View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Unitn-eprints Research

UNIVERSITY
OF TRENTO

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

ANDIAMO: A Multiagent System to Provide a
Mobile-based Rideshare Service.

Francesco Sottini and Sameh Abdel-Naby and Paolo Giorgini

December 2006

Technical Report # DIT-06-097

https://core.ac.uk/display/11829543?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

LIMITED DISTRIBUTION NOTICE

This article has been submitted for publication outside of the Department of Information and
Communication Technology (DIT) — University of Trento, and will probably be copyrighted if
accepted for publication. It has been issued as a Research Technical Report for early
dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of DIT prior to publication should be limited to peer communications and
specific requests. After outside publication, requests should be filled only by reprints or
legally obtained copies of the article.

ANDIAMO: A Multiagent System to Provide a
Mobile-based Rideshare Service

Francesco Sottini, Sameh Abdel-Naby, and Paolo Giorgini

DIT - University of Trento
{francesco.sottini, sameh, paolo.giorgini}edit.unitn.it

Abstract. A diverse range of architectures and concepts has been pro-
posed by scholars within the theme of Car Pooling. Most of these studies
have attempted to tie together two major elements: the need for people to
move from a place to another, and the resources used to accomplish this
action. Based on the use of location and available car seats, Rideshare
systems allow a substantial number of people to share car rides. These
systems would, among other advantages, rationalize energy consumption,
save money, and decrease traffic jams and human stress, and eventually
make a significant improvement in human life. However, system acces-
sibility has prevented these architectures from being widely reached. In
this paper, we present an agent-based Rideshare system that is accessi-
ble via lightweight devices (mobile phones and PDAs), where Bluetooth
technology is adopted to reflect users’ locality. The paper illustrates the
overall infrastructure of the system, the specific protocols it uses, and
the algorithms that it implements to recognize the Multiagent System
(MAS) negotiations.

Keywords: Multi-agent Systems, Carpooling, Mobile Services, Bluetooth,
Lightweight Devices.

1 INTRODUCTION

Rideshare is a method to reduce the use of cars in a specific town or area.
Reducing car usage helps in turn to decrease pollution and prevent some other
related problems. This usually takes place by having a car owner who uses his/her
car to move from a place to another, and another person who is interested
to go somewhere along the car owner’s way to destination, and at the same
time the ride seeker is willing to share the ride cost with the car owner. This
Rideshare interactions constitute a reliable means of transportation for many
people in an increasing number of countries, and it is usually managed and
organized through a third party website that uses a web-based technique to
match requests. Consequently, different research activities were carried out by
governments in different parts of the world to encourage mobility in general
and Rideshare services in particular. The key motivations behind providing this
service is usually saving the cost of transportation, reducing the pollution coming
out of cars, and avoiding the formation of traffic jams and the waste of time.

In addition to the necessity to be always connected to the internet, web-
based Rideshare applications have other several disadvantages (e.g., privacy and
preferences matching). Therefore, ease-of-use is only realized in using mobile
based applications. Lightweight devices such as PDA and Cellular phones are
ubiquitous and their uses has recently extended traditional communications to
the so-called Mobile Virtual Communities [1] which facilitate the collaboration
and the information exchange among mobile users that are physically located in
one environment or remotely connected. Moreover, such communities are flexible
to allow new users to join and existing ones to leave.

A number of mobile-based Multiagent applications have been proposed in the
literature. MobiAgent [2] is a framework that uses Agents to allow users to access
various types of services, ranging from web search to remote applications control,
directly from their mobile phones or PDAs. Once the user sends a request for
a specific service, a Personal Agent (PA) is created in a centralized server, then
the user can disconnect from the network while the agent continues to work on
his/her behalf. Afterward, the user is notified via SMS that some results are
available and consequently the user reconnects to the network and downloads
the results. The theory of Multiagent systems (MASs) has already been applied
in the area of transports management and traffic reduction.

Remarkably, the areas of major influence for MAS are in the analysis and
description of traffic systems, which increase the autonomy of traffic components
and facilitate the integration of several frameworks [3], (e.g., an emergency res-
cue management centre that links up accident, pollution and decision support
modules). In classical web-based Rideshare management systems [4], users are
represented by agents and a super-agent is responsible to match user’s requests,
but the final decision is yet taken by users.

