..II"\ll
3 I| =
/o

UNIVERSITY
OF TRENTO

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (ltaly), Via Sommarive 14
http://www.dit.unitn.it

A MULTI-AGENT SYSTEM FOR CHOOSING
SOFTWARE PATTERNS.

Aliaksandr Birukou, Enrico Blanzieri, Paolo Giorgini, and Michael Weiss

October 2006

Technical Report # DIT-06-065

https://core.ac.uk/display/11829504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Multi-Agent System for Choosing Software Patterns

Aliaksandr Birukou, Enrico Blanzieri,
Paolo Giorgini
Department of Information
and Communication Technology
University of Trento - Italy

{birukou, blanzier, pgiorgio}@dit.unitn.it

ABSTRACT

Software patterns enable an efficient transfer of design ex-
perience by documenting common solutions to recurring de-
sign problems. They contain valuable knowledge that can
be reused by others, in particular, by less experienced de-
velopers. Patterns have been published for system architec-
ture and detailed design, as well as for specific application
domains (e.g. agents and security). However, given the
steadily growing number of patterns in the literature and
online repositories, it can be hard for non-experts to select
patterns appropriate to their needs, or even to be aware of
the existing patterns. In this paper, we present a multi-
agent system that supports developers in choosing patterns
that are suitable for a given design problem. The system
implements an implicit culture approach for recommend-
ing patterns to developers based on the history of decisions
made by other developers regarding which patterns to use in
related design problems. The recommendations are comple-
mented with the documents from a pattern repository that
can be accessed by the agents. The paper includes a set of
experimental results obtained using a repository of security
patterns. The results prove the viability of the proposed
approach.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—Information filtering, Relevance
feedback, Search process; 1.2.11 [Artificial Intelligence]:
Distributed Artificial Intelligence— Intelligent agents, Mul-
tiagent systems; K.6.3 [Management of Computing and
Information Systems]|: Software Management—Software
development

Keywords

Multi-agent system, implicit culture, patterns, Lucene

*The primary author of the paper is a PhD student

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

*

Michael Weiss
School of Computer Science
Carleton University, Ottawa - Canada

weiss@scs.carleton.ca

1. INTRODUCTION

A little more than ten years ago the authors of the book
Design Patterns [9], the first major publication on software
patterns, stated the problem of selecting patterns: “With
more than 20 design patterns in the catalog to choose from,
it might be hard to find the one that addresses a particular
design problem, especially if the catalog is new and unfa-
miliar to you”. As time has passed, patterns have become
a staple of current software development approaches. How-
ever, the problem of selecting patterns still exists. Moreover,
it has become much more critical as the number of docu-
mented patterns is continuously increasing: for instance, the
Pattern Almanac [15] lists more than 1200 patterns. And in
the past six years since its publication, many new patterns
and books on patterns have been published. The problem
of choosing the appropriate pattern is particularly hard to
solve for inexperienced programmers [17], and tools assisting
in this process become of utmost importance.

In this paper, we address the problem of selecting patterns
from a social point of view. To help a developer make a de-
cision about which patterns to use, getting suggestions from
her group of peers is important. We present a multi-agent
system aimed at helping developers choose the patterns suit-
able for a given design problem. The system is based on the
implicit culture framework [5]. This framework has been
implemented within the IC-Service [4], which provides rec-
ommendations on patterns. These recommendations are cre-
ated using a history of previous user interactions with the
system, namely with their personal agents. The task of per-
sonal agents in the system is to distribute the knowledge
about the use of patterns within a community of developers
without their direct involvement. Namely, agents provide
their users with suggestions on which patterns are suitable
for a specified problem. The suggestions are complemented
with a description of patterns from the pattern repository
accessible by the agents. Currently, we use a Lucene-based
implementation of the repository that contains a set of se-
curity patterns published on patternshare.org [10], one of
several popular online repositories for patterns.

A preliminary description of our approach has been pre-
sented in [14]. The main contributions of this paper are a
description of an actual prototype of a system for selecting
patterns, and an experimental evaluation of the approach.

The paper has the following structure. Section 2 provides
a brief background on patterns and the ideas underlying
them, while Section 3 illustrates the implicit culture frame-

republish, to post on servers or to redistribute to lists, requires prior specific work. In Section 4 we describe the general architecture of

permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

our system, document a scenario of using the system, and

perl scripts

per| scripts pattern markup

patternshare.org

html descriptions repository of

patterns

Figure 1: The pattern extraction process. (1) In-
formation about the security patterns is extracted from the
patternshare.org repository using Perl scripts; (2) the pat-
tern descriptions are then converted to an XML format using

Perl scripts and a pattern markup language.

provide details on the implementation. Experimental results
are presented in Section 5, and related work is discussed in
Section 6. Finally, Section 7 concludes the paper.

