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Summary. The difference between patients with CFS 

patient and healthy ones could, in principle, be detected 

by examining a variety of data. We systematically used 

the CAMDA 2006 available data sets in order to assess 

the patients’ discrimination using supervised and 

unsupervised techniques. Our results suggest that data 

sets that are predictive are the clinical as well as the 

microarray data sets. On the other hand, our analysis of 

the proteomics data suggests that subjects with diseases 

different from CFS could be among the healthy ones. 

Finally, we indicate a set of genes extracted from the 

microarray data and validate then with an automatic 

comparison with Gene Ontology information. A set of 

these genes with high GO proximity may contribute to 

CFS. 

 

Introduction. Chronic Fatigue Syndrome (CFS) is 

clinically defined through symptoms and disabilities 

that proved to be elusive when it was attempted to 

characterize them in terms of analysis-based diagnosis 

and etiology. The data sets provided for the CAMDA 

2006 contest contained clinical data, SNPs, blood data, 

proteomics and microarray genetic expression data. 

The integration between different sources has been 

explored in [Whistler et al, 2003], however not to the 

extension required by the CAMDA contest, in the 

sense that the authors addressed the problem of 

characterization of subgroups of CFS. [Vernon et al, 

2002] reported the identification of a set of genes that 

could play the role of biomarkers. However, as the 

authors stated, limitation in the number of samples and 

no independent validation influenced the validity of the 

results. Therefore, the problem of isolating biomarkers 

for the syndrome remains open. 

 

In this paper, we present our attempt to use the data 

available for the CAMDA contest in order to validate 

the diagnosis related to healthy patients and patients 

suffering from CFS. Our working hypothesis is, that  

given the elusiveness of the syndrome, the CFS 

labeling of patient records can possibly be wrong. 

Hence, in order to increase the probability of detecting 

relevant biomarkers, we would like to assess the 

inherent ability of each data set to produce a consistent 

classification. Depending on the data, we expect a 

difference in the way individuals are classified. In 

particular, we expect an optimal classification when 

using clinical data since CFS is defined in terms of 

symptoms.  From the literature, it seems that we cannot 

expect blood data to be very useful in order to predict 

the class. Moreover, we do not have any indication of 

the properties of the SNPs and proteomics data. After 

analyzing the aforementioned data sets, we validate our 

results using information derived from the Gene 

Ontology, which provides an automatic way of 

assessing the biological consistency of the discovered 

genes. 

 

The activities whose results are reported here were 

partially carried out as assignments during the course 

of Data Mining for Computer Science students of the 

University of Trento. In the following sections, we 

report our analysis and results for each one of the data 

sets. We also provide an interpretation of our results. 

  

Clinical Data. Using this data set we tried to analyze 

the real meaning of the column headers. Then, based 

on these results, we classified the data set using a 

Support Vector Machine (SVM) classifier. In our first 

attempt to classify the data, we used a multi-class SVM 

classifier (M-SVM) and all the features. The accuracy 

of the result was very low and, thus, we decided to 

remove some redundant features (e.g. columns “Intake 

classific”, “DOB”, “Exclusion”) and some instances 

(rows regarding patients excluded for medical or 

psychiatric reasons, and those having null-values in 

key-columns).  However, the accuracy obtained using 

the M-SVM on this new data set was still low (25% 

marked as “Incorrectly classified”).  

A possible explanation for this low accuracy is that the 

data were classified using 15 different class labels. In 

order to reduce the number of classes, we discarded all 

the instances not labeled as CFS or NF, reducing the 

data set to 58 instances (15 of which are CFS).  

Classification using binary-SVM produced a 

significantly higher accuracy (1.72% “Incorrectly 

classified”, see Table 1). 

Then we applied two filtering algorithms (see 

[Malossini, 2006]) in order to detect and remove 

possible incorrectly labeled instances. The two filtering 

algorithms we used (CL-stability and LOOE-

sensitivity) identified only one such suspect instance. 

This sample was removed from the data (for 

convenience, we name this last data set with 

57instancesCFS-NFonly). 

A B Classified as 

15 0 A - CFS 

1 42 B - NF 

Table 1 Confusion Matrix on cleaned clinical data 

 



Classification of the 57instancesCFS-NFonly data set  

using binary-SVM resulted in complete accuracy (no 

instances were marked as “Incorrectly classified”). 

