Kharkevich

Department of Information and Communication Technology
University of Trento, Italy

{fausto,ilya,kharkevi}@dit.unitn.it

Abstract. The paper represents a first attempt to formalize the get-
specific document classification algorithm and to fully automate it through
reasoning in a propositional concept language without requiring user in-
volvement or a training dataset. We follow a knowledge-centric approach
and convert a natural language hierarchical classification into a formal
classification, where the labels are defined in the concept language. This
allows us to encode the get-specific algorithm as a problem in the con-
cept language. The reported experimental results provide evidence of
practical applicability of the proposed approach.

1 Introduction

Classification hierarchies have always been a natural and effective way for hu-
mans to organize their knowledge about the world. These hierarchies are rooted
trees where each node defines a topic category. Child nodes’ categories define
aspects or facets of the parent node’s category, thus creating a multifaceted de-
scription of the objects which can be classified in these categories. Classification
hierarchies are used pervasively: in conventional libraries (e.g., the Dewey Dec-
imal Classification system (DDC) [10]), in web directories (e.g., DMoz [3]), in
e-commerce standardized catalogues (e.g., UNSPSC [4]), in personal email and
file system folders, and so on.

Standard classification methodologies amount to manually organizing objects
into classification categories following a predefined system of rules. The rules
may differ widely in different approaches, but there is one classification pattern
which is commonly followed. The pattern is called the get-specific principle, and
it requires that an object is classified in a category (or in a set of categories),
which most specifically describes the object. In practice, it usually means that
this category lies as deep in the classification tree as possible, while still being
more general than the topic of the object. Following the get-specific principle is
not easy and is constrained by a number of limitations, discussed below:

– the meaning of a given category is implicitly codified in a natural language
label, which may be ambiguous and may therefore be interpreted differently
by different classifiers;

2 Fausto Giunchiglia, Ilya Zaihrayeu, and Uladzimir Kharkevich

– a link, connecting two nodes, may also be ambiguous in the sense that it
may specify the meaning of the child node, of the parent node, or of both.
For instance, a link connecting the parent node “programming” with its child
node “Java” may, or may not mean that (a) the parent node means “com-
puter programming” (and not, for example, “events scheduling”); (b) that
the child node means “Java, the programming language” (and not “Java,
the island”); or (c) that the parent node’s meaning excludes the meaning of
the child node, i.e., it is “programming and not Java”;

– as a consequence of the previous two items, the classification task also be-
comes ambiguous in the sense that different classifiers may classify the same
objects differently, based on their subjective opinion.

In the present paper we propose an approach to converting classifications
into formal classifications, whose labels are encoded in a propositional concept
language. Apart from this, we present a classification model and show how the
get-specific algorithm can be described in this model. We then show how the
model and the algorithm can be encoded in the concept language, which al-
lows us to fully automate document population in formal classifications through
propositional reasoning. Note that by doing this, we eliminate the three ambi-
guities discussed above. In order to evaluate our approach, we have re-classified
documents from several branches of the DMoz directory without any human in-
volvement or an a priori created training dataset. The results show the viability
of the proposed approach, which makes it a realistic alternative to the standard
classification approaches used in Information Science.

The remainder of the paper is organized as follows. In Section 2 we introduce
the classification model, we show how the get-specific algorithm can be described
in this model, and we identify the main problems peculiar to the algorithm. In
Section 3 we show how classifications can be translated into formal classifications,
how the get-specific algorithm can be encoded in the concept language, and how
its peculiar problems can be dealt with in the concept language. In Section 4 we
present and discuss evaluation results of our approach. In Section 5 we discuss
the related work and, in particular, we compare our approach to that used in
Information Science. Section 6 summarizes the results and concludes the paper.

2 The Get-Specific Classification Algorithm

Classifications are hierarchical structures used for positioning objects in such
a way, that a person, who navigates the classifications, will be facilitated in
finding objects related to a given topic. To attain such organization of objects,
in standard classification approaches, objects are manually classified by human
classifiers which follow a predefined system of rules. The actual system of rules
may differ widely in different classification approaches, but there are some generic
principles which are commonly followed. These principles make the ground of
the get-specific algorithm, described in the rest of this section.