2. BACKGROUND

Patterns enable an efficient transfer of design experience
by documenting common solutions to recurring design prob-
lems in a specific context [2]. Each pattern describes the sit-
uation when the pattern can be applied in its context. The
context can be thought of as a precondition for the pattern.
This precondition is further refined in the problem descrip-
tion with its elaboration of the forces that push and pull the
system to which the pattern is applied in different directions.
Here, the problem is a precise statement of the design issue
to be solved. Forces are design trade-offs affected by the pat-
tern. One of the most significant contributions of patterns
is that they intend to make the trade-offs between the forces
involved explicit. The trade-offs can be documented in var-
ious forms. One popular approach is to document them as
sentences like “on one hand ..., but on the other ...”. The
solution describes a way of resolving the forces. Some forces
may not be resolved by a single pattern. In this case, a pat-
tern often includes references to other patterns, which help
resolve forces that were unresolved by the current pattern.
Together, patterns connected in this way are often referred
to as a pattern language. Links between patterns can be
of different types, including uses, refines, and conflicts [12,
16]. Patterns that need another pattern link to that pat-
tern with uses. Patterns specializing the context or problem
of another pattern refine it. Patterns that offer alternative
solutions conflict, and should not be used together.

Recently, there have been several efforts in making pat-
terns available in online pattern repositories, where they can
be browsed and searched by various criteria. An early ex-
ample was the Pattern Almanac [15], which is available in
electronic form (www.smallmemory.com/almanac). A more
recent example is the patternshare.org site hosted by Mi-
crosoft (patternshare.org). In order to store patterns in
a repository, a structured pattern representation must be
adopted. There have been several proposals, most notably
the Pattern Language Markup Language (PLML) [7].

In this work we have adopted a format that is specific to a
set of security patterns published on patternshare.org [10].
We have defined an XML representation for these patterns
and extracted the content of the subset of this repository
from the website. The extraction process is illustrated in
Figure 1. Our current representation contains the following
elements: Pattern.Context, Pattern.Problem, Pattern.Solution,
Pattern.KnownUses, and Pattern.RelatedPatterns, as well as
elements specific to the patternshare.org site, but not re-
quired for our purposes (see Figure 2 for an example of the

<Pattern id="SingleAccessPoint">

<Pattern.Name>Single Access Point</Pattern.Name>

<Pattern.View>Application Architecture</Pattern.View>

<Pattern.Role>Architecture</Pattern.Role>

<Pattern.Aspect>Function</Pattern.Aspect>

<Pattern.Summary>Single entry point for each process.
</Pattern.Summary>

<Pattern.Context>You are planning to secure a system from
outside intrusion. The system provides a bunch of services
but you want to secure the system as a whole.
</Pattern.Context>

<Pattern.Problem>A security model is difficult to validate
when there are multiple ways for entering the application.
How can we secure a system from outside intrusion?
</Pattern.Problem>

<Pattern.Solution>Set up only one way to get into the system
and if necessary, create a mechanism to decide which sub-
application to launch. Typically most applications use a log
in screen to accomplish the single access point.
</Pattern.Solution>

<Pattern.RelatedPatterns>Single Access Point validates the
user’s login information through a <Pattern idref=
"PolicyEnforcementPoint"/> and uses that information to
initialize the user’s Roles and Session. A Singleton can be
used to implement a Single Access Point.
</Pattern.RelatedPatterns>

<Pattern.Publication>This pattern appeared in the paper titled
"Architectural Patterns for Enabling Application Security" by
Joseph Yoder and Jeffrey Barcalow in Pattern Languages of
Programmers conference in 1997. Peter Sommerlad integrated
the material in the Security Pattern book titled "Security
Patterns: Integrating Security and Systems Engineering".
</Pattern.Publication>

</Pattern>

Figure 2: An example of the XML representation of
a pattern (our pattern markup language).

pattern representation). However, our approach does not
depend on a specific pattern representation.

We are also not concerned, at this stage of development,
with how easy it is to deploy our approach; however, in the
future; we plan to converge towards a standard like PLML.

3. IMPLICIT CULTURE

This section presents an overview of the general idea of the
implicit culture framework and Systems for Implicit Culture
Support (SICS) that provide the basis for the IC-Service we
have used to provide recommendation facilities within our
system. A more thorough description of the IC-Service can
be found in the work of Birukou et al. [4]. The paper by
Blanzieri et al. [5] contains a detailed description of implicit
culture theory and the SICS architecture.

