

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

Semi-Heuristic Negotiation Protocol
for Agent-based Mobile Service
Application

Sameh Abdel-Naby, Paolo Giorgini and Stefano Fante

February 2007

Technical Report # DIT-07-004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints Research

https://core.ac.uk/display/11829555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

LIMITED DISTRIBUTION NOTICE

This article has been submitted for publication outside of the
Department of Information and Communication Technology (DIT) –
University of Trento, and will probably be copyrighted if accepted for
publication. It has been issued as a Research Technical Report for early
dissemination of its contents. In view of the transfer of copyright to the
outside publisher, its distribution outside of DIT prior to publication should
be limited to peer communications and specific requests. After outside
publication, requests should be filled only by reprints or legally obtained
copies of the article.

.

Semi-Heuristic Negotiation Protocol for Agent-based Mobile Service Application

Sameh Abdel-Naby, Paolo Giorgini and Stefano Fante
University of Trento, Italy.

{sameh, paolo.giorgini, stefano.fante}@dit.unitn.it

Abstract

In this paper we present a new negotiation protocol
that assists multi-agent systems to differently approach the
achievement of complex tasks. In particular, we narrow our
research scope to focus on the situation where a multi-agent
system is serving lightweight devices through advanced
communication methods (e.g., Bluetooth). Like many other
schemes, our model provides agents with a monetary sys-
tem and a mechanism for feedback calculation. We aim at
accelerating agent’s interactions while resolving end-user
composite tasks. Once its efficiency is proven, our proto-
col can be integrated in a scenario where multipart mobile-
based services are offered to holders of lightweight devices.

1. Introduction

Lightweight devices such as cellular phones and PDAs
are increasingly proving their necessity and reliability. The
new era of telecommunication technologies is putting nor-
mal lightweight devices in a situation to provide, virtually
but not physically, portable offices. Nowadays, people can
go anywhere carrying pocket devices that allow them to
check their emails, exchange faxes, surf the internet, edit
documents and, do shopping. Services are provided through
quite simple, user-friendly and well-developed interfaces,
and almost costless in regard to the value of services users
are getting. Standard mobile services that never existed be-
fore are becoming a must (e.g., SMS and MMS), and ad-
vanced ones that newly existed are now highly desired (e.g.,
Cinemas Guides and Group Gaming).

Several efforts in literature, for example [3], tackled the
scenario where a visiting professor is entering to a univer-
sity and her cellular phone establishes a connection with a
localized Multi-Agent System (MAS), this system synchro-
nizes her agenda with the calendars of people interested to
meet her. These people are moving within a university car-
rying their lightweight devices or, they have previously del-
egated an agent to act on their behalf. Automated system

agents cooperate and negotiate available times to create a
suitable agenda for everybody. Accordingly, this professor
along with meeting requesters is forming a Mobile Virtual
Community [7] that is location-based and MAS supported.

Another scenario (for example, [1]) that had several ap-
proaches in MAS literature is related to tourists that are
making their usual sightseeing trips. Tourists turn out to
be system users by simply enabling the Bluetooth function-
ality in their pocket devices, and using a preinstalled ap-
plication that communicate with distributed MAS servers,
they are able to retrieve all the useful information related to
the places they are visiting. Moreover, for each single item
available at a specific museum, there is a software agent
that represents it and holds its information, this agent can
cooperate with other agents to fulfill certain complex user
desires (e.g., where this item was originally found, relevant
sightseeing’s opening times and how to go there?).

End-users in former scenarios are performing a set of
application instructions that are accessible through their
lightweight devices. These instructions lead them to cre-
ate a software agent that is delegated to reflect their specific
desires and characteristics. Eventually, the agent would be
attached to the system and it starts wandering to fulfill user
desires. Then a matchmaking process will take place; an
agent that carries specific information would look for an-
other agent that may add on extra details so a task gets com-
pleted. Sometimes, an agent may not find his completer;
therefore, there are complex scenarios where cooperative
agents would merge to help each other.

