

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

Design Patterns to Enable Agent-based Mobile
Service Application Development.

Sameh Abdel-Naby and Paolo Giorgini and Michael Weiss

December 2006

Technical Report # DIT-06-096

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints Research

https://core.ac.uk/display/11829542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

LIMITED DISTRIBUTION NOTICE

This article has been submitted for publication outside of the Department of Information and
Communication Technology (DIT) – University of Trento, and will probably be copyrighted if
accepted for publication. It has been issued as a Research Technical Report for early
dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of DIT prior to publication should be limited to peer communications and
specific requests. After outside publication, requests should be filled only by reprints or
legally obtained copies of the article.

Design Patterns to Enable Agent-based Mobile Service
Application Development

Sameh Abdel-Naby

University of Trento
Via sommarive, 14

38050 Povo (Trento), Italy
+39046188207

sameh@dit.unitn.it

Paolo Giorgini
University of Trento
Via sommarive, 14

38050 Povo (Trento), Italy
+390461882052

paolo.giorgini@unitn.it

Michael Weiss
Carleton University

Ottawa, Ontario
K1S 5B6, Canada
+1-613-520-2600

weiss@scs.carleton.ca

ABSTRACT
This paper proposes a new framework to develop agent-based
mobile phones service application using the current constructions
derived from agent patterns approaches. Agent patterns are
categorized in technically various modules that interconnect
according to the users’ demands and application needs. Our
framework, applying a multi-agent systems technique, allows
users to drag and drop certain system plug-ins to enable explicit
functions; this will shape the final behavior of agents within the
application and determine its characteristics. We provide an
example of a real-life application to illustrate the implementation
of this framework.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial
Intelligence— Multiagent systems, Intelligent Agents; D.2.2
[Design Tools and Techniques] - Object-oriented design
methods

General Terms
Management, Performance, Design, Reliability, Human Factors

Keywords
Agent, Multi-agent systems, mobile agent, design pattern,
advanced communication methods.

1. INTRODUCTION
The development of mobile services is one of the most interesting
research areas, and is directly related to the study of Mobile
Information Systems (MIS) [1]. The recently developed and more
sophisticated mobile operation architectures enabled many
applications within the mobile-user side of the general structure.
For example, the third generation of mobile communication
systems (3G) [2] enabled the convergence of telecommunications
and data communications industries. By extension, the

convergence of mobile technologies and the Internet allows for
persuasive possibilities for future applications and solutions,
which shape and reflect on Mobile Service Frameworks. The
present diversity of mobile service applications that consider both
the surrounding environment and location characteristics (e.g.,
ToothAgent [3]) contribute to the process of convergence
described above.
 In an application implemented using agent-oriented
programming techniques, which are located in a specific
environment or a network, users expect this application to fulfill a
set of requirements that are hardly realized if other techniques in
use. The two major characteristics of Software Agents [4] are self-
containment competence and the ability to interact properly with
the surrounding software entities. The use of software agents can
create an "intelligent" interface between users' preferences and the
back-end systems. Agents are now able to interact and
communicate with each other, forming a virtual community and
feeding the user back with suggestions. MoPiDiG [5] and similar
implementations involve the use of advanced communication
methods such as Bluetooth and Wi-Fi in order to accomplish an
overall architecture that finally deliver a certain service to a
specific mobile-user in the shortest route possible. Re-using the
same software entity in different applications is a repetitive
scenario that is usually seen in delivering a complex application,
and noticeably realized in developing an Agent-based application.
 In this paper, we propose a framework for applying Design
Patterns [6] as a method to enable the development of Agent-
based mobile service application. This framework divides the
mobile service application development process into two main
phases. The first phase includes the integration of commonly used
software entities within the concluding desired architecture and,
which is achieved according to responsibilities and tasks
delegated to a specific agent within the overall platform. The
second phase involves the development of new software entities
that are have not been previously applied yet and have the
potential to integrate in other similar implementations.
 The rest of this paper is structured as follows: Section 2
outlines our motivation. Section 3 explains the proposed
framework in detail. Section 4 introduces the integration between
Agent-based mobile services application and design patterns.
Section 5 examines this framework by applying it to an example
and presenting a possible simulation platform. Section 6
concludes the paper.