This paper presents an agent-based framework that implements a Rideshare
service and uses the ToothAgent [5] architecture, where an infrastructure of a
Multiagent application is accessible via lightweight devices that are Bluetooth-
enabled.

This paper proceeds as follows: Section 2 outlines our motivation by explain-
ing a running example. Section 3 explains the general framework of applying a
Rideshare service using MAS architecture. Section 4 introduces the implemented
system architecture and explains it in detail. Section 5 concludes the paper.

2 A RUNNING EXAMPLE

We illustrate our motivation through a scenario that briefly outlines the impor-
tance of Rideshare service for lightweight devices users. In Figure.1/a; There are
three different locations (or meeting points) that are connected and easily reach-
able by cars. Passengers and car drivers are randomly distributed along these
locations, and both parties share common interests (i.e., desired destinations,
common commuting times and locations).

In this scenario, The first location is the Train Station (A), second one
is the Bus Stop (B) and the University (C). BOB and ALICE are two

RIDESHARE SYSTEM |

;)
HASARCHETECTURE

1 BOB ,.: JOHN Interface Personal Implicit |

- Agents Agents Culture Agent
a1 s /* aB’ ¥ -

‘Ao A JADE PLATFORM
K N ., # -.9'
' Agent Message Direct.arv
,i ALICE 2 Sy;tem teo T y Port o o Facilitator
l-_-,: Meeting points 4
(a) First Figure (b) Second Figure

Fig. 1. These two figures show the Rideshare Motivation Scenario and The Three-layer
Model

persons who are located in Train Station, while JOHN is another person
located in Bus Stop. These persons have several interests that lead them to
end at the same final destination, University. If BOB is the only car-owner,
thus using BOB’s car might be the appropriate means of transportation for the
three of them, especially if a mobile-based proper Rideshare system is used that
allows all of them to reach an agreement on-the-fly. Accordingly, BOB may put
some conditions on sharing his/her ride with others, in addition to the cost that
he/she will share with the others, while ALICE and JOHN can simply reach
their destination.

According to the above scenario, several problems are practically critical: the
computational determination of the destinations and the ways taken to reach
them, distances and their estimated instances, time-to-wait for the ride to be
achieved, and time-to-spend on the ride itself.

3 THE RIDESHARE FRAMEWORK

Within a Rideshare management system, major parts are achieved through the
negotiation process of agents. Autonomous agents that take part of a Multi-
agent system, which is serving a mobile-based application, are well-known for
their capabilities to achieve complex organization and negotiation tasks within
a particular community. Therefore, the application of autonomous agents in our
system is essential.

The general architecture of a Rideshare management system consists of a
number of multi-agent platforms accessible via Bluetooth-enabled lightweight
devices. The user can access the system from a number of Bluetooth access points
directly connected to the Multiagent platforms. For each access point we have
an implemented Multiagent system where Personal Agents (PA) of car owners
and ride seekers interact and negotiate potential rides. Moreover, the Rideshare
framework is conceived as a layered approach that allows the implementation of
a tangible Rideshare system. As shown in Figure.1/b the model has three layers:

(1) an agent platform (JADE); (2) Multiagent architecture with the Implicit
Culture module; and (3) the superior layer that includes the Rideshare system.

3.1 THE MAS ARCHITECTURE LAYER

The MAS is implemented in JADE (Java Agent Development framework) [6]
a FIPA-compliant [7] framework for multi-agent systems development. JADE
provides: (1) an Agent Management System (AMS) that allows for having agent
containers in different hosts (distribution), (2) a Directory Facilitator (DF) that
provides a yellow-page service, and (3) a Message Transport System (MTS)
that supports the communication among agents. This part of the architecture
is responsible for the lightweight devices, receive and process a user’s requests.
There is a one-to-one correspondence between agents and mobile devices (users).
An agent is identified by a unique Bluetooth address of the corresponding mobile
device. The same device may have many PAs within different platforms and
through diverse access points. When the user request is received, the platform
checks whether the PA of the device exists. If not, a new PA is created. Each PA
communicates and interacts with other agents in order to find ”partners” and
the PA remains until at least one request to satisfy is found.