 

SNPs Data. Our objective in the experiment was to 

find a reasonably correct relationship between the 

presence of particular SNPs and the state of health of a 

patient. From the given data sets named CAMDA_SNP 

description and CAMDA-SNP-Genotype data 4-14-05, 

we extracted a subset of data, ignoring patients labeled 

as ISF. Moreover excluded any patients without a 

corresponding record in the clinical data. The resulting 

patients were 111 females and 22 males. 

After the preprocessing of the data set we imposed 

several thresholds of correctness in order to distingush 

between good and bad results:  

>90%: we find a reasonable possible cause of CFS; 

75-90%: a good result but not so good to derive 

conclusions; 

40-75%: Not so bad, but not sufficient to derive 

conclusions; 

<40%: very bad. 

 

We used the functions of the Weka Data Mining tool 

[Weka] for attribute selection in order to assess if one 

or more attributes could predict the status of the 

patient. In particular we consider the individual 

predictive ability (cfssubset eval), the computation of 

Chi-squared statistics (chisquaredsubseteval), and a 

classifier based procedure (ClassifierSubseteval). The 

Chi-squared test showed that none of the single 

attributes was sufficient to predict the disease of a 

patient. The methods CFS Subset and Classifier Subset 

gave us a reasonably correct result, as a subset of the 

features seemed to be predictive. Those features were:  
POMC_3227244, TH_243542, MAOA_878819, 

MAOB_15959461, TPH2_8376042, COMT_2539273, 

COMT_3274705, NR3C1_11837659, NR3C1_11159943, 

NR3C1_1046361, NR3C1_1046360, 5HTT_7911132, 

5HTT_7911143, CRHR1_7450777, CRHR2_15872871, 

CRHR2_15960586, HTR2A_8695278; 

Trying to cluster or classify the data set with this 

features, however, led to reduced correctness. 

In our experiments, we used several clustering 

techniques: K-means, Expectation-Maximization (EM) 

and Cobweb. The results obtained after clustering 

were: K-means grouped 50.38% of the patients 

correctly, Cobweb provideed the worst results with 3% 

of them grouped correctly and, finally, EM gave us a 

correctness of 35.3%. Hence, the results obtained 

through clustering methods were totally inconclusive. 

The methods used for classification are: SVM, NBTree 

and Nearest Neighbor. SVM with Leave-one out 

validation classified only 54.14% of the patients 

correctly, and NBTree only 49.62%. Nearest Neighbor, 

with 5 neighbors, gave us a better correctness of 

62.41%. 

With our work on SNPs we did not obtain any results 

that could increase our knowledge on CFS nor give 

evidence that SNPs  information could discriminate the 

classes. 

 

Blood Data. The study of CAMDA’s supplied data 

about blood analysis was carried out in a number of 

steps. First of all, the data of each of the 34 “classical” 

blood exams was graphically visualized, dividing the 

subjects according to their gender and different state of 

their health, obtained by the two columns named 

“Intake Classific” and “Empiric” of the clinical data 

set. The progress of each graph was essentially the 

same for all exams: there were values out of the normal 

ranges with similar proportion in each group; so it was 

not possible to point out a trend that could help to 

assign a patient to a particular category. 

The second part of the study, focused on the 

classification and clustering of the blood analysis data.  

First of all, we decided to exclude from the next 

analysis all patients whose “Empiric” label contained 

the string “Med” because, as explained in the CAMDA 

document [Camda, 2006 prot], those patients had some 

other medical reasons that could suggest a wrong 

diagnosis. 

Therefore, the final group of analyzed patients 

contained 191 people and, because of the various 

values that the “Empiric” column could assume, we 

decided to classify the patients according to the 

following  criteria: 

1. healthy/ill: the patients with label “NF” were 

classified as healthy, and the other as ill; 

2. NF/ISF/CFS: the patients were classified as 

healthy if the value of the column “Empiric” 

contains the substring “NF”. The same 

approach was used for ISF and CFS; 

3. 9 distinct classes: the patients were classified 

according to the exact value of the associated 

column “Empiric” in the original clinical table 

Using Weka [WEKA] for the analysis, we chose  2 

classification methods: the Nearest-Neighbour and the 

Support Vector Machine (SVM), both using 10-fold 

crossing validation and leave-one-out. Besides, we 

tried to use different kernels for SVM (polynomial with 

exponents 2 and 3, and RBF with different parameters) 

but we always obtained bad classification results: in 

general the percentage of correctly classified ill 

patients was around 70%, while the percentage of 

correctly classified healthy patients was always below 

20%. 