Our motivation for adopting an implicit culture approach
stems from the difficulty less experienced developers face
in using patterns. Developers who wish to apply patterns
from a domain that is not their main area of expertise en-
counter similar difficulties. A good example is the security
domain. For any but trivial applications, security is a key
concern, however, making the application secure is not the
main concern of the application developer. Security pat-
terns [16] can help developers with this task: they provide
guidance to non-experts in security for designing secure ap-
plication. However, a significant challenge remains: how do
developers decide which patterns they should use? The fol-
lowing quote from [17] is indicative of the difficulty inherent
in using patterns:

Only experienced software engineers who have a
deep knowledge of patterns can use them effec-

tively. These developers can recognize generic
situations where a pattern can be applied. Inex-
perienced programmers, even if they have read
the pattern books, will always find it hard to de-
cide whether they can reuse a pattern or need to
develop a special-purpose solution.

The difference between these two types of developers is that
an experienced developer uses implicit knowledge (in par-
ticular, her own experience) about the problem (see [6] for
a more general discussion on this point). When we look at
the community of a developer’s peers, knowledge is called
implicit when it is embodied in the capabilities and abilities
of the community members (developers). It is explicit when
it is possible to describe and share it through documents
or knowledge bases. To select appropriate patterns inex-
perienced developers should acquire the implicit knowledge
that more experienced developers have.

We argue that it is possible to shift the pattern selection
behavior exhibited by inexperienced developers towards the
behavior of more experienced developers by suggesting pat-
terns suitable for their current design task. To determine
which patterns are suitable we use the history of previous
interactions with the system, i.e. which patterns other de-
velopers have chosen in a similar situation. We refer to the
pattern selection behavior of experienced developers as the
culture of that developer community. When inexperienced
developers start behaving in agreement with the community
culture, a knowledge transfer from experienced to inexperi-
enced developers occurs. The relation characterized by this
knowledge transfer is called “implicit culture”.

For example, let us consider a programmer that needs
to improve access control in a system that offers multiple
services. Let us suppose that for an experienced developer
knowledgeable in security it is apparent to use the Single
Access Point pattern. If the system is able to use previous
history to suggest that the novice uses the Single Access
Point pattern and she actually uses it, then we say that
she behaves in accordance with community culture and the
implicit culture relation is established. We will use this ex-
ample as a running example throughout the paper.

In our system, personal agents use the IC-Service to rec-
ommend patterns. The IC-Service provides an interface for
accessing a SICS that is dealing with observations coming
from the system and produces recommendations. The gen-
eral architecture of a SICS consists of the following three
components:

e an observer, which stores information about actions
performed by the user in a database of observations;

e an inductive module, which analyzes the stored obser-
vations and applies learning techniques (namely, data
mining or machine learning) to develop a theory about
actions performed in different situations;

e a composer, which exploits the information collected
by the observer and derived by the inductive module
to suggest actions in a given situation.

In terms of our problem domain, the observer saves infor-
mation about the problem (a textual description plus some
characteristics of the project, in whose context the problem
occurred), which patterns have been proposed as a solution,

and which pattern has been chosen in return. The induc-
tive module discovers problem-solution pairs by analyzing
the history of the interaction of users with the system. A
set of problem-pattern pairs (which patterns are selected
for what problems) form a theory. The goal of the com-
poser is twofold. Firstly, it compares the description of a
problem faced by a developer with the problem part of the
theory mined by the inductive module in order to suggest
the corresponding pattern. Secondly, the composer tries to
match the problem with the pattern by analyzing the his-
tory of observations and calculating the similarity between
the problem description given by the user and the problem
descriptions which users provided for patterns previously se-
lected for similar problems.

Above, we described the basic idea behind using an im-
plicit culture approach for selecting an individual pattern.
However, it is clear that this is only part of a larger process,
where a developer selects patterns in an iterative manner.
Patterns are never used in isolation, rather patterns are se-
lected in the context of the other patterns that have already
been applied (see e.g. [2] for an overview of this general
process). This means that we can also make use of links be-
tween patterns (the information in the Pattern.RelatedPatterns
section of our pattern representation) to recommend pat-
terns. In this paper, however, we focus on the former, the
selection of individual patterns, in the understanding that
we will be able to use this as a step of a larger, iterative
process.