INTERFACE AGENTS (TA). Interface Agents are computer programs that
employ certain techniques to provide assistance to a user dealing with a particu-
lar computer application [8]. In our case, each of the Interface Agents (IA) that
is implemented in our framework has its main three features: knowledge acquisi-
tion, autonomy and collaboration. That will make IA within this platform phase
manage the creation of new services. These agents are named ” AddNewSer-
viceAgent”, and they receive from the preceding layer the service request and
user details parameters regarding a requested trip (Bluetooth address, user in-
formation, request parameters), then transmit this data to the corresponding
PA. This TA remains in the overall system only to achieve this action and then
vanishes. Shortly, a new agent is created for every service request. At this point,
we consider that an Interface Agent will be responsible of adding a new ser-
vice request to the overall system, the transmission protocol between a Personal
Agent and an Interface Agent is summarized in four main steps. 1) The NewSer-
vice Request that is issued by the Interface Agent and directed to the personal
agent. 2) The acknowledgment response from the Personal Agent. 3) NewUser-
Info that is sent again from the Interface Agent to the Personal Agent. 4) The
final ”accept” message from the Personal Agent to the Interface Agent.

PERSONAL AGENTS (PA). This Agents type is considered to be the
kernel of the Rideshare service. These Agents represent the system users and
the work done on their behalf. The interaction among these agents includes
two main parts: (1) the elaboration of user’s requests, and (2) the negotiation
among agents. Afterwards, a PA that elaborates a request for a ride is called a
Passenger while a PA that elaborates a ride offer is called a Driver.

Server: Expert

Mobile
Agent

Device

Server: Personal
Agent

1:0ffer/Seeker request
7| 2:0ffer/Seeker request

3: Store request data
(by Observer)

4: lab

| (by Composer)

_ 5: Elaborated r

Fig. 2. User-Request Elaboration Process

The initial step in this phase of the architecture ensures that the request is
elaborated and detailed. Looking back to our motivation scenario (Figure.1/a),
the user ALICE can initiate a request I’m asking for a ride from Train Station
to Bus Stop " without indicating any exact meeting point that could be close to
the Train Station, which make the request incomplete. Thus, the PA makes the
request clearer by using the information about what meeting points other users
have recently indicated for the same location. Another scenario may occur: a
request by user BOB could be "I would like to serve passengers of a feedback
value of 100” and, at the same time, no users in the system have a feedback
value of 100. In this case, the PA should reduce the feedback value, asking for
the system user permission.

In Figure.2 we present the interaction protocol used by agents during the
request elaboration phase. On each platform there is a dedicated agent, called
Expert Agent (EA), which contains the System for Implicit Culture Support
(SICS) [9]. The SICS consists of three components: the Observer, which uses a
database of observations to store information about actions performed by users
in different situations; the Inductive Module, which analyzes the stored observa-
tions and applies data mining techniques to find a theory about the community
culture; the Composer, which exploits the observations and the theory in order to
suggest actions in a given situation (Ezplained more further ahead). After a PA
receives its user’s request (step 1), it sends it to the Expert Agent (step 2). On
the EA side, an observer component of the SICS extracts data from the request
and stores it in the database of user’s observed behaviors (step 3). Composer
component estimates the real value for parameters if the input is incomplete or
wrong (step 4). For the elaboration process, the Composer uses the information
about the past user’s actions, obtained from Observer and analyzed by Inductive
module. In the end the user’s PA receives back the elaborated request (step 5),
which it processes during the second phase.

Finally, the SICS needs to gather information about the users behavior. In the
described system to observe user’s behavior, Expert Agent (EA) extracts data
from the requests it gets from the Personal Agent (PA). Two other additional
sources of observation could be added. The first is the database where the results

MA Platform: MA Platform:
Offerer Agent Seeker Agent

< 1: CFP

—>»| 2: REFUSE/ACCEPT
) 3: CONFIRM

X X

3: REFUSE/ACCEPT

4: CONFIRM »

X X

2: PROPOSE)

< 3: PROPOSE

Fig. 3. A Typical Rideshare Transmission Protocol

of agent negotiations are stored. This storing takes place every time two personal
agents agree on sharing a trip and send their proposals to the database. The
Expert Agents extracts necessary information (e.g., departure, arrival place and
meeting points) from the proposals and stores them in its internal database. The
second source is the user’s feedback. More to the point, the system assumes that
only if the potential partner is contacted the feedback is positive, otherwise it is
negative. The feedback information is sent to the Expert Agent as soon as the
user establishes connection with the corresponding server via his mobile device.