Then, we tried to cluster the data using k-means, 

specifying 2, 3 and 9 clusters, according to the 

categories identified before. However the percentage of 

wrongly clustered instances ranged from 50 to 77% in 

this case as well. Hence, our task was to support an 

argument about the uselessness of blood data in CFS 

diagnosis, using numerical results. Such an argument 

may also be found in [Reeves, 2003], [Fukuda, 1994]. 

 



 
Figure 1. Accuracies for ill and healthy patients from 

the permuted datasets 

 

In order to support it, we did some random 

permutations of the patients’ “healthy/ill” label and we 

executed the classification described above once again. 

Figure 1 depicts the results obtained by SVM 

classification (the results of other classification 

methods are similar). 

As we can see, the percentages of the original CAMDA 

labels were very similar to the ones obtained with 

random labels: so we can conclude that all “classical” 

blood analysis data are not able to distinguish healthy 

people from the patients that actually have CFS. 

 

Proteomics Data. Proteomics research seeks to gain a 

better understanding of the role of proteins and gene 

function in the biology of a certain disease. The aim of 

our analysis was to identify serum biomarkers in CFS 

using Surface-Enhanced Laser Desorption/Ionization 

Time of Flight Mass Spectrometry (SELDI-TOF). To 

understand the molecular basis of CFS, we applied the 

hypothesis that different molecular patterns could be  

identified in samples from subjects with CFS compared 

to Quality Control subjects (QC).  

The proteomics data sets given by CAMDA were very 

spread. Fractionated serum of 63 samples ran in 

duplicate was spotted into ProteinChips, profiled under 

several analytical conditions (IMAC, H50, CM10LS, 

CM10HS) and then read with both high and low 

energy laser. 

According to the proteomic hypothesis we looked for 

the best fraction/ProteinChip combination that allowed 

us to discover biomarkers, i.e. peaks of protein 

intensities in CFS spectra that were not present in 

control serum. Given the spectra of samples coming 

from the same CAMDA classification group, we 

obtained an average spectrum for every condition, 

fraction and laser intensity of each group. One of the 

most relevant biomarkers discovered, comparing CFS 

pattern with QC pattern, was found with the 

combination fraction6/H50, and is shown in Figure 2A. 

In that figure, we can also notice that those patterns,  

supposed to be different, are on the contrary very close 

to each other, as if CFS couldn’t be well diagnosed 

using mass spectrometry. 

 

To validate this result, we provided a comparative 

analysis of the 7000 spectra given, based on the 

distance of spectra of 63 samples from QC. The 

method yielded, for every patient, the value of her  
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Figure 2: Spectra from the 6

th
 fraction serum read with 

high laser and condition H50. Single biomarkers were 

found at frequency 12kHz (spectra plotted from 

frequency 8kHz to 13kHz). Top: Two patterns 

identified in samples from subjects with CFS and in 

QC subjects, according to CAMDA classification. 

Bottom: QC pattern and the average spectrum of 

diseased subjects (D) according to proteomic 

clustering. 

 

distance to the quality control. Given all the distances, 

we produced an ordered list of all patients from the 

closest to the furthest from  the QC. The ordering  

corresponded to a classification from the healthiest 

patient to the most diseased one. Euclidean distance 

and Pearson correlation were calculated between every 

sample spectrum and the relative QC spectrum for each 

condition and laser energy. The normalization of those 

distances, between 0 and 1, showed an obvious 

opposite correlation between the values of the 

Euclidean distance and  the values of the Pearson 

correlation (and thus similarity) measure. For that 

reason we merged the two ordered lists, obtaining for 

each set of spectra, the average distance of Euclidean's 

and inverted Pearson values. We obtained average 

distances for different energy lasers and conditions, 

and since values were very similar, it seemed natural to 

cluster all patients according to those average 

distances. Using k-means with k=3 we obtained three 

clusters: the cluster  H contains patients more similar to 

the QC (supposed to be healthy), the cluster D with 

distances close to 1 contains patients considered as 

correctly ill classified (with 

respect to all sick patients)  

