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Abstract

We investigate a generalization of the notion of XML security view introduced by Stoica and Farkas [22] and later
refined by Fan et al. [12]. The model consists of access control policies specified over DTDs with XPath expression
for data-dependent access control policies. We provide the notieaaririty viewdor characterizing information
accessible to authorized users. This is a transformed (sanitized) DTD schema that can be used by users for query
formulation and optimization. Then we show an algorithm to materialize “authorized” version of the document
from the view and an algorithm to construct the view from an access control specification. We show that our view
construction combined with materialization produces the same result as the direct application of the DTD access
specification on the document. To avoid the overhead of view materialization in query answering, user queries should
undergo rewriting so that they are valid over the original DTD schema, and thus the query answer is computed from
the original XML data. We provide an algorithm for query rewriting and show its performance compared with the
naive approach, i.e. the approach when query is evaluated over materialized view. We also propose a number of
generalizations of possible security policies.

1 Introduction

XML [5] has become the prime standard for data representation and exchange on the Web. In light of the sensitive
nature of many business data applications, this also raises the important issue of security in XML and the selective
exposure of information to different classes of users based on their access privileges.

To address this issue we need simple, powerful, fine grained authorization mechanisms that

1. can control access to both content and structure;
2. can be enforced without annotating the entire document;

3. still provide a “sanitized” schema information to users.

While specifications and enforcement of access control are well understood for traditional databases [10, 17, 20, 21],
the study of security for XML is less established. Although a number of security models have been proposed for
XML [4, 7, 9, 16, 18, 19], these models do not meet criterion 3 above and, to a lesser extent, criterion 2. More
specifically, these proposed models enforce security constraints at the document level by fully annotating the entire
XML document/database [7, 4, 9]; these require expensive view materialization, and complicate the consistency and
integrity maintenance.



The most important limitation of the mainstream models is the lack of support for authorized users to query the data:
they either do not provide in advance any schema information of the accessible data, or expose the entire original
document DTD (or its “loosened” variant). If no schema is provided, or cannot be derived from the chosen access
control model, the solution is hardly practical for large and complex documents. If we want to query an hospital
databases just to know who is the nurse on duty in ward 13, there is little sense in sanitizing the entire databases
(clinical records and all) which is largely irrelevant for us.

Furthermore, fixing the access control policies at the instance level without providing or computing a schema, makes
it difficult for the security officer to understand how the authorized view of a document for a user or a class of users
will actually look like.

On the other side, revelation of excessive schema information might lead to security breaches: an unauthorized user
can deduct or infer confidential information via multiple queries (essentially if the authorization specifications are not
closed under intersection) and analysis of the schema even if just accessible nodes are queried.

To overcome this limitations, the notion of XML security views was initially proposed by Stoica and Farkas [22] and
later refined by Fan et al. [12]. The basic idea is to provide a schema that describes the data that can be seen by the
user, as well as a (hidden) set of Xpath expressions that describe how to compute the data in the view from the original
data.

1.1 Our Contribution.

We generalize the notion of XML security views to arbitrary DAG DTDs and to conditional constraints expressed in a
very expressive XPath fragment. For each view, a security specification is a simple extension of the documBnt DTD
with security annotations and security policies exploited to obtain full annotation from partial one. This specification
has the advantage that can be easily implemented with little or no modification to state-of-the-art DTD parsers and
offer security officers an intuitive feeling of the actual look of sanitized document.

From the specification, we derive a security vigiconsisting of asiew DTD D,, and a functionr defined via XPath
queries. The view DT, shows only the data that is accessible according to the specification. The view is provided
to the users so that they can formulate their queries over the view. The funcisonithheld from the users, and is
used to extract accessible data from the actual XML documents to populate a structure conforfhing to

Query optimization can then be performed by users (using security view) and then by the system (by expanding and
optimizing the selection function). Thus, it is no longer necessary to process an entire document and only relevant
data is retrieved. Moreover, the users can only access dafa,yand no information beyond the view can be inferred

from (multiple) queries posed ah,,.

Thus the users can only access data®jg and no information beyond the view can be inferred from (multiple)
queries targeted db,,.

In the current paper, we also implement and test experimentally the performance of the security view model described
above. To this end, we define a rewriting algorithm that takes a user query over the a security view, and rewrites the
query into a query over the original database. We then compare the cost of evaluating this query with that of evaluating
the original query over a materialized view of the data, and show that significant performance improvements.

More specifically, the main contributions of the paper include:

¢ A refined version of access policies over XML documents using conditional annotations at DTD level,

¢ A notion of security view that enforces the security constraints at the schema level and provides a view DTD
characterizing them;

¢ An efficient algorithm for materializing security views, which ensures that views conform to view DTDs;



e An algorithm for deriving a security view from a specification of security annotations;
¢ An algorithm for deriving a security view from a specification of security policies as XPath expressions;

e A query rewriting algorithm and its evaluation.

1.2 Plan of the paper

The rest of the paper is organized as follows. First we present preliminary notions on XML and XPath in Sec. 2.
In Sec. 3 we provide a motivating example. Next we introduce the notion of security specification (Sec. 4) and
the notion of view (Sec. 5). We show how to materialize a view and that using views is equivalent to annotating
directly the document (Sec. 6). In Sec. 7 we describe classification of security policies with respect to consistency
and completeness properties. Some extensions of our model are outlined in Sec. 8. In Sec. 9 we show algorithm for
rewriting queries. Implementation issues are discussed in Sec. 10. Evaluation of rewriting algorithm is provided in
Sec. 11. Finally, we conclude the paper in Sec. 12.

2 A Primer On XML and XPath

We first review DTDs (Document Type Definitions [5]) and XPath [8] queries.

Definition 2.1: ADTD D s atriple( Ele, P, root ), whereEle is afinite set oklement typesoot is a distinguished
type in Ele, andP is a function defining element types such that for eddh Ele, P (A) is a regular expression over
FEle U {str}, wherestr is a special type denotingCDATA, We usee to denote the empty word, and-", “,”, and
“x" to denote disjunction, concatenation, and the Kleene star, respectively. We reffertd (A) as theproductlon
of A. For all element type® occurring inP (A), we refer toB as asubelement typgor achild type of A and toA
as agenerator(or aparent typé of B. i

We assume that DTD is non-recursive, i.e., that the graph has no cycles. Sec. 8 discusses this limitation.

Definition 2.2: An XML tree T' conforms tca DTD D iff

1. the root ofT" is the unique node labelled witbot ;
2. each node i7" is labelled either with aivie type A, called anA elementor with str , called atext node

3. eachA element has a list of children of elements and text nodes such that their labels form a word in the regular
language defined biy (A);

4. each text node carriessr value and is a leaf of the tree.

We callT aninstanceof D if T' conforms taD. O

Example 2.1: Consider a DTD describing database of applications for PhD program. The/Di#defined to be
(Ele, P, db), where

Ele = {applications, application, student-data, department, degree,
waiver, name, recomm-letter, evaluator, title, institution,
letter, rating, English, MS, PhD, free-text, PDF, TXT,
unreliable, reason, favorable, unfavorable }

and the functiorP is defined as follows (we omit the definition of elements whose tygg i9):
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Figure 1: The graph representation of the document XD

P(applications)
P(application)
P(student-data)
P(recomm-letter)
P(evaluator)

(application*)

(student-data, recomme-letter*, unreliable*)
(department, degree, waver, name)
(evaluator, letter)

(name, title, institution)

P(letter)
P(favorable)
P(unfavorable)
P(rating)
P(free-text)
P(unreliable)

(favorable|unfavorable)
(rating, free-text)
(rating, free-text)
(English, MS, PhD)
(PDF|TXT)
(recomme-letter, reason)

An XML tree conforming toD consists of a list ofpplicationsfor PhD/MS program. Each application is initiated

by a student described viudent-datawith an attributeid uniquely identifying student and representing student’s
login name.Student-datés composed ohame desireddegree(PhD or MS)departmentandwaiver. The latter field

may take values “true” or “false” and means that student does (does not) waive his/her right to inspect the content of
recommendation letters. Application is supported by several letters of recommendatamnif-lettey, some of them

can be classified amreliableunder someeason Each letter haketter body and is provided by a separa&tealuator
havingname title andinstitution attributes. Evaluator places comments on applicant’s skilfeeitextfield, which

is eitherPDF or TXT file, and rates applicantBnglish proficiency, achievements duriddS program and possible

contribution inPhD program. Letters of recommendation are reviewed by admission committee and are assigned to a
categoryfavorableor unfavorabledepending on the context.

The corresponding DTD is depicted on Fig. 1.

Remark 2.1 Regular expressions in a DTD are 1-unambiguous as required by the XML Standard [5]. In contrast
to [12], we consider DTDs defined with general (1-unambiguous) regular expressions.

We consider a class of XPath queries, which corresponds to the CoreXPath of Gottlob et al. [15] augmented with the
union operator and atomic tests and which is denoted by Benedict et al. [X2] as

The XPath axes we consider as primitive ehddd , parent , ancestor-or-self , descendant-or-self ,
self . Gottlob, Koch and Pichler [15] show how the semantics of such axes can be computed in polynomial time. In



the sequel we denote Ifyone of those primitive axes and By ! its inverse. Notice that each primitive axis has its
inverse within the same set of primitives. For instadescendant-or-self ~1 = ancestor-or-self

Definition 2.3: An XPath expression i’ is defined by the following grammar:

(xpath) == (path) | ‘/‘(path)

(path) == (step) (‘/* (step))*

(step) 0 | 0°[ (qual) ‘] | (path)®U* (path)
(qualy == A | “*x° | opc | (zpath) |

(qual) and (qual) | {(qual) or {qual) |
not (qual) | *(*({qual) ")’

wheref stands for an axig;is astr constantA is a label,op stands for one of, <, >, <, >. The result of theual
production is calledjualifier and is denoted by. We denote byX'y, r.s; the fragment build without thep ¢ test. O

For sake of readability, we ignore the difference betwegtth andpath we denote both witlp. We also abbreviate
self with ¢, child [A]/p with A/p, descendant-or-self [A]/p with //A/p, qlop c] with ¢ opc andp =
p1/p2, Whereps is //pl, is writtenp asp, //p,. The ancestor axis is also abbreviated. As

The semantics of XPath is obtained by adapting to our fragmen§theS. , £ operators proposed by Gottlob et
al. [15] and is identical to proposal of Benedickt et al. [3]. Intuitivély, [|p|] (V) gives all nodes that are reachable
from a node inN using the pattp. TheS._ [|p|] functions gives all nodes from which a patrstarts to arrive to
queried node. Thé [|¢|] function evaluates qualifiers and returns all nodes that satisfy

For sake of readability we overload thesymbol to stand for both the semantics and the syntax of axes. So given a set
of nodesN of a documenf” we have that(N) = {m | n@m forn € N}. In other wordsf(N) returns the nodes

that are reachable according the axis from a nod¥ irBy 7 (A) we denote the set of nodes that have element type
A. By T (x) we denote all nodes of a document.

The semantics of the other operators is shown in Fig. 2.

3 A Motivating Example

The need to provide users with a schema-level security view is illustrated by the access control requirements in Exam-
ple 3.1.

Example 3.1: The applicant can access only his/her own data located undesfigldnt-data . Access to fields
favorable  andunfavorable isforbidden, while visibility ofrating  andfree-text is established according

to the accessibility to fieltetter . The latter is accessible if thveaiver istrue (data-dependent access). Moreover,

the applicant should not be aware of reliability of the recommendation letters as the leakage of this information to
recommenders might lead to diplomatic incidents. O

How can such constraints be enforced? Cho et al. [7] and Bertino et al. [4] enforce these constraints directly on the
XML document. Damiani et al. [9] express their security specifications as sets of XPath expressions. However they
also transform their XPath specifications into an annotation of the entire document. So we have systems that do specify
how to restrict access at tiata level

An important question remains unanswered: what schema information should be provided to the user? To formulate
and process queries, the user needs a schema describing the accessible data. One solution, suggested by Damiani et
al. [9], is toloosenthe original DTD (make forbidden nodes optional). In some cases it is unacceptable to expose
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Figure 2: The semantics of operators

even the loosened DTD to final user. To illustrate this, consider two permissible XPath queries about a letter of
recommendation:

Q1 /applications/application//evaluator

Q- /applications/application/recomme-letter/evaluator

The queryQ); finds all elements of typevaluator  that are associated with recommendation letter (including those

of unreliable category), whil€)- returns onlyevaluator s of reliablerecomm-letter  s. Although most of the
unreliable data is hidden, a look at the document DTD allows one to infer which letters are considered as unreliable:
theevaluator sin@); that are not returned by-; thus a security breach.