Formalizing the Get-Specific Document Classification Algorithm 3

2.1 Classifications and a Classification Model

To avoid ambiguity of interpretation, in Definition 1 we formally define the
notion of classification; and in Figure 1 we give an example of a classification,
extracted from the DMoz web directory and adjusted for sake of presentation.

Definition 1. A classification is a rooted tree C = 〈N, E,L〉 where N is a set
of nodes, E is a set of edges on N , and L is a set of labels expressed in a natural
language, such that for any node ni ∈ N , there is one and only one label li ∈ L.

Top

Recreation Shopping

Antiques and Collectibles

Coins

Ancient Coins World Coins

Collecting

Coins

Ancient

Greek

(1)

(2) (7)

(9)

(12)

(8)

(10)

(4)

(3)

(5)

(6) Ancient Greece(13)Europe(11)

Fig. 1. A part of the DMoz web directory

We see the process of classification as a decision making procedure in which
the classification tree is divided into a set of minimal decision making blocks.
Each block consists of a node (called the root node of the block) and its child
nodes (see Figure 2). While classifying an object, the classifier considers these
blocks in a top-down fashion, starting from the block at the classification root
node and then continuing to blocks rooted at those child nodes, which were
selected for further consideration. These nodes are selected following decisions
which are made at each block along two dimensions: vertical and horizontal. In
the vertical dimension, the classifier decides which of the child nodes are selected
as candidates for further consideration. In the horizontal dimension, the classifier
decides which of the candidates are actually selected for further consideration.
If none of the child nodes are appropriate or if there are no child nodes, then
the root node of the block becomes a classification alternative for the given
object. The process reiterates and continues recursively until no more nodes are
left for further consideration. At this point, all the classification alternatives are
computed. The classifier then decides which of them are most appropriate for
the classification of the object and makes the final classification choice.

2.2 Modelling the Get-Specific Classification Algorithm

In this subsection we discuss the general principles lying behind the get-specific
algorithm and we show how these principles can be implemented within the

4 Fausto Giunchiglia, Ilya Zaihrayeu, and Uladzimir Kharkevich

... ...

Facets

S
p
e
c
if
ic

-
G

e
n
e
ra

l

li

lnlj lm

Fig. 2. The decision making block

model introduced in the previous subsection. Particularly, we discuss how vertical
and horizontal choices, as well as the final classification choice are made.

– Vertical choice. Classification hierarchies are organized such that upper
level categories represent more abstract or more general concepts, whereas
lower level categories represent more concrete or more specific concepts.
When the classifier searches for an appropriate category for the classification
of an object, she looks for the ones which most specifically describe the ob-
ject and, therefore, when making a vertical choice, she selects a child node as
a candidate if it describes the object more specifically than the parent does.
For example, if a document about ancient Greek coins is classified in the
classification from Figure 1, then node n6 is more appropriate for the classi-
fication than node n5. When this principle is applied recursively, it leads to
the selection of the category which lies as deep in the classification hierarchy
as possible. The principle described above is commonly called the get-specific
principle. Let us consider, for instance, how Yahoo! describes it:

“When you suggest your site, get as specific as possible. Dig deep
into the directory, looking for the appropriate sub-category.” [6]

In practice, application of the get-specific principle usually means that a
document is placed in only one node in a path from the root. However, in
some cases, a document is placed in several most specific categories on the
path. Examples of these approaches are Amazon [1] and Wikipedia [5].

– Horizontal choice. Child nodes may describe different aspects or facets of
the parent node and, therefore, more than one child node may be selected
in the vertical choice if a multifaceted document is being classified. As a
consequence of this, the classifier needs to decide which of the several sib-
ling nodes are appropriate for further consideration. When one sibling node
represents a more specific concept than another, then the former is usually
preferred over the latter. For example, node n10 is more appropriate for the
classification of ancient Greek coins than node n12. As a rule of thumb, the
horizontal choice is made in favor of as few nodes as possible and, prefer-
ably, in favor of one node only. We call the principle described above, the
get-minimal principle. Consider, for instance, how DMoz describes it.