The second step taken in this phase is concerned with the interaction mech-
anism that is based on the following parameters of the trip, which applies to a
Driver as much as to a Passenger: Request Type, Departure Time, Departure
Date. Departure Place, Passenger Type, System Type. Arrival Place, Offset, De-
parture Meeting Point. User Feedback, Persons Number, Arrival Meeting Point.

In Figure.3 we demonstrate the typical transmission protocol used for the
Rideshare service, where the Multiaget platform is located to server the interac-
tions between an Of ferer Agent (i.e. Ride Giver), and a Seeker Agent (i.e.
Ride Seeker). A sequence of steps are taken between both, giver and seeker, in or-
der to achieve a successful Rideshare (e.g. Refuse/Accept, Propose, Re-Propose
and Confirm).

The next part illustrates the interaction process phases made between two
agents to reach a trip/ride agreement, taking into consideration that not only one
linear decisional process but also a sequence of negotiation phases is available, as
if each sequence is related to a group of parameters. The possibility to apply an
automatic or a semi-automatic service mode implies that the interaction between
two agents can be either interrupted to prompt an inquiry to the user or self-
organized. Following that, we describe the significance of negotiations and we
consider its automatic service model.

— Service Publication. In the JADE Directory Facilitator (DF), every PA
publishes its carried service requests. If these requests are recognized by the

system and that PA is identified with a particular ride giver, then the service
will be registered as follow:

KIND = Offer-ride
ID Combination = Driver-departurePlace-arrivalPlace-dayOfMonth
EXTRAS = Name = Feedback

Value = valueOfFeedback

While in the passenger side, and during the creation of system pairs, the
service registration will take this shape:

KIND = Request-ride
ID Combination = Passenger-departurePlace-arrivalPlace-dayOfMonth

The initial interaction phase starts from a Passenger who is trying to find,
within the DF, a Driver with the same way on the same day and with a
feedback greater than or equal to the requested value. Then, the Passenger
will contact every Driver that is found by the system and, consequently,
communicates the available feedback. Notably, if the value of the feedback is
less than the requested value, it is possible to contact back the user asking
a permission to decrease the requested feedback value.

Negotiation for Departure Time. This negotiation phase tries to find
a common departure time between a Driver and a Passenger. Figure.4/a
shows the algorithm used to form the ride giver interactions, considering that
the ride seeker part is just different in the steps taken to send and receive
commands. Starting from row 8, BOB checks if the associated ride seeker
have fulfilled his predefined requirements, if the checking results is ” Yes”,
row 9 takes place by letting BOB check if ALICE is fitting somewhere
in his range, if 7 Yes” Acceptance is initiated at this time; otherwise BOB
stops the interaction because ALICE is not compatible. Row 16, BOB
checks whether his proposal is accepted by ALICE. Row 19, BOB checks
if his time value is greater or less than the proposed time; if it is greater,
(20-24) it has to increase its value with an arbitrary step otherwise decrease
(30-34). Row 25 as well as row 35, if BOB proposes a time that is close to
ALICE’s time value, BOB accepts the proposed time, otherwise creates a
new proposal. The algorithm has to terminate when the same value is sent
or received for two times.

User Type Negotiation. Every user has indicated a list of preferred
partners types into the service request; this interaction tries to verify whether
the located partner is compatible with the pre-defined list. Figure.4/b shows
the interaction algorithm used in the ride giver side. The algorithm is divided
in to two main parts, from line 4 to 10, the ride giver (BOB) tries to check
if the partner’s types are in his preference list. If the located partner is
satisfactory (line 11), then it automatically starts the second part of the

40:
41:
42:

! temp «—proposal {departure time proposed by the of-

ferer}
response <0 {departure time responded by the seeker}
find «false
repeat
send_proposal(temp)
old_resp «response
response «receive_response()
if old_resp = response then {check if the seeker has
already reached the limit}
if (proposal — of fset) < response < (proposal +
of fset) then
accept(response)
find «—true
else
return NULL
end if
else
if temp = response then
accept(response)
find «—true
else if response > temp then
if (temp + step) > (proposal + of fset) then
temp «—proposal + offset

else
temp «—temp + step

end if

if (temp — step) < response < temp then
accept(response)
find «true

end if

else {response < temp}
if (temp — step) < (proposal — of fset) then
temp «—proposal - offset
else
temp «—temp - step
end if
if temp < response < (temp + step) then
accept(response)
find «true
end if
end if
end if
until find
return response;

a) Departure Time Interaction Algorithm

Require: preference {array of prefer-
ence of the offerer}
profile {array of profile of the of-
ferer}

