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Abstract

Early requirements analysis focuses on stakeholders and
their goals, and explores alternative ways of fulfilling them
through networks of actor delegations. The i* modeling
framework is a popular way of modeling and analyzing
early requirements. This paper frames the problem of de-
signing actor dependency networks as a multi-agent plan-
ning problem and adopts off-the-shelf planners to offer a
tool that generate alternative actor dependency networks,
and evaluate them in terms of metrics derived from Game
Theory literature. The paper presents in detail how plan-
ning can generate alternative networks, also describes the
tool (P-Tool) that supports the planning process and gener-
ates alternatives. As well, we offer preliminary experimen-
tal results on the scalability of the approach.

1. Introduction

The last fifteen years have seen an increased emphasis
on an early phase in Requirements Engineering (RE) when
the focus is on stakeholders and their goals, rather than the
system-to-be. i* [20] is a modeling framework that sup-
ports modeling and analysis during this phase. According
to i* and an associated requirements analysis process (Tro-
pos [2]), one begins requirements acquisition by identifying
stakeholders (”actors”) and their goals. These goals are de-
composed and delegated to other actors, thereby creating
networks of delegations. The process ends when all ini-
tial (”root”) goals can be fulfilled if all actors deliver on
their delegations. One or more of these actors represent the
system-to-be. The functional requirements for the system-
to-be are determined by all delegations to these system ac-
tors.

Exploring the space of alternative actor dependency net-
works is a difficult design task. This is so because such
networks represent complex socio-technical systems where

organizational, human and system actors depend on each
other to fulfill root-level goals. Moreover, there are no
generic criteria to guide the design process by determining
whether a solution is good-enough, or even optimal. Our
long-term objective is to develop such criteria and use them
through tools and systematic design processes.

The purpose of this paper is to propose a framework
for the automatic selection and evaluation of design al-
ternatives. The framework supports both the generation
and evaluation of alternatives. Specifically, the framework
adopts multi-agent planning techniques and uses off-the-
shelf planning tools. Alternatives are evaluated with re-
spect to individual interests of system actors (i.e. their own
goals). Ideas from Game Theory [14] are used to determine
whether an alternative is an equilibrium. In particular, an
alternative is in equilibrium if no actor can do better with
respect to its own goals by adopting a different strategy for
delegating and accepting delegations. When combined to-
gether, these two steps support the designer/requirements
engineer in selecting alternatives that are in equilibrium
with respect to the local strategies of each actor. An early
version of this idea is used in [3] to propose a framework
to generate alternative designs for secure systems. This pa-
per goes further by describing a prototype tool that gener-
ates alternatives, presents some experimental results, and
also proposes evaluation techniques for alternatives based
on game-theoretic notions.

The process of the best alternative selection consists of
the following steps:

1. Identify system and human actors, goals and their
properties. Define goal decompositions and depen-
dency relationships among actors.

2. For each actor identify criteria to evaluate alternatives.

3. Automatically explore the space of alternatives ”on the
upper level” to identify assignments of coarse-grained
goals to actors.



4. Separately for each actor, automatically explore the al-
ternative ways to satisfy the goals the actor was as-
signed at step 3. According to above identified evalu-
ation criteria, select ”the best” alternative for each ac-
tor. During this step, alternative refinements of coarse-
grained goals and delegation dependencies among ac-
tors are explored.

5. Evaluate the combined solution consisting of alterna-
tives identified at step 4. In case it does not satisfy one
or several system actors (e.g. they are overloaded with
respect to others), return to step 4 to search for another
alternative.

Ideally, the process stops after a number of iterations
when the socio-technical structure is optimized enough to
comply with the individual interests of the system actors. If
no satisfactory alternatives can be generated at some step,
the designer should return to steps 1 or 2, and revise either
the initial structure, or the evaluation criteria.

Figure 1a presents a simple example of the problem.Ac-
tor 1 has to achieve aGoal, which can be refined into two
subgoalsSubgoal 1andSubgoal 2. The actor can decide to
achieve the goal by itself or delegate it toActor 2. In both
cases, there are a number of alternative ways that can be
adopted. So, for instance,Actor 1can decide to delegate to
Actor 2the wholeGoal (Figure 1b), or part of it (Figure 1c).
Shaded goal in the circle of an actor means that the goal is
the responsibility of this actor. Even for this primitive ex-
ample, exploring all the alternatives is quite tedious, and a
support for alternative generation and evaluation would be
beneficial.