“Most sites will fit perfectly into one category. ODP categories
are specialized enough so that in most cases you should not list a site
more than once.” [2]

Formalizing the Get-Specific Document Classification Algorithm 5

In conventional library systems, such as the DDC [10], the horizontal choice
is always made in favor of only one node. This restriction is conditioned by
the fact that a book, as a physical object, can be put only in one place on the
shelf. Electronic directories, such as DMoz, do not have this constraint and,
therefore, they can classify documents in multiple categories. Noteworthy,
even if DMoz enforces the rule of single classification choice, in some cases, it
finds it useful to classify documents in multiple places to improve navigability
of and effectiveness of search in the electronic directory. In fact, there are
about 10% of site listings which are classified in more than one category [12].

– Tradeoff between vertical and horizontal choices. The two principles
described above cannot always be fulfilled at the same time. Namely, if the
vertical choice results in too many candidates, then it becomes hard to fulfill
the principle of minimality in the horizontal choice. In order to address this
problem, a tradeoff needs to be introduced between the two requirements,
which usually means trading specificity in favor of minimality. The following
is an example of a tradeoff rule used in DMoz:

“If a site offers many different things, it should be listed in a
more general category as opposed to listing it in many specialized
subcategories. [. . .] For example, if you have a site on US History
covering the American Revolution, the Civil War, and the Presidents,
you should not list it in each one of those subcategories, but rather
list it in a general category such as Society: History: By Region:
North America: United States.” [2]

As a mean to fulfill both principles and avoid the tradeoff, in each mini-
mal decision making block, the child nodes must represent values from only
one homogeneous facet. In this case, since such values are usually disjoint,
vertical choice results into one candidate node only, if any at all.

– The final classification choice. When all classification alternatives are
determined, the classifier confronts all of them in order to make her final
classification choice. Note that now the choice is made not at the level of a
minimal decision making block, but at the level of the whole classification.
However, the classifier uses the same selection criteria as those used in the
horizontal choice. For example, nodes n6 and n13 are more appropriate for
the classification of documents about ancient Greek coins than node n11.

Note that the get-specific algorithm described above allows the classifier to
position an object in the classification hierarchy without considering all the nodes
of the hierarchy, thus it allows it to reduce information load on the classifier.

2.3 Problems of the Get-Specific Classification Algorithm

As discussed in [12], there are several problems which are common to document
classification algorithms. The problems are caused by the potentially large size
of classifications, by ambiguity in natural language labels and in document de-
scriptions, by different interpretations of the meaning of parent-child links, by
different views of different classifiers on the classification of the same document,

6 Fausto Giunchiglia, Ilya Zaihrayeu, and Uladzimir Kharkevich

and so on. All these problems lead to nonuniform, duplicate, and error-prone
classification, especially when the classification is populated by multiple classi-
fiers. In addition to the problems discussed in [12], the get-specific algorithm
has two peculiar problems, related to the two decision dimensions. We discuss
these problems below on the example of a document titled “Gold Staters in the
Numismatic Marketplace”, being classified in the classification from Figure 1.

– Vertical choice: the “I don’t know” problem. The classifier may make
a mistake because she does not (fully) understand the meaning of a child
node or the relation of the document to that node, whereas the node is a valid
candidate. For example, the classifier may not know that “Gold Stater” is a
coin of ancient Greece and, therefore, will erroneously classify the document
into node n5, whereas a more appropriate node is n6.

– Horizontal choice: the “Polarity change” problem. The classifier may
make a mistake when one of the sibling candidate nodes is more appropri-
ate for further consideration than another, but a descendent of the latter is
more appropriate for the classification of the object than a descendant of
the former node. For instance, the label of node n10 more specifically de-
scribes the document than the label of node n12. Therefore, the classifier
will choose node n10 only as a candidate for further consideration and will
finally classify the document in node n11, whereas a more appropriate node
for the classification is node n13, a descendant of n12.

3 Formalizing the Get-Specific Classification Algorithm

In this section we formalize the get-specific classification algorithm by encod-
ing it as a problem expressed in propositional Description Logic language [7],
referred to as LC . First, we discuss how natural language node labels and doc-
ument descriptions are converted into formulas in LC . Second, we discuss how
we reduce the problems of vertical, horizontal, and final classification choices
to fully automated propositional reasoning. Finally, we show how the problems
discussed in Section 2.3 can be dealt with in a formal way.