 

correctly healthy classified 

(with respect to all healthy 

patients) 

 

percentages obtained with the 

original labels. 



diseased since they were very far from QC, and an 

intermediate cluster M, which contains all the other  

 

H M D  

8 21 2 NF 

5 4 2 ISF 

13 6 2 CFS 

Table 2: Confusion matrix of assignment to clusters. 

 

patients. Using three clusters, the predictive power of 

this analysis was very low: as shown in the confusion 

matrix of Table 2, proteomics predicted only 22% of 

the assignments to each classification group given by 

the CAMDA clinic data. 

Given the previous clustering we build, as explained 

before, D patterns as the average spectra of our 

diseased patients. Comparing QC patterns with the D 

patterns we discovered a lots of biomarkers, as well as 

biomarkers reported comparing it with CFS pattern. In 

particular, for the same fraction/ProteinChip 

combination used before, we can see (Figure 2B) that 

D and QC patterns are very different and the 

previously reported biomarker is even more evident 

(the intensity is triplicate). 

In other words using mass spectrometry we can 

identify few biomarkers that characterize clusters given 

by CAMDA. Moreover, through our distance based 

method we provided another classification whose 

results reported the same peaks and identified new 

ones. Those other peaks could not necessary identify 

biomarkers of CFS or CFS-like patient populations, as 

there are many biological factors that influence the role 

of proteins. Anyhow, as a consequence of our findings 

we can say that molecular patterns can be identified in 

samples from subjects with CFS compared to control 

subjects, but they are less significant than other 

patterns that could be identified from other groupings 

of same subjects. 

 

Microarray Data. Analyzing the gene expression data 

set we noticed that the values were very noisy; in fact, 

even in the same chip, the values of the same gene 

spotted in spatially different places were very unstable. 

In this scenario, the normalization process was very 

important; we started the normalization by aligning the 

medians of the sample values with the scaling 

operation. The scaling factor applied to all the values 

for a specific sample i was calculated in the following 

way:  
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where med is the median. 

 

In order to normalize the distribution of the samples, 

we applied the classical Quantile Normalization to the 

logarithms of the scaled values; we call the resulting 

data set Logarithmic Normalized Values (LNV) in 

order to distinguish it from another data set, called 

Cubic Root Normalized Values (RNV), resulting from 

the same process but with the cubic root operation 

instead of the logarithm. Since the clustering of the 

complete data set (as expected) did not give any 

interesting results, in this context the goal was to 

identify genes with statistically significant changes in 

expressions between the samples labeled as CFS 

(fatigued – 89 samples) and the samples labeled as NF 

(non fatigued - 41); in this phase we ignored the IFS 

samples in order to improve sensibility. We applied 

two statistical methods to the two data sets (NV and 

RNV): conventional t-tests and Significance Analysis 

of Microarrays (SAM) [Tusher, 2001]. We obtained 4 

analyses, but varying the parameters of the methods 

(alpha for t-test and delta for SAM) we obtained a set 

of possible results; from this set we selected the most 

precise results, obtaining 9 consistent sets of genes. A 

set of genes is considered precise enough if it respected 

the following two conditions: 

1. The analysis parameters must be restrictive 

enough (the alpha parameter for the t-test 

must be under a threshold Thalpha and the delta 

parameter for SAM must generate a FDR 

median value under another threshold Thdelta). 

2. The genes provide high unsupervised 

classification accuracy. The confusion matrix 

between the CFS and NF labeled samples and 

the two clusters of samples obtained applying 

the (2 class) k-means clustering on the set of 

genes, must respect the following constraint:  

precisionraterate ThNFCFS >  

where rateCFS  is the percentage of the right 

classified CFS samples and rateNF  is the 

percentage of the correctly classified NF 

samples. We were aware that there existed 

clustering algorithms more precise than k-

means, but the goal of this clustering was a 

relative comparison between the analyses, not 

an absolute measurement.  