The rest of the paper is structured as follows. In the next
Section we describe the example we use through the paper
to describe our framework. In Section 3 the issue of al-
ternative generation and evaluation is detailed. Section 4
describes the P-Tool, an implemented prototype tool to sup-
port the exploration of alternatives, and reports some exper-
imental results. Finally, in Section 5 we describe the related
work, and discuss conclusions and future work directions in
Section 6.

2. SDS System example

Let us consider a small software development company,
which typical projects are medium-scale web based infor-
mation systems (like, e.g. online library catalog, or travel
agency home page with online trip booking, etc.). Within
the company there are three teams of developers each fo-
cused on its area: GUI development, web design, and data-
base support. Each team can develop subcomponents and/or
consult other teams on questions related to their expertise.
A manager is supposed to divide the project into meaningful
parts and perform the assignment of goals to achieve to the

(a) Sample problem

(b) 1st alternative

(c) 2nd alternative

Figure 1. Sample problem and two alternative
solutions

development teams. Note, that a manager can assess how
the project goals are refined and what skills it requires to
satisfy each subgoal only on the coarse-grained level.

The company has decided to use a software develop-
ment support system (SDS system or supporting system in
the following), which will facilitate and report communi-
cation among actors, archive a library of reusable compo-
nents, organize the search for such components, store and
provide the information specific to the project under devel-
opment (e.g. contain a glossary of domain specific terms,
store domain specific classifications, etc.). Communication
between manager and members of the development teams
is supposed to be carried out only through the supporting
system. Teams can communicate with each other in two
cases: when one team wants to redirect a subgoal which re-
quires the development skills these team does not possess
to another team, and when one team needs to consult an-
other one. The first type of communication is possible only
through the supporting system, while the communication on
consultancy can be done both through the supporting sys-
tem and e-mail (or even personal communication).



Figure 2. Goal tree for eBooking project

To analyze the above described socio-technical system
let us consider a typical project it might deal with: web
based eBooking system for the travelling agency. As it is
represented in Figure 2, the high-level goalprovide eBook-
ing systemis refined into three subgoals:provide user in-
terface, support communication with DBandprovide web
page. In order to fulfil the high-level goal, all three sub-
goals should be satisfied. Two subgoals are further refined,
e.g.provide eBooking systemsubgoal can be reached in two
alternative ways: by developing eBooking GUI and consult-
ing web designers to adopt it for web environment, or by
developing web booking interface together with consulting
GUI team on which standard components to use.

The OR-decomposition of the subgoalsprovide user in-
terfaceanddesign web pageintroduces alternative solutions
for the development of the eBooking system. One of the
alternatives to achieveprovide user interfacesubgoal is de-
picted in Figure 3. The goal is decomposed byGUI team
actor, which selects the lefttmost alternative among the two
or-subgoals. The selected subgoal is further decomposed
into two subgoals:consult on standard GUI components
andprovide booking web interface. The former is satisfied
by GUI team, while the latter is delegated toWeb design
team.

3. Exploring and evaluating alternatives

3.1. Formalization of the planning problem

It can be noticed that requirements – at least within the
frameworks such asi* [20], Tropos [2] and the like – are
conceived as networks of delegations among actors. Every
delegation involves two actors, where one actor delegates
to the other the fulfillment of a goal. The delegatee can

Figure 3. An alternative way to achieve provide
user interfacesubgoal

either fulfill delegated goal, or further delegate it, thus cre-
ating another delegation relation in the network. Intuitively,
these can be seen as actions that the designer/requirements
engineer ascribes to the members of the organization and
the system-to-be. Further, the task of constructing such net-
works can be framed as a planning problem: selecting a
suitable requirements structure corresponds to selecting a
plan that satisfies the goals of human and software agents.