All evaluators are visible, but by different ways. The trick is to make requestor unable to distinguish those ways.

In traditional relational databases users accegiewa of the data and permissions are assigned to views [17, 20]. A

user may be denied the knowledge of the existence of an attribute of a relational schema. What we need here is a view
of the document (at the schema level) that the user can use for queries, but that hides not only data but also structural
information.

We borrow from Stoica and Farkas [22] the notion of access control model for XML that specifies and enforces
security constraints at thechemdevel. For the actual notation we refine and generalize the proposal from Fan et
al. [12]: authorizations are defined on a document DTD by annotating element typeg/Nithr XPath qualifiers,
indicating their accessibility.

From such a specification we can then infetiew DTD D,, and aselection functiow defined via XPath queries. The
view DTD D, shows only the data that is accessible according to the specification. The view is provided to the users
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(a) Security annotation defined at DTD level

q1 = ancestor::application  [./student-data  [@id = $login ]/waiver /text() = “true”]];
¢2 = ./student-data  [./@id = $login ]
gs = ancestor::application  [./student-data  [@id = $login |;

(b) Meaning of security annotation qualifiers

Figure 3: Security annotation for competing student

so that they can formulate their queries over the view. This means that the users can only accesdatandano
information beyond the view can be inferred from (multiple) queries targetéq at

The functiones is withhold to the users, and is used to extract accessible data from the actual XML documents with
XPath queries to populate a document structure conformirig,to

4 Security Specifications

In this section we present our access-control specification languagacadess specificatiof is an extension of a
document DTDD associating security annotations with production®of

Definition 4.1: A authorization specificatioy is a pair(D, ann), whereD is a (document) DTDann is a partial
mapping such that, for each productidn— P (A) and each child element tyggin P (A), ann(A4, B), if explicitly
defined, is an annotation of the form:

ann(A,B) == Qg | Y | N

where]g| is a qualifier in our fragment’ of XPath. A special case is the rootbf for which we definann(root) =Y
by default. O

Intuitively, annotating production rul® (A) of the DTD with an unconditional annotation is a security constraint
expressed at the schema levélor N indicates that the correspondiitchildren of A elements in an XML document
conforming to the DTD will always be accessib¥)(or always inaccessiblé\], no matter what the actual values of
these elements in the document areanlfi( A, B) is not explicitly defined, thed® inheritsthe accessibility ofA. On

the other hand, ifinn( A4, B) is explicitly defined it mayoverridethe accessibility o3 obtained via propagation.



<IELEMENT applications (application*)>

<IELEMENT application (student-data, recommendation-letter*, unreliable*)>
<IELEMENT unreliable (recommendation-letter, reason)>
<IELEMENT student-data (department, degree, name, waiver)>
<IELEMENT recommendation-letter (evaluator, letter)>
<IELEMENT evaluator (title, institution, name)>
<IELEMENT letter (favorable|unfavorable)>

<IELEMENT favorable (rating, free-text)>

<IELEMENT unfavorable (rating, free-text)>
<IELEMENT rating (MS, PhD, English)>

<IELEMENT free-text (TXT|PDF)>

<IELEMENT reason (#PCDATA)>

<IELEMENT waiver (#PCDATA)>

<IELEMENT department (#PCDATA)>

<I[ELEMENT degree (#PCDATA)>

<IELEMENT name (#PCDATA)>

<IELEMENT title (#PCDATA)>

<IELEMENT institution (#PCDATA)>

<IELEMENT MS (#PCDATA)>

<I[ELEMENT PhD (#PCDATA)>

<IELEMENT English (#PCDATA)>

<IELEMENT TXT (#PCDATA)>

<IELEMENT PDF (#PCDATA)>

<IATTLIST student-data id CDATA #IMPLIED>

<IATTLIST applications
hierarchy_security_policy CDATA #FIXED "topDown"
local_security_policy CDATA #FIXED "closed"
hierarchy_conflict_security_policy CDATA #FIXED "hierarchyFirst"
value_conflict_security_policy CDATA #FIXED "denialFirst"
security_annotation_data CDATA #FIXED "Y">

<IATTLIST application security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA #FIXED "./student-data[@id=$login]">

<IATTLIST rating security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA #FIXED
"ancestor::*[self::application[./student-data[@id=$login]/waiver/text()="true’]]">

<IATTLIST free-text security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA #FIXED
"ancestor::*[self::application[./student-data[@id=$login]/waiver/text()="true]]">

<l-- recommendation-letter tag should be visible under unreliable tag

if ancestor "application”" is visible-->

<IATTLIST recommendation-letter security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA #FIXED
"ancestor::*[self::application[./student-data[@id=$login]]]">

<IATTLIST letter security_annotation_data CDATA #FIXED "N">
<IATTLIST unreliable security_annotation_data CDATA #FIXED "N">

Figure 4: Partially annotated DTD

At the data level, the intuition is the following: given an XML documé&htthe document is typed with respect to the
DTD, and the annotations of the DTD are attached to the corresponding nodes of the document, resdtntigithya
annotatedXML document. Intuitively, given an XML tre& conforming toD, the specificatioty uniquely defines the
accessibility of the elements @f. SinceT is an instance oD and the regular expressionsihare 1-unambiguous,
this implies that eaclB elementv of T" has a unique paremt element and a unique production that “parses” the
subtree. Then we convert the documénb afully annotatedne by labelling all of the unlabelled nodes wittor N.
This is done by evaluating the qualifiers and replacing theny loy N annotations, and then by a suitable policy for
completing the annotation of the yet labelled nodes of the tree. When everything is labelled we rerNelaballed
nodes fronil".

We should emphasize that semantics of qualifiers presented in this palféerisntfrom that of in [12]. According
to [12] a false evaluation of the qualifier is considered as “no label” and requires the inheritance of an access label
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(a) Security DTD view

xp1 = ./student-data  [@id = $login |

xps = ./letter  /(favorable  Uunfavorable )/rating [q]
axps = ./letter  /(favorable  Uunfavorable )/free-text [q]
xpg = ./(eUunreliable  )/recomme-letter

whereq = applications /application /student-data  /waiver = “true”
(b) Meaning of XPath expressions

Figure 5: Security view for competing student

from the nearest labelled ancestors, while we assume that once evaluated on the document, a qualifier is mapped to
eitherY or N. In other words, our qualifiers are locally determined so that an administrator has a clear understanding
of what will happen. In contrast with approach of Fan et al. it is not possible to predict what will happen unless the
administrators has a clear view of the data in the “entire” document (if we allow for ancestors queries in XPath) which

is unlikely to be the case for even moderately large documents.

Example 4.1:1n Fig. 3(a) we show an example of security specification: paths to unconditionally allowed (forbidden)
element types from their corresponding parents are marked¥Y{X, and conditionally accessible element types

are marked by qualifierg,, ¢o andgs (Fig. 3(b)). $login is a dynamic variable that is assigned at run time and
depends on the student’s login name. Fig. 4 shows an input DTD file that can be encoded according to the conditions
of Example 3.1. Note thatpplication andrecomme-letter have accessibility conditioqy andgs respectively,

while accessibility of elementating |, free-text is described by qualifiaf,. O

Example 4.2: The partial annotation generated by the policy in Figure 3(a) is extended to a full annotation by la-
belling the element typefavorable  andunfavorable  underletter andreason underunreliable with
N irrespectively of their position. On the other haegialuator ~ underrecomm-letter is labelled asr. All the
other element types labelling depends on the query evaluation. O

More sophisticated ways of annotation are presented in [14, 23]. In particular, [14] uses XQuery to define derivation
access control rules from the existing ones that are organized as XACL privilege tdphgect, subject, access-
right> [19]. The proposal of [23] is based on the conception of Role Graph Model merged with the conception of
RBAC for object-oriented databases.

The construction of a fully annotated document depends heavily on the overall security policy that is chosen to get



completeness [10]. The top-down procedure that we describe next is the resulistbpecific-takes-precedence
policy which simply says that an unlabelled node takes the security label of its first labelled ancestor. Damiani et
al. [9] use aclosedpolicy as default: if a node is not labeled then label iNadVe return to this issue in Sec. 7, where

we extend our model to allow alternate propagation techniques.

Definition 4.2: Let (D, ann) be a authorization specification afita XML document conforming t®. Theautho-
rized versiorl’, of T  according the authorization specification is obtained ffoas follows:

1. TypeT with respect taD and label nodes withnn values;
2. Evaluate qualifiers top down starting from the root and replace annotatiovi®bi depending on the result;
3. For each unlabelled node, label it with the annotation of its nearest labelled ancestor;
4. Delete all nodes labelled witN from the result, making all children of a deleted nad@to children ofv’s
parent.
The annotation of the document, before deleting nodes in the last step, is calfali dimmotationof 7. O

Example 4.3: Fig. 5(a) shows the security view generated from the security specification in Fig. 3(a). It hides con-
fidential information. Fig. 5(b) lists some of the XPath annotations that are used to populate the appropriate element
types form the original document DTD. O

SinceT is a tree (a node has only one ancestor) it is not possible to have a conflict on labelling. There are different
policy to extend the labelling that may lead to conflicts. We discuss this later in Sec. 7.

The pruning algorithm is more severe than that used by Damiani et al. [9] who delete only subtrees that are entirely
labelledN, and delete only the data from nodes labelledith some descendant labell&dd As a consequence, the
authorized viewl's no longer conforms to the original DTD, not even to its loosened variant.

Example 4.4: In example 3.1 sincanreliable is forbidden, the user should not even know that it exists. So he
receives documents without it. O

5 Security Views

We now turn to the enforcement of an access specification. To this end, we introduce the nsgicurity viewwhich

consists of two parts. The first part is a schema that is seen by the user, while the second part is a function that is
hidden from the user, which describes how the data in the new schema should be derived from the original data. The
intuition behind our approach is similar to that of security views for relational databases in multi-level security [17]
and the notation is borrowed from [12].

We first present the syntactic definition of security views.
Definition 5.1: Let D be a DTD. Asecurity viewfor D is a pair(D,, o) whereD,, is a DTD ando is a function from

pairs of element types such that for each element #/pe D,, and element typ& occurring inP (A), (A4, B) is an
expression int. O

Definition 5.2: Let S = (D,, o) be a security view. The semantics®fs a mapping from documen® conforming
to D to documentd’s such that

10



1. Ts conforms taD,
2. The nodes of s are a subset of the nodesBf and their element type is unchanged.

3. For any node: of T which is inTs, let A be the element type af, and letBy, ..., B,, be the list of element
types that occur itP? (A). Then the children of. in Ts are

U s-llo(4,B){n}) -

1<i<m

These nodes should be ordered according to the document order in the original document.

Ts is called thanaterialized versionf 7" w.r.t. the views. O

Definition 5.3: A valid security view is one for which the semantics are always well-defined, i.e., if for every document
T, its materialized version conforms to the security view DTD. O

Not all views are valid: wrong typing, violated cardinality constraints, and other problems could be all causes of of a
view to be invalid. However, the views that we construct from an annotated DTD are valid.

Example 5.1: The view with the only productionoot — AAx ando(root — A, A) := (A = “alice”), is not

defined on the document having the strifagice” as the onlyA-child of root . O
Example 5.2: The view with the productionsoot — A and A — B, whereos(root — A, A) := A and
o(A — B,B) = parent /parent is invalid on any documents because the resulted materialized document can-
not be a tree. O

Security specification and views are related as follows.

Definition 5.4: Let (D, ann) be a authorization specification, and det= (D,,, o) be a security view foD. We say
thatS is data equivalento (D, ann) iff for every documenf’, conforming toD, the materialized versiofis coincides
with the authorized versioif,. O

Two weaker characterizations are based on the notidiataf secrecyanddata availability?.

Definition 5.5: Let (D, ann) be a authorization specification, aSd= (D, o) a security view forD.

1. S guaranteedata secrecyff for every 7' conforming toD, and for every node of T, if n occurs inls thenn
must also occur in the authorization versibgy.

