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Abstract

We propose a simple method for constructing non-reflecting boundary conditions
via Perfectly Matched Layer approach. The basic idea of the method is to build
a layer with high rate damping properties with are provided by adding the stiff
relaxation source terms to all equations of the system. No complicated modification
of the system to be solved is then required.

1 Introduction

The computational problem of wave propagation in infinite domains arises in acoustics,

seismology and electromagnetic waves phenomena. The numerical study is usually refor-

mulated in a bounded artificial computational domain in which infinity is modelled by

some properties of the numerical boundary or its neighborhood. The purpose of such a

reformulation of the problem is to avoid wave reflection from the numerical boundary.

The problem of constructing numerical boundary conditions has been intensively stud-

ied in recent decades. As a result, two main approaches have been developed. The first

approach is the so called ”Absorbing Boundary Conditions” (ABC) approach and con-

sists of formulating direct boundary conditions for the computational region, which would

eliminate wave reflection from the boundary. We refer the reader to some recent papers

[8, 9] and bibliography therein.

Another approach is the ”Perfectly Matched Layer” (PML) approach in which the

computational domain is surrounded by an additional boundary layer. The main idea

is to let the waves propagate out of the computational region. Therefore, it is crucial

that the boundary layer does not generate waves propagating back to the computational

region. Various versions of the PML approach have been proposed in the past, which are

based on introducing new artificial variables and differential equations for these variables.

See [5, 4, 2] and references therein.

In this paper we propose a simple, reliable and efficient PML method suitable for

solving wave propagation problems described by hyperbolic systems, either linear or non-

linear. The basic idea of the method is to formulate a perfectly matched layer as a layer
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with high rate damping properties. These properties are provided by adding the stiff

relaxation source terms to all equations of the system. An asymptotic analysis for small

value of relaxation time τ allow us to make a conclusion that the amplitude of the wave

reflected from the PML is of the second order on τ . Therefore the influence of the angle

of incidence and wavelength of the wave incoming to the PML from the computational

domain on the reflected wave can be made negligible. The main advantages of the method

proposed here are its simplicity and generality. No complicated modification of the system

to be solved is required. The structure of the source terms allows one to use practically

any advection scheme without significant changes. No stability problem exists either.

A similar idea to use source terms with soft damping rate of acoustic waves in the cer-

tain and rather large buffer layer (comparable with computational domain) was proposed

in [3]. In the quoted paper the mesh stretching and filtering together with non-reflecting

boundary conditions have been used in order to provide outflow disturbance without re-

flection for aerodynamic sound generation problems. The absorbing layers with relaxation

damping have been proposed also for electromagnetic equations [1] and for linearized Euler

equations [5]. In these papers absorbing technique requires additional reformulation the

governing equations (splitting in the coordinate direction).

The rest of the paper organized as follows. In Section 2 we formulate the idea of the

new perfectly matched layer for the general case of nonlinear systems of conservation laws

and the method of its numerical solving. In Section 3 we analyze the idea as applied to

linear acoustics. In Section 4 we discuss the application of the method to two-dimensional

equations and present some numerical examples. Conclusions are drawn in Section 5.

2 Equations for perfectly matched layer

We study the wave propagation phenomena described by a hyperbolic system of conserva-

tion laws in an infinite spacial domain. Generally speaking, the system can be nonlinear.

In the three dimensional Cartesian coordinate system xi it can be written as

∂

∂t
Q +

∂

∂x
F (Q) +

∂

∂y
G(Q) +

∂

∂z
H(Q) = 0, (1)

where Q is the vector of conserved variables, F (Q), G(Q), H(Q), are the flux vectors in

the coordinate directions.

To solve the problem numerically we apply the PML strategy, which consists of defin-

ing the finite computational domain D in which we intend to obtain a solution, and then

constructing a surrounding absorbing boundary layer of a prescribed width. This bound-

ary layer must not affect the basic computational domain, meaning that there are no

waves coming back to the basic domain from the boundary layer.