1: OK-preference «false

2: match «true

3: agreement «false

4: for i = 0 to preference.length — 1

do

send_pref(preferenceli])

OK-preference «rec_pref()

if OK — preference then
break

end if

. end for

if “OK — preference then {the

seeker profile is not in the prefer-

ence}

12: send_pref(NOT — MATCH)

13: else

14: repeat

15: str «—rec_profile()

16: if str # NOT — MATCH then
{check whether the seeker in-
forms that the offerer profile is
not in its preference array}

ey ele RN (oo

17: if is_member(str, profile)
then

18: send_profile(true)

19: agreement «—true

20: else

21: send_profile(false)

22: end if

23: end if

24: until (str = NOT — MATCH) Vv
agreement

25: end if

26: return agreement

b) Users’ Type Matching Algorithm

Fig. 4. Main Interaction Algorithms

algorithm where the ride giver (BOB) is checked if his type of people is
what the ride seekers want. Considering the fact that ride seeker part is
inverted in respect to the ride giver part, therefore, the algorithm from this
point, row 14 to 24 and part from row 4 to 10, is reversed. The preference
here refers to an array with the requested types of people that would be
accepted by the system/user, while profile here means an array that holds

the user’s type.

Departure / Arrival Points Negotiation. The interaction, between a
Driver and a Passenger is concerned with finding common meeting points
for departure and arrival. The exchanged message is: Departure-Place_Name,

Arrival-Place_Name.

In our example, BOB provides the following meeting points of departure (in
order of preference): car parking, university hall, time square. On the other
hand, user ALICE provides the following points: research centre, library
hall, university hall. The interaction between these two PAs suggests the
"university hall” as the meeting point of departure. Essentially, it is
possible to contact the user, only a passenger type, in case of a mis-match
of meeting points to ask him/her to reconsider the previously given list.

— Final Trip Agreement. Reaching this decision-making phase indicates
that both the driver and the passenger are sure of the compatibility of pref-
erences and the matching of requests regarding a specific trip. The two PAs
do not achieve an immediate agreement, instead they wait for five hours
(arbitrary choice) prior to the departure time. This intends to increase the
chance for every PA to interact with other agents to find better resolutions.

The main goal of this phase is to get the best solution that fits into the
user’s preferences. When the negotiation parameters of the decision-making
process are more similar to the parameters in the service request, a user’s
request will be properly fulfilled. So at the end of this phase, the PA partner
will get a score based on the value of parameters taken from the sequence of
negotiations: the partner name, score and parameters are stored in a list.

Finally, the PA will contact every compatible partner found, from best to
worst, until the number of people indicated in the service request is fulfilled.
If two PAs have the same score, the system takes the one that is stored first
on the list. Afterward, the PA produces an answer with its personal informa-
tion and sends it to every founded partner giving them a positive feedback.
The user will have 24 hours to confirm or disconfirm the positive feedback
for his/her partner. Similar to the reputation techniques in web-based auc-
tion systems, the generated feedback will be significant in recommending or
avoiding the future matching between a certain ride giver and a ride seeker.

THE IMPLICIT CULTURE MODEL. The applied Multiagent platforms
are all based on the Implicit Culture framework [9]. Implicit culture is a gener-
alization of collaborative filtering [10], where data mining techniques are used
to extract knowledge about users’ behaviors. In our system Implicit Culture re-
sults particularly useful to support the PAs interaction. More details about the
Implicit Culture framework are available at [11].

For example, a student X may need to know the most frequently used meeting
point within a university campus. The idea of the Implicit Culture framework is
to let the system suggests the meeting points that are frequently used by other
university students (i.e., members of that community). In this case, the system
may suggest to student X to move to the most frequently used meeting point
within the university campus, which is the Car Parking.

4 RIDESHARE SYSTEM ARCHITECTURE LAYER

In this section we describe the general architecture used for our service delivery.
We start from system requirements to the various sub-components and their
interaction. The architecture is obtained by extending and customizing ToothA-
gent [5] Used-Books offering system that is able to communicate with mobile
users through a Bluetooth connection and exchange useful information corre-
sponding to a student’s interests located in a university. Applying the ToothA-
gent architecture in our service model makes the centralized servers offer the
Rideshare service instead.