3.1 From Natural Language to Formal Language

Classification labels are expressed in a natural language, which is ambiguous
and, therefore, is very hard to reason about. In order to address this problem, we
encode classification labels into formulas in LC following the approach proposed
in [12]. This allows us to convert the classification into a new structure, which
we call Formal Classification (FC):

Definition 2. A Formal Classification is a rooted tree FC = 〈N,E,LF 〉 where
N is a set of nodes, E is a set of edges on N , and LF is a set of labels expressed
in LC , such that for any node ni ∈ N , there is one and only one label lFi ∈ LF .

Formalizing the Get-Specific Document Classification Algorithm 7

Note that even if LC is propositional in nature, it has a set-theoretic seman-
tics. As proposed in [12], the interpretation of a concept is the set of documents,
which are about this concept. For instance, the interpretation of concept Capital
(defined as “a seat of government”) is the set of documents about capitals, and
not the set of capitals which exist in the world.

Below we briefly describe how we convert natural language labels into formu-
las in LC . Interested readers are referred to [12] for a complete account. Figure 3
shows the result of conversion of the classification from Figure 1 into a FC.

1. Build atomic concepts. Senses of nouns and adjectives become atomic
concepts, whose interpretation is the set of documents about the entities
or individual objects, denoted by the nouns, or which possess the qualities,
denoted by the adjectives. We enumerate word senses using WordNet [19],
and we refer to them as follows: pos-lemma#i, where pos is the part of
speech, lemma is the word lemma, and i is the sense number in WordNet.

2. Disambiguate word senses. Irrelevant word senses are identified and cor-
responding to them atomic concepts are discarded. As proposed in [17], if
there exists a relation (e.g., synonymy, hypernymy, or holonymy) in Word-
Net between any two senses of two words in a label (or in different labels
on a path to the root), then corresponding to them concepts are retained
and other concepts are discarded. If no relation is found, then we check if a
relation exists between two WordNet senses by comparing their glosses [15].
If no relation is found after these two steps, then we keep all the concepts.

3. Build complex concepts. Complex concepts are built as follows: first,
words’ formulas are built as the logical disjunction (t) of atomic concepts
corresponding to their senses (remaining after step 2). Second, syntactic
relations between words are translated into logical connectives of LC . For
example, a set of adjectives followed by a noun group is translated into
the logical conjunction (u) of the formulas corresponding to the adjectives
and to the nouns; prepositions like “of” and “in” are translated into the
conjunction; coordinating conjunctions “and” and “or” are translated into
the logical disjunction (t); words and phrases denoting exclusions, such as
“except” and “but not”, are translated into the logical negation (¬).

Top

n-recreation#1 n-recreation#2 n-shopping#1

n-antique#2 n-collectibles#1

n-coin#1

(a-ancient#1 a-ancient#2) n-coin#1 (a-world#1 n-world#1) n-coin#1

n-collecting#1

n-coin#1

a-ancient#1 a-ancient#2

a-greek#1

(1)

(2) (7)

(9)

(12)

(8)

(10)

(4)

(3)

(5)

(6) n-Europe#1 n-Europe#2 n-Europe#3 a-ancient#1 n-Greece#1(13)(11)

Fig. 3. Formal Classification

8 Fausto Giunchiglia, Ilya Zaihrayeu, and Uladzimir Kharkevich

Before a document can be automatically classified, it has to be assigned
an expression in LC , which we call the document concept, written Cd. The
assignment of a concept to a document is done in two steps: first, a set of n
keyphrases is retrieved from the document using text mining techniques (see,
for example, [24]); the keyphrases are converted to formulas in LC , and the
document concept is then computed as the conjunction of the formulas.

3.2 The Algorithm

In the following we describe how we make vertical and horizontal choices, com-
pute the tradeoff, and make the final classification choice in FCs. Note that the
choice making problems are encoded as problems expressed in LC .