Suppose that the values Q∞ of the conserved variables at infinity are known: Q → Q∞
if xi → ∞. We formulate the equations which describe the wave propagation in the
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perfectly matched layer by adding a relaxation source term to (1):

∂

∂t
Q +

∂

∂x
F (Q) +

∂

∂y
G(Q) +

∂

∂z
H(Q) = −1

τ
(Q−Q∞), (2)

where τ is the relaxation time which can be a function of variables Q. We take τ = ∞
inside our computational domain whereas in the PML layer τ is taken to be small.

The idea of adding such relaxation term is to provide rapid (exponential) damping

of all variables and waves inside the layer. It is clear intuitively that the decrease of the

wave amplitude will be faster if the relaxation time tends to zero. Note that the structure

and the type of equations does not change making it possible to use the same numerical

method as for the original system (1).

We now proceed to describe the numerical procedure to be used in the new PML.

Suppose that we have a one-step numerical scheme for solving (1), which gives us a result

in the form

Qn+1 −Qn

∆t
= L(Qn).

Here ∆t is the time step. The simplest numerical procedure is the one step implicit

approximation of the source term in the system (2). That is we use the following formula:

Qn+1 −Qn

∆t
= L(Qn)− 1

τ
(Qn+1 −Q∞). (3)

It gives us the result in the form
(

1 +
∆t

τ

)
Qn+1 =

∆t

τ
Q∞ + Qn + ∆tL(Qn)

¿From the latter formula we see that if the relaxation time τ is very small (in particular

τ much less than ∆t) then the value of Qn+1 is very close to its value at infinity Q∞.

3 Acoustic wave propagation in the PML

In this section we study the method as applied to acoustic waves leaving the computational

domain. We suppose that the wave of small amplitude can be obtained as a solution of

a linearized isentropic Euler equations which are simply the acoustic equations. Without

loss of generality we can assume that the mass density and speed of sound are equal to

unity. Then the acoustic equations with the added relaxation source terms read as follows:

∂p

∂t
+

∂u

∂x
+

∂v

∂y
= −p

τ
,

∂u

∂t
+

∂p

∂x
= −u

τ
, (4)

∂v

∂t
+

∂p

∂y
= −v

τ
.
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Here p, u, v are non-dimensional pressure, and components of velocities in x and y direc-

tions, respectively. Inside the computational domain τ is supposed to be infinity (+∞),

hence source terms vanish, whereas in the PML τ is finite and small enough to provide a

high rate of decay of waves amplitude.

We shall study the solution to system (4) in the PML (x, y) ∈ [0, h] × (−∞, +∞)

supposing that the computational region is located from the left side of PML (x ≤ 0).

Following the analysis in [4] we suppose that a harmonic plane wave of the form

(p, u, v)T = (1, α, β)T exp(iω(t− αx− βy))

propagates from the main computational domain to the PML. Here α, β (α2 + β2 = 1)

represent the angle of wave incidence and ω is the normalized frequency of incoming wave.

We seek the solution inside the PML in the following form

(p, u, v)T = (P (x), U(x), V (x))T exp(iω(t− βy)).

Substituting this representation of the solution into (4) we obtain a system of ordinary

differential equations for P (x), U(x), V (x):

dP

dx
+

(
iω +

1

τ

)
U = 0,

dU

dx
+

(
iω +

1

τ

)
P − iωβV = 0, (5)

(
iω +

1

τ

)
V − iωβP = 0.

For the rest of the section we study the functions P (x), U(x) only. The solution of (5)

can be written as a combination of the two exponents:

P (x) = P1e
kx + P2e

−kx, U(x) = −P1
k

Ω
ekx + P2

k

Ω
e−kx, (6)

where

k =
√

Ω2 + β2ω2, Ω = iω +
1

τ
, (7)

and P1, P2 are constants which can be found from the boundary conditions for PML.

Our goal is to prove that the choice of the right boundary condition does not affect

the absorbtion properties of the PML provided the relaxation time τ is sufficiently small.