2. MOTIVATION
Making highly needed services available for mobile and computer
users has been the subject for many research projects. Service
Oriented Architectures (SOA) presented a new approach to
address a range of commonly desired services to computer users.
SOA sub-discipline, Mobile Service Oriented Architectures
(MOSOA), further enhanced the perception of service delivery by
targeting end-users and offering them the same and, even better
services at their own portable devices (e.g., cellular phones or
PDAs). Also, many ongoing research projects [7, 8, 9] aim to
realize the optimal method to make mobile service oriented
architectures more reliable and efficient. For example, a widely
used technology like the mobile java client offers a standard
operational model for traditional cellular phones. This technology
has facilitated the integration between computer-based and
mobile-based application development.
 Telecommunications has recently seen a rapid increase in the
number and quality of available services and applications.
Adjustments taken to the so-called Network Life are now real, and
the users’ required tasks became simpler to make, although
complex processes are used. Common portable computers, PDAs
and mobile phones, have integrated advanced communication
methods (e.g., Infrared, Wireless and Bluetooth) that facilitate the
establishment of Networked Life. Also, these devices are now
enabled to have many pre-installed and downloadable
applications that interconnect with several communication objects
and devices, which make these scenarios reach well-to-do tasks in
a clear practical method. These developments changed the way
scholars observe the need for Mobile Services to be integrated
within other frameworks and architectures.
 The focus of research on Multiagent systems [10] is the system
design, in which a large number of intelligent agents interact
together to achieve a set of pre-defined goals or complex tasks.
These agents are independent software entities, and can be formed
as software programs or subparts of them. Their interactions can
be either joint or self-interested, depending on whether they share
the same goals. Research project are concerned with developing
agent-targeted communication languages, defining a set of
protocols that make agents within a system able to interact
suitably and, finally, creating agent architectures that facilitate the
design of specific Multiagent system. Agent-based systems and
mobile-based applications are two promising approaches in the
direction of enhancing Service-Oriented Architecture (SOA). In
addition, objects-identification related technologies helped the
development of Smart Ambient systems that can interact with
humans and objects to improve the surrounding atmosphere. The
merit goes to Multiagent Systems in forming a virtual community
between environmental objects. This virtual community is
reasonably interactive, and it provides data that can be used
forward in delivering a service. Moreover, it allows us to raise the
idea of location-based services, which help mobile users achieve
their demands in a shorter and smarter route. A situation, in which
a mobile user in a specific area and his/her mobile device is
recognized by all of the surrounding devices, increases the
usability of a range of resources that may have never been
employed before.
 Developing a mobile application is both a demanding and
challenging task for software designers. Design Patterns [6]
theories provide a significant tool in software development for

they allow development practices and solutions to be recognized
thoroughly and assist the interaction among separate system
design concerns. Patterns can be seen as a directorial repository, a
method to record the gained design knowledge and enable its re-
use in the later development processes. Therefore, patterns are
adopted to improve structural design practices. Recently, patterns
application has been carried on its precision to finally reach a
specific field problem. In a new field like Mobile Services,
appropriate patterns should be fulfilling the needs of mobile-
application design.

Figure 1. Mobile Services Design, Multiagent Systems and

Design Patterns Cross-layers approach.

 The above discussion indicates the possible integration
between three components: 1) Mobile service application design
architectures that are used to model the abstraction of delivering
services to mobile-users, 2) Multiagent systems design
architectures (with their contribution in increasing the usability of
mobile-based service application), and 3) Design patterns, taking
advantage of its ability to allow parts or the overall object-
oriented programs to be reprocessed in a newly developed
application (See Figure 1).

3. FRAMEWORK REPRESENTATION
3.1 Mobile Services Classification
For a platform to offer a set of services particularly these applied
to portable devices (e.g., mobile phones, PDAs), it needs to obtain
certain characteristics to produce final results to human users.
These characteristics facilitate the integration between computer-
like service application and the portable devices operating
systems. It is not yet standardized application but it is almost
realized that common mobile operating systems (e.g., Symbian-
based mobile phones) allow explicit software unit to be
reasonably customized to fit in the overall data flow of a mobile
device. Many current research projects aim to standardize the
mobile side operating systems in order to provide better end-users
services. What remains is to standardize the mobile-based service
software components and to make them in plug-ins modules,
separate agents, which are able to interact, coordinate and finally