4. THEARCHITECTURE OF THESYSTEM

This section gives a description of the system and of the
search process. The system is intended for the use within an
IT-company, or just within a project group, and it should
adapt the suggestions to the specificity of the software de-
velopment process adopted within the company or project
group, converging to the “community culture”.

The architecture of the system is given in Figure 3. The
system consists of a web-based user interface at the client
side and a multi-agent platform at the server side. A user ac-
cesses the system by submitting a description of the problem
via the web-based interface in her browser. Apart from the
problem description, a description of the project, in which
the problem is encountered, is submitted. In the remain-
der of the paper, we will refer to the problem description
together with the project description as a user query. The
problem is described by a set of keywords, optionally re-
stricted to specific elements of the pattern markup language.
The project description can be represented as a set of prop-
erties (e.g. project size, required level of data protection,
etc.). In our running example, the user could submit a
query with the following problem description: “access con-
trol in a system that offers multiple services” related to the
project that has the following set of properties: {Name: On-
lineBanking, SecurityLevel: High, ProjectSize: Medium}.

Each user is assisted by a personal agent. The goal of
a personal agent is to help the user choose a pattern suit-
able for the submitted query. In order to fulfill this goal,
the agent is capable of accessing one or more information
sources. It can also obtain recommendations from the IC-
Service. In the current implementation there is only one
information source: a Lucene-based repository of patterns.
The personal agents in the system are software agents run-
ning on the multi-agent platform at the server side.

| browser
: Web-based | i
iClient side m |

JADE Platform i

Personal
Agent 2

/

3 Personal !
! Agent 1 !
| |
1 BQICS ||~ """ e i :
! IC-Service | !
' Personal !
1 Agent n e ;

Server side |
|

Web-based

‘ user interface

I
i Web-based
user interface

1 browser 1 browser

Figure 3: The architecture of the system. Personal
agents process queries from users and access the repository
of patterns to retrieve potentially relevant patterns; the IC-
Service is exploited by the agents in order to create recom-
mendations from the history of past interactions; the Agent
Management System (AMS) exerts supervisory control over the
platform: it provides agent registration, search, etc.; the Di-
rectory Facilitator (DF) provides agents with other personal
agents’ IDs; BQR stands for BehaviourQueryRepository used
to access the repository, and BQICS stands for Behaviour-

QueryICService respectively.

Table 1: The actions observed by the system.

[action | objects | attributes

request problem_description | project_properties
apply | pattern, problem_description | project_-properties
reject | pattern, problem_description | project_properties

The use of agents and of the implicit culture ideas allows
for the distribution of the knowledge without the direct in-
volvement of the users. In our example, the user’s personal
agent should suggest using the Single Access Point pattern.
If the agent does so because someone else has already used
this pattern for similar problems, it distributes the knowl-
edge about the use of patterns within the community.

4.1 The Configuration of the IC-Service

In terms of the implicit culture framework user queries
are objects in situations. The goal of the SICS within the
IC-Service is to find the most similar situations. Besides ab-
stractions of situations we need to introduce several terms.
We treat developers as agents who perform actions on o0b-
jects. We further suppose that actions have attributes, which
are features helpful for the analysis of those actions. In the
implicit culture framework, actions are assumed to be per-
formed in situations, therefore we can speak of situated ac-
tions [18]. In our application, the SICS analyzes the actions
presented in Table 1. Since all the actions are performed by
developers, we omit agents from the table.

We explain the information contained in the table in de-
tail. A developer requests the system to find patterns that
are suitable for her task. The query contains a description

PersonalAgent
PAgent

‘ Repository ‘

request(guery) :
reguest_patterns(guery) |

pattern_docs

requestipatteéns(query)

patterhs D

results evaluation
pattems
apply(pattern query)

rejectipattern query)

Figure 4: Sequence diagram of the search process.

of the problem and the properties of the project where the
problem has been encountered.

The developer applies the pattern when she implements it
in code. To observe this action, for now, we request explicit
feedback from the developer that a pattern has been used,
but in principle, a case tool which support the subsequent
(semi-)automatic implementation of the patterns (e.g., [13])
could provide this kind of feedback indirectly. Alternatively,
techniques for automatic detection of the patterns in a piece
of software can be used, for instance, the PTIDEJ prototype
tool [1] provides such a functionality.

It is possible for the developer to specify the inapplicabil-
ity of a pattern to the task explicitly. Such the indication is
recorded as a reject action.

In the running example, examples of actions are:

request(query)
apply(SingleAccessPoint, query)
reject(Authenticator, query)

where query has the problem description “access control in a
system that offers multiple services” and project properties
{Name: OnlineBanking, SecurityLevel: High, ProjectSize:
Medium}.