When software agents interact properly, an extra capa-
bility for people to cooperate is shaped. A negotiation lan-
guage that is applied among distributed agents is helping
them to understand each other, discuss their desires and fi-
nally achieve their objectives. Several of the negotiation
protocols proposed by scholars are inspired from sociolog-
ical, political and psychological studies about human nego-
tiation in real-life situations such as Auctions, Peace agree-
ments and Bidding theories.

We contribute to existing literature by presenting a ne-
gotiation protocol that addresses a specific situation. We
focus on a MAS that delivers certain location-based service

to users of lightweight devices, relying on device commu-
nication capabilities. Although, there are some restrictions
that are given by users (e.g. time to achieve) and others
given by the technology used (e.g. Bluetooth data exchange
rate), still the MAS architecture would ensure reliable ser-
vice and increasing system usability.

The remainder of this paper is structured as follows.
Next section emphasizes our research motivation. Section
3 looks at the building blocks of our negotiation protocol.
Section 4 applies the proposed negotiation protocol on a
case study. Section 5 highlights the related work. Section 5
demonstrates our future work and concludes the paper.

2. Motivating Scenario

In a MAS responsible of delivering a specific service
content to lightweight devices, a set of uncooperative agents
that are self-interested and benefits maximizers is located;
given that, this set contains two different types of agents,
BUYER AGENT (BA) and SELLER AGENT (SA); each
holds information related to its role in the system, a BA
keeps data that helps SA increases his profit, and the data
SA keeps helps BA to achieve the overall objectives of the
system. A matchmaking phase is passed and a BA has found
the appropriate SA, both agents try to maximize their re-
turns through a negotiation process. If agents predefined
behavior is strict and intelligent ”usual case in MAS” this
will lead both agents to reach a situation of disagreement.

The mentioned above refers to the fact of having two suc-
cessfully matched agents and no useful results are gained.
The existence of autonomous agents in MAS is necessary
to increase system reliability, in the same time, interactivity
between all application entities is highly desired, but an un-
fruitful negotiation process among involved software agents
is what a complete application should avoid, and this is what
we focus our research on.

In figure 1, we address the motivating scenario driving
our research towards the introduction of new negotiation
protocol.We assume that three different users are interested
in using the same service architecture in managing their
desires to obtain a certain item. This service is limited to
the demand and supply of a specific product among system
users only (e.g., available care seats in a carpooling sys-
tem or a used book in a trade environment). These users
are using their lightweight devices to communicate with the
service architecture and, each is adapted to use its device-
based application. One of the users may be the giver of this
product and the others are the requesters. We are at the point
where the number of acquisition requests is greater than the
number of offered items.

Each of the involved lightweight devices is configured to
utilize a specific telecommunication method to access the
service, a cellular phone my exchange service requests us-

Figure 1: Different devices are using different communica-
tion methods to achieve service interaction.

ing SMSs, a notebook may access the service through a ded-
icated web interface or a distributed Bluetooth / Wi-Fi ac-
cess points. If a user is offering a single item that more than
two requesters are interested to have, also each requester
may ask for more than a single unit of the same item, the
managing MAS will drive these three users to a complex sit-
uation by not properly deciding upon the ownership of the
offered item. In this situation, we are at the pre-agreement
point where the service preferences have matched and con-
flict is located in the acquisition time phase.

An auction mechanism can be invoked to resolve such
a complex situation, this mechanism can be restricted with
a time constraints, and it can be technically adapted to en-
sure ultimate benefits gaining for both service supplier and
demander. The invoked mechanism can be semi-heuristic
by storing similar auctions results, these stored results are
those who involve same system users more than a certain
number of auction invocation. Following to that, the paper
explains the proposed agent’s semi-heuristic negotiation al-
gorithm that helps in achieving better results in complex
scenarios.