2. § guaranteeslata availabilityiff for every T' conforming toD, and every node node of T, if n occurs in
authorized tred’, thenn occurs in materialized versidfis.

d

Intuitively, a secrecy-preserving view assure us that no forbidden node is leaked whereas a availability-preserving view
is a guarantee that no permitted node is held from legitimate principals. Obviously if a view is data equivalent, then it
also guarantees secrecy and availability but the converse does not hold. Indeed a data equivalent view also “preserves
the structure” of the original document. We leave such concept of structure preservation informal at this stage, though
one may think to subsumption of XML schemas as a possible way to classify views.

1sometimes these notions are also termed consistency and completeness in the literature [10] but that terminology can be misleading in our
context.
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Algorithm: MATERIALIZE
Input: a documenf” conforming to DTDD, a DTD View (D, o)
Output: a materialized viewl’s of 7" or L (there is no such view)
1: for all nodesn of type A in T do
2: let A — P (A) the corresponding rule i,
for all B occurring inP (A) do
precomputes_. [lo (A — P (A), B)[] ({n})
assign tdl's the root of7" and mark it as unprocessed
while there are unprocessed node§indo
select an unprocessed nadef type A with rule A — P (A) in D,
make the nodes in

O N ah®

U S [lo(A— P(A), B[l ({n})

B OCCUIS iNP(A)

in T as unprocessed childrenofn T's
9: if a child ofn already occurs as a processed nodé&drthen
10: return_L (invalid view)
11: maken as processed

Figure 6: AlgorithmMATERIALIZE

Given a security views = (D, o) and documenrt’ conforming to a DTDD, we show how to construds in Fig. 6.

The following is immediate:

Proposition 5.1: If § = (D, o) is a valid view forD, then the result of AlgorithrM ATERIALIZE is a document’s
that is the materialized version @f. O

A classical question for relational database research, namely whether a view producelbymeALIZE algorithm

is actually populated by some instances, has a trivial yes answer. Since the root of the document is alway¥ Jabelled
the materialized view has always one node. We can show that for the XPath fragment we can be as efficient as we can
hope for. Indeed, Gottlob, Koch and Pichler [15] have shown that for CoreXPatki(igthout union and test) it is
f(ol,|T]) = |o| x |T|. We extend their result t& without test without penalties in complexity and witlT&actor

to the full X fragment.

We now study the complexity of the algorithm. Lgtn, d) be the complexity of evaluating an XPath expression of
sizen on a document of sizé. Gottlob et al. [15] have shown that for CoreXPath (A¢without union and test) it is
f(a|,|T]) = |o| x |T|. We extend their result t& without test and with a factor df to the full X’ fragment. Le{o|

be the size of the largest XPath expression in the range ©hen:

Theorem 5.2: Algorithm MATERIALIZE computes a materialized view in timd¥ f (|o|, |T|) x |T|). O

Lemma 5.3: Every XPath query € Xy, 1.s: Over a documerif’ can be evaluated in tim@(|p| x |T|). O

Proof: The proof follows the line of Gottlob, Koch and Pichler [15] for the CoreXPath fragment (that is without
union of paths): we use the functioss., S._, and€ to compute a query tree which is then evaluated bottom-up to
yield the desired complexity result.

For the full fragment considered here, the naive implementation of union would lead to an exponential blow up because
S— [Ip1(p2 Ups)l] (N) = S— [lp1/p2|] (N) U S [|p1/p2] (IV) the processing of, is duplicated.

To avoid this blow-up we use a query DAG instead of a query tree. Each path of th&Sfoffip; /(p2 U ps)|] (N) is
mapped into a (single source) rooted DAG in which the root is labelledth two children, one corresponding to the
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root of S_, [|p=|] (X) and one corresponding to the root®f, [|ps|] (X). The sharedX leaf node is the root of the
S_ [|p1]] (V) node.

Formally, this is equivalent to say thét, [|p1/(p2 U ps)|] (IV) is evaluated using the symbolic rightmost lazy evalu-
ation of AX.S-.. [[pa|] (X) U S [[ps[] (X))S— [[p1[] (N).

For the evaluation of th&_ function we use a single target DAG for the construction of the query DAG.

With this construction each XPath expression can be transformed imiipe) into a query DAG of size)(|p|) in
which each operation is a set operation that can be computed irgX{ifig) thus yielding the desired upper bound.

Lemma 5.4: Every XPath query € X over a documerif’ can be evaluated in tim@(|p| x |T'|?). O

The addition of the test operation increases slightly the complexity because the computatiorOdi:jheperator
requires the comparison of tletr valuec with the str value at every node of the tree. This yields a quadratic
increase in data complexity. Once t9c) has been computed at the appropriate leaves of the query DAG, all other
operations can be done in time linear in the size of the document.

Corollary 5.5: Every valid DTD view whose annotations areif) respectively inty,r.s;, can be materialized in
O(la| x |T|?), resp.O(|a| x |T|?), by AlgorithmM ATERIALIZE. O

Proof: The first step of the algorithm takes up orl|o| x |T|?), resp.O(|o| x |T'|?), by using the construction
in Lemma 5.3, resp. Lemma 5.4, for the evaluation of XPath queries. For the subsequent processing the number of
iteration is bounded by the number of node§’iand each step can be performedi(io| x |T'|) steps. O

Remark 5.1 We cannot obtain a linear bound in the sizeTobecause of the ancestor and descendant axis in the
XPath fragment under consideration. The materialization of each node t#quire the evaluation of a query ovér
which may involve the entire original document.

6 From Authorization Specifications to Views

Our main result is to show how to construct a security view, given a document DTD and an authorization specification
on it. The idea behind our algorithm is to eliminate qualifiers by expanding each qualifier into a union of two element
types: one is the original element type, which is annotateend the other is a new type, essentially a copy of the
original type, which is annotated. Since the tag of an element uniquely determines the type, it follows that new type
names cannot match any nodes in a document that conforms to the original DTD. This is not a serious problem, as all
of these new type names are ultimately deleted in the final security view.

The next step expands the annotation to a “full annotation”. The notion of a full annotation was defined on annotated
documents, and we showed that every document has a unique full annotation. At the schema level, however, this is
not the case, as there may be several “paths” in the DTD that reach the same element type, each of which results in a
different annotation. We use a similar technique to the way we handle qualifiers, i.e., we introduce new element types,
and label the original on¥ and the “copy”N. Finally, we delete all the element types that are labdillethodifying

the regular expressions and théunctions correspondingly.

We show the algorithm\NNOTATE VIEW in Fig. 7 and algorithnBuiLD VIEW in Fig. 8.

Definition 6.1: Let S = (D, ann) be an authorization specification. The DTD constructedAIWOTATE VIEW
algorithm is thefully annotatedDTD corresponding t@¢D, ann). O

Theorem 6.1: Let (D, ann) be a security specification whef is non-recursive. Algorithm#NNOTATE VIEW and
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Algorithm: ANNOTATE VIEW

Input: A authorization specificatiofiD, ann)

Output: Fully annotated DTOD
1: Initialize D,, := D whereann is defined onD,, as onD;
2: for all production rulesA — P (A) in D,, do
3: for all element types3 occurring inP (A) do

4: initialize o (A — P (A), B) := Ble]

5: //Below we will eliminate qualifier annotation

6: for all element types3 with ann(B) = QJg| do

7: add toD, a new element typ®&’ and a production rul&’ — P (B’)

8: setP (B') := P (B)

9: for all element type€” occurring inP (B’) do
10: oc(B'—P(B),C):=0(B— P(B),C)
11: setann(B) = Y andann(B’) = N
12: for all production rulesA — P (A) do
13: if B occursinP (A) then
14: c(A— P(A),B):= Blg|;

15: c(A— P(A),B’) = B[q];
16: replaceB by B+ B’in P (A)

17: //Below we will get fully annotated DTID
18: while ann(B) of some element typeB is undefinedio

19: if all generatorsA of B have definednn(A) then

20: if all ann(A) =Y then

2L setann(B) :=;

22: else ifall ann(A) = N then

23: setann(B) := N;

24: else

25: add toD,, a new element typ®’ and a production rul®’ — P (B’)
26: setP (B') := P(B)

27: for all element type€” occurring inP (B’) do
28: oc(B'—P(B),C):=0(B— P(B),C)
29: setann(B) =Y, ann(B’) =N,

30: for all generatorsA of B do

3L if ann(A) = N then

32: replaceB with B’ in P (A)

Figure 7: AlgorithmANNOTATE VIEW

Algorithm: BuILD VIEW
Input: Fully annotated DTDD
Output: A security view O, o)
1: for all element types3 with ann(B) = N do
for all production rulesA — P (A) do
3 if B occursinP (A) then
4: for all C that occurs inP (B) do
5: setc(A— P(A),C):=0(A— P(A),B)/oc(B— P(B),C)Uc(A— P(A4),C)
6
7

: replaceB by P (B) in P (A) if B — P(B) exists and by otherwise
D, consists of all the element typessfor whichann(A) =Y, with thes function restricted to these types.

Figure 8: AlgorithmBuILD VIEW
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<IELEMENT applications (application* #application*)>

<IELEMENT application (student-data,recommendation-letter*,#recommendation-letter*,unreliable*)>
<IELEMENT #application (#student-data,recommendation-letter* #recommendation-letter*,unreliable*)>
<IELEMENT unreliable (recommendation-letter,#recommendation-letter,reason)>
<IELEMENT student-data (department,degree,name,waiver)>

<IELEMENT #student-data (#department,#degree #name,#waiver)>

<IELEMENT recommendation-letter (evaluator,letter)>

<IELEMENT #recommendation-letter (#evaluator,letter)>

<IELEMENT evaluator (title,institution,name)>

<IELEMENT #evaluator (#title #institution,#name)>

<IELEMENT letter (favorable | unfavorable)>

<IELEMENT favorable (rating,#rating,free-text #free-text)>

<IELEMENT unfavorable (rating#rating,free-text,#free-text)>

<IELEMENT rating (MS,PhD,English)><IELEMENT #rating (#MS,#PhD #English)>
<IELEMENT free-text (TXT | PDF)><IELEMENT #free-text (#TXT | #PDF)>
<IELEMENT reason (#PCDATA)>

<IELEMENT waiver (#PCDATA)><IELEMENT #waiver (#PCDATA)>

<IELEMENT department (#PCDATA)><!IELEMENT #department (#PCDATA)>
<IELEMENT degree (#PCDATA)><!ELEMENT #degree (#PCDATA)>
<IELEMENT name (#PCDATA)><!ELEMENT #name (#PCDATA)>

<IELEMENT title (#PCDATA)><IELEMENT #title (#PCDATA)>

<IELEMENT institution (#PCDATA)><!ELEMENT #institution (#PCDATA)>
<IELEMENT MS (#PCDATA)><!I[ELEMENT #MS (#PCDATA)>

<IELEMENT PhD (#PCDATA)><IELEMENT #PhD (#PCDATA)>

<IELEMENT PDF (#PCDATA)><![ELEMENT #PDF (#PCDATA)>

<IELEMENT English (#PCDATA)><!ELEMENT #English (#PCDATA)>
<IELEMENT TXT (#PCDATA)>

<IELEMENT #TXT (#PCDATA)>

Figure 9: Fully annotated DTD: element part

BuiLD VIEW terminate and produce a valid security view. O

Proof: We have loops in the algorithrANNOTATE VIEW (Steps 6 and 18) and in the algoritlBoiILD VIEW (step 1).
Step 6 INANNOTATE VIEW eliminates qualifiers from the authorization specification.

Step 18 iNnANNOTATE VIEW is to extend the annotation to a “full” annotation, i.e., one wheireis defined as either

Y or N for every element type. We do this by a “top-down” traversal of the DTD, starting from the root. The fact that
DTD is non-recursive implies that whenever there remains at least one elemerit tyjle ann(B) undefined, there
must be one sucB such that wheneveB occurs inP (A), ann(A) has already been defined. For one siluo the
following, and repeat until all element types are annotated. Thus ABINOTATE VIEW always terminates, whereas
step 1 inBuIiLD VIEW will terminate as it always reduces the number of element types in the DTD by one.

We next show thaD, is a DTD. D,, would fail to be a DTD only if, for some element typkin D,, P (A) includes
an element typé3 that is deleted in step 7 &uiLD VIEw. Chose such ad and B such thatB has no successor in
the DTD tree (we make use again of the non-recursivenesy.dbinceB is deletedann(B) must be equal tdl, and
thereforeB is replaced byP (B) in step 1 ofBuILD VIEW, a contradiction.