Obviously, the main problem lies in the “observability” of
the users’ actions. The most problematic action to observe
is the action of using a pattern for a problem. In the current
implementation we assume the user explicitly indicates this
action in the system, specifying that she selected the pat-
tern X for the problem A, where the problem corresponds
to a search in the history of searches. This is a reasonable
assumption, since the amount of the input required from the
user is very low. However, implicit sources of feedback such
as clicking on a pattern description, time spent reading the
description, etc. can be used together with or instead of the
explicit feedback. Fox et al. have shown [8] that a combi-
nation of multiple sources of implicit feedback can produce
results comparable to those based on explicit feedback.

4.2 Search in the System

The search scenario is given in Figure 4. A user sub-
mits a query via the user interface, from where the query
is forwarded to the user’s personal agent. In the first step
of the search process, the personal agent accesses the pat-
tern repository and retrieves a set of patterns relevant to
the query. In the second step, the personal agent submits a
query to the SICS and receives a list of recommended pat-

terns. Thus, the result consists of patterns retrieved from
the repository and patterns recommended by the SICS. The
feedback from the user is collected via the apply and reject
actions, which mark a pattern as suitable or unsuitable for
the problem, respectively.

The SICS inside the IC-Service processes the query within
two steps. In the first step, the SICS matches the action
contained in the query, i.e. the request action, with the
theory and determines the action that must follow, i.e. the
apply action. In the second step, the SICS finds situations
where the apply action has been previously performed, thus
determining the patterns used for similar problems in the
past. In this step, the similarity between the current query
and the previously submitted queries is calculated. As a
result, the SICS returns a set of patterns that have been
used for similar problems in the past.! A pattern is recorded
as “applied” or “rejected” if a user indicates so explicitly.

Let us illustrate how the search process takes place in
our example. The user submits the request action with the
following query: {ProblemDescription: “access control in a
system that offers multiple services”; Project: {Name: On-
lineBanking, SecurityLevel: High, ProjectSize: Medium}}.
In the first step the agent retrieves patterns from the reposi-
tory: SingleAccessPoint, PolicyEnforcementPoint, and Role-
BasedAccessControl. In the second step, the agent queries
the IC-Service. The SICS matches the request action with
the theory. The theory contains rules of essentially the fol-
lowing form:

if request(query) then apply(pattern-X,query)

This means that the apply (and not, e.g. a reject) action
must follow the request action. So, the SICS matches the
request action with that part of the theory that represents a
problem, and searches for situations where the apply action
has been performed. It finds the following situations (situa-
tion-id, the action, problem description, project, pattern):

1 | apply | pdl | pp | SingleAccessPoint
2 | apply | pd2 | pp | PolicyEnforcementPoint

where pdl=*“access control in a system that offers multiple
services”, pd2=*“only authorized clients should access the
system”, pp={Name: e-BookShop, SecurityLevel: Medium,
ProjectSize: Medium}. As a result, the SICS returns the
SingleAccessPoint pattern, chosen in the most similar situ-
ation. After the evaluation of the results, the following list of

patterns is displayed in the user interface: {SingleAccessPoint,

PolicyEnforcementPoint, RoleBasedAccessControl }. Hav-
ing analyzed the proposed patterns, the user applies the Sin-
gleAccessPoint pattern and indicates this in the user inter-
face. She also marks the RoleBasedAccessControl pattern
as unsuitable, thus performing the reject action.

4.3 Implementation Details

The system is implemented using JADE 3.4 (Java Agent
DEvelopment framework). For creating recommendations
the IC-Service is used. Although called a “service”, the IC-
Service can be used in a number of ways, in particular as a
Java library (the way we use it in our system).

If the database of observations is large, then patterns gen-
erally used for such problems must be returned. This infor-
mation is in the theory developed by the inductive module.

To build the repository of patterns we took the follow-
ing steps: (1) the descriptions of security patterns are ex-
tracted from patternshare.org using scripts; (2) the pattern
descriptions are converted to the XML format using scripts;
(3) the XML documents representing patterns are indexed
with Apache Lucene 2.0. Apache Lucene is a fully-featured
text search engine library available as an open source Java
project(http://lucene.apache.org/). The Lucene library
is also used to access the repository of patterns from the
personal agents. However, our approach does not depend
on a particular repository or a tool for accessing the reposi-
tory. Moreover, the repository can be further extended with
adding other patterns.

5. EVALUATION

The goal of the experiment is to compare the performance
of the system with and without the SICS.