– Vertical choice. A child node ni is a candidate, given that a document
with concept Cd is being classified, if the label of the node, lFi , subsumes
Cd, i.e., if the following holds: Cd v lFi . In formulas, if Nc is the set of child
nodes in the block, then we compute the vertical choice V (Cd) as:

V (Cd) = {ni ∈ Nc|Cd v lFi } (1)

If the vertical choice results in no candidates, then root node nr of the current
block is added to the set of classification alternatives A(Cd):

if |V (Cd)| = 0 then A(Cd) ← A(Cd) ∪ {nr} (2)

In Figure 4a we show an example of a situation when two child nodes n2

and n4 are selected for further consideration, and in Figure 4b we show an
example of a situation when no child node can be selected.

coin

ducat

(1)

certifiedgold stater (4)(3)(2)

?

stater

(b)

coin

greek

(1)

certifiedancient (4)(3)(2)

?

stater

(a)

Fig. 4. Vertical choice (“?” means no relation is found)

– Horizontal choice. Given the set of candidates V (Cd), we exclude those
nodes from the set, whose label is more general than the label of another
node in the set. In formulas, we compute the horizontal choice H(Cd) as:

H(Cd) = {ni ∈ V (Cd)|@nj ∈ V (Cd), s.t. j 6= i, lFj v lFi , and lFj 6w lFi } (3)

We introduce the last condition (i.e., lFj 6w lFi) to avoid mutual exclusion
of nodes, whose labels in the FC are equivalent concepts. For instance, two

Formalizing the Get-Specific Document Classification Algorithm 9

syntactically different labels “seacoast” and “seashore” are translated into
two equivalent concepts. When such situation arises, all the nodes, whose
labels are equivalent, are retained in H(Cd).

– The tradeoff. Whenever the size of H(Cd) exceeds some threshold k, the
nodes of H(Cd) are discarded as candidates and root node nr of the block
is added to the set of classification alternatives A(Cd). In formulas:

if |H(Cd)| > k then H(Cd) ← ∅ and A(Cd) ← A(Cd) ∪ {nr} (4)

– The final classification choice. When no more nodes are left for further
consideration, set A(Cd) includes all the classification alternatives. We com-
pare them to make the final classification choice, but, differently from vertical
and horizontal choices, we compare the meanings of nodes given their path
to the root, and not their labels. We encode the meaning of node ni into a
concept in LC , called concept of node [13], written Ci, and computed as:

Ci =
{

lFi if ni is the root of the FC
lFi u Cj if ni is not the root, where nj is the parent of ni

(5)

Similar to how the horizontal choice is made, we exclude those nodes from
A(Cd), whose concept is more general than the concept of another node in
the set. In formulas, we compute the final classification choice C(A) as:

C(A) = {ni ∈ A(Cd)|@nj ∈ A(Cd), s.t. j 6= i, Cj v Ci, and Cj 6w Ci} (6)

The last condition (i.e., Cj 6w Ci) is introduced to avoid mutual exclusion of
nodes with the same meaning in the classification hierarchy. For instance, two
paths top/computers/games/soccer and top/sport/soccer/computer games lead
to two semantically equivalent concepts. When such situation arises, all the
nodes with the same meaning are retained in C(A).

Computing Equations 1, 3, and 6 requires verifying whether the subsumption
relation holds between two formulas in LC . As shown in [12], a problem expressed
in LC can be rewritten as an equivalent problem expressed in propositional logic.
Namely, if we need to check whether a certain relation rel (which can be v, w,
≡, or ⊥) holds between two concepts A and B, given some knowledge base KB
(which represents our a priori knowledge), we construct a propositional formula
according to the pattern shown in Equation 7 and check it for validity:

KB → rel(A,B) (7)

The intuition is that KB encodes what we know about concepts A and B, and
rel(A,B) holds only if it follows from what we know. In our approach KB is built
as the conjunction of a set of axioms which encode the relations that hold be-
tween atomic concepts in A and B. As discussed in Section 3.1, atomic concepts
in LC are mapped to the corresponding natural language words’ senses. These

10 Fausto Giunchiglia, Ilya Zaihrayeu, and Uladzimir Kharkevich

senses may be lexically related through the synonymy, antonymy, hypernymy,
or holonymy relations. The idea, therefore, is to find the lexical relations using
WordNet and to translate synonymy into the logical equivalence, antonymy into
the disjointness, hypernymy and holonymy into the subsumption relation in LC .