As we are considering only non-recursive DTDs, we must also show that the new DTD is non-recursive. But this
follows immediately, as any cyclP, can be traced back to a cyclein

This shows that we get a security view. To prove it is valid, we must showlthabnforms toD,,. To do this, we
first examinel” the fully annotated version @f (Definition 4.2) andD’, the fully annotated DTD defined above. As
this point, we would like to show thaft’ conforms toD’, but there is a problem, namely that some of the nodes in
nodes inT” should to be typed by new element types that were introducéd imwhich is impossible. To get around
this problem, modify the definition of “conforms”, to allow each new element typastroduced by the algorithm to
type the same nodes that were typedhy

With this modified definition of “conforms”, an examination of steps 6 and 18 of the algo#tRMOTATE VIEW,
comparing them to the corresponding steps in the definitiafl a§hows thaf” conforms toD’. Furthermore, a node
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<IATTLIST applications
hierarchy_security_policy CDATA #FIXED "topDown"
value_conflict_security_policy CDATA #FIXED "denialFirst"
local_security_policy CDATA #FIXED "closed"
hierarchy_conflict_security_policy CDATA #FIXED "hierarchyFirst"
security_annotation_data CDATA #FIXED "Y">
<IATTLIST application security_annotation_data CDATA #FIXED "Y">
<IATTLIST #application security_annotation_data CDATA #FIXED "N">
<IATTLIST unreliable security_annotation_data CDATA #FIXED "N">
<IATTLIST student-data security_annotation_data #FIXED "N" id CDATA #IMPLIED>
<IATTLIST #student-data security_annotation_data #FIXED "N" id CDATA #IMPLIED>
<IATTLIST recommendation-letter security_annotation_data CDATA #FIXED "Y">
<IATTLIST #recommendation-letter security_annotation_data CDATA #FIXED "N">
<IATTLIST letter security_annotation_data CDATA #FIXED "N">
<IATTLIST favorable security_annotation_data #FIXED "N">
<IATTLIST evaluator security_annotation_data #FIXED "N">
<IATTLIST #evaluator security_annotation_data #FIXED "N">
<IATTLIST unfavorable security_annotation_data #FIXED "N">
<IATTLIST rating security_annotation_data CDATA #FIXED "Y">
<IATTLIST #rating security_annotation_data CDATA #FIXED "N">
<IATTLIST free-text security_annotation_data CDATA #FIXED "Y">
<IATTLIST #free-text security_annotation_data CDATA #FIXED "N">
<IATTLIST reason security_annotation_data #FIXED "N">
<IATTLIST waiver security_annotation_data #FIXED "Y">
<IATTLIST #waiver security_annotation_data #FIXED "N">
<IATTLIST department security_annotation_data #FIXED "Y">
<IATTLIST #department security_annotation_data #FIXED "N">
<IATTLIST degree security_annotation_data #FIXED "Y">
<IATTLIST #degree security_annotation_data #FIXED "N">
<IATTLIST name security_annotation_data #FIXED "Y">
<IATTLIST #name security_annotation_data #FIXED "N">
<IATTLIST title security_annotation_data #FIXED "Y">
<IATTLIST #title security_annotation_data #FIXED "N">
<IATTLIST institution security_annotation_data #FIXED "Y">
<IATTLIST #institution security_annotation_data #FIXED "N">
<IATTLIST MS security_annotation_data #FIXED "Y">
<IATTLIST #MS security_annotation_data #FIXED "N">
<IATTLIST PhD security_annotation_data #FIXED "Y">
<IATTLIST #PhD security_annotation_data #FIXED "N">
<IATTLIST English security_annotation_data #FIXED "Y">
<IATTLIST #English security_annotation_data #FIXED "N">
<IATTLIST TXT security_annotation_data #FIXED "Y">
<IATTLIST #TXT security_annotation_data #FIXED "N">
<IATTLIST PDF security_annotation_data #FIXED "Y">
<IATTLIST #PDF security_annotation_data #FIXED "N">

Figure 10: Fully annotated DTD: attribute part

in 77 that is annotatedll (resp.Y) will be typed by a type inD’ that is annotate8ll (resp.Y).

It follows immediately from the definitions, that if we talf®’ with the o function defined in algorithmANNOTATE

VIEW, T “conforms” to D’. As we delete nodes in step 5, we can show that this property is preserved, 3@ that
“conforms” to D,,. Since all the new nodes have been deleted at this point, the new definition of “conforms” reduces
to the standard definition, completing the proof. O

Note that our assumption that regular expressions in DTDs may be 1-ambiguous is essential, as the following example
shows.

Example 6.1: Consider the DTD with element type§ B, C, D, whereD — CA(A + B) andD — (A + B)x.
If ann(A) = ann(B) = ann(C) =Y, andann(D) = N, then the security DTD computed by AlgorithANNOTATE
View will have the productiolD — (A + B) x A(A + B), which is not equivalent to any 1-unambiguous regular
expression [6]. O

In practice, if we really need to use 1-unambiguous regular expressions, one could approximate the expressions gen-
erated by the algorithm with 1-ambiguous expressions that capture a larger language ([2] describes one method to do
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<IELEMENT applications (application*,recommendation-letter*,
((rating,free-text)|(rating,free-text))*,recommendation-letter*,
((rating,free-text)|(rating,free-text))*)>

<IELEMENT application (student-data,recommendation-letter*,
((rating, free-text)|(rating,free-text))*,recommendation-letter*,
((rating, free-text)|(rating,free-text))*)>

<IELEMENT recommendation-letter (evaluator,
((rating,free-text)|(rating,free-text))*)>

<IELEMENT student-data (department,degree,name,waiver)>

<IATTLIST student-data id CDATA #IMPLIED>

<IELEMENT recommendation-letter (evaluator,
((rating,free-text)|(rating,free-text))*)>

<IELEMENT evaluator (title,institution,name)>

<IELEMENT rating (MS,PhD,English)>

<IELEMENT rating (MS,PhD,English)>

<IELEMENT degree (#PCDATA)>

<IELEMENT department (#PCDATA)>

<IELEMENT name (#PCDATA)>

<IELEMENT waiver (#PCDATA)>

<IELEMENT institution (#PCDATA)>

<IELEMENT PhD (#PCDATA)>

<IELEMENT MS (#PCDATA)>

<IELEMENT English (#PCDATA)>

<IELEMENT title (#PCDATA)>

<IELEMENT TXT (#PCDATA)>

Figure 11: DTD viewD,,

this).

Example 6.2: Fully annotated DTD depicted on Fig. 9 is the result of application of the algotRmOTATE VIEW

to partially annotated DTD of Fig. 4. Elements marked with # symbol are introduced artificially during the process of
qualifier elimination (step 6) and inheritance from differently annotated parents (step 18). Fig. 10 represents attribute
part of DTD. Note that artificial elements have security annotdtiavhile initial elements are marked by O

Example 6.3: The result of application duiLD ViEwW to DTD of Fig. 10 is depicted on Fig. 11. Note that all security
related attributes (compared with input DTD annotation depicted on Fig. 4) are eliminated. Correspoefdingon
is represented on Fig. 12. O

Note, thato-function has rules with contradictory conditio@sandnot(Q) (e.g. 3—-11, 14-22), therefore correspond-

ing o will always return empty set. The same is true also for rule 2 because it contains both conditi®) and

R with subconditionP. These rules can be eliminated on the process of optimization which is an open issue and is
leaved for future work.

We now need a technical lemma.

Lemma6.2: Let(D, ann) be a security specification whefis a not-recursive DTD an¢D,,, o) be the security view
that is constructed by AlgorithmSNNOTATE VIEW and BuiLD VIEW, for any sequence of element typges .. B,

in the full annotatedD such that (i)B;1 is a child type ofB; fori = 0...n — 1, (ileachB; fori =1...n —11is
annotated\, there exists an XPath expressipandg; . .. ¢, XPath qualifiers such that the following equation holds
for all set of nodesV:

S [lo(Bo = P (Bo), Bu)ll (N) = S~ [Ipll (N) US~ [| Bilg1]/ -+ / Bulgnll] (N)

Proof: The proof is by a nested induction arand the number of iteration of step 1 of algoritfoiLD VIEW.

For the base case, = 1, thenB; is a child of By. Then, before step 1 @uiLD VIEW is executed, algorithrAN-
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applications -> P(applications):
1 sigma(applications, application)= application[P]
2 sigma(applications, recommendation-letter) = application[not(P)]/recommendation-letter[R]
3 sigma(applications, rating) =
application[ not(P])l/recommendation-letter[ not (Q))/letter/favorable/rating[Q]
4 sigma(applications, free-text) =
application[ not(P)]/recommendation-letter[ not(Q)]/letter/favorable/free-text[Q]
5 sigma(applications, rating) =
application[ not(P))/recommendation-letter][ not(Q)]/letter/unfavorable/rating[Q]
6 sigma(applications, free-text) =
application[ not(P))/recommendation-letter[ not(Q))/letter/unfavorable/free-text[Q]
7 sigma(applications, recommendation-letter) =
application[ not(P)])/unreliable/recommendation-letter[R]
8 sigma(applications, rating) =
application[ not(P)]/unreliable/recommendation-letter[not(Q)]/letter/favorable/rating[Q]
9 sigma(applications, free-text) =
application[ not(P)])/unreliable/recommendation-letter[not(Q)J/letter/favorable/free-text[Q]
10 sigma(applications, rating) =
application[ not(P)]/unreliable/recommendation-letter[not(Q)J/letter/unfavorable/rating[Q]
11 sigma(applications, free-text) =
application[ not(P)]/unreliable/recommendation-letter[not(Q)]/letter/unfavorable/free-text[Q]

application -> P(application):
12 sigma(application, student-data) = student-data
13 sigma(application, recommendation-letter) = recommendation-letter[R]
14 sigma(application, rating) = recommendation-letter[ not(Q))/letter/favorable/rating[Q]
15 sigma(application, free-text) = recommendation-letter[not(Q)]/letter/favorable/free-text[Q]
16 sigma(application, rating) = recommendation-letter[not(Q)J/letter/unfavorable/rating[Q]
17 sigma(application, free-text) = recommendation-letter[not(Q)]/letter/unfavorable/free-text[Q]
18 sigma(application, recommendation-letter) = unreliable/recommendation-letter[R]
19 sigma(application, rating) = unreliable/recommendation-letter[not(Q)]/letter/favorable/rating[Q]
20 sigma(application, free-text) = unreliable/recommendation-letter[not(Q)]/letter/favorable/free-text[Q]
21 sigma(application, rating) = unreliable/recommendation-letter[not(Q)J/letter/unfavorable/rating[Q]
22 sigma(application, free-text) = unreliable/recommendation-letter[not(Q)]/letter/unfavorable/free-text[Q]

student-data -> P(student-data):
23 sigma(student-data, department) = department
24 sigma(student-data,degree) = degree
25 sigma(student-data, name) = name
26 sigma(student-data, waiver) = waiver

recommendation-letter -> P(recommendation-letter):
27 sigma(recommendation-letter, evaluator) = evaluator
28 sigma(recommendation-letter, rating) = letter/favorable/rating[Q]
29 sigma(recommendation-letter, free-text) = letter/favorable/free-text[Q]
30 sigma(recommendation-letter, rating) = letter/unfavorable/rating[Q]
31 sigma(recommendation-letter, free-text) = letter/unfavorable/free-text[Q]

evaluator -> P(evaluator):
32 sigma(evaluator, title) = title
33 sigma(evaluator, institution) = institution
34 sigma(evaluator, name)= name

rating -> P(rating):
35 sigma(rating, MS) = MS
36 sigma(rating, PhD) = PhD
37 sigma(rating, English) = English

free-text -> P(free-text):
38 sigma(free-text, TXT) = TXT
39 sigma(free-text, PDF)= PDF

where P = ./student-data[@id=$login]

Q = ancestor::*[self::application[./student-data[@id=$login]/waiver/text()="true’]]
R = ancestor::*[self::application[./student-data[@id=$login]]]

Figure 12:0-function

NOTATE VIEW would seto(By — P (By), B1) = Bi[g:1] for a suitable qualifie;. Therefore, up to that point of
the execution of the algorithm, the theorem holds by setting (). During step 1 of algorithnBuiLD VIEW it is
possible that the elimination of soniNechildren of By would modify the selection function faB,. By evaluating
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theo (By — P (By), B1) expression constructed by step 4RifILD VIEW with the S_, operator and by induction
hypothesis we get