Multiagent System Layer

Mobile Services / Contents

Platform Layer

D
E
S
I
G
N

P
A
T
T
E
R
N

Physical Layer (including lightweight and
heavyweight devices)

integrate to deliver a service, through forming a useful mobile
application.
 We classify service divisions that are commonly used in
designing mobile-based applications. These services are made of
software entities/agents, each of which is in charge of achieving
sub-tasks of the overall service goal depending on what it was
designed for (e.g., a communication agent, coordination agent or a
negotiation agent). We made our service classification according
to the literature feedbacks about frequently used applications
(e.g., Tourists-targeted mobile applications and meeting/organizer
kind of applications or directory services browsing mobile
applications). Each of the core service classes is concerned with a
specific problem domain, and, consequently, invokes a range of
sub-classes related to the general interest of this specific class but
in different solution modules.
There are four main mobile service application classes; each is
responsible for three main tasks:

• Communication Class: A communication service
application is responsible for external communication of
the mobile-based application, with devices or other
software entities in order to fulfill the user’s demands
and achieve the application goal. Another function is to
make this communication work properly, through the
communication methods used. The last function of this
class is to allow the service application to reconnect
with the collaborated actors, since some mobile
applications need to launch certain offline tasks (e.g.,
server-side execution) in order to achieve certain goals.

• Expression Class: Each service offered to mobile users
requires a certain data arrangement, depending on the
type of services provided and the back-office running
architecture (e.g., maps display and directory services).
Therefore, a central function of this class application is
the way in which data is organized in the client-side of
the mobile service application. Another function is the
means of interaction between different mobile users and
the displayed data. The last function of this service
application class balancing the displayed data on the
overall service in terms of whether it requires detailed
or superficial dataset execution.

• Implementation Class: Not all call methods of service-
application to backend-system can be made on the
mobile side, and vice-versa. This is essentially due to
limitations on the mobile-side resources and the
communication speed between mobile end-users and
service operating servers. Hence, the implementation
class is responsible for the organization of service tasks
executed on the mobile side of the application,
considering the mobile capabilities to perform such an
operation. The second function of this class is handling
the arrangements that make the service application
server-side executing certain tasks that need special
resources on behalf of the mobile-side application. The
final function of this class is to monitor the utilized
resources on the mobile side and to organize the
overloaded tasks appropriately.

• Combination Class: Enabling mobile-based service
applications to combine a range of different objectives

is one powerful tool that a proper mechanism may add
to certain architecture. Real-life scenarios suggest that
the combination between two or more services or more
enable mobile-user to achieve his/her goals sufficiently.
For example, the combination between maps mobile
display services and restaurant directory service would
make a mobile user able to select a good restaurant and
identify its location at the same time. The combination
class is responsible for managing the service at this
point from three different dimensions: 1) The server-
side aspect that makes this class able to retrieve the
required data from other linked distributed service
servers, 2) The application-side aspect, responsible for
merging the retrieved data and make it accessible by
mobile user single interface, and 3) the client-side
aspect that guides the pre-installed mobile application
through the structure of collaborating servers.

3.2 Agents Services Communication
The above service classes are constructed to be independent from
the specific Agents layer they are interrelating with. At the same
time, however, they cannot be used without being installed in a
proper agent profile. This usually occurs because they have no
original means of communication and must be cross-layering with
agents or multi-agents architectures to utilize the set of pre-
defined communication protocols provided by them. An
illustrative example for possible integration can be FIPA
framework [11], which uses an Agent Communication Language
(ACL) for communication. This communication language is
located two layers below the mobile service application layer and
on the same level as Agent Management and Agent Message
Transport and can be extended to include Service Management.
This allows the communication between the above service classes
and their representation agents before the abstract architecture
provided by FIPA.

Functions performed by Agents to represent service classes and
their sub-classes are as follows:

• The first function of Agents is a search function to
properly represent a specific service within a range of
service categories previously defined by mobile-based
service application developer. This function helps the
agent to recognize the service that best fits into its
predefined characteristics and facilitate the process of
adaptation between service class and autonomous agent
– together forming the Service Agent.

• The second function is to analyze the situated service
class and, if available, its sub-classes. After the agent
finds its representing service class, it returns to the
Agent Management architecture with detailed
description of this service. Thus a description analysis
will be made by comparing the requirements and
conditions drawn by the service with the characteristics
given to an agent.