3.3 Dealing with Problems

Encoding a classification algorithm into a problem in LC allows it to avoid many
problems, which are common to classification algorithms [12]. Particularly, since
the problem is encoded in a formal language, there is no ambiguity in interpre-
tation of classification labels, of edges, and document contents. Apart from this,
since computation is performed by a machine, the problem of classification size
becomes largely irrelevant. Finally, since the formal algorithm is deterministic,
the classification is always performed in a uniform way.

In Section 2.3 we discussed two problems, peculiar to the get-specific algo-
rithm. Below we discuss what they mean in LC and how they can be dealt
with.

– Vertical choice: the “I don’t know” problem. This problem arises when
the specificity relation in Equation 1 cannot be computed while a human ob-
serves that it exists. The problem is caused by lack of background knowledge
and it can be dealt with by adding missing axioms to the underlying knowl-
edge base [14]. For instance, if we add a missing axiom which states that
concept Stater (defined as “any of the various silver or gold coins of ancient
Greece”) is more specific than concept Greek (defined as “of or relating to
or characteristic of Greece . . . ”), then the algorithm will correctly classify
document “Gold Staters in the Numismatic Marketplace” into node n6 in
the classification shown in Figure 1.

– Horizontal choice: the “Polarity change” problem. The problem arises
when the label of node ni is more specific than the label of its sibling node
nj (i.e., lFi v lFj), but the concept of a ni’s descendant node nk is more
general than the concept of a nj ’s descendant node nm (i.e., Ck w Cm).
In the simplest case, this problem can be dealt with by not performing the
horizontal choice. In this case, both nk and nm will be in the classification
alternative set for some document, and nk will then be discarded when the
final classification choice is made.

4 Evaluation

In order to evaluate our approach, we selected four subtrees from the DMoz
web directory, converted them to FCs, extracted concepts from the populated
documents, and automatically (re)classified the documents into the FCs. We
extracted document concepts by computing the conjunction of the formulas
corresponding to the first 10 most frequent words appearing in the documents
(excluding stop words). The number of words was determined purely experimen-
tally: smaller number of words did not make document concepts specific enough,

Formalizing the Get-Specific Document Classification Algorithm 11

which led to lower precision and recall; and larger number of words led to more
computations without affecting significantly the final result. We used WordNet
2.0 [19] for finding word senses and their relations, and we used S-Match [13] for
computing Equation 7. Parameter k for tradeoff computation was set to 2.

In the evaluation we employ standard information retrieval measures such
as micro- and macro-averaged precision, recall, and F1 [21]. In Table 1 we re-
port dataset statistics and evaluation results for each of the four datasets. We
performed a detailed analysis of the “Languages” dataset results (see Figure 5).
In Figure 5a we show how precision and recall are distributed among nodes.
Figure 5b shows how far (in terms of the number of edges) an automatically
classified document is from the node where it was actually classified in DMoz.

Dataset Nodes Docs
Max

subtree
depth

Mi-Pr Mi-Re Mi-F1 Ma-Pr Ma-Re Ma-F1

Photographya 27 871 4 0.2218 0.1871 0.2029 0.2046 0.1165 0.1485

Beveragesb 38 1456 5 0.4037 0.4938 0.4442 0.3848 0.3551 0.3693

Mammalsc 88 574 5 0.3145 0.3014 0.3078 0.3854 0.2677 0.3159

Languagesd 157 1217 6 0.4117 0.4503 0.4301 0.4366 0.4187 0.4275

a
http://dmoz.org/Shopping/Photography/.

b
http://dmoz.org/Shopping/Food/Beverages/.

c
http://dmoz.org/Health/Animal/Mammals/.

d
http://dmoz.org/Science/Social Sciences/Linguistics/Languages/Natural/Indo-European/.

Table 1. Dataset statistics and evaluation results

0

10

20

30

40

50

P=0, R=0 P=1, R=1 P=1, 0<R<1 0<P<1, R=1 0<P<1,0<R<1

Precision(P), Recall(R)

N
u

m
b

e
r

o
f

n
o

d
e
s
 (

%
)

(a)

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8 …

Hierarchical distance

N
u

m
b

e
r

o
f

d
o

c
u

m
e
n

ts
 (

%
)

(b)

Fig. 5. Analysis of the “Languages” dataset results

From Figure 5a we observe that about 40% of nodes in the “Languages”
dataset have precision and recall equal to 01. After manual inspection of the re-
sults, we concluded that this problem is caused by lack of background knowledge.
For instance, 8 documents about Slovenian language were misclassified because
1 Precision for nodes with no documents was counted as 0.