S— [|o(Bo — P (Bo), B1)[] (N) =
S—. [lo(Bo — P (Bo),C)/a(C — P(C),B1)Ua(By — P (By),B1)|] (N) =
S [lo(Bo — P (Bo),C)/a(C — P(C),B)[|(N)US_ [lo(By — P(Bo),B1)[] (N) =
S [|[e(Bo — P (Bo),C)/a(C — P(C),B1)[] (N)US_ [|pol] (V) U —>[|BI[QIM (N) =
S [Ip1 [l (N) US- [|Bia]|] (V)

If B, itself is eliminated fromP (By) this would not change the selection function constructed so faBfor

For the inductive case, I8, ...B, be the sequence of nodes andtfor i € {1...n — 1} be the last node that
is eliminated by step 1 of the algorithBuiLD VIEW. Since the DTD is not recursive neithe{B, — P (By), B;),
noro (B; — P (B;), B,) can be changed by this step. By evaluating$he operator and by induction hypothesis
we get:

S_. [lo(Bo — P (Bo), Bn)l] (N) =
S_.[lo(Bo — P(Bo), Bi)/o(B; — P(B;),Bn) U U(Bo — P (Bo), Bn)[] (N) =
S—. [lo(Bo — P(Bo), Bi)/o(Bi — P(B;),By)[] (N) U [lG(BoHP(Bo),Bn)H( ) =
S_. [lo(B; = P(B;), By)|] (S- [|o(Bo — P(Bo)sz)H ( )) — [Ipol] (V) =
S [lo(Bi = P (By), Bn)[] (S [[p1,il] (N) U S [|Bi[a1]/ - /B [qz]H( ) US— [Ipol] (N) =
S [lo(Bi — P (B;), Bn)[] (S [[p1,il] (V) U
S_. [lo(Bi — P(B:),Bn)|] (S [|Bilq1]/ - - - / Bilai]l] (N)) ~lpol] (N) =
S_ [Im|[(N)US_ [|o(B; — P (B;),By)|]| (S= [|Bila1]/ - - - /Bilaill] (N)) U [|po|] (N) =
S [Ip2l] (N)US—. [|o(Bi — P (Bi), Bn)[l (S= [|Bila1]/ - - - / Bilgil[] (N)) =
S Ip2ll (N) US- [Ipivinl] (S= [IBilgi]/ - -+ / Bilai]l] (N)) U
S [|1Bitalgi+1l/ -+ /Bulanlll (S= [|Bila1l/ - - - / Bilgill] (N)) =
S Ip2l] (N)US- [[ps]] (N) US- (| Bilq1]/ - - - / Bilgil / Bi+1lgi+1]/ - -+ / Bnlanll] (N) =

[
S lpll (N) U S [[Bilg1]/ -+ -/ Bnlgnll] (V)

The case = n is similar to the above one by combining the reasoning for the base case and the intermediate case
above. O

Remark 6.1 In the statement of the lemma we have no condition on the labelling of d#her B,, as this would

make the induction hypothesis needed for the proof not strong enough. Equally we need to quantify oveNall sets

or the composition of two intermediate sequences during the induction step would not have an inductive hypothesis
strong enough.

Theorem 6.3: Let (D, ann) be a authorization specificatiod) is non-recursive, letD,,, o) the security view con-
structed by Algorithm&NNOTATE VIEW and BuiLD VIEW. LetT be a document]’4 the authorized version af
andTs the materialized version @f with respect tq D,,, o). ThenTy is isomorphic tdl’s. O

Proof: The proof is done by a top-down induction @h The root ofT" is clearly in both7’4 andT’s.

By induction, assume thatis of element typed, and is in bothl’y andTs. We must show that each chitdin T'4 is
also a child ofn in T's, and vice versa. The result will then follow, as the order of the childrenisfthe same in both
documents. Note, that for this to work it is essential that nodesshould be ordered with the old order.

Let, thereforem be a child ofn in T4, of type B. Assume, first, thain is a child ofn in the original document’.
Consider the fully annotated DT, ann’). SincenisinTs,ann’(A) =Y. Sincem isinTy, it follows thatann(B)
cannot be equal thl, and hencenn’(B) =Y, and so element typB is in D,,. Furthermore, itnn(B) = Q[q], then
¢ must hold atn.
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We must show thatn is in S_, [[o (A — P (A),B)|] ({n}). Letp = (A, B). The algorithmANNOTATE VIEW
initially setsp = B (step 2), may replace by B]q] in step 12, and may add additional disjuncts in step 2 of algo-
rithm BuUIiLD VIEW. In all casesn is clearly in the result.

Now consider the case where is not a child, but a descendant, ofin T'. Letn, ny, ...,ng, m (k > 1) be the
sequence of nodes il from n to m, of element types3y, ..., B;. Since these nodes are not presert’in each
ann(B;) (1 <4 < k) must be either undefinedl, or Q[¢;], with the qualifier in the latter case evaluating to false,at
Furthermoreann(B) must be eithel or a qualifierQ[q] that evaluates to true at, which implies that3 is in D,,.

To show thatm is in S_, [|o (4, B)|] ({n}), observe first thaDr contains element type8’ wheneverann(B;) is
undefined or is a qualifier. For this part of the proof, we shall WB;eas a synonym foi3; in the remaining case,
whenann(B;) = N. Wheneveann(B;) is Q[¢;], step 12 of the algorithtANNOTATE VIEW initially setso (B _, B;)
to B;[~q] (writing Bj, = A, for convenience); wheann(B;) = N or is undefinedg (B;_,, B}) is initially set equal
to B; in step 2 ofANNOTATE VIEW. Finally, step 1 oBuiLD VIEW deletes elements typds, ..., B;,, replacing
o(A, B) by a disjunction of paths, and by lemma 6.2 we get:

Sollo(A—=P(A),B)[({n}) = S-I[pUBi[-~a]/Bal-ql/ - /B[~a]/Bll ({n})
with some of they;’s absent, wheann(B;) is N or undefined. It follows that: € S_, [|o(A, B)|] ({n}), as desired.
For the converse, let: be a child ofn in T's. We must show that: is a child ofrn in T'4.

From the definition ofl’s, m must be in the result of evaluating A, B) atn. Letn = ng, ny, ..., g, M = N4
(k > 0) be the shortest path fromto m that is used in the evaluation of thefunction, and letz’ be the value of
the s function after application of the algorithlNNOTATE VIEW. We claim that; 1 € S_, [|o(B;, Bit1)|] ({n:})
(0<i<k,By= A, Bry1 = B). We show this by induction on the laB} eliminated in step 1 oBuILD VIEW: this
step replaces(B;_1, B;+1) by

0(Bi—1,Bi)/o(B;, Bit1) + 0(Bi—1, Biy1) .

By our induction hypothesisi; 1 € S_, [|o(B;—1, Bi+1)|] ({ni-1}). If n;31 was in the second disjunct above, we
would have a contradiction with assumption that our path was the shortest. Therefore wehaweS_, [|o(B;, Bi+1)|] ({ni})
andn; € S_, [|o(B;—1, B;)|] ({ni—1}), proving our claim. We therefore know th&tB;_1, B;) is

1. B; whenann(B;) is eitherN or undefined. The casain(B;) =Y is impossible except when= k + 1, as the
element type in question is deleted in step BofiLD VIEW.

2. B; [ﬁq] Whenann(Bi) is Bz[ﬁql]

In both case, it follows that, m1, ..., mg, m is a path inl". It remains to show that, ..., m; are deleted if'4.
For nodes annotated with a qualifier, this is immediate; for other nodes it follows from the fact that the algorithm used
to define a complete annotation is the same in the definitidiyaind in AlgorithmANNOTATE VIEW. O

The complexity of the algorithm is as follows:

Theorem 6.4: Let (D, ann) be a authorization specification for a non-recursive DTD, ebe size of the largest
production rule inD. Letny be the number of element types annotated Witnd letn .- the number of element
types otherwise annotated or not annotated. Then the size of the select fungererated by the algorithm is
bounded bY)(n e X |ann|) and the size of the View DTD,, is bounded by) (ny x PMether+1), O

Proof: For the first bound observe that the introduction of the sympelsduU in the definition ofo only happens
when eliminating an element type labelled within the fully annotated DTD, and there are at mos,.,- element
types of this sort. All qualifiers appearing theare the same as qualifiers that were in the original authorization
specification, or their negations, and therefore their size is boundgahiby
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For the second step observe that we only replace occurrenleslement types in a regular expression df-tabelled
element type with another regular expression, and that each of those replacement elimihktesled node. O

The above upper bound is tight as the following example shows:

Example 6.4: Consider DTD with the productioroot — Ay andA; — A; 14,41 fori =0...n — 1 and where
ann(A4p) = N, ann(A,,) =Y. Then the DTD ViewD,, has only one rule

antimes
——
root — A,...A,,

and the select function is(root , A,,) = Ag/ - /A.,. O

7 Other security policies

Our model is based on a specific policy, used for determining a complete authorization specification of a document
based on a partial specification. This is thest-specific-takes-precedermaicy [10]. Different applications may
have different requirements, and we now look at alternative approaches.

We can classify security policies using two orthogonal classifications that foctsnopletenesandconsistencyDe
Capitani di Vimercati and Samarati [10]). The first classification is based on how one handlesigned values
while the second is based on the handling@fflicting assignmenend how one restores consistency.

We are interested only in policies that are complete and consistent:

Definition 7.1: A policy is completeandconsistentf every partially annotated tree can be extend to a fully annotated
tree. O

We list here several possible policies. These are variations of classical security policies that are used in other settings

([10).

We have identified a number of policies for value propagation and conflict resolution:

Local Propagation Policy: “open”, “closed”, or “none”;
Hierarchy Propagation Policy: “topDown”, “bottomUp”, or “none”;

Structural Conflict Resolution: “localFirst”, “hierarchyFirst”, or “none”;

Value Conflict Resolution: “denialTakesPrecedence”, “permissionTakesPrecedence”, or “none”.

The Local Propagation Policy is similar to traditional policies for access control: in the case of “open”, if a node is not
labelledN then it is labelled byy; in the case of “closed”, a node not labelléds labelled byN.

The Hierarchy Propagation Policy specifies node annotation inheritance in the tree. In the case of “topDown”, an
unlabelled node with a labelled parent inherits the label of its parent. In the case of “bottomUp” an unlabelled node
inherits the label from a labelled children. Note that the “bottomUp” case can result in conflicts, and they should be
addressed by the Value Conflict Resolution Policy.

The Structural Conflict Resolution Policy specifies whether the local or hierarchy rule takes precedence (“localFirst”
or “hierarchyFirst” respectively); while “none” means that the choice depends on the values and on the Value Conflict
Resolution Policy. The latter specifies how to resolve conflicts for unlabelled nodes that are assigned different labels
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hierarchy| local | structural conflict| value conflict condition
topDown | #none | hierarchyFirst * *
topDown | none * * root is annotated

Table 1: topDown policy conditions

hierarchy | local | structural conflict| value conflict condition
bottomUp | #none | hierarchyFirst #none *
bottomUp| none * Znone leaves are annotated

Table 2: bottomUp policy conditions

by the preceding ruledN always has precedence ove(“denialTakesPrecedence’y;always has precedence ower
(“permissionTakesPrecedence”), and no choice (“noneTakesPrecedence”).

In the sequel we show some sulfficient conditions for complete and consistent policy combinations. We start with some
policies that we can terropDown

Proposition 7.1: All policies that satisfy one of the conditions of table 7.1 are sound and complete. O

Proof: Assume thaf is a partially annotated tree. We show that the annotation can be extended to a full tree.
Consider condition 1 afopDownsecurity policy of table 7.1.

Base case: if the root is annotated then we are done. If it is not annotated then according to the definition it can obtain
its annotation frontocal security policy: Y/N iflocal=open /closed respectively. Thus root annotation is defined.

Inductive case: consider an arbitrary nodevith annotated parent. If n is annotated we are done. Otherwise,
obtains its annotation from the parent sirsteictural conflicthierarchyFirst . Thus annotation of any node is
defined.

Consider condition 2 afopDownsecurity policy of table 7.1.
Base case: the root is annotated.

Inductive case: consider an arbitrary nadevith annotated parent. If it is annotated we are done. Otherwise it
obtains its annotation from the parent. Thus annotation of any node is defined O

Next we have some policies that we can tdrottomUp
Proposition 7.2: All policies that satisfy one of the conditions of table 7.2 are sound and complete. O

Proof: . Assume thaf’ is a partially annotated tree. We show that the annotation can be extended to full tree.
Consider condition 1 dbfottomUpsecurity policy of table 7.2.