Thus, we have chosen the AI planning approach to sup-
port the designer/requirements engineer in the process of
selecting the best alternative. The basic idea behind plan-
ning approach is to automatically determine the course of
actions (i.e. a plan) needed to achieve a certain goal where



an action is a transition rule from one state of the system to
another [19, 15]. Actions are described in terms of precon-
ditions and effects: if the precondition is true in the current
state of the system, then the action is performed. As a con-
sequence of an action, the system will be in a new state
where the effect of the action is true.

Planning approach requires a specification language to
represent the planning domain, i.e.

• the initial state of the system;

• the goal of the planning problem (i.e. the desired final
state of the system);

• the description of actions;

• the axioms of background theory.

Once the domain is described, the solution to the planning
problem is the (not necessarily optimal) sequence of actions
that allows the system to reach the desired state from the
initial state.

To describe the initial state of the system, actors’ and
goal properties, and social relations among actors should be
specified. We propose to represent initial state in terms of
predicates that correspond to

• the possible ways of goal decomposition;

• actors’ capabilities and desires to achieve a goal;

• possible delegation relations among actors.

The desired state of the system (or the goal of the planning
problem) is described through the conjunction of predicates
derived from the description of actors’ desires in the initial
state. Essentially, for each desired goal a predicate is added
to the goal of the planning problem.

Different types of logic could be applied for this purpose,
e.g. first order logic is often used to describe the planning
domain with conjunctions of literals specifying the states of
the system. In table 1 predicates used to describe the re-
quirements engineering domain are introduced. Predicates
take variables of three types: actors, goals and goal types.
To typify goals,typepredicate is used. Actor capabilities
are described withcan decomposeandcan decomposegt
predicates, which mean that an actor has enough capabil-
ities to satisfy a specific goal or any goal of a specific
type, accordingly. Social dependencies among actors are
reflected bycan dependon and can dependon gt predi-
cates, which means that one actor can delegate to another
actor the fulfilment of any goal or, in the latter case, any
goal of a specific type. Predefined ways of goal refine-
ment are represented usingdecompositionpredicates, while
with can decomposegt the scope of each actor can be rep-
resented: an actor can refine, or knows how to refine, only
goals within his scope. Initial actors’ desires are represented

Goal Properties
type(g : goal, gt : gtype)
subtype(child : gtype, parent : gtype)
and decompositionn(g : goal, g1 : goal, . . . , gn : goal)
or decompositionn(g : goal, g1 : goal, . . . , gn : goal)
satisfied(g : goal)
Actor Properties
can satisfy(a : actor, g : goal)
can satisfy gt(a : actor, gt : gtype)
can decompose gt(a : actor, gt : gtype)
wants(a : actor, g : goal)
Actor Relations
can depend on(a : actor, b : actor)
can depend on gt(a : actor, b : actor, gt : gtype)

Table 1. Primitive predicates

type (ConsultOnGUIToWebAdoption, tWDConsult)
subtype (tWDConsult, tConsult)
can depend on gt (GUITeam, WDTeam, tConsult)
can depend on gt (WDTeam, GUITeam, tConsult)

type (ProvideBookingWebInterface, tWDDevel)
type (DesignFromScratch, tWDDevel)
type (ProvideRegistrationForm, tWDDevel)
can satisfy gt (WDTeam, tWDDevel)

type (ProvideEBookingSystem, tManagScope)
can decompose gt (Manager, tManagScope)

Figure 4. Predicates for SDS System example

with wantspredicate. When the goal is fulfilledsatisfied
predicated becomes true for it.

In figure 4, a part of SDS System example formalization
is presented. The goal typestConsult, tWDDevelandMan-
agScopeare used.

In i* /Tropos approach, when drawing the model of a sys-
tem, the designer/requirements engineer assigns goals to ac-
tors, defines delegations of goals from one actor to another,
and identifies appropriate goal refinements among the pre-
defined alternative refinements. Thus, the following actions
will be used by a planner to find a way to fulfill the goals of
the system actors.

Goal satisfaction. An actor can satisfy a goal only if the
achievement of the goal is among his desires and he
can actually satisfy it. The effect of this action is the
fulfillment of the goal.