3. The Semi-Heuristic Negotiation Protocol

In this section we propose our negotiation protocol that
assists agents in a mobile environment to establish proper
communications, achieve better results, and learn from
frequently repetitive task.

Seller Agent procedure()
1: bestValue = 0;
2: numLoop = 0;
3: auctionIsOpen = true;
4: askBAToStartAuction(bestPreOffer);
5: while (auctionIsOpen) do
6: waitForOffers();
7: val = calculateBestValueOfFunction();
8: if (numLoop == 0) then
9: bestValue = val;
10: numLoop++;
11: else
12: if (val > bestValue) then
13: bestValue = val;
14: requireNewOfferToBuyers(bestValue);
15: numLoop++;
16: else
17: if (val <= bestValue) then
18: quitAuction();
19: informWinners();
20: end while
21: quitAuction();

Algorithm: 1 The procedures taken by the Seller Agent.

Given a set of lightweight devices that are capable of commu-
nicating a specific service request with central Service Oriented
Architecture (SOA) via distributed access points, and given that
these access points and central servers are providing mobile users
with location-based service. The lightweight devices are used
here as a tool to clarify users’ preferences and, consequently a
Mobile-to-Server Link Agent (MSLA) is configured. This par-
ticular agent carries specific user desires and it is capable to move
from lightweight device, through the nearest access point, to end at
server side. When the MSLA arrives to one of the central service
servers, its carried desires are forming an autonomous software
agent that reflects certain characteristics. This MSLA is a con-
figuration file that is produced by the lightweight device service
application and links together the device used with the SOA.

Eventually, a phase where system verification occurs is placed.
The arrival of a new agent to the server side requires the running
MAS to verify whether this agent is new and to be bootstrapped or,
it already exists and it meant to update the behavior of a previously
running agent.

A group of autonomous agents that are delegated by several
users to achieve varied tasks in different times is formed at the
server side of the architecture. Given that some of the tasks to be
achieved are complex and require multi-agent coordination, thus a
negotiation scenario that requires agent-to-many is formed. Still
some of tasks are simple and require only agent-to-agent coopera-
tion. In agent-to-agent situations, the negotiation protocol applied
is simple and efficient; it is the same as the market demand and
supply. When the supplier and the demander are matched, a mu-
tual benefits exchange is achieved. This usually occurs because
only one demander and one supplier are located within the service

range of each. Unsurprisingly, in agent-to-many it is more com-
plex.

In Algorithm 1, we show the algorithm used on the Seller
Agent (SA) side to invoke and manage a specific auctioning situa-
tion. From line 1 to line 3, both SA variables, bestValue
and numLoop, are initially set to "0". In line 4, the seller
agent requests the Buyer Agent (BA) to start the auction by send-
ing the value of the best offer previously obtained during the pre-
offer session. From line 5 to line 7, the SA waits to receive
new offers from all involved BAs, and a "val" is created as a
function to calculate the currently obtained best-offer-value. From
line 8 to line 10, if the algorithm had its first round and a
"val" is gained, the "bestvalue" in line 1 is now updated
with the value of "val" and the number of loops "numLoop" is
gradually incremented.

Otherwise, since it is not the first loop, from line 11 down
to line 19, the SA checks whether the "val" function is
increasing in comparison with the previously obtained best value
or not. At this point, two scenarios may occur, if "val" is greater,
the value obtained from the concerned BA is communicated with
other BAs and, they are asked to communicate new offer if
applicable, then the algorithm is restarted, line 14 and line
15. If the "val" is less or equal to the best value previously
obtained, the auction is suspended and the BA currently bid the
"bestValue" wins, line 17 to line 19. Finally, the
kernel of the algorithm is terminated and the auction scenario is
ended, line 20 and 21. Later to that, we explain the Buyer
Agent behavior in response to SA.