Base case: if the children are annotated then we are done. If some of them are not annotated then according to the
condition they can obtain their annotation frémeal security policy: Y/N iflocal=open/closed respectively. Thus
annotation of all leaves is defined.

Inductive case: consider an arbitrary nodevith all annotated children. I is annotated we are done. Otherwise,
n obtains its annotation from the children sirsteuctural conflickhierarchyFirst . However, different children
can have different annotation. On the other haralue conflic.nothingTakesPrecedence can be used to

22



hierarchy| local | structural conflict| value conflict
* #none localFirst *
none Z£none * *

Table 3: local policy conditions

hierarchy | local | structural conflict| value conflict
#none | #none noneFirst #none

Table 4: multilabel policy conditions

define “winning” label. Thus annotation of any node is defined.
Consider condition 2 dbottomUpsecurity policy of table 7.2.
Base case: all leaves are annotated.

Inductive case: consider an arbitrary nodeith all annotated children. If it is annotated, we are done. Otherwise it
obtains its annotation from the children. However, different children can have different annotation. On the other hand,
value confliciznothingTakesPrecedence can be used to define “winning” label. Thus annotation of any node

is defined. O

Now we consider some policies that we can téogal.
Proposition 7.3: All policies that satisfy one of the conditions of table 7.3 are sound and complete. O

Proof: Assume thaf is a partially annotated tree. We show that the annotation can be extended to full tree.

Consider condition 1 dbcal security policy of table 7.3. Sincgructural conflict= localFirst , local is enforced
in the first turn.

Consider case 2 dbcal security policy of table 7.3. Sind@erarchysecurity policy is not definedocal is enforced.

Thus, for each not annotated nadewe enforcdocal security policy that assigns either a labebr N depending on
local policy definition. O

In some cases bothierarchysecurity policy andocal security policy are defined, batructural conflictsecurity pol-

icy is “noneFirst”. In these cases we apply bbtararchyandlocal security policy thus obtaining for each node a set of
more than one security annotation. So it is not really clear from the user specification what is really wanted. The “win-
ning” label is defined by means wélue conflictsecurity policy which should not be equal to “noneTakesPrecedence”.
We call such policies “resolvable multilabel” security policies.

Proposition 7.4: All policies that satisfy one of the conditions of table 7.4 are sound and complete. O

Proof: Assume thaf" is a partially annotated tree. We show that the annotation can be extended to full tree.

Sincestructural conflictis not defined but bothierarchyandlocal are not “none”, we enforce both of them inde-
pendently (in cases when it is possible, e.ghidérarchy = topDown but root is not annotated, we cannot enforce
hierarchy from the root; however, we can start enforcemenhiefarchy policy from any annotated node, because
explicitly defined label overrides propagated one). As the result, for each node we will receive a set of labels. Since
value confliciis defined, it can be used for defining the “winning” label.

Since each node is assigned at least one label (considedabpolicy), partial annotation can be extended to full
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hierarchy | local | structural conflict| value conflict
none none * *
#none | #none none none
bottomUp * hierarchyFirst none
bottomUp | none | +#hierarchyFirst none

Table 5: unresolvable policy conditions

annotation. O

Remark 7.1 All the other policies are classified asiresolvableconsidering the table 7.1, policies following condi-
tion in line 1 are incomplete, policies in lines 2 and 3 of are inconsistent, policy in line 4 may be either inconsistent or
incomplete.

Extending the security view approach to other policies, such as these, requires modifying the construction of the
security view so that it propagates annotations in a way that corresponds to annotation propagation in the security
policy. We leave this to the future work.

8 Extending to Recursive DTDs

The restriction in our current proposal is the requirement of nonrecursive nature of DTDs. For authorization specifica-
tion of recursive DTD it is possible to derive a fully annotated DTD by modifying step 18 of the algoAtmoOTATE

VIEW, but one cannot construct a select function in XPath that guarantees both secrecy and availability by modifying
step 1 of the algorithrBuILD VIEW.

The reason for this is that to handle with recursive DTDs correctly, one should repeat steA48@fATE VIEW

until a fix point is reached. Then, if there are still unlabelled nodes they are part of a cycle of completely unlabelled
nodes. We could then consider all entry points of the cycle, and apply stepASNGSTATE VIEW to all entry points

at the same time: if all generators of entry points outside the cycl&aredes then all nodes of the cycle can be
labeledY. The case fol is similar. In the case of conflicts, apply step 2420§iNOTATE VIEW to all entry points of

the cycle at the same time. This process breaks progressively more cycles until all cycles get labelled.

The problem, however, is that XPath lacks the full Kleene-star operator. Thus we cannot select exactly the nodes in
which an element must be reached just after a particular loop is traversed an arbitrary number of times. It may be
possible to extend the security view with “dummy nodes” that map to epsilon rules, and obtain the desired result, but
such a solution would not be acceptable as the schema would be meaningless to the user. Using the present algorithm,
we can obtain an approximate solutidoy. stopping the modifieNNOTATE VIEw-algorithm after a finite number of
iterations of step 1 oBuILD VIEW-algorithm we have aecrecy preservingew.

The problem, however, is that XPath lacks the full Kleene-star operator. XPath language. Thus we cannot select
exactly the nodes in which an element must be reached just after a particular loop is traversed an arbitrary number of
times. It may be possible to extend the security view with “dummy nodes” that map to epsilon rules, and obtain the
desired result, but such a solution would not be acceptable as the schema would be meaningless to the user. Using
the present algorithm, we can obtain an approximate solubipistopping the modifieNNOTATE VIEW-algorithm

after a finite number of iterations of step 1BbILD VIEW-algorithm we have aecrecy preservingew.
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(xpath)

T

(step) (path)
(qual) ...{qual) (step) path
O, {qual) . qual

Figure 13: Parse tree schema
9 Query Rewriting

This section considers rewriting of user queries over security Viéws (D,,, o). More precisely, user provided with
theDTD viewD,, poses a query ovep,,. The query evaluation procedure may rely on two strategies:

e thenaivestrategy assumes that the user query is evaluated over the materialized security Wawhas been
extracted from initial datd” by means of the-function or directly from the security annotation;

o therewriting strategy transforms the user qugrnto anequivalenquerygq, using thes-function over the initial
schemaD. Queryg,; can be then evaluated over the initial dataBetithout materialization of s.

The naive approach may be extremely time consuming in the case of very large XML files and multiple queries. On
the other hand, one could precompute and store data igw$his approach may be inefficient for volatile data (e.g.
auction or stock sells) or for data in which integrity across views is important. Rewriting cost is insignificant compared
to the cost of view derivation from a large XML document.

Below we present our algorithm for query rewriting which has two phases: query parsing and further translation of
parsed query inte-functions.

The user query is parsed according to the grammar that we have shown in DefMitiémitially, we consider the
user query agzpath). We process it recursively resulting inparse treeaccording to the schema on Fig. 13. The
intuition of parse tree schema is the following. We divid@ath) into (step) andremaining(path). (step) consists

of node tes®) and zero or more qualifiergual). Each of these qualifiers represents a condition that the node test
should satisfy. The condition is a boolean function of several argum@nts £ 1, k) which are eithefpath), literal,

or number.

Each node of the parse tree representation of user query is calidajaery

For example, the XPath expressiofu/b[(c/text() ='school’) A (parent :: ¢)]/d selects all noded that is a child
of b, b is a child ofa and has parentand childc with text node school ', a is a descendant of root node. The parse
tree representation is depicted on Fig. 14

For each subqueny in XPath parse tree representation and for each elesémtD,, we compute a local translation
rewrite(p, A) which is based on translationswrite(p;, B;), wherep; is a direct subquery (child in parse tree)of
andB; is a node reachable (the graph/af has a path td3) from A. The rewritten query is located iwrite(p, root)
whereroot is the root element of initial DTOD andp has a “normalized” format i.e. each step of path is rewritten
into form axisSpecifier :: label.

The algorithm presented in Fig. 15 shows the translation procedure. More precisely, in lines 1, 17, 29, 35 we can
distinguish whether the subexpressionyisth), (qual), 6 or 8] (qual)] respectively. In the case @path) we process
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’ //a/bl(c/text() = ‘school‘) A (parent :: q)]/d‘

/\
descendant :: a ’ b[(c/text() = ‘school‘) A (parent :: q)]/d ‘
/\
’ child :: b[(c/text() = ‘school‘) A (parent :: q)] ‘ child :: d
/\
child :: b ’ (c/text() = ‘school‘) N (parent :: q) ‘
/\
’ c/text() = ‘school’ ‘
/\
child :: c/text() ‘school*
/\

child :: ¢ child :: text()

Figure 14: Parse tree of expressijofu/b[(c/text() =" school’) A (parent :: q)]/d

first (step) (which is represented ag in the “normalized” format) and then the remaining par{ash) (which is
rewritten top,) recursively. The final step dpath) processing consists in joining andp. into pathp; /p2 which
represents the initialpath) in “normalized” format where every step has the formatsSpecifier :: label. The
joining procedure is shown in lines 4- 16 of algoritfpueERY REWRITE.

Parsingd[(qual)] handles separately predicate expressigrul) and node tesi. More precisely, node testshould
be rewritten with respect to all DTD nodes in first turn. After that all filters are treated consequerilytas
expressions. But since predicates are posed on nod@, tist rewritten query will comprise the translation of filters
with respect to node te8t(qo in algorithm). However, in the case of wildcard tesythe algorithm should find all the
appropriate nodes to which considered filters may be applied (see lines 46¢ERl REWRITE).

The processing ofqual) depends on arity of predicate function: either unary or binary. We process each operand
(either(path), literal or number) of the function. Since we deal with unary and binary functigng/) has no more

than two operands. In lines 21- 23 and 27-28xfERY REWRITE we perform joining procedure respectively for
binary and unary function.

Intuitively, processing of node tegtproduces path in terms effrom each elemend of D,, to 6. If § haschild axis
specifier thenewrite(d, A) = o(A, ). If axis specifier iparent , it means that instead of returnimd 4, §) we
should returnz (6, A) (0 =1(4, 6) is an alternative notation). For example, user poses qd¢fy. We should rewrite
itto o(A, B). On the other hand, if user poses quéryparent :: B, we should findr(B, A) and returno—1(B, A),

i.e. the consequence of steps and corresponding axis specifie(®pfl) should be changed on the contrary. For
example, ifo(B, A) = C/A which is equivalent tasel f :: B/child :: C/child :: A, theno=*(B,A) = self :
A/parent :: C/parent :: B. Steps 1— 11 of algorithmetTranslation depicted on Fig. 18 represent the process of
calculatinge—*(A4, B).

This intuition corresponds to “neighbor” axis specifiers (elgld andparent ). In case oflescendant-or-self
(ancestor-or-self ) we have to calculate all descendants (ancestors) and all possible paths to each descendant
(ancestor). Finally, all computed paths should be translated inte-thaction corresponding to the reverse property

of axis specifier. Obviously, descendant/ancestor processing requires a different approach. Thus we introduce two
auxiliary functions:processChildParent on Fig. 16 androcessDescendAncest on Fig. 17. We should mention

that each of these functions also considers the case when the node lal{ghés3 of processChildParent and

line 7 of processDescendAncest) which requires rewriting for a union of nodes reachable from considered DTD
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node according to axis specifier.

For rewriting of descendant/ancestor relations we use the data of the statically precomputgdet@blerite. The

idea ofpre Rewrite calculation is borrowed from [12] whetecProc andtraverse procedures are intended to cap-

ture all the paths from all DTD nodes to all their corresponding descendants, and to translate these paths to an equiv-
alent paths over the initial DTID. We updated subroutinescProc andtraverse so that they precompute not only
descendant-or-self but alsoancestor-or-self relations. OupreRewrite table is arecrw table of [12]

extended with the third dimension representing the DTD graph traversal: either in bottamoastor-or-self )

or top down (lescendant-or-self ) direction.

The correctness of the algorithm follows immediately from the correctness of each step. Iqdegtl processing

is correct if processing of both firgstep) and remaining(path) is correct. The processing @ftep) is correct

if processing of axi® and all its filters(qual) is correct. The processing ¢fual) is correct if processing of all its
operands is correct, where operand can be e{henh) or literal, or number. We claim that processing@nd binding

it with qualifiers is correct. Indeed, let us consider binding &xisth qualifier. We assume that node tesind related

filter expressionds, f, ..., f, are processed correctly, i.e. for every DTD elemente built the correct rewriting of
expressions /axisSpecifier:n, v/operandy,, j = 1,q, whereoperandy, is any operand of filteff;. Since filters

are posed on elementandn is one of DTD elements, the rewriting of expressidlif;] for every DTD element

should have formewrite(n, v)[rewrite(f;,n)]. The latter is reflected in algorith@UERY REWRITEin lines 41- 51.