Goal delegation. An actor may have not enough capabili-
ties to achieve his goals by himself, and so he has to
delegate their satisfaction to other actors. This pas-
sage of responsibilities is performed only if the dele-
gator wants a goal to be achieved and can depend on
the delegatee to achieve it. The effect of this action is
that the delegator does not worry any more about the
satisfaction of the goal, while the delegatee takes the



responsibility for the fulfillment of the goal and so it
becomes his own desire to achieve it. The delegator
does not care how the delegatee satisfies the goal (e.g.
by his own capabilities or by further delegation), it is
up to the delegatee to decide it.

Goal decomposition/refinement.As in different goal-
oriented modeling frameworks (e.g. as in Tropos and
KAOS [5]) two types of goal refinement are supported:
OR-decomposition, which suggests the list of alterna-
tive ways to satisfy the goal, and AND-decomposition,
which refines the goals into subgoals which all are to
be satisfied in order to satisfy the initial goal. An actor
can decompose a goal only if he wants it to be satis-
fied, and only in the way which is predefined in the
initial state of the system. The effect of decomposition
is that the actor who refines the goal focuses on the
fulfillment of subgoals instead of the initial goal. It is
assumed that different actors can decompose the same
goal in different ways.

In addition to actions, axioms of the planning domain
can be defined. These are rules that hold in every state of the
system and are used to complete the description of the cur-
rent state. For example, to propagate goal properties along
goal refinement the following axiom is used: a goal is satis-
fied if all its and-subgoals or at least one of the or-subgoals
are satisfied.

3.2. Evaluation procedure

To complete the requirements analysis process, the al-
ternative designs generated by the planner should be eval-
uated, amended and approved by the designer. The tricky
point here is the solution evaluation which can be complex
enough even for experienced designers with considerable
domain expertise. Alternative requirements structures can
be evaluated both from global and local perspectives, i.e.
from the designer’s point of view and from the point of
view of individual actors. The optimality of a solution in
the global sense could be assessed with respect to the fol-
lowing.

• Length of the obtained plan.The number of actions in
the obtained plan is often the criteria for the planner
itself to prefer one solution to another. Thus, it can
be assumed that the obtained plan is already (locally)
optimal in the sense of the length minimization.

• Overall plan cost.This is closely related with the idea
of plan metrics introduced in PDDL 2.1 [8]. Plan met-
rics specify the basis on which a plan is evaluated for
a particular problem (e.g. action costs or duration),
and are usually numerical expressions to be minimized

or maximized. However, the complexity of the prob-
lem of optimizing a solution with respect to the defined
metrics is very high and the feature is still poorly sup-
ported by the available planning tools [8].

• Degree of satisfaction of non-functional requirements.
E.g. in [12], a set of rules is proposed to identify
application-specific parameters and functions to quan-
tify impacts of different explored alternatives on non-
functional goals (e.g. security, performance, usability)
satisfaction.

Local evaluation of the obtained plan is a much more
complex task. Indeed, a challenging characteristic of socio-
technical IT system design is that human agents should be
taken into account. They can be seen as players in a game
theoretic sense as they are self-interested and rational. This
means they want to minimize the load imposed personally
on them, i.e. they want to reduce the number and the com-
plexity of actions they are involved in. In a certain sense
non-human agents, i.e. system components, are players as
well as it is undesirable to overload them. Each player has a
set of strategies he could choose from, e.g. he could decide
whether to satisfy a goal himself or to pass it further to an-
other system actor. Strategies are based on the player’s ca-
pabilities and his relations (e.g. subordination, friendship,
or trust) with other human and artificial agents in the sys-
tem.

The substantial difficulty in applying game theoretic
ideas to our problem is that all actors of a socio-technical
system should work as a solid mechanism satisfying the
overall organizational goal. Differently from classical
non-cooperative game theory, where all players choose
their strategies independently and simultaneously before the
game, in our problem actors’ choices are closely interre-
lated. A player cannot independently change his strategy
because the new action sequence will very likely be unsat-
isfactory, i.e. it will not be a solution anymore. Thus, to
satisfy the system goals it will be necessary to impose some
additional load (to compensate the one this player tries to
avoid) on some other actors – and it might happen that they
will not be satisfied with their new utilities, and will try to
deviate from the strategy they were imposed, and so on and
so forth. Thus, if one actor wants to deviate from the gen-
erated solution, the re-planning is needed to search for an-
other alternative option, which is then evaluated, possibly,
to be re-plan again. The process stops when a (sub)optimal
requirements alternative option is found. In our frame-
work the following ”replan-towards-optimality” procedure
is used.