4.1 SYSTEM COMPONENTS
The architecture of the system includes three main components:

— The mobile device communicates the user’s requests with the servers and
receives the results.

— The distributed servers within our system are mainly responsible for
the Rideshare service. Each of the servers contains: 1) a multi-agent plat-
form with Personal Agents each of which is representing a single user, 2) a
database where results are archived, 3) an interface responsible for establish-
ing connections with mobile devices, and for redirecting the users’ requests
to the corresponding personal agents.

— The central services database, accessible via web, it contains information
about all the servers and their properties, such as name, location, etc. The
database stores also the information about users registered to the system.

P
Lerequest far service(s) b

b CENTRAL SERVICES
usER o8

10:results

: verifylachiove
wser's Informations

.TII.-I(-------------)@:" I 3 on
n wosne *i ; l vomsomncs m;':.l_l s —J |

" allaforation
4———P wired Link SERVER 3: reguest for servics|
< ---= > Wireless Link z

*----- P User inputioutput

(a) First Figure (b) Second Figure

Fig. 5. The two figures above describe The System components Interactions and The
Mobile to Service Accessibility Scenario

Figure.6/a illustrates the general architecture of the system and the interac-
tion among its components. The connection between the mobile device and the

server is established through Bluetooth wireless communication technology. In
particular, a user’s cellular phone communicates to the server all the requests,
and then receives back the results. The cellular phone may also receive inquiries
about a possible modification in the decisions taken by system users and Re-
communicate the reply with server. Moreover, cellular phone can be used to
send the partner evaluation score, which will be reflected in the future feedback
value for whoever was offering a ride. From the server side, a contact is made
to the central service DB to check the user’s information (age, feedback, etc).
Later on, the server updates the ride giver reputation value. The central server
DB is responsible for storing all the information about a specific request and the
interactions made between its two PAs.

4.2 SERVICE ACCESSABILITY

For a user to access the services, he/she needs to make three steps: (1) to com-
plete a mobile-based identification form; (2) to run the Bluetooth application
on the mobile device, and (3) to operate a certain function to activate the re-
quired service. The application is written in Java and uses JSR-82 [12] which
is a Bluetooth API for Java. The application starts a continuous search for
Bluetooth-enabled devices in the neighborhood and whenever it finds a server,
the software on the device establishes a connection with the server (step 2) and
sends the requests related to the Rideshare services (step 3). The request is then
processed by the server and the results are sent back to the user (step 4 -10). The
mobile device stores the server’s address to keep track of the contacted servers
(see Figure.6/b).

Mobile: Server
Device Comm. Module
1: Bluetooth address
2: Server IP Services
3: Password
4 agent
data
’ Server : Multi-
5: If (No agent) Agent data
6 “Registersd”
. - (Not regisered)_[*—or ol regtered™ |
If (Reject) n =
Shp o f TS o] oy o et 8 gl (=]
connection | 9: Configuration file Request for agent creation Database
. g 10:Requestiorserice
11: "Agent is active 12: Agenis
v H Interaction
: H 13: Results
14: Verify presence | !
request
15: "Connected” or
No response 16: If {Ce address
17: Resulis
18: Resulls

Fig. 6. The Service Accessibility

Figure.7 shows the protocol we use for the interaction between different com-
ponents. A specific communication module on the server is responsible for man-
aging the interaction with the mobile device. This module receives the Bluetooth
address and the password from the mobile device (steps 1 and 3) and checks in
the platform running on the server whether a PA is assigned to that mobile
device (step 4). The module employs the user-ID and the password to map the
mobile device with a specific PA. If there is no PA previously assigned to this
user, the communication module connects to the central services database and
verifies whether the user is registered to the system (steps 5-6). That is by
matching the Bluetooth address of the device with the password. In case of a
positive response, it creates a new agent and assigns it to the mobile device user
(step 8). Then, the mobile device sends the configuration string to the commu-
nication module (step 9), which forwards all the user requests to the appropriate
PA (step 10). The Personal Agent then starts interacting with other agents on
the platform trying to satisfy all the user requests (step 12). In our example a
PA receives one or more requests for finding or asking rides. If the agent reaches
an agreement with another agent about their users requests it stores the results
locally in the server database (step 13). Later the results could be sent back to
the user (steps 14-18).