In the experiment we implemented in each agent a class
that simulates the querying behavior of the real user. The
main functions of this class are: (1) provide pseudo-user
input in order to enable the personal agent’s recommenda-
tions, and (2) generate pseudo-user response to the recom-
mendations. The input is provided and the responses are
generated according to a user profile. The user profile con-
tains a sequence of sets of keywords (queries) and a set of
patterns. The intuition behind the user profile is as fol-
lows: the user has a single problem to solve using patterns,
the problem can be described in a number of ways (each
set of keywords in the sequence describes the problem), and
the problem can be solved with the use of one of the pat-
terns contained in the user profile. So, in the experiments, a
query contains only a problem description in free-text form
and does not contain information about the project.

During the simulation the multi-agent platform contains
a special agent, the simulation manager, which is responsi-
ble for the simulation. The task of the simulation manager
is to create a number of personal agents and to collect the
information regarding searches. The number of agents is
specified in the simulation scenario. Personal agents send
the information about the simulated searches to the simula-
tion manager using the FIPA-Request protocol.

We use the following measures [3] in order to evaluate the
quality of suggestions:

e We call a pattern relevant to a problem if it can be
applied for solving the problem. More specifically, pat-
tern(s) contained in a user profile are relevant for the
problem described with the keywords from this profile.

e Precision is the ratio of the number of suggested rel-
evant patterns to the total number of suggested pat-
terns, relevant and irrelevant.

e Recall is the ratio of the number of proposed relevant
patterns to the total number of relevant patterns.

e F-measure is a trade-off between precision and recall.
It is calculated as follows:

2 x Precision * Recall

F-measure = —
Precision + Recall

In our experiment, we have not used the inductive module
of the SICS to update the theory and the recommendations

Precision

Precision of the suggestions for the user 'u01’

Precision of the suggestions for the user 'u02"

Precision of the suggestions for the user 'u03’

LUCENE ——
sics
TheSystem

Precision

LUCENE —— LUCENE ——

sics
TheSystem wweeeees

sics
TheSystem «suseee:

Precision

) %
Nufnber of searcfiés o

% & &

Precision of the suggestions for the user 'u04’

o
Nufnber of searcfiés

% % B e s %

o
Nufnber of searcfiés

Precision of the suggestions for the user 'u05’

Precision

LUCENE ———

i
TheSystem wsuseee:

Precision

LUCENE ———

TheSystem e

o % %
Nufnber of searcfiés © @

o % %
Nufnber of searcfiés © ©

Figure 5: The precision of suggestions in the experiment

Table 2: The user profiles

ID profile pattern relevant pattern

u01 | ControlledProcessCreator ControlledObjectCreator
Execution Domain

u02 | StatefulFirewall PacketFilterFirewall
ProxyBasedFirewall

u03 | VirtualAddressSpaceAccessControl | ControlledProcessCreator
ExecutionDomain

u04 | Authorization ReferenceMonitor
RoleBasedAccessControl

u05 | MultilevelSecurity ReferenceMonitor
RoleBased AccessControl

are generated entirely by the composer module. Also, mod-
els of the users have not produced reject actions, just request
and apply.

To build a small community of five developers, we consid-
ered five patterns from the repository of Security Patterns®
and assigned them to each of the developers as shown in
Table 2. These patterns have been used in order to cre-
ate sequences of sets of keywords, corresponding to the de-
scriptions of the problems encountered by the users. The
sequences are created as follows: given a document, we con-
struct a distribution of the terms in this document and then
each element of the k-element sequence is a sample from this
distribution, represented as an n-dimensional tuple. Here
k > 1 is the number of searches performed in a simulation,
and each query in the sequence consists of n > 1 keywords.

To determine the patterns that are marked as “solution
to the problem” and are placed in the user profile, the fol-
lowing approach is adopted. We represent each document
in the repository as ‘a bag of words’ [3]. Then we calcu-
late the similarity between the document used to create the
profile and the rest of the repository. The cosine similar-
ity metric [3] is used. The m document(s) with the highest

2The repository of Security Patterns contains 59 patterns.

similarity (excluding the documents used to create profiles)
are added to the profile as “solutions to the problem”. We
set m = 2 and created five user profiles using patterns that
are given in Table 2. Please note that there is a partial
overlap in the profiles (e.g. u01 and u03), so the transfer of
knowledge takes place.

The index of the repository of patterns has been built
using the Lucene library. This library allows for boosting
some fields of the document when searching the repository.
In our experiment we boosted the fields Pattern.Name and
Pattern.Summary.