As the left boundary condition we take the value of the Riemann invariant which comes

to the PML from the computational domain. This means that this Riemann invariant is

continuous across the interface between the PML and computational domain. We remark

that this requirement is reasonable from the point of view of the theory of hyperbolic

equations. Thus we take

P (0) + U(0) = 1 + α.
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Using the representation (6) of the solution we obtain the following relation between

P1 and P2:

P2 = −Ω− k

Ω + k
P1 + (1 + α)

Ω

Ω + k
.

Now expressions for P (x) and Q(x) can be transformed into

P (x) = P1
(Ω + k)ekx − (Ω− k)e−kx

Ω + k
+ (1 + α)

Ω

Ω + k
e−kx

U(x) = −P1k
(Ω + k)ekx + (Ω− k)e−kx

Ω(Ω + k)
+ (1 + α)

k

Ω + k
e−kx. (8)

Here only one constant P1 must be determined with the use of right boundary condition

for PML.

We are interested in the invariant P (x) − U(x) and its value at x = 0, because this

value gives an estimate of the amplitude of waves generated by the PML and propagating

into the main computational region. Such a wave propagates into main computational

region and must be damped by the PML. This invariant can be easily obtained from (8):

P (x)− U(x) = P1
(Ω + k)2ekx − (Ω− k)2e−kx

Ω + k
+ (1 + α)

Ω− k

Ω + k
e−kx (9)

and its value at x = 0 is

P (0)− U(0) = P1
2Ωk

Ω + k
+ (1 + α)

Ω− k

Ω + k
. (10)

We shall study an asymptotic solution behavior assuming τ sufficiently small. Then

the following asymptotic formula can be used:

k =
1

τ
+ iω +

β2

3
ω2τ + O(τ 2) = Ω +

β2

3
ω2τ + O(τ 2). (11)

Now we derive the solution for the case of general right boundary condition for the

PML which we take in the form

aP (h) + bU(h) = 0,

where a, b are an arbitrary constants. Using (8) we obtain the value for P1:

P1 = − (1 + α)(aΩ + bk)e−kh

(aΩ− bk)(Ω + k)ekh − (aΩ + bk)(aΩ− bk)e−kh
. (12)

Hence the solution and the invariant P (x) − U(x) in particular can be obtained by sub-

stituting (12) into (8) and (9) accordingly.

Now the study of the asymptotic behavior should be based on the fact that

τ−γe
−h

τ → 0, if τ → 0,
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where γ ≥ 0. Using this asymptotic behavior one can prove that

P1 v e
−2h

τ → 0, if τ → 0.

This leads us to the conclusion that the asymptotic behavior of the solution, invariant

P (x)− U(x) and its value at x = 0 are as follows:

P (x) v (1 + α)
Ω

Ω + k
e−kx,

U(x) v (1 + α)
k

Ω + k
e−kx,

P (x)− U(x) v (1 + α)
Ω− k

Ω + k
e−kx,

P (0)− U(0) v (1 + α)
Ω− k

Ω + k
.

In particular we have

P (0)− U(0) ' −(1 + α)
β2ω2

6
τ 2 + O(τ 3).

So the asymptotic value for the Riemann invariant which generates waves propagating

from the PML to the computational domain is of order τ 2 and does not depend on the

type of right boundary condition. Moreover the influence of the angle of incidence β and

frequency ω of incoming wave can be made negligible. This allows us to choose a very

simple numerical algorithm for the computations at the right PML boundary.

4 Numerical example

Here we show some numerical results as applied to the two-dimensional hyperbolic sys-

tems. The proposed idea is mostly easily implemented in the framework of one-step

Godunov-type methods. For background information see e.g. [11, 7]. The operator L in

(3) takes the following form:

Lij = −Fi+1/2,j − Fi−1/2,j

∆x
− Gi,j+1/2 −Gi,j−1/2

∆y

and the PML update formula is given by

Qn+1
ij =

∆t
τ

Q∞
1 + ∆t

τ

+
Qn

ij + ∆tLij(Q
n)

1 + ∆t
τ

(13)

Alternatively, one can use advection schemes with Runge-Kutta time marching, e.g. [6].