First, for all actorsai, i = 1, n and all goalsgk, k =
1,m, wheren andm are the number of actors and goals,
respectively, the costs are defined:

• csik is the cost for the actorai of satisfying the goal



Action Cost Actors and Goals
Satisfy 3 goals of typetConsult for WDTeam, GUI-

TeamandDBTeam; goal FindStandardTem-
platefor SupportingSystem

4 goals of typetWDDevelfor WDTeam, goal
ProvideBookingGUI for GUITeam; goal
SupprtDBCommunicationfor DBTeam

Delegate 1 SupportingSystem; delegations between
WDTeam, GUITeamandDBTeam

2 all other actors and goals
Refine 2 all actors and goals

Table 2. Costs for the SDS System example

gk;

• crik is the cost for the actorai of refining the goalgk;

• cdijk is the cost for the actorai of delegating a goalgk

to the actorbj .

For example, the costs of actions for actors from the SDS
System example are defined in Table 2.

Then, the cost of a given alternativeP for the actorai is
calculated by summing up the costs of actions inP which
ai is involved in, and is denoted by

c (P, ai) =
∑

delegate(ai,bj ,gk)∈P

cdijk+

∑

decomposel(ai,gk,gk1,...,gkl)∈P

crik +
∑

satisfy(ai,gk)∈P

csik,

where decomposel(ai, gk, gk1, ..., gkl) stands for the de-
composition ofgk into l subgoalsgk1, ..., gkl.

If P is the alternative depicted in Figure 3, then
c (P, GUITeam) = 6, c (P, WDTeam) = 6 and
c (P, SupportingSystem) = 2.

Note, that in our framework we do not use the notion of
utility, which is an important game theory construct. This
is done mainly for the simplicity reasons. The utility of an
alternativeP for the actorai can be defined as the difference
between maximum upper bound for the solution cost for
actorai andc (P, ai). Basically, utility says how much an
actor ”saves” with the alternativeP being selected.

After the costs are computed, for each actor the condi-
tions are defined upon which an actor decides whether to
deviate from an alternativeP or not. The conditions could
be either one of the following, or both.

• Actor ai whose predefined upper cost boundcup
i is

greater thanc (P, ai) is willing to deviate from P.

• Actor ai whose predefined upper boundcdevup
i on

cost deviation is greater thanc (P, ai)−avgi(c (P, ai))
wants to deviate fromP .

Finally, the evaluation procedure is the following.

• An alternativeP is generated with the help of planner.

• Costc (P, ai) is calculated for eachai.

• Actor amin is identified whose value ofc (., .) is mini-
mal among all actors who want to deviate fromP .

• The first most expensive actiondworst is identified
among actions ofP in whichamin is involved.

• Negation ofdworst is added to the initial planning
problem, and replanning is performed. If no plan can
be found, the nextdworst is identified.

The process stops when an equilibruium-like solution is
found, i.e. no actors are willing to deviate from it and the
designer approves this solution. The designer remains in the
process all the time, and can stop the iterations whenever he
thinks the satisficing alternative is generated.

This evaluation procedure is used at the following steps
of the selection of the best alternative, defined in the Intro-
duction.

• At step 3, while selecting the best assignments of
coarse-grained goals to actors.

• At step 4, separately for each actor, when exploring the
ways to satisfy the goals the actor was assigned.

• At step 5, when evaluating the combined solution con-
sisting of alternatives identified at step 4. Here the re-
planning is performed only for the alternative to which
dworst belongs to.

4. P-Tool and experiments

4.1. Choosing the planner

One important step we have performed during the im-
plementation of the proposed framework, is choosing the
”right planner” among off-the-shelf tools available. In the
last years many planners have been proposed [15]. In or-
der to choose one of them the following requirements are
considered:

• The planner should not produce redundant plans. Un-
der non-redundant plan we mean that, by deleting an
arbitrary action of the plan, the resulting plan is no
more a ”valid” plan (i.e. it does not allow to reach
the desired state from the initial state).