Buyer Agent procedure()
1: BABestOffer = 0;
2: sent = false;
3: while(auctionIsOpen) do
4: sent = false;
5: bestOffer = waitForRequest(bestPreOffer);
6: decision = decideIfAcceptOrRefuse();
7: if (decision == accept) then
8: while(modificationsArePossible && !sent) do
9: newVal = reviewParameters();
10: if (newVal>BABestOffer&&newVal>bestOffer) then
11: BABestOffer = newVal;
12: sendOffer(BABestOffer);
13: sent = true;
14: if (!sent && !modificationsArePossible) then
15: sendOffer(BABestOffer);
16: end while
17: else
18: if (decision == refuse) then
19: quitAuction();
20: end while
21: quitAuction();

Algorithm: 2 The procedures taken by the Buyer Agent.

In Algorithm 2, we show the algorithm used on the Buyer
Agent (BA) side to determine the significance of its role in
the impending auction. In line 1 and line 2, a variable
"BABestOffer" that carries the BA best offer value is created

and set to "0". A variable "sent" is initially set to "false"
and it changes to "true" only after a BA has communicated his
offer. From line 3 to line 6, while the auction is open, BA
holds its offer transfer until a communication was received from
the Seller Agent (SA) asking for an auction participation deci-
sion. The BA puts the results from the evaluation function into the
"decision" variable.

From line 7 to line 9, if the BA accepts the call for auc-
tion, a self-revision for the holding parameters is made. This revi-
sion refers to the BA insistent to obtain the auctioned item; there-
fore, it is made with the intention to show extra negotiation flexi-
bility. The part from line 10 and down to line 13 refers to
the comparison made by the BA to put together the newly obtained
value and the existing one. If the new value obtained is greater than
the previous one and, greater than the "bestOffer", the future
offered value "BABestOffer" is set to be new one "newVal",
and the offer is sent to the concerned SA.

Line 14 to line 16, if the self-revision made by the
BA has yielded a disappointing result and the value gained is
the same as the previous one, this specific BA does not send
the previous value if "modificationArePossible"
is "true". The BA continues to review the carried
parameters until "modificationArePossible" be-
comes "false" or it communicates new best offer. If
"modificationArePossible" stays on "false" and
parameters are not sent, BA communicates same previous offer.

However, from line 17 to 19, if BA refuses the auc-
tion call, the algorithm terminates and the auction involves
this specific agent ends. If the user has an inflexi-
ble behavior, the algorithm passes the first condition on if
(decision == accept) but the condition of the succes-
sive while (modificationArePossible && !sent) re-
turn "false". The method "decideIfAcceptOrRefuse"
return "refuse" if for instance, a BA has a lot of time before the
deadline to achieve the task; therefore, it decides to refuse auction
participation. Finally, the kernel of the algorithm is terminated and
the auction scenario is ended, line 20 and 21.

Auctioning among agents requires high level of agent-to-user
interactivity and increased level of network resources consump-
tion; therefore, agents’ intelligence appears when a repetitive sce-
nario occurs. If system user is configuring the mobile-based ap-
plication to repeat the same service request on daily or weekly
basis (e.g., common in mobile news exchange service or carpool-
ing), the created demanding agent would participate in system auc-
tions only if needed. Once an agreement is settled between a spe-
cific supplier and a demander at a certain price, the next time this
demander agent will first look-up the very exact supplier agent,
which has potential agreement than others in early agreement.
This is due to learning agent behavior that maintains an array that
saves last successful agreement details.

4. Case Study

ToothAgent [2] is an example of a Multi-agent system (MAS)
that allows students within a university main sections (e.g. library,
main hall or classroom) to use any of their lightweight devices
to exchange used books requests and offers. Once an agreement

is reached, the system helps students to agree on meeting places
and times. This is all done through normal Bluetooth communi-
cations that take place between both, user and distributed servers.
Agent-oriented programming techniques are used to form a Mo-
bile Virtual Community [7]. This helps the system, including
its Intelligent, Mobile and Autonomous agents to accomplish the
matchmaking and exchange of requests and, support the price ne-
gotiation phase.