12 Fausto Giunchiglia, Ilya Zaihrayeu, and Uladzimir Kharkevich

there was no WordNet synset “Slovenian” defined as “the Slavic language spoken
in Slovenia” and a hypernym relation of it with synset “Slavic language”.

Figure 5b shows that about 20% of documents are classified in one edge dis-
tance from the node where they were originally populated, whereas 89% of them
were classified one node higher on the path to the root. Note that this still al-
lows it to find a document of interest by browsing the classification hierarchy. As
we wrote in Section 2.2, in some approaches, documents are classified in several
nodes on a path to the root to improve the navigability of the classification.

5 Related Work

The idea of that the get-specific classification algorithm can be encoded in a
formal language and the first formal specification of the algorithm were reported
in [12]. The current paper extends [12] in several respects. First, it proposes a
classification model and shows how the algorithm can be implemented in this
model. Second, it discusses how the model can be described and implemented in
LC . Third, it identifies the main problems peculiar to the get-specific algorithm
and shows how they can be dealt with in LC . Finally, for the first time, the
current paper presents experimental results, which demonstrate that document
classification can be fully automated using a knowledge-centric approach.

The idea of that natural language labels in classifications can be translated
in a formal language was first introduced in [9], and, in [17], the authors pro-
vided a detailed account of the translation process using Description Logic as the
target formal language. The current paper uses the translation rules described
in [12], which originates from [17], but which uses the less computationally ex-
pensive propositional subset of Description Logics. In [12], the authors define a
set-theoretic semantics for the translation rules and show that a propositional
concept language is enough to capture the semantics of a large amount of labels.

In Information Science, document classification usually refers to supervised
or unsupervised text categorization [21]. The principal difference between the
two is that, in the former case, a small set of documents (called the training set)
needs to be pre-classified in the categories to allow for a larger set of documents
to be automatically classified. Category names do not need to be meaningful
terms or phrases, and they can only be logical identifiers of the pre-classified
sets. Unsupervised approaches do not provision document pre-classification, and
are mainly based on the comparison of terms appearing in the documents and
terms associated with each category [18]. Below we compare our approach to
text categorization approaches in which categories are organized in a hierarchy.

Differently from the supervised case (e.g., see [11, 16, 23]), in our approach we
do not need to have a pre-classified set of documents. In fact, classification choices
depend on the meaning of classification labels and not on the documents already
classified in nodes. This makes our approach very dynamic w.r.t. supervised
classification since it does not require manual re-creation of the training set
for the classification of the same set of documents if the category set changes.
Noteworthy, some classification approaches rely on an underlying knowledge base

Formalizing the Get-Specific Document Classification Algorithm 13

(e.g., WordNet [19]) in order to find relations among words to optimize the
construction of the feature space (e.g., see [8, 20]). However, these approaches
still require a training dataset to operate.

Differently from the unsupervised approach (e.g., [18, 25]), we do not need
to annotate classification nodes with a relatively large (w.r.t. the label size)
set of keywords to classify documents. Apart from this, in formal classification
labels, the terms are connected through logical connectives, which increases the
expressiveness of the category description. However, unsupervised classification
is the approach closest to ours from the text categorization domain in that it
takes a classification and a set of documents as input and classifies the documents
into the classification categories without a training dataset. The results, reached
by the two approaches, are comparable. For instance, in [25], the authors report
to reach max 42.70% in micro-F1 measure on different web directory datasets.

6 Conclusions and Future Work

The current paper makes a contribution at the turn of several disciplines. First,
it takes the notion of classification from Library Science and shows how it can
be converted in a form of ontology – the fundamental notion on the Semantic
Web. Interestingly, the two notions are often used interchangeably in the two
communities [22]. Second, we provide a classification model and show how the
get-specific algorithm, commonly used in hierarchical document classification
systems, can be described in this model. Third, it shows how document classifi-
cation can be fully automated using a knowledge-centric approach, an approach
which is conceptually different from the one used in Information Science. Fi-
nally, evaluation results reported in this paper demonstrate the proof of concept
of our approach, which makes it a viable alternative to the conventional way of
automated document classification.