• The planner should use PDDL (Planning Domain De-
finition Language) since it is becoming a ”standard”
planning language and many research groups work on
its implementation.



(: action Satisfies
: parameters(?a− t actor, ?g − t goal
: precondition (and

(or(can satisfy?a?g)
(exists(?gt− t gtype)(and(type?g?gt)

(can satisfy gt?a?gt)))
(wants?a?g)

: effect (and
(satisfied?g)
(not(wants?a?g))))

(: derived
(type?g − t goal?parent− t gtype)
(exists(?child− t gtype)

(and(subtype?child?parent)(type?g?child))))

Figure 5. Domain description using PDDL

• The language should support a number of ”advanced”
features (e.g. derived predicates) that are essential for
implementing our planning domain, i.e. it should be at
least PDDL 2.2. [6].

The first requirement is concerned with the optimality of
the generated design decisions. We argue that it is not nec-
essary to focus on the optimal design: human designers do
not prove that their design is optimal, why should a system
do it? Instead, in our framework the plan is required to be
non-redundant, which guarantees at least the absence of al-
ternative delegation paths since a plan does not contain any
redundant actions.

We have compared a number of planners with respect
to above requirements (see [3] for the details). Finally, we
have chosen LPG-td [13], a fully automated system for solv-
ing planning problems, supporting PDDL 2.2 specification
for implementing our planning domain.

Then, we have implemented our planning domain in
PDDL 2.2. Figure 5 presents the specification of one ac-
tion and one domain axiom in PDDL 2.2.

Figure 6 shows the plans generated by LPG-td for satis-
fying provide user interfaceandprovide web pagesubgoals.
The former plan is illustrated in Figure 3, the latter – in Fig-
ure 7.

Preliminary experiments were conducted to test the scal-
ability of the approach. A very simple ”core” problem was
considered, with three actorsA, B andC and two goals,
G1 andG2, which A wants to be achieved, andB andC
can satisfy. Then ”additional” actors with the dependen-
cies among them were added to the problem, but they did
not interfere at all with ”core” subproblem. The idea was
to check whether the search time of the plan to achieveG1

andG2 depends on the number of ”additional” actors and
dependencies among them. The experiments showed that,
at least with respect to this example, the approach is scal-
able. Basically, the search time for the problem with 10

(OR DECOMPOSES GUITeam ProvideUI ProvideUI1 ProvideUI2)
(AND DECOMPOSES GUITeam ProvideUI1

ProvideBookingWebI ConsultStandGUI)
(SATISFIES GUITeam ConsultStandGUI)
(PASSES GUITeam SupportingSystem ProvideBookingWebI)
(PASSES SupportingSystem WDTeam ProvideBookingWebI)
(SATISFIES WDTeam ProvideBookingWebI)

(a) Provide user interface

(AND DECOMPOSES WDTeam ProvideWebPage
DesignWebPage ProvideRegistrProc)

(AND DECOMPOSES WDTeam ProvideRegistrProc
ProvideRegForm ConsultOnStoreUData)

(SATISFIES WDTeam ProvideRegForm)
(OR DECOMPOSES WDTeam DesignWebPage

DesignFromScratch FindStandardTemplate)
(SATISFIES WDTeam DesignFromScratch)
(PASSES WDTeam DBTeam ConsultOnStoreUData)
(SATISFIES DBTeam ConsultOnStoreUData)

(b) Provide web page

Figure 6. Plans for ProvideUI and ProvideWeb-
Pagesubgoals

Figure 7. Diagram for the plan for ProvideWeb-
Pagesubgoal

and with 120 ”additional” actors is the same (less than one
second), only the parsing time increases insignificantly. At
the same time, search time for the plan with long delegation
chains (more than 30 steps) is much greater (around 15 sec-
onds). Of course, the scalability issue should be explored
much more carefully (actually, this is one of our future work
plans), but the above reported preliminary experiments have
shown promising results.