In the experiment we set n = 3, so user queries consisted
of three keywords, and we ran simulations for k=3,6,9,12,15,
and 18, measuring the precision, recall, and F-measure of the
recommendations after completing each k-query sequence.
At the end of each k-query sequence, the database of obser-
vations is deleted in order to have the IC-Service producing
recommendations from scratch. We repeated simulations 10
times and averaged the precision, recall, and F-measure to
control the effect of the order and keywords of queries.

The results contain the precision, recall and F-measure of
the patterns retrieved from the Lucene pattern repository,
recommended by the SICS module, and by the system (both
repository results and recommendations). Figure 5 shows
the precision of the recommendations produced by the five
personal agents for five developers. Analogous results have
been obtained for the recall (Figure 6) and F-measure (Fig-
ure 7). The curves marked as “LUCENE” correspond to the
performance of the system without the SICS module.

The results show that the recommendations of the system
maintain a certain level of quality even for a small number
of searches. The precision of the SICS’s recommendations
is almost always higher than the precision of patterns ob-
tained from the Lucene repository. Contrary to precision,
the Lucene results are better in terms of the recall, although
the gap is not so big as for the precision curves. This is

Recall of the suggestions for the user 'u01’

Recall of the suggestions for the user 'u02’

Recall of the suggestions for the user 'u03’

LUCENE ——

sics
TheSystem e

Recall
Recall

Recall

o % % s 3
Nufnber of searcfiés o ©

Recall of the suggestions for the user 'u04

o
Nufnber of searcfiés

s % B o o % s
© @ Nufnber of searcfiés @ @

Recall of the suggestions for the user 'u05

LUCENE ———

i
TheSystem wsuseee:

Recall

Recall

LUCENE ———

TheSystem e

o
Nufnber of searcfiés

s %

5 e % %

o
Nufnber of searcfiés

Figure 6: The recall of suggestions in the experiment

consistent with the fact that the number of the patterns re-
trieved from the Lucene repository is limited only by the
number of documents relevant to the query, while the num-
ber of recommendations from the SICS is fixed and equal
to one in the experiment. The F-measure of suggestions
produced by the system as a whole, in the most cases is
higher than the F-measure of the suggestions produced by
the Lucene or the SICS alone. This suggests that (1) the
system with the SICS module outperforms the system with-
out this module, (2) the approach of complementing results
from the pattern repository with recommendations of the
SICS proves to be useful.

6. RELATED WORK

The paper by Kung et al. [11] represents the most related
work to our approach. The authors propose a methodol-
ogy for constructing expert systems which suggest design
patterns to solve problems faced by developers. They also
present a prototype, the Expert System for Suggesting De-
sign Patterns (ESSDP) which implements the methodology.
ESSDP selects a design pattern based on the user’s require-
ments. A user interacts with the system in a question-
answer manner, which helps to narrow down the selection
process. At the end of the interaction, a suitable design
pattern is offered to the user. There are several signifi-
cant differences between our approach and ESSDP. Firstly,
ESSDP assumes the knowledge acquisition as the primary
step of the methodology. In this step human experts must
fill in the knowledge base with some pre-defined rules. Dif-
ferently, in our system the SICS learns from the interactions
with users, without any initial knowledge base, allowing for
continuous improvement of suggestions. Moreover, we ex-
ploit interactions with inexperienced users as well, offering
to novices patterns that have been chosen in similar situa-
tions not only by experts but also by other novices. Thus
we support sharing users’ experience with others. Secondly,

our architecture is not restricted to the use of a rule-based
knowledge base assuming that different learning techniques
can be adopted.

There is also a number of tools that are dealing with the
refactoring of an old code using design patterns [1, 13]. In
most of the cases it is supposed that the choice of the pat-
tern to use for refactoring is made by a developer. Adding
the functionalities manifested by our system would enable a
means for facilitating the selection of the patterns in these
tools. It would also take the place of the explicit indication
about the uses of patterns.

7. CONCLUSION AND FUTURE WORK

We have presented a multi-agent system that facilitates
the process of the selection of patterns suitable for a given
problem. The system is based on the implicit culture frame-
work that uses the history of user-system interactions to pro-
vide recommendations on patterns. The recommendations
are supplemented with the results obtained from the pat-
tern repository and the viability of our approach has been
proven by the experimental results.

Future work includes the implementation and evaluation
of more complex recommendation scenarios such as recom-
mending sequences of patterns, or recommending core pat-
terns in a given group of patterns (for training).

The system described in the paper is available as an open-
source project. Only the implementation with limited func-
tionality is available from the project site now, but future
extensions will be made public through this venue.