Now we show the correctness of axis processing. As it was mentioned above, axis processing requires representation
of expression /axisSpeci fier::n in terms ofo function for every DTD element. If axisSpecifier ischild then

the rewritten expression is equalddv, n) (in the case ofv = x it will be union of o (v, child, ) wherechild, is a

child of v). If axisSpecifier is parent then the rewritten expression is equabto!(n, v) (again, in the case of
wildcard it will be the union of all reversed relatedunctions). IfaxisSpeci fier is descendant-or-self then

we use precomputed datafe Rewrite table which consists of expressions representing all pathsdranm for all

DTD elementsy andn. The correctness of construction such expressions is shown in [12]. As we said above, these
expressions are also rewritten in termsydiinction. If axisSpeci fier is ancestor-or-self the expressions of
preRewrite table should be rewritten by means of reversddnction (i.e.oc~!).

Comparing presented algorithm for query rewriting with that of provided by Fan et al. in [12], we would like to
mention the differences. First difference is related to processing of qualifiers: we do not distinguish different types of
qualifiers as it is done in [12]. Moreover, we consider the rewriting of qualifiers with respect to a subset of nodes to
which these qualifiers are applied. This approach provides clear binding between node test and filters related to this
node test. Furthermore, this binding is absent in the query rewriting algorithm presented in [12]. Another distinction
lies in treatment of node tesis More precisely, according to our notion of parsing tree, the smallest (the latest) entity

of parsing procedure (the leaf of parse tree) is an &xighich is either label or wildcard. It means, that we do not
distinguish a separated subpatlas it is done by Fan et al. We consideas a type of axis. The same remark can

be done for treatment of descendants: from our point of view “descendant” is a characteristics of axis rather than
distinguishable subpath. The last and most prominent advantage of our approach is that it can accept user queries
containing reverse axis specifiers suctpaeent andancestor-or-self

10 Implementation

At the University of Trento we have implemented a preliminary version of a Java tool that accepts user queries and
returns answers as an XML document that is constructed from the set of nodes which are both visible to the user and
satisfy the query conditions.

The tool consists of the following main components:

e DTD Parser we extended the Wutka DTD parseo be able to extract the security policy from the root element

2http:/www.wutka.com/dtdparser.html
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Algorithm: QUERY REWRITE
Input: a subquery; (as a string)
Output: a queryp locally rewritten in terms o& (as a string)
1: if gis (path) then
Il ¢ = firstStep/remainingSteps

2: q1 = q.getFirstStep()p1 = QUERY REWRITE(q1);
3: q2 = g.getRemainingSteps(z = QUERY REWRITE(q2);
4: p = p1/p2;
5: for all elementsA of D, do
6: if rewrite(p1, A) = 0 then
7 rewrite(p, A) = 0; reach(p, A) = 0;
8: else
9: newRw = (;
10: for eachv in reach(p1, A) do
11: newRw = newRw U rewrite(psz, v);
12: reach(p, A) = reach(p, A) U reach(pz,v);
13: if newRw # () then
14: rewrite(p, A) = rewrite(p1, A)/newRw;
15: else
16: rewrite(p, A) = 0; reach(p, A) = 0;
17: elseifq is (qual) then
18: if ¢ has two operandsen
19: q1 is the first operandy; = QUERY REWRITE(q1);
20: qo is the second operangy = QUERY REWRITE(q2);
21: p = p1 q.getOperator(pz;
22: for all elementsA of D, do
23: rewrite(p, A) = rewrite(p1, A) g.getOperator(yewrite(pz, A);
24: else

/I ¢ has one operand, i.e. function is eithest, unary minus

/I or empty operator. The latter means thatoes not have

/l operator at all (e.gq is (path))
25: qo is the operandpo = QUERY REWRITE(qo);
26: q.getOperator(p = po g.getOperator();
27: for all elementsA of D,, do
28: rewrite(p, A) =q.getOperator()rewrite(po, A);
29: else ifq is 0 then
30: label = g.getLabel();azisSpeci fier = q.getAxisSpecifier();
31: if axisSpecifieris‘child ’or‘parent ’then
32: p =processChildParerit{bel, axisSpecifier);
33: else ifaxisSpeci fier is ‘descendant-or-self " or *ancestor-or-self ' then
34: p =processDescendAncektbel, axisSpecifier);
35: else ifq is 0[(qual)] then

Il ¢ = nodeTest|filteri]...[filter,]

36: qo = q.getNodeTest();
37: P = qo;
38: for all filters of ¢ do
39: qi is the next filter;p; = QUERY REWRITE(q;);
40: p' = plail;
41: for all elementsA of D,, do
42: if go.getNodeLabel@¢: * then
43: rewrite(p’, A) = rewrite(p, A)[rewrite(q;, qo-getNodeLabel();
44: reach(p’, A) = go.getNodeLabel();
45: else
46: newRw = 0
47: for all elements in reach(qo, A) do
48: newRw = newRw U rewrite(q;, v);
49: if newRw # (@ then
50: rewrite(p’, A) = rewrite(p, A)[newRw];
51: reach(p’, A) = reach(p’, A) U reach(qo, A);
52: p=p
53: else if(q is literal) or (g is number}then
54: pP=gq
55: rewrite(p, A) = p;

56: returnrewrite(p, root);

Figure 15: AlgorithmQUERY REWRITE

and security annotation of each DTD element. The DTD Parser returns a specialbbprepresenting a set
of DTD elementsDTDElement ), their attributesTDAttribute ) and children configuration. The latter is
organized as a containddD{DContainer object) of items DTDItem object). Each item is either a container
or an element nam®{T DNamebject). Moreover, containers can be of three kinds: sequ&i@$equence,

i.e. items delimited by commas), choid®@TDChoice, i.e. items are delimited by vertical bars), and mixed
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Algorithm: processChildParent

Input: node labelabel, node axis specifieizisSpeci fier (as a string)
Output: a queryp locally rewritten in terms o&

1: p = awxisSpecifier:label;

2: for all elementsA of D, do

3 if label = * then
4 for each node that is in relatioraxisSpeci fier with A do
5: o = getTranslationfl,v,isReversetzisSpeci fier));
6: rewrite(p, A) = rewrite(p, A) U o;

7 reach(p, A) = reach(p, A) Uwv
8
9

else
: if label is in relationaxisSpeci fier with A then
10: rewrite(p, A) =getTranslationdl,v,isReversetzisSpeci fier));
11: reach(p, A) = label;
12: else
13: rewrite(p, A) = 0; reach(p, A) = ;
14: returnp;

Figure 16: Algorithm processChildParent

Algorithm: processDescendAncest

Input: node labelabel, node axis specifieizisSpeci fier (as a string)
Output: a queryp locally rewritten in terms o&

1: p = awisSpecifier:label;

2: if axisSpecifier = descendant-or-self then
3: q="11";
4: else

Il azisSpecifier = ancestor-or-self
5: q ="11";
6: for all elementsA of D,, do
7. if label =  then

Il reach(q, A) andpreRewrite(q, A, B) are precomputed

8: for eachB in reach(q, A) do
9: if preRewrite(q, A, B) # 0 then
10: rewrite(p, A) = rewrite(p, A) U preRewrite(q, A, B);
11: reach(p, A) = reach(p, A) U B
12: else
13: if preRewrite(q, A, label) # @ then
14: rewrite(p, A) = rewrite(p, A) U preRewrite(q, A, label);
15: reach(p, A) = reach(p, A) U label
16: returnyp;

Figure 17: Algorithm processDescendAncest

Algorithm: getTranslation
Input: elementsA, B of D,, (as string), node axis specifier directipaverse (as boolean)
Output: ao (A, B) in direct or reverse direction
1. if reverse = true then
Il o(B, A) is an existing PathExpression
Il we wanto ~ (B, A)

2: str ='parent :: B’;
3: o(B, A) = o(B, A).getRemainingSteps();
4: while o(B, A) # 0 do
5: step = o(B, A).getFirstStep();
6: o(B, A) = o(B, A).getRemainingSteps();
7: if o(B, A) # 0 then
8: p = self :: step/p;
9: else
10: p = parent :: step/p;
11: returnp
HIp=0o~1(B,A)
12: else
13: returno (A, B);

Figure 18: Algorithm getTranslation

(DTDMixed, i.e. includesPCDATA. However Wutka’®DTDElement object has two significant drawbacks:
container configuration complicates the process of retrieval of children seDED&lement does not pro-

vides access to parents. To overcome these limitations, we ad@8Blement class two additional fields:
children  andparents representing plain lists of children and parents names respectively. Thus these fields
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represent graph structure of input DTD. Their content is formed at the step of DTD parsing.
¢ View Builder implements algorithmANNOTATE VIEW andBUILD VIEW.

e Query Parser we used the SAXON processor to parse XPath expression into their tree representation. Query
Parser also performs evaluation of the rewritten query over XML source. This functionality is stipulated by
the SAXON XPath query implementation via tk@athEvaluator ~ object which is able to parse the XML
source, to create the intermediate parse tree representation of the XPath query, and finally to evaluate parsed
query over the XML document. In addition Query Parser performs output of answer set to an XML file.

e Query Rewriterimplements algorithnQUERY REWRITE

e DOM Validator. performs checks of the validity of XML document (i.e. XML document should conform to
the rules of DTD schema), parses XML into DOM tree, and produces the materialized view. We used* Xerses
processor for these purposes.

To write the XML file (either materialized view or answer set), we use JAXRumentBuilder 5.

Firstly, Wutka DTD parser is used to parse DTD stored in dtd-file. As it was said above, we modified Wutka DTD
parser so that it could be able to distinguish annotation introduces in Sec. 4. Then partially annotated DTD is extended
to a full annotated one according to the algoritARNOTATE VIEW. Next we applyBuiLD VIEW to produceD,

(schema of accessible data) andunction which is used to materialize view of XML documéry according to the
algorithmMATERIALIZE.

Example 10.1:Fig. 26 shows an initial XML document corresponding to DTD of Fig. 4. Fig. 27 and Fig. 28 represent
XML view for user with login “dkonovalov” and “vromanov” respectively. Both views correspond to DTD view of
Fig. 11 and are extracted by meanssefunction of Fig. 12 during application of algorithMATERIALIZE.

We should note, that each student has an access only to relevant data, i.e. Dmitry Konovalov with login “dkonovalov”
is not able to see the data of Vladimir Romanov having login “vromanov” and vice versa. Moreover, Vladimir Ro-
manov is forbidden to see the content of recommendation letters except of the names of his evaluators, while Dmitry
Konovalov has an access to full content of all recommendation letters. This is because the former student didn’t waive
his right to inspect the content of recommendation letieeser =“false”) while the latter did. Furthermore, no one
student is permitted to see elemeuntseliable  ,reason , letter ,favorable ,unfavorable . )

11 Experimental Results

11.1 Experimental framework

XML documents. To generate a set of XML documents we use XMark benchmark [1]. The benchmark data generator
produces XML documents modelling an auction web-site. Number and type of elements in resulting XML depend on
parameter callethctor. The significant feature of XMark benchmark is the generation of one unique XML document
for one factor value.

We generated 31 XML documents with facigit 0000, ¢ = 100, 130. The size of these XML files varies from 1Mb to
1.2Mb.

Security annotation. XMark benchmark provides the DTD schema auctions.dtd which describes an auction scenario.
It defines 77 elements describing a list of auction items, information about bidders, sellers, buyers, etc.