Additionally, the possibility to apply different telecommunication technolo-
gies is considered. For instance, using an advanced wireless communication method
such as Wi-Fi or GPRS can be applied to facilitate the communication between
the server side and the cellular phone side. The user may be not available within
the communication range of the Bluetooth; therefore, an alternative solution may
be the user-communication techniques through a wireless messages exchange
platform, which can be easily integrated to the core architecture.

Mobile Server :
Device Comm. Module Visited Server#k : Visited Server#k :
‘Comm. Module Database
1: Bluetooth address "
2 |Ps of visited servers
(from #1 1o #fn) 3: Bluetooth address
7| _4: Blustooth address
5: "Found” or “Not found™
6: If (Found) |

8: Verily presence request
9: “Connecied” o no response

10: If (Connected)
Pending results

Fig. 7. The Pending Results Retrieval

4.3 PENDING RESULTS RETRIEVAL

When a connection between a server and a mobile device is established, the
communication module sends to the mobile device the IP-address of the server
(step 2 in Figure.8) The mobile device stores the IP addresses of all the visited
servers in an XML list that is used later on to retrieve all pending results. The
format of the results produced by the personal agent may contain the request
identifier, contacts (e.g. phone number) of the user interested to share the ride,
the departure time, etc. The user may receive the results immediately in his
mobile device, this happens if and only if he/she is still within the Bluetooth /
server coverage. The communication module checks the availability of the mobile
device and sends across the results stored in the internal server database by the
corresponding PA.

Figure.8 shows the interaction protocol of retrieving pending results via mo-
bile device. Considering our running example, a situation in which a user is close
to the server of the train station. After establishing the connection, the mobile
device sends the list of IP-addresses of all the previously visited servers (e.g.
university servers, city center servers, etc.) to the train station server. The com-
munication module of the server sends the Bluetooth MAC address of the mobile
device to all listed servers (step 3). In turn, the communication module of each
server extracts from the internal database all the stored results related to that
user and sends them back to the requester server (steps 4-7). All the results are
collected by the communication module and finally sent to the mobile device
(steps 8-10). If the mobile device is no longer connected to the server (e.g., the
user has left the library), the retrieval process will fail and the results will be
cancelled. Yet these results will still be accessible via the original servers. There-
fore, a possibility for the server to communicate with the user through SMSs is
achievable.

4.4 EXPERIMENT FACTS

Issues pertaining to the usability of users, cellular phones and their interaction
are multiple. What characterize this interaction are the features of contextual
awareness, task hierarchy, visual attention, hand manipulation and mobility,
which are sensitive to scenario change [13].

We tested the system using Nokia 6630 mobile phones and PC/Server equipped
with generic BlueTooth adapter. Bluetooth communications have been imple-
mented using BlueCove [14] which is an open source implementation of the JSR-
82 Bluetooth API for Java. We have tested the system on different scenarios, and
obtained significant results which were stored as reference. The time to obtain
an agreement between two agents is the same for every situation. A limitation of
this model, however, is the lack of a monitoring process of the number of active
agents in single MAS.

CONCLUSIONS AND FUTURE WORK

In this paper we presented an implemented application of a Mobile-based Rideshare
service application where Multiagent system and Bluetooth wireless communi-
cations technology are combined together to support co-localized communities
of users. We discussed the architecture of the Multiagent platform applied for
our system, the specific protocols used and the algorithms that have been im-
plemented to realize the Agents interaction. Then we presented some implemen-
tation issues related to the system we have built. We recommend a verification
process of system scalability before Real-life use and, testing its performance for

a considerably high number of users.

There were, and still, big interests that are growing and well recognized in
the direction of Rideshare systems. In 1995, Edward Walbridge [15] estimated
that energy savings from ride sharing would be 48 million barrels of crude oil
per year. The associated reduction in congestion is estimated to save driver time
worth $6.2 billion annually. Walbridge attempted to explore the possibility of
controlling the car owner’s free seats, sharing rides modules and the movements
of people in a particular area. That is through the use of a computer in each urban
area that matches riders and drivers in real time and is accessed by lightweight
pocket-sized ones. In 1999, D.J. Dailey and D. Meyers [16] presented the Seattle
Smart Traveler (SST) which is an application of World Wide Web (WWW)
technology to test the concept of automated dynamic rideshare matching. Dailey
and Meyers could demonstrate through their model that car-pooling process is
a quadratic function of the number of users participating.