4.2. P-Tool

We have developed P-Tool, an implemented prototype to
support the designer/requirements engineer in the process
of exploring and evaluating alternatives. The tool has the
interface for the input of actors, goals and their properties,
which can be seen in Figure 8. LPG-td is built in the tool,
and is used to generate requirements alternatives, and repre-
sents each solution graphically usingi* notation, see Figure
9 for an example.

Figure 8. P-Tool: identifying actor properties

Figure 9. P-Tool: i* diagram for the generated
alternative

In the following we will illustrate how the steps 3–5 of
our approach (see Section 1) could be supported by the P-
Tool. For the sake of simplicity we will leave out some
details.

(AND DECOMPOSES WDTeam ProvideWebPage
DesignWebPage ProvideRegistrProc)

(AND DECOMPOSES WDTeam ProvideRegForm
ConsultOnStoreUData)

(SATISFIES WDTeam ProvideRegForm)
(PASSES WDTeam DBTeam ConsultOnStoreUData)
(SATISFIES DBTeam ConsultOnStoreUData)
(OR DECOMPOSES WDTeam DesignWebPage

DesignFromScratch FindStandardTemplate)
(PASSES WDTeam SupportingSystem FindStandardTemplate)
(SATISFIES SupportingSystem FindStandardTemplate)

Figure 10. New plan for ProvideWebPagesub-
goal

Figure 11. Diagram for new plan for
ProvideWebPagesubgoal

Step 3. First, the planning ”on the upper level” forMan-
ager actor is performed. We will skip the process descrip-
tion. The resulting alternative can be seen in the screenshot
in Figure 9. ManagerdecomposesProvideEBookingSys-
temgoal intoProvideUI, ProvideWebPageandSupportDB-
Communicationsubgoals, and passes them through theSup-
portingSystemto GUITeam, WDTeamandDBTeam, respec-
tively.

Step 4. We will illustrate this step with exploring
alternatives for the subgoalProvideWebPageassigned to
WDTeamactor. Firstly, an alternative presented in Figure
6 is generated. For this alternativec (P1,WDTeam) =
2+2+4+2+4+2 = 16, which does not satisfyWDTeam
actor, so it tries to decrease the imposed load. According to
the evaluation procedure described in Section 3.2, the action
(SATISFIES WDTeam ProvideRegForm) is selected as
dworst. When this action is negated, the planner is not able
to find a solution. Thus, the nextdworst is identified, which
is (SATISFIES WDTeam DesignFromScratch). New al-
ternative is generated, see Figures 10 and 11, for which



c (P2, WDTeam) = 2 + 2 + 4 + 2 + 2 + 1 = 13. This last
alternative is then fixed as it satisfiesWDTeamactor.

Step 5. When partial plans are combined into the
planP and evaluated, it appears thatc (P, GUITeam) =
6 and c (P, WDTeam) = 13 + 6 = 19. Actor
WDTeam tries to deviate from the alternativeP , and
(SATISFIES WDTeam ProvideBookingWebI) of the plan
depicted in Figure 6 is identify asdworst and negated. By
replanning we get an alternative presented in Figures 12 and
13, for whichc (P ′, GUITeam) = 2+2+4+2 = 10 and
c (P ′, WDTeam) = 13 + 3 = 16. This new alternative
satisfies bothGUITeamandWDTeamactors.

5. Related work

Requirements engineering is considered to be a crucial
part of software development process [18]. Careful elicita-
tion and analysis of requirements help to develop a system
that meets user’s expectations, is trustful and robust. Mod-
eling requirements to software systems and organizations in
terms of goals and their interdependences has been a topic
of considerable research interest during the last decades
[18]. A number of goal-oriented approaches for require-
ments representation and reasoning were introduced, e.g.
KAOS [5].

The field of AI planning has been intensively developing
during the last decades, and has found a number of applica-
tions (robotics, process planning, autonomous agents, etc.).
Planning approach recently has proved to be applicable in
the field of automatic Web service composition [15]. There
are two basic approaches to the solution of planning prob-
lems [19]. One is graph-based planning algorithms in which
a compact structure, called Planning Graph, is constructed
and analyzed. In the other approach the planning problem is
transformed into a SAT problem and a SAT solver is used.