• The agent returns to the Agent Management layer with
analysis results only if they are fitting. Consequently,
saving these results will be the third function an agent
has to take. Therefore, another sub-function is the
waiting condition an agent should carry out in order to

give the possibility for the overall architecture to
complete.

• At this point, the realized Multi-agent system consists
of separate agents that are more shaped as general
architecture plug-ins. These separate software entities
will finally be integrated and examined for overall
coordination and compatibility. The loop of functions
can be repetitive once the plug-ins matching process
produces any object failure. At this point, implementing
an Intelligent Expert Agent mechanism is suggested, in
order to prevent the system from replicating similar
functions and, consequently, producing another object
failure.

Furthermore, the Service Classification modules have to apply
some system interaction rules:

• The first rule is to break-down the desired service class
to as many subclasses as possible, and to represent each
with its own detailed description. That is because the
fewer the goals a service application is carrying out, the
easier it is to look up for a proper agent to dress in, and,
consequently, the clearer its expression.

• The second rule is to link the service class to an abstract
hierarchy of Directory Services to help the agent
locating the fitting classifications. A hierarchy approach
is commonly used in Service Oriented Architectures
(SOA) design, because it is easy to refer to a set of
services with a general title, and this hierarchy is
available whenever the demands increase to specify a
certain service.

• The third rule is to attach a general service class to the
architecture in order to simulate the data flow among
the mobile-based service application and examine the
proper delivery of service. This takes place once the
function of integrating the selected agents and
examining the general coordination of the multi-agent
system components is completed.

The interaction between Service Class and an Agent has three
prerequisites: 1) the availability of information about the set of
controlling rules used to administer the external communication
of the potable device, 2) the content architecture used and its
development language, and 3) the enabling technologies used by
the Mobile Operating System and the Mobile-based service
application. Therefore, each processing phase must include a
detailed specification of the supporting technologies and
components of the portable device. Applying design patterns
(discussed below) simplifies this task, as the experience obtained
at each time the service class and the selected agent integrates,
will be prospected for further implementations.

3.3 Applied Design Patterns Catalog
The iterative software engineering approach for multi-agent
systems, which was first proposed by Lind [12], presented new
ways to model the entire system, and captured several related
aspects. Lind [12] has also presented a pattern catalog structure
that we adopt in order to enable and enhance the development of
agent-based mobile service application.

Figure 2. Applied Design Patterns Catalog Views.

Seven modifications to the views presented in this catalog
structure are undertaken for the catalog to fit our framework (See
Figure 3) as follows:

Interaction is a fundamental concept for a system that consists of
multiple independent entities that coordinate with themselves in
order to achieve their individual as well as their joint goals [12].
In this view, we emphasize the need for the developer to report
the methods and techniques used to interact with the system
during the design process. These interaction experiences will be
recognized in further development scenarios and arise whenever
similar situations occur. In designing a mobile-based application,
certain restrictions (e.g. limited memory and processing
resources) are applied and a unique interaction schema is
expected. Multiagent systems that are implemented to represent a
specific environment is quite complex and may apply several
interaction in addition to the traditional one.

Role The role view determines the functional aggregation of the
basic problem-solving capabilities according to the physical
constraints of the target system [12]. In designing an Agent-based
mobile service application, each agent is represented to solve a
particular problem. Accordingly, the goal of each agent is to take
the predefined path to resolve a problem. In certain scenarios,
more than one agent may cooperate to resolve a more complex
task, whereby each of the involved agents is sub-tasked to address
a specific goal. This makes the role of the agent depends on the
coordination protocol used to achieve the overall mobile service
delivery.

Architecture (system, agent, agent management) The
Architecture view is a projection of the target system onto the
fundamental structural attributes with respect to the system design
[12]. More often, several system integrations are made to a multi-
agent system in order to reach to its ultimate goals. Particularly,
integration commonly takes place between Agent-based mobile
service application with other multi-agent systems, databases or
web portals to enhance the quality of service provided to the end-
user. In this view we outline the need to capture the full picture of

Environment

Interaction

Role

Architecture

Society

System

Task

system integrations and sketching the general architecture,
including lightweight and heavyweight devices integration and
roles, in order to make it re-usable in applying these types of
involvement on the long run.