In this case the relaxation step for the source term is executed after the all Runge-Kutta
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stages are carried out. Effectively, we could regard this as a time-splitting procedure. The

whole time step dt is divided into two sub steps: i) carry out Runge-Kutta method ii)

apply the relaxation step as given by (13) but without the spatial operator:

Qn+1
ij =

∆t
τ

Q∞ + QRK
ij

1 + ∆t
τ

(14)

where QRK
ij is the value of the vector of conservative variables, obtained after the Runge-

Kutta time stepping.

Below we use the one-step ADER3 scheme, see [12, 10] and references therein. This

scheme is uniformly third-order accurate in time and fifth order accurate in space.

We first tested our method on a two-dimensional explosion test problem for the non-

linear two-dimensional Euler equation from [11]. In the computations we take the width

of the PML layer to be equal to ten cells. The relaxation time is taken to be τ = 10−2

inside the layer when the equations are written in a conventional non-dimensional form.

This problem is an analog of the shock-tube problems in one space dimension. The ini-

tial condition consists of two regions of constant but different values of gas parameters

separated by a cylindrical surface. The solution involves a cylindrical shock wave leaving

the computational domain and is thus appropriate for assessing the robustness of the

method. Numerical results omitted here show that the proposed PML algorithm works

well without any stabilization or filtering used in [4, 5].

Secondly, we apply the method to a standard acoustic test problem [4, 5]. We solve

the two-dimensional linearized Euler equations of the form (1) with (again in the non-

dimensional form)

Q =




ρ

u

v

p


 , F (Q) =




u0 ρ0 0 0

0 u0 0 1/ρ0

0 0 u0 0

0 γp0 0 u0


 Q, G(Q) =




v0 0 ρ0 0

0 v0 0 0

0 0 v0 1/ρ0

0 0 γp0 v0


 Q

in a spatial domain of [−50, 50] × [−50, 50]. Here we take γ = 1.4, ρ0 = p0 = 1, v0 = 0,

u0 = 0.5
√

γ. The initial conditions include an acoustic pulse centered at (xa, ya) and a

vorticity and entropy pulses both centred at (xb, yb) and are given by

ρ = exp (−(ra/3)2 log 2) + 0.1 exp (−(rb/4)2 log 2),

p = γ exp (−(ra/3)2 log 2),

u =
√

γ 0.05(y − yb) exp (−(rb/4)2 log 2),

v = −√γ 0.05(x− xb) exp (−(rb/4)2 log 2)

where r2
a,b = (x−xa,b)

2+(y−ya,b)
2, (xa, ya) = (−25, 0), (xb, yb) = (25, 0). Note that factors

proportional to γ appear due to the fact that our choice of non-dimensional variables is

different from that of [5, 4]. We use ∆x = ∆y = 1.
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Figure 1: Density (left) and x component of velocity (right) for t = 25.
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Figure 2: Density (left) and x component of velocity (right) for t = 50.

Figs. 1, 2 show the counter lines of density and x component of velocity for output

times: t = 25 and t = 50. Comparing our results with those reported in the literature [5, 4]

we conclude that their quality is comparable. No reflections from the boundary take place.

As time elapses, the pressure waves leave the computational domain. For example,

Fig. 3 illustrates pressure distribution along the x axis for t = 60. Here symbols correspond

to our numerical solution whereas the solid line represents the reference solution obtained

on a larger domain. As is seen, no spurious waves reflect from the PLM layer back to the

domain.

5 Conclusions

We have presented a new variant of the perfectly matched layer approach to construction

of non-reflecting boundary conditions. The method is exceedingly simple, robust, does

not involve altering of the governing equations and does not need any filters for stability.

Numerical results demonstrate that its performance is similar to the other PML schemes,
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Figure 3: Density (left) and pressure (right) distribution along the x axis for t = 60.

presented in the literature.
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