An example of a MAS implementation that provides its users
with a possibility to utilize their lightweight devices to offer/look-
up shared car rides is Andiamo [11]. To understand the Rideshare
service or ”Carpooling” as stated in literature; it is a method to
reduce the use of cars in a specific town or area, this usually takes
place by having a car owner who uses his/her car to move from a
place to another, and another person who is interested to go some-
where along the car owner’s way to destination, and at the same
time the ride seeker is willing to share the ride cost with the car
owner. Based on the use of location and available car seats, Andi-
amo allows a substantial number of people to share car rides, using
their cellular phones. This system would, among other advantages,
rationalize energy consumption, save money, and decrease traffic
jams and human stress, and eventually make a significant improve-
ment in human life.

In figure 2, we explain the mechanism of the proposed algo-
rithm using a mobile-based rideshare service architecture. In our
example, we primarily assume that a car ride giver (Seller Agent)
- SA Started - has communicated and submitted his offer de-
tails to the Multi-Agent System, this MAS is managing the service
requests exchange among connected lightweight devices, and we
assume that only one available car seat is given by the car owner,
and a matching phase has resulted three or more interested ride
seekers that are all willing to share the given ride cost with the car
owner.

As shown in figure 2, from this point on - SA Ready, the
agent acting on behalf of the ride-giver is responsible of resolving
this complex situation by: 1) according to the parameters given
by agents of the ride seekers, a calculation process is performed
and each agent is assigned a value, 2) a comparison between the
yielded values is made and sent to ride seekers, then a call for
auction is made, 3) a request to all interested agents to send new
offers is communicated.

Each agent acting on behalf of a ride seeker is free to choose
whether to participate in the auction or not. Hence, an agent has
decided to skip an auction, the negotiation process involving both
parties is ended - SA Ending - BA Ending. This may hap-
pen because another ride giver was located by this seeker agent,
the user himself has changed his mind or restricted behavior was
applied to this agent. But once a seeker agent has decided to
go through the auction - BA Ready, a self-revision process for
the carried parameters is made - BA Computation, and then a
value calculation is reached and compared by the one sent by the
giver at the algorithm invocation phase. The seeker agent tries to
modify some of the carried parameters in accordance with users’
interests, so a new compromise is reached.

Results reached after parameters modification - BA Ready
to Respond will indicate if a new auction winning potential is
created or not. Then, new or the same old parameters are com-
municated back with the ride giver agent (SA), depending on the

Figure 2: Auction call and termination in a Rideshare MAS
service architecture.

potentiality found earlier to this step - BA with Increased
Function Value or BA with Same Function Value.
The ride giver agent re-evaluates the received parameters, in ad-
dition to the parameters newly received from seeking agents that
were not involved from the beginning, if any. Then, announcement
is made for the only available car seat winner. Accordingly, the
auction terminates and the entire negotiation process ends. The
mechanism can be repetitive only if no agreement situation was
found and the time to achieve the actual car ride is yet not ap-
proaching.

The operating MAS will take the responsibility of storing the
auction initiator and the auction winner. The invocation of an auc-
tion and the exchange of messages among involved agents con-
sume time and network resources. To rapidly resolve future com-
plex situations, if an auction result is repeated certain times, the
system would automatically count the winning ride seeker agent
as future auctions winner, or one of the winners if more available
seats were given. This happens only if exact auction scenario (e.g.
same ride preferences, same participants) is about to be invoked.