Society is a structured collection of entities that pursue a common
goal [12]. In a multi-agent system, separate software entities form
the so-called virtual communities and communication between
these communities even exceed the limitations of a single system
and form the same kind of communities using a cross-networks
approach. These entities usually share the same interests and
goals and collaborate to obtain certain results. We devise a
mechanism to control the creation of such communities. In
particular, we apply the same kind of approaches in mobile
service applications, emphasizing the condition of inserting a
monitoring tool to observe the agents behavior in creating their
own virtual communities. This monitoring tool will lead to a
better prediction of society structure before implementing any of
its parts.

System This view deals with systems aspects that affect several
of the other views or even the system as a whole [12]. In a
mobile-based service application, the System view handles the
mobile user interface that relates to the interaction between the
service application and the user. Covering all users’ data-entry
and portable device output functions, this view records the users’
reactions in a certain situation and analyze it to develop a better
and simple service module in case a problem occurs when the
tries to operate a certain function.`

Task In this view, a task hierarchy is generated that is then used
to determine the basic problem solving capabilities of the entities
in the final system [12]. We adopt this view as it is but we suggest
a link between this view and Role view. Such a link will enable
the outputs (coming from the process of granting roles to agents
in a mobile-based service) to be the inputs for creating a hierarchy
for each agent capability.

Environment In this view, the environment of the target system
is analyzed from the developer’s perspective as well as from the
systems perspective [12]. In designing an agent-based mobile
service application, the developer’s focus is on the way a service
is implemented, tested and delivered. Whereas for a devise
system, the focus is different since available resources and
processing algorithms control the efficiency of the overall
developed architecture, regardless of how no matter how
sophisticated and maintained the systems are. Therefore, it is
important to customize and integrate the perspectives of both the
system and developers.

3.4 General Framework Composition
The composition phase of the general proposed framework
involves the combination of the above-mentioned four mobile
service classifications and the three delegated tasks of each. In
addition to its designated functions, a Service Agent will operate
to be compatible with its specific service class, in which Agents
will apply a set of rules to ensure the proper match. To assist
developers improve their design techniques, we suggest involving
Agent-Oriented Software Engineering – taking advantage of the
repetitive implementation scenarios – by applying Design Patters
Views that will work on monitoring the experiences and notions

obtained while designing an agent-based mobile service
application (See Figure 3).

Figure 3. General Framework Composition Phase.

4. APPLICATION EXAMPLE
Based on the use of location and available car seats, Car-sharing
systems allowed a substantial number of people to share car rides.
These systems would, among other advantages, rationalize energy
consumption, save money, and decrease traffic jams and human
stress, and eventually make a significant improvement in human
life. Car-sharing is a method to reduce the use of cars in a specific
town or territory. Reducing car use helps, in turn, to decrease
pollution and prevent some other problems. Car-sharing has three
pre-conditions: 1) a car owner who uses his/her car to move from
a place to another, and 2) another person who is interested to go
somewhere along the car owner’s path to destination, and 3) the
willingness of the ride seeker to share the ride cost with the car
owner.
Implementing a mobile-based service application that offers a
ride-sharing service to university students responds to
an increasing demand of students to commute between their
universities and other destinations. Autonomous agents that take
part of a Multi-agents environment for mobile based applications
are well-known with their capabilities to achieve difficult
organization and negotiation tasks within a certain community.
Moreover, the ability of Agents to perform offline tasks on behalf
of its user will gives system users the needed flexibility to move
without being logged into the system. Therefore, integration
between mobile application and multi-agent systems is possible
and, accordingly, we suggest the use of autonomous agents in
Car-sharing-like applications.
For a mobile-based application to communicate with distributed
servers within the university infrastructure, it needs a means of
communication protocol (e.g., Bluetooth, WiFi). These
communication protocols are implemented in a system using new
software entities. Therefore a system developer is driven
to integrate extra design modules to facilitate the integration

Service Classifications Level

Communication Expression Implementation Combination

Service Roles Level

Applying and Retrieving Roles

Subclasses/Rules Integration

Matching Service Rules with Agent Functions

Agent Goal Structuring

Design

Patterns

Creation

Cycle

between the multi-agent system and the methods of
interactions/communication. The experiences that a developer
obtain during the designing process to put together several and
usually incompatible components, and the different interactions
scenarios among system components and software entities, both
alert us to the need to maintain Design Patterns Repository that
record these experiences and facilitate the use of these
documentations as references to further implementation activities.