Our future work includes: (a) development of more accurate document con-
cept extraction algorithms; (b) evaluation of our approach in specific domains
using domain ontology as the underlying knowledge base; (c) development of
knowledge base enrichment algorithms which take into account the classification
semantics (which, for example, will define concept Stater as more specific than
concept Greek); and (d) automatic document re-classification when the structure
of the classification hierarchy changes.

References

1. Amazon: See http://www.amazon.com/.

2. DMoz guidelines: See http://dmoz.org/guidelines/site-specific.html.

3. DMoz: See http://dmoz.org/.

4. UNSPSC: See http://www.unspsc.org/.

5. Wikipedia: See http://en.wikipedia.org/.

6. Yahoo! guidelines: See http://docs.yahoo.com/info/suggest/appropriate.html.

14 Fausto Giunchiglia, Ilya Zaihrayeu, and Uladzimir Kharkevich

7. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The
Description Logic Handbook: Theory, Implementation and Applications. Cambridge
University Press, 2003.

8. S. Bloehdorn and A. Hotho. Text classification by boosting weak learners based on
terms and concepts. In Proc. of IEEE International Conference on Data Mining
(ICDM 04), pages 331–334. IEEE Computer Society Press, 2004.

9. P. Bouquet, L. Serafini, and S. Zanobini. Semantic coordination: a new approach
and an application. In Proc. of the 2nd International Semantic Web Conference
(ISWO’03). Sanibel Islands, Florida, USA, October 2003.

10. Lois Mai Chan and J.S. Mitchell. Dewey Decimal Classification: A Practical Guide.
Forest P.,U.S., December 1996.

11. S. T. Dumais and H. Chen. Hierarchical classification of web content. In Proc. of
SIGIR-00, 23rd ACM International Conference on Research and Development in
Information Retrieval, pages 256–263, Athens, GR, 2000. ACM Press.

12. F. Giunchiglia, M.Marchese, and I. Zaihrayeu. Encoding classifications into light-
weight ontologies. JoDS VIII, Winter 2006.

13. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. Semantic schema matching. In
Proc. of CoopIS, pages 347–365, 2005.

14. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. Discovering missing background
knowledge in ontology matching. In Proc. of ECAI, 2006.

15. F. Giunchiglia and M. Yatskevich. Element level semantic matching. In Proc. of
Meaning Coordination and Negotiation workshop, ISWC, 2004.

16. D. Koller and M. Sahami. Hierarchically classifying documents using very few
words. In Proc. of ICML-97, 14th International Conference on Machine Learning,
pages 170–178, Nashville, US, 1997. Morgan Kaufmann Publishers.

17. B. Magnini, L. Serafini, and M. Speranza. Making explicit the semantics hidden
in schema models. In Proc. of the Workshop on Human Language Technology for
the Semantic Web and Web Services, held at ISWC-2003, October 2003.

18. A. McCallum and K. Nigam. Text classification by bootstrapping with keywords,
em and shrinkage. In Proc. of ACL99 - Workshop for Unsupervised Learning in
Natural Language Processing, 1999.

19. G. Miller. WordNet: An electronic Lexical Database. MIT Press, 1998.
20. X. Peng and B. Choi. Document classifications based on word semantic hierarchies.

In Proc. of International Conference on Artificial Intelligence and Applications,
pages 362–367, 2005.

21. F. Sebastiani. Machine learning in automated text categorization. ACM Computing
Surveys, 34(1):1–47, 2002.

22. D. Soergel. The rise of ontologies or the reinvention of classification. Journal of
the American Society for Information Science, 50(12):1119–1120, 1999.

23. A. Sun and E. P. Lim. Hierarchical text classification and evaluation. In Proc. of
ICDM, pages 521–528, 2001.

24. Peter D. Turney. Learning algorithms for keyphrase extraction. Information Re-
trieval, 2(4):303–336, 2000.

25. S. Veeramachaneni, D. Sona, and P. Avesani. Hierarchical dirichlet model for
document classification. In Proc. of ICML, 2005.