There exist several ways to represent the elements of
a classical planning problem, i.e. the initial state of the
world, the system goal, or the desired state of the world,
and the possible actions system actors can perform. The
widely used, and to the certain extend standard representa-
tion is PDDL (Planning Domain Definition Language), the
problem specification language proposed in [10]. Current
PDDL version, PDDL 2.2 [6] used during the last Inter-
national Planning Competition [11], supports many useful
features, e.g. derived predicates and timed initial literals.

A few works can be found which relate planning tech-
niques with software requirements analysis and design. In
[1] a program called ASAP (Automated Specifier And Plan-
ner) is described, which automates a part of the domain-
specific software specification process. ASAP assists the
designer in selecting methods for achieving user goals, dis-
covering plans that result in undesirable outcomes, and find-
ing methods for preventing such outcomes. The disadvan-

(OR DECOMPOSES GUITeam ProvideUI ProvideUI1 ProvideUI2)
(AND DECOMPOSES GUITeam ProvideUI1

ProvideBookingWebI ConsultStandGUI)
(SATISFIES GUITeam ProvideBookingGUI)
(PASSES GUITeam WDTeam ConsultOnGUIToWebAdoption)
(SATISFIES WDTeam ConsultOnGUIToWebAdoption)

Figure 12. New plan for ProvideUI subgoal

Figure 13. Diagram for new plan for ProvideUI
subgoal

tage of the approach is that the designer still performs a lot
of work manually determining the combination of goals and
prohibited situations appropriate for the given application,
defining possible start-up conditions and providing many
other domain-specific expert knowledge.

Castillo et al. [4] present an AI planning application to
assist an expert in designing control programs in the field of
Automated Manufacturing. The system they have built in-
tegrates POCL, hierarchical and conditional planning tech-
niques (see [4, 15] for references). The authors consider
standard planning approaches to be not appropriate with
no ready-to-use tools for the real world, while in our pa-
per the opposite point of view is advocated. Another recent
application of the planning approach to requirements engi-
neering for the secure systems is proposed by Gans et al.
[9]. The work is based oni* modeling approach [20] and
ConGolog (see [15] for description and references), a logic-
based planning language. However, the authors focus more
on representing/modeling trust in social networks, than on
the design automation, and do not go far in explaining how
they exploit the planning formalism.

Game theory is an established discipline which deals
with conflicts and cooperation among rational independent
decision-makers, or players. The key concept in classical
game theory is the notion of equilibrium [14] which de-
fines the set of strategies, one for each player, which none
of the independent rational players wants to deviate from.
By playing an equilibrium each player maximizes his util-
ity locally, given some constraints. For example, playing



the Nash equilibrium means that no player can benefit when
deviating from his equilibrium strategy given that all other
players play the equilibrium.

Game theory is applied in various areas, especially in
economics (modeling markets, auctions, etc.), corporate de-
cision making, defense strategy, telecommunications net-
works and many others. Among the examples are the ap-
plications of game theory to so called network games (e.g.
routing, bandwidth allocation, etc.), see [17] for references.

6. Conclusions

We have proposed a framework for automatically gener-
ating a space of alternative actor dependency networks that
satisfy an initial set of stakeholder goals. The framework
uses planning techniques to characterize the space of alter-
natives. A prototype tool with a built-in off-the-shelf plan-
ner is used to generate alternatives. These are evaluated in
terms of criteria founded on game-theoretic notions.

This is clearly a first step towards making more system-
atic and tool-supported the process of designing actor de-
pendency models for a given set of initial stakeholder goals.
More needs to be done to ensure the scalability of the P-
Tool. In particular, we’d like to include the use of heuristic
(e.g.,A*-like [16]) techniques to reduce the space of alter-
natives under considering by filtering away early on alter-
natives that look bad. We’d also like to adopt proposals
for better structuring actor dependency models. One such
proposal [7] is to makei* models ”service-oriented” by en-
capsulating composite actors and allowing delegations to it
only through a well-defined service interface. Such propos-
als reduce dramatically the number of possible solutions to
a given multi-actor planning problem.
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