5. RELATED WORK
An approach to Agent-based service composition and its
application to mobile business process was presented by scholars
[13]. They described an architecture model for multiagent systems
that was developed in the European project LEAP (Lightweight
Extensible Agent Platform). Its main feature is a set of generic
services that are implemented independently of the agents and can
be installed into the agents by the application developer in a
flexible way. These generic services are responsible of the
reusability of the common software entities and they handle most
of the agent-related concerns (protocol, conversation, language,
ontology, and errors), while allowing the developer to concentrate
on the application logic. Another Agent System Development
Method based on agent patterns was presented by other research
group [14] and their method enabled developers to design process
into two architectural levels and applying the appropriate agent
patterns, and they added to the same method a higher level
designs that are independent of specific agent platform so it can
be reused.

6. CONCLUSION
This paper proposed a new framework using Design Patterns to
develop Agent-based mobile service application. In the proposed
framework, we introduced a classification of mobile-based
application services using a multi-agent systems technique. We
integrate this multi-agent system technique with a modified
version of Lind’s design patterns catalog to enable mobile phone
users to drag and drop certain system plug-ins to enable explicit
functions. By employing this framework in a real-life example,
car-sharing systems, we demonstrated the implementation of this
framework, which proves its reusability in other applications.

7. REFERENCES

[1] Taniar, D., Chao, H. C., Lee, D, L., Leong, H, V., Lin, B.,

and Peterson, L. L. The International Journal on Mobile
Information System IOS Press Trans. Volume 2, 2006, ISSN
1574-017X.

[2] Trillium Digital Systems, Inc. Third Generation (3G)
Wireless White Paper, March 2002.

[3] Bryl, Volha and Giorgini, Paolo and Fante, Stefano (2005).
An Implemented Prototype of Bluetooth-Based Multi-Agent
System. Proc. of WOA05, Camerino, November 2005. Also
Technical Report DIT-05-062, Informatica e
Telecomunicazioni, University of Trento.

[4] Hyacinth S. Nwana. Software Agents: An Overview.
Knowledge Engineering Review, 1996.

[5] Seitz, C., Berger, M., Bauer B. “MoPiDiG” , Proceedings of
the First International Workshop on Mobile Peer-to-Peer
Computing, Orlando, Florida, USA, März 2004

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley.

[7] C. Carabelea and M. Berger. Agent negotiation in ad-hoc
networks. In Proceedings of the Ambient Intelligence
Workshop at AAMAS'05 Conference, Utrecht, The
Netherlands, pages 5 - 16, 2005.

[8] C. Carabelea and O. Boissier. Multi-agent platforms on
smart devices: Dream or reality? In Proceedings of the Smart
Objects Conference (SOC03), Grenoble, France, pages 126 -
129, 2003.

[9] A. Rakotonirainy, S. W. Loke, and A. Zaslavsky. Multi-
agent support for open mobile virtual communities. In
Proceedings of the International Conference on Artificial
Intelligence (IC-AI 2000) (Vol I), Las Vegas, Nevada, USA,
pages 127 - 133, 2000.

[10] M. Wooldridge. An Introduction to Multiagent Systems.
John Wiley and Sons Ltd, February 2002.

[11] The Foundation for Intelligent Physical Agents (FIPA),
http://www.fipa.org, 2003.

[12] Lind, J. Iterative Software Engineering for Multiagent
Systems - The MASSIVE Method, volume 1994 of Lecture
Notes in Computer Science. Springer, May 2001.

[13] Berger, M. Bouzid, M. Buckland, M. Lee, H. Lhuillier,
N. Olpp, D. Picault, J. Shepherdson, J. An Approach to
Agent-Based Service Composition and Its Application to
Mobile Business Processes Siemens AG, Muenchen,
Germany; Mobile Computing, IEEE Transactions, Volume:
2, Issue: 3, 197- 206, July-Sept. 2003.

[14] Y. Tahara, A. Ohsuga, S. Honiden. Agent System
Development Method Based on Agent Patterns Proceedings
of The Fourth International Symposium on Autonomous
Decentralized Systems. 1999.

	DesignPatterns_DIT_TechRep.pdf
	AAMAS_2007_204_.pdf