5. Related Work

A significant part of the research conducted in Distributed
Artificial Intelligence (DAI) focuses on the coordination among
objects located in distributed environments. Thus far, a par-
ticular research topic under DAI, which is Distributed Problem
Solving (DPS), has proposed several negotiation strategies that
mostly aimed at the construction of what we call Distributed Ob-

jects Communication Language (DOCL). These negotiation lan-
guages are, among other advantages, helping to form a cooperative
environment that successfully achieve multipart tasks and deliver
refined services, and it is also allowing objects to heuristically im-
prove their negotiation behavior.

In Multi-Agent Systems (MAS) scholars have tried to address
the problem of negotiation by reflecting real human negotiation
in a computing background [4, 5, 6]. These studies were mainly
carried out because of two abstract reasons, 1) a software that en-
tirely acts on behalf of its holder is the ultimate goal that many
researchers’ visions are chasing, and that is exactly the main char-
acteristic of a Software Agent. And 2) for numerous applications
to automatically interact and achieve complex tasks is up till now
another vision to chase, and this has raised the need for a negotia-
tion language to be used among applications to facilitate their in-
teractions. These two prior reasons are forming together the need
to design the negotiating agents that are able to meaningfully in-
teract and talkatively negotiate to maximize their user’s benefits.

In their book [9], J. S. Rosenschein and G. Zlotkin are doing
what they call Social Engineering; they have dedicated part of
their research on how designers of software agents would react to
the development process of Multi-agent systems and, the use of
certain design steps regarding the accomplishment of suitable ne-
gotiation protocol, which in return will lead to appropriate inter-
actions among several MASs. They emphasized the urgent need
to look at agents as the new era of human ”surrogates”, and this is
because of the nowadays speed taken to approach full system and
machines delegation.

In Game Theory [12], a clear approach was taken to study
the rational behavior among self-interested agents. Different soft-
ware designers are working on the development of several soft-
ware agents; these development processes will only produce an
agent that is reflecting designer’s personal behavior. Although the
agents produced are self-interested and autonomous, they are go-
ing to interact with different agents that are designed differently
and contain different level of autonomous performance and com-
plexity. An agent that is rationally driven within a system entities
will make goals and procedures to achieve them clear for all sys-
tem actors, but it will apply an atmosphere of firmness and inflexi-
bility in formed interactions. This earlier discussion has raised the
confrontation of two important design aspects, would it be more
appropriate to design an agent that is deterministic or an agent that
is flexible?

When Distributed Artificial Intelligence (DAI) started to have
its own structure as independent research area, Reid G. Smith
has contributed significantly to this structure formation by hav-
ing his PhD thesis defense, in 1978, discussing a new perspective
in achieving proper negotiation and interactivity among multiple
automated network-nodes. Later to that, an important contribution
was added to literature regarding the same topic, which is Con-
tract Net [10]. When applied to multi-agent systems, the Con-
tract Net protocol assumes that each node in the network is an
agent that is seeking another completer-agent that may, together,
form a coalition to resolve a complex task. This coalition can yield
some results that can not be achieved if each agent is operating
separately.

When the exact rare resources are to be used by several agents,
an Auction [8] is formed between these agents so that system re-

sources are utilized at the highest possible value, and certain ne-
gotiation language that perfectly applies in this situation is used.
Due to issues related to equality, ordering and planning, Auctions
have gained a wide range of applications in multi-agent systems.
Four major auction types that are widely recognized; 1) English,
2) Dutch 3) First-price Sealed-bid, 4) Vickrey’s Mechanism or
Second-price Sealed-bid. These auctions are reflecting real hu-
man behavior in different auction styles and similarly apply it to
agents.

6. Conclusions and Future Work

Negotiation among agents that are serving computer based ap-
plications differs from these used when lightweight devices are
involved, and because we are rapidly approaching the era of
lightweight services, a great focus and immediate redirection is
realized towards the achievement of cooperative agents in mobile-
based service architectures. In this paper we explained the motiva-
tion behind our interests to develop new agents’ negotiation proto-
col that serves mobile-based applications. We demonstrated the
research conducted in reaching cooperative MAS architectures,
and the negotiation protocols previously proposed by scholars. We
proposed our semi-heuristic negotiation protocol, and we applied
it on Rideshare service architecture.