Shttp://saxon.sourceforge.net/
4http://xml.apache.org/xerces2-j/
Shttp://java.sun.com/xml/jaxp
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<IATTLIST catgraph security_annotation_data
CDATA #FIXED "N">
<IATTLIST regions security_annotation_data
CDATA #FIXED "N">
<IATTLIST categories security_annotation_data
CDATA #FIXED "N">
<IATTLIST person
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath
CDATA #FIXED "self::node()[@id=$login]">
<IATTLIST open_auction
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA
#FIXED "./bidder/personref[@person=$login]">
<IATTLIST closed_auction
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA
#FIXED "./buyer[@person=$login]">
<IATTLIST privacy security_annotation_data
CDATA #FIXED "N">

Figure 19: Buyer policy

<IATTLIST catgraph security_annotation_data
CDATA #FIXED "N">

<IATTLIST regions security_annotation_data
CDATA #FIXED "N">

<IATTLIST categories security_annotation_data
CDATA #FIXED "N">

<IATTLIST creditcard
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA #FIXED
"parent::person[@id=$login]">

<IATTLIST profile
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA #FIXED
"parent::person[@id=$login]">

<IATTLIST buyer
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA #FIXED
"parent::person/seller[@person=$login]">

<IATTLIST open_auction
security_annotation_data CDATA #FIXED "Q"
security_annotation_xpath CDATA #FIXED
"seller[@person=$login]">

<IATTLIST closed_auction
security_annotation_data CDATA #FIXED "N">

<IATTLIST privacy security_annotation_data

CDATA #FIXED "N">

Figure 20: Seller policy

We have defined three user roles:

e buyer can see personal information, open auctions where he is one of the bidders, closed auction where he is a
buyer. Buyer cannot see privacy info, data about regions, category graph and categories. DTD representation of
buyer’s policy is depicted in Fig. 19.

e seller. is permitted to see own profile and credit card info, as well as open auctions where he is a seller. Seller can
also see who buys his items. Seller cannot see privacy info, data about regions, category graph and categories.
Seller’s policy is shown in Fig. 20.

e visitor: is allowed to read information about bidders, sellers and buyers. Personal info and privacy info, as well
as data about regions, category graph and categories are unavailable for visitor. Security annotation for seller is
presented in Fig. 21.
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<IATTLIST catgraph security_annotation_data
CDATA #FIXED "N">
<IATTLIST regions security_annotation_data
CDATA #FIXED "N">
<IATTLIST categories security_annotation_data
CDATA #FIXED "N">
<IATTLIST buyer
security_annotation_data CDATA #FIXED "Y">
<IATTLIST seller
security_annotation_data CDATA #FIXED "Y">
<IATTLIST bidder
security_annotation_data CDATA #FIXED "Y">
<IATTLIST people security_annotation_data
CDATA #FIXED "N">
<IATTLIST open_auction
security_annotation_data CDATA #FIXED "N">
<IATTLIST closed_auction
security_annotation_data CDATA #FIXED "N">
<IATTLIST privacy security_annotation_data
CDATA #FIXED "N">

Figure 21: Visitor policy

Table 6: Query rewriting evaluation
Qi | Q2 | Q3| Qu | Qs
buyer | 125| 11.2| 7.2 | 15.7| 11
seller | 11 | 10.8| 9.5| 14.1| 15.7
visitor | 3.2 0 0 0 1.6

For all three roles we assume that reite is annotated by policy propagation is performed in top down manner,
default security policy is closed.

Queries. We consider the following set of queries to be evaluated over the data set:

Q1 = .//person/name
Q2 = .//open_auction/(bidder|quantity)
Qs = .//open_auction[seller and bidder]
Qs = .//*[name]/parent :: people/person
Qs = .//bidder/parent :: *
Thus all queries contain a step with axis specifiescendant-or-self . Moreover queryy- has union operation,

predicate withA operation is included in quergs, examples of usage efand reverse axis specifigrgrent ) are
shown in querieg), andQs.

11.2 Evaluation

In Table 6 we show the time that is required to rewrite queggs = 1,5 over DTD views built for rolebuyer, seller
andvisitor. Since we rewrote queries for each XML file (we have 31 different XML files) and for each login (we have
10 logins), each cell of Table 6 presents time (in milliseconds) as arithmetic mean of 310 relevant values.

How do we validate the effectiveness of the approach? The simplest approach is simply to materialize the view and
then run the user’s query on it. We call this approachrtaige approach This is what could be done following the
previous approaches such as Bertino et al. or Damiani et al. Then a second question come: how do we evaluate the
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Figure 22: Comparison of size of initial and materialized XML files for visitor

running time: do we materialize the view for each and every query or we just materialize it once and amortize the
materialized time over many queries.

However, trying to decrease processing time by storing materialized view cannot work in this setting. Recall that
this is the materialized view fasneuser and different users may have different views. On the XMark benchmark,
since policy for buyer and seller include conditions on user login, we shmakerve and select views for all logins

and all roles For example, the smallest XML document that we generated by XMark has approximately 250 people
identifiers. Each of these people may want to see the data stored in that XML.

In Fig. 22 we show the comparison of size of the initial XML document and its materialized view. The policy of visitor
role does not contain any login-based conditions. Therefore views are the same for all logins. However, the size of
materialized view is around 100Kb provided the initial XML file is 1Mb size. Views for seller are even bigger. And if
we want to store the views for all sellers we should reserve 25Mb of space only for one role. Moreover real-life data
may require much more space. Finally, maintaining the integrity of fast changing auction data in 250 views is hardly
an effective solution.

At the other side of the spectrum we can apply the query rewriting algorithm to the unmaterialized view. We call this
approach thedvanced approachin the remaining of the paper we compare the naive and the advanced approach
on each individual query, as we have already ruled out as infeasible the notion of amortizing the materialization over
many queries.

Next we compare two strategies of query answering: naive and advanced. For each XML document we ran evaluation
of each query from the viewpoint of 10 usetsgin = person;,i = 1,10). Moreover, each user tries to login under
different roles. One dimension of our evaluation is query evaluation time depending on the size of initial XML file.

In advanced approach time depends on the following steps:

1. DTD parsing, DTD annotation and building of DTD vief#,;
2. query parsing;
3. query rewriting ;

4. evaluation of query ovenitial XML source.
In naive approach time measurement is conditioned by the following steps:

1. DTD parsing, DTD annotation and building of DTD vief#,;

2. building of sanitized XML source (view materialization);
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Figure 23: Query evaluation for buyer role
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Figure 24: Query evaluation for seller role
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Figure 25: Query evaluation for visitor role

3. query parsing

4. evaluation of query ovesanitized XML source.

We emphasized with bold font those steps that are specific for a particular approach.

Figures 23, 24 and 25 show the dependency of query evaluation time on the size of the initial XML document for buyer,
seller and visitor respectively. Horizontal axis represents XML size in bytes, vertical axis shows query evaluation time

in milliseconds. In all three pictures we can see two main trends: upper trend (diamonds) is produced by the naive
approach, lower one (triangles) stands for advanced approach. It is easy to see that naive approach answers user query
much slower than the advanced one.
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Concluding this section, we should mention that there is no implementation available for either Stoika and Farkas or
Fan et al.

12 Related Work and Conclusions

A number of security models have been proposed for XML (see [13] for a recent survey). Specifying security
constraints with XPath on top of document DTDs was discussed in [9]. The semantics of access control to a user is
a specific view of the document determined by the XPath access-control rules. A view derivation algorithm is based
on tree labelling. Issues like granularity of access, access-control inheritance, overriding, and conflict resolution are
studied in [4, 9].

A different approach is explored in [7]. In a nutshell, access annotations are explicitly included in the actual ele-
ment nodes in XML, whereas DTD nodes specify “coarse” conditions on the existence of security specifications in
corresponding XML nodes. Only elements with accessible annotations appear in the result of a query.

Stoica and Farkas [22] proposed to produce single-level views of XML when conforming DTD is annotated by labels of
different confidentiality level. The key idea lies in analyzing semantic correlation between element types, modification

of initial structure of DTD and using cover stories. Altered DTD then undergoes “filtering” when only element types

of the confidentiality lever no higher that the requester’'s one are extracted. However, the proposal requires expert’s
analysis of semantic meaning of production rules, and this can be unacceptable if database contains a large amount of
schemas which are changed occasionally.

This paper elaborates on certain issues left open in [12]. In particular, we studied access control and security specifi-
cations defined over general DTDs in terms of regular expressions rather than normalized DTDs of [12]. Furthermore,
we developed a new algorithm for deriving a security view definition from more intuitive access control specification
(w.r.t. a non-recursive DTD) without introducing dummy element types, and thus preventing inference of sensitive
information from the XML structure revealed by dummies.

In this paper, we have also studied the performance of answering queries on an XML database, subject to access
control annotations applied on the original DTD. We show that the query rewriting approach compared to the naive
one is more efficient in sense of time and space.

Time effectiveness takes place because we are delivered from view materialization which is a very time consuming
operation. In our experimental benchmark the query rewriting strategy issues answer for user query approximately one
hundred times faster than the naive strategy. Another considered point is the space preserving property of advanced
method: naive approach in our experimental framework generates views that require 2.5 times more space than the
initial data set. Moreover, the number of views can be extremely large that may cause problems with the maintenance
of data integrity.

Several extensions to the security model are targeted for future work. First, we plan to extend the definitions of
security views and authorization specifications by supporting more complex XML Schema [11] instead of DTDs.
Second, we are also studying extensions of our algorithm for deriving security-view definitions with respect to re-
cursive DTDs/schemas. Third, we intend to evaluate the effect of different security policies, whether the notion of
security view can be adapted to all, or some, of these security policies, and the design of efficient algorithms for those
cases where this is possible. Finally, our next step toward enforcing inference control will be to investigate reasoning
techniques in the presence of integrity constraints and ID/IDREF attributes.

Acknowledgments. This project has been patrtially supported by the MIUR-FIBR project ASTRO and the MIUR-
COFIN “Web-based management and representation of spatial and geographical data”.
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<?xml version="1.0'?> <IDOCTYPE applications SYSTEM ’input.dtd’>
<applications>
<application>
<student-data id="dkonovalov’>
<department>CS</department><degree>PhD</degree>
<name>Dmitry Konovalov</name><waiver>true</waiver></student-data>
<recommendation-letter>
<evaluator>
<title>Full Professor</title>
<institution>University of Suncity</institution>
<name>Albert Wasserman</name></evaluator>
<letter><unfavorable>
<rating>
<MS>average</MS><PhD>not recommended</PhD><English>below average</English>
</rating>
<free-text>
<TXT>link to txt-file goes here</TXT></free-text>
</unfavorable></letter>
</recommendation-letter>
<unreliable>
<recommendation-letter>
<evaluator>
<title>Researcher</title>
<institution>Magnificent Labs</institution>
<name>Maria Shaker</name></evaluator>
<letter><favorable>
<rating>
<MS>outstanding</MS>
<PhD>highly recommended</PhD>
<English>outstanding</English></rating>
<free-text>
<PDF>link to pdf-file goes here</PDF></free-text>
</favorable></letter>
</recommendation-letter>
<reason>The recommender does not exist.</reason>
</unreliable>
</application>

<application>
<student-data id="vromanov’>
<department>CS</department><degree>PhD</degree>
<name>Vladimir Romanov</name><waiver>false</waiver></student-data>
<unreliable>
<recommendation-letter>
<evaluator>
<title>Researcher</title>
<institution>Magnificent Labs</institution>
<name>Maria Shaker</name></evaluator>
<letter><favorable>
<rating>
<MS>outstanding</MS>
<PhD>highly recommended</PhD>
<English>outstanding</English></rating>
<free-text>
<PDF>link to pdf-file goes here</PDF></free-text>
</favorable></letter>
</recommendation-letter>
<reason>The recommender does not exist.</reason>
</unreliable>
</application>
</applications>

Figure 26: Initial XML

38



<applications>
<application>
<student-data id="dkonovalov">
<department>CS</department>
<degree>PhD</degree>
<name>Dmitry Konovalov</name>
<waiver>true</waiver>
</student-data>
<recommendation-letter>
<evaluator>
<title>Full Professor</title>
<institution>University of Suncity</institution>
<name>Albert Wasserman</name>
</evaluator>
<rating>
<MS>average</MS>
<PhD>not recommended</PhD>
<English>below average</English>
</rating>
<free-text>
<TXT>link to txt-file goes here</TXT>
<[free-text>
</recommendation-letter>
<recommendation-letter>
<evaluator>
<title>Researcher</title>
<institution>Magnificent Labs</institution>
<name>Maria Shaker</name>
</evaluator>
<rating>
<MS>outstanding</MS>
<PhD>highly recommended</PhD>
<English>outstanding</English>
</rating>
<free-text>
<PDF>link to pdf-file goes here</PDF>
<[free-text>
</recommendation-letter>
</application>
</applications>

Figure 27: XML view for student Dmitry Konovalov

<applications>
<application>
<student-data id="vromanov">
<department>CS</department>
<degree>PhD</degree>
<name>Vladimir Romanov</name>
<waiver>false</waiver>
</student-data>
</application>
</applications>

Figure 28: XML view for student Vladimir Romanov
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