8. ACKNOWLEDGEMENTS

This work is funded by research projects EU SEREN-
ITY ”System Engineering for Security and Dependability”,
COFIN ” Artificial Intelligence Techniques for the Retrieval
of High Quality Information on the Web” and by Fondo

F-measure

F-measure of the suggestions for the user 'u01’

F-measure of the suggestions for the user 'u02’

F-measure of the suggestions for the user 'u03’

LUCENE ——
sics
TheSystem e

F-measure

F-measure

o % % s 3
Nufnber of searcfiés o ©

F-measure of the suggestions for the user 'u04’

o
Nufnber of searcfiés

<5 %

s % B o o
© @ Nufnber of searcfiés

F-measure of the suggestions for the user 'u05

LUCENE ———

i
TheSystem wsuseee:

F-measure

F-measure

LUCENE ———

TheSystem e

o %
Nufnber of searcfiés ©

o % %
Nufnber of searcfiés © ©

Figure 7: The F-measure of suggestions in the experiment

Progetti PAT, MOSTRO ”Modeling Security and Trust Re-
lationships within Organizations” and QUIEW (Quality-based

indexing of the Web), art.

9, Legge Provinciale 3/2000,

DGP n. 1587 dd. 09/07/04.

9.
1]

[4]

8]

REFERENCES

H. Albin-Amiot, P. Cointe, Y.-G. Gueheneuc, and

N. Jussien. Instantiating and detecting design
patterns: Putting bits and pieces together. In 16th
Annual International Conference on Automated
Software Engineering, pages 166 — 173, 2001.

C. Alexander, S. Ishikawa, M. Silverstein,

M. Jacobson, I. Fiksdahl-King, and S. Angel. A
pattern language. Oxford University Press, 1977.

P. Baldi, P. Frasconi, and P. Smyth. Modeling the
Internet and the Web: Probabilistic Methods and
Algorithms. Wiley, 2003.

A. Birukou, E. Blanzieri, V. D’Andrea, P. Giorgini,
N. Kokash, and A. Modena. IC-Service: A
service-oriented approach to the development of
recommendation systems. In Proceedings of ACM
Symposium on Applied Computing. Special Track on
Web Technologies, 2007.

E. Blanzieri, P. Giorgini, P. Massa, and S. Recla.
Implicit culture for multi-agent interaction support. In
Proceedings of the 9th International Conference on
Cooperative Information Systems, pages 27-39, 2001.
H. L. Dreyfus and S. E. Dreyfus. Mind over machine:
the power of human intuition and expertise in the era
of the computer. The Free Press, 2000.

S. Fincher. Plml: Pattern language markup language
report of workshop held at CHI, Interfaces, 56 (pp.
26-28). Technical report, 2003.

S. Fox, K. Karnawat, M. Mydland, S. Dumais, and
T. White. Evaluating implicit measures to improve

(12]

(13]

(15]

(16]

(17]

(18]

web search. ACM Trans. Inf. Syst., 23(2):147-168,
2005.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Addison-Wesley Longman Publishing Co.,
Inc., 1995.

M. Hafiz and R. E. Johnson. Security patterns and
their classification schemes. Technical report, 2006.
D. C. Kung, H. Bhambhani, R. Shah, and

G. Pancholi. An expert system for suggesting design
patterns: a methodology and a prototype. In T. M.
Khoshgoftaar, editor, Software Engineering With
Computational Intelligence, Series in Engineering and
Computer Science. Kluwer International, 2003.

J. Noble. Classifying relationships between
object-oriented design patterns. In Proceedings of the
Australian Software Engineering Conference, pages
98-107. IEEE Computer Society Press, 1998.

M. O’Cinnide and P. Nixon. Automated software
evolution towards design patterns. In Proceedings of
the 4th International Workshop on Principles of
Software Evolution, pages 162-165. ACM Press, 2001.
Removed_for_blind_review. Choosing the right desing
pattern: the implicit culture approach. In Proceedings
of the fourth Industrial Stmulation Conference 2006
(1SC-2006), pages 55-57. EUROSIS, June 2006.

L. Rising. The Pattern Almanac. Addison-Wesley
Longman Publishing Co., Inc., 2000.

M. Schumacher. Security Engineering with Patterns
Origins, Theoretical Model, and New Applications.
Number 2754 in LNCS. Springer, 2003.

I. Sommerville. Software engineering (7th ed.).
Addison-Wesley, Boston, MA, USA, 2004.

L. A. Suchman. Plans and Situated Action. Cambridge
University Press, 1987.