Recently, Claudio Cubillos, Claudio Demartini and Franco Guidi-Polanco
[17] have taken a different approach. Based on the Contract-Net Protocol, bids-
filtering process and the use of agent framework, they presented a mediated
planning model for the scheduling of trip requests under a passenger trans-
portation system. This approach correlates with our future focus, which we ex-
pect that it will enhance ANDIAMO on the Rideshare offers/requests matching
phase. Moreover, there is a great potential in integrating ANDIAMO with other
services, such as Public Transportations info portals and online maps viewers,
which would increase reliability and usability. That is because the system would
be giving alternative transportation solutions based on the received ride details.
We also propose the system integration with spatial databases, for managing the
geographical information used in the system. Another potential direction is the
integration of web service systems to add the value seen out of any Internet-
enabled application.

References

1. Rakotonirainy, A., Loke, S.W., Zaslavsky, A.: Multi-agent support for open mobile
virtual communities. In: Proceedings of the International Conference on Artificial
Intelligence (IC-AI 2000) (Vol I), Las Vegas, Nevada, USA. (2000) 127-133

o

10.

11.

12.
13.

14.
15.

16.

17.

Carabelea, C., Berger, M.: Agent negotiation in ad-hoc networks. In: Proceedings
of the Ambient Intelligence Workshop at AAMAS’05 Conference, Utrecht, The
Netherlands. (2005) 5-16

G., M., B,, B., A., H.: Applications of multi agent systems in traffic and trans-
portation. In: IEE Transactions on Software Engineering. (1997) 144(1):51 60
Kothari, A.B.: Genghis - a multiagent carpooling system. B.Sc. Dissertation work,
submitted to the University of Bath (May 11, 2004)

Volha, B., Paolo, G., Stefano, F.: Toothagent: a multi-agent system for virtual
communities support. In: Technical Report DIT-05-064, Informatica e Telecomu-
nicazioni, University of Trento (2005)

JADE: Java Agent DEvelopment Framework website — http://jade.tilab.com/.
FIPA: Foundation for Intelligent Physical Agents — http://www.fipa.org/.

Maes, P., Kozierok, R.: Learning interface agent. In: Eleventh National Conference
on Artificial Intelligence, Washington D.C., MIT Press (1993) 459465

Birukov, A., Blanzieri, E., Giorgini, P.: Implicit: An agent-based recommendation
system for web search. In: Proceedings of the 4th International Conference on
Autonomous Agents and Multi-Agent Systems, ACM Press (2005) 618-624
Blanzieri, E., Giorgini, P., P.Massa, Recla, S.: Information access in implicit cul-
ture framework. In: Proceedings (on line) of the ACM SIGIR Workshop on Rec-
ommender Systems, ACM (2001)

Birukou, A., Blanzieri, E., D’Andrea, V., Giorgini, P., Kokash, N., Modena, A.:
Ic-service: A service-oriented approach to the development of recommendation. In:
Proceedings of the 22nd Annual ACM Symposium on Applied Computing ACM
Press, ACM (2007)

JSR-82: Java APIs for Bluetooth — http://www.jcp.org/en/jsr/detail?id=82.
Henry Been-Lirn Duh, Gerald C. B. Tan, V.H.h.C.: Mobile usability: Usability
evaluation for mobile device: a comparison of laboratory and field tests. In: 8th
conference on Human-computer interaction with mobile devices and services, Mo-
bileHCT’06. (September, 2006)

Blue Cove project — http://sourceforge.net/projects/bluecove/.

Walbridge, E.W.: Real time ridesharing using wireless pocket phones to access
the ride matching computer. In: Vehicle Navigation and Information Systems
Conference Proceedings/6th International VNIS. (July, 1995) 486 — 492
D.J.Dailey, D.Meyers: A statistical model for dynamic ridematching on the world
wide web. ITSC 99 Tokio, Japan (5-8 October, 1999)

Claudio Cubillos, C.D., Guidi-Polanco, F.: Passengers trips planning using
contract-net with filters. 8th International IEEE Conference on Intelligent Trans-
portation Systems Vienna, Austria (13-15 September 2005)

	andiamo_DIT_TechRep.pdf
	Andiamo_51206_Last.pdf