Our future research aims at increasing the usability of agent-
based mobile service application, and accelerating the mobile ser-
vice content delivery process. This would take place by: (1) In-
tegrating the newly proposed negotiation protocol with different-
purposes architectures that supply lightweight devices with certain
mobile service. (2) Simulating agent’s behavior in achieving com-
plex tasks while applying our negotiation protocol, and performing
the same task using existing negotiation protocols. This will help
us observe differences in overall application performance and re-
fine the proposed protocol. (3) Outlining the software agent design
aspects that combine between both, the new negotiation protocol
and the nature of the content offered to end users mobile devices.
(4) We intend to study the possibility to let developers of software
agents able to customize the negotiation protocol inputs so it fits
into different services modules.

7. Acknowledgement

This work has been partially supported by different projects
involvements: EU-SERENITY, PRIN-MEnSA, PAT-MOSTRO,
PAT-STAMPS, and PAT-UNIQUIQUE SUUM. We also thank Ar-
sLogica for the unabated cooperation and support given to innova-
tive and creative ideas.

References

[1] M. Bombara, D. Cali, and C. Santoro. Kore: A multi-agent
system to assist museum visitors. In Proceedings of the
Workshop on Objects and Agents (WOA2003), pages 175–
178, Cagliari, Italy, 2003.

[2] V. Bryl, P. Giorgini, and S. Fante. Toothagent: A multi-
agent system for virtual communities support. In Proceed-
ings of The Eighth International Bi-Conference Workshop

on Agent-Oriented Information Systems (AOIS-2006), Hako-
tade, Japan, May 8-12, 2006.

[3] O. Bucur, P. Beaune, and O. Boissier. Representing context
in an agent architecture for context-based decision making.
In Proceedings of the Workshop on Context Representation
and Reasoning (CRR’05), Paris, France, 2005.

[4] K.-M. Chao, R. Anane, J.-H. Chen, and R. Gatward. Ne-
gotiating agents in a market oriented grid. In Proceedings
of the 2nd IEEE/ACM International Symposium on Cluster
Computing and the Grid, pages 436–437, IEEE Computer
Society, 2002.

[5] N. Jennings, P. S., N. P., and S. C. On argumentation-based
negotiation. In Proceedings of the IWMAS, MIT Endicott
House, pages 1–7, Dedham, Massachusetts, USA, October
12-15, 1998.

[6] S. Kraus. Negotiation and cooperation in multi-agent en-
vironments. Artificial Intelligence journal, Special Issue on
Economic Principles of Multi-Agent Systems, 94(1-2):79–98,
1997.

[7] A. Rakotonirainy, S. W. Loke, and A. Zaslavsky. Multi-agent
support for open mobile virtual communities. In Proceedings
of the International Conference on Articial Intelligence (IC-
AI 2000), Las Vegas, Nevada, USA, pages 127-133, 2000.

[8] K. Reynolds. A survey on auction types. Agorics, Inc., 1996.
[9] J. S. Rosenschein and G. Zlotkin. Rules of Encounter:

Designing Conventions for Automated Negotiation among
Computers. The MIT Press, 1994.

[10] R. G. Smith. The contract net protocol: High-level commu-
nication and control in a distributed problem solver. IEEE
Transactions on Computers, C-29(12):1104–1113, Decem-
ber, 1980.

[11] F. Sottini, S. Abdel-Naby, and P. Giorgini. Andiamo: A
multi-agent system to provide a mobile-based rideshare ser-
vice. Technical report, Informatica e Telecomunicazioni,
University of Trento, 06-097.

[12] J. von Neumann and O. Morgenstern. Theory of Games and
Economic Behavior. Princeton University Press, 1980.

	TechReport.pdf
	SamPaolStef_UNITN.pdf