The results of four analyses (one for each main group) 

are available on the web as additional material
1
. 

We chose to give each gene isolated by one of the nine 

best analyses, a value which represented the confidence 

level that we had on it. This value for a gene is simply 

calculated as the percentage of consistent analyses in 

which it appeared; the table of the best 30 genes is 

shown in Table 3. 

We also tried to apply the same method on the 

57instancesCFS-NFonly, finding worse values of 

accuracy on the confusion matrices obtained by the k-

means clustering on the resulting sets of genes; in 

particular, the best analysis on 57instancesCFS-NFonly 

produced an accuracy value of 71% against a mean 

accuracy on the original set of 77%. 

In conclusion, we can assume that the set of genes 

shown in Table 3 are the most likely to be in relation 

with CFS. 

Integration with GO information. In order to verify 

and test the biological plausibility of the genes that 

were isolated as differential expressed in the CFS  

                                                             
1
http://dit.unitn.it/~blanzier/TN2camda06add_data.htm 



GENES DETECTED IN: 

AK075162 XM_087606  8 analyses out of 9 

NM_014149 BC001439 

BC035807 AF172066 AF151022 

AF100928 

7 analyses out of 9 

AF449187 BC007072 AF492830 

NM_006189 BC004166 

BC002462 

6 analyses out of 9 

NM_006278 S76825 AK022571 

NM_002280 

5 analyses out of 9 

BC022270 AK024524 

AK095113 NM_004364 

AB002380 NM_005263 

AF113616 D37827 NM_000570 

AF142099 NM_015846 D14665 

AF075430 NM_003608 

NM_001256 AK000759 

BC025394 BC012070 AF035933 

AB083606 

4 analyses out of 9 

Table 3 Genes differentially expressed in microarray 

data 

 

patient and in the healthy ones we assessed their 

relation with GO structure. We took the list of genes 

with their amino-acid sequence and we executed the 

Blast of these sequences against Uniprot database 

(updated 9 december 2005). Considering only 

biological processes, for each alignment of a gene, we 

assigned its weight to all its pertinent GO nodes 

(udpdated 10 january 2006), "bringing up" the same 

weight to ancestors (a node has a weight corresponding 

to the sum of its own weight plus all the weights of its 

children). Then we computed the information content 

of each node dividing the number of its descendents by 

the total number of nodes in the graph and calculating 

the natural logarithm of the resulting value. For each 

gene, the output were the GO with the maximum value 

of information content multiplied for the weight. In this 

way we choose the nodes that better characterize the 

query sequence in term of scoring and information 

associated to the GO nodes. We applied this technique 

to the list of genes in Table 3 and we obtained 

subgroups of them with respect to GO graph: the 

relation between GO terms is evaluated with Lin’s 

formula [Lin 1998]. The subgroups are: 

1) AF151022 AF492830 AK000759 AK075162 

BC002462 BC004166 BC007072 BC022270 

BC035807 D37827 NM_004364 NM_006278 

NM_014149 GO:0008152 2) AF040958 GO:0005975 

3) AF356527 GO:0050789 4) AF374726 GO:0007165 

5) AK093494 GO:0008152 6) BC015761 GO:0050896 

7) XM_087062 GO:0008152. 

These 13 sequences of the first subgroup are annotated 

with the general GO term metabolism 0008152 and so 

it is difficult inferring  in which type of metabolic 

pathway they are involved. Probably this information, 

coupled with microarray expression data, is 

informative about some transcription regulation  

pathway in which these genes are involved as emerged 

by a more accurate analysis of blast results. 

 

Conclusions. The clinical data after cleaning and data 

selection were able to correctly classify the distinction 

between CFS and NF. This is not surprising given that 

the diagnosis is based on clinical information. We 

cleaned the data in a way that left us with a completely 

consistent and classifiable data set. SNPs and Blood 

data sets were not effective in classification. 

Proteomics data analysis detects patterns less evident 

in CFS patients of the one  detected in other groups. 

Analysis of gene differentially expressed in microarray 

data identify a set of genes. There  is a consistency 

between this genes in terms of proximity in Gene 

Ontology under the general term metabolism. The 

indication that some metabolic pathway could be 

involved in CFS is consistent with the literature. 
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