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Chapter 1

Introduction

Machine Translation (MT) is the use of computer to automate the process of
translating written or spoken texts from one language to another.
The problem of automatically producing high-quality translations of arbitrary
texts is nowadays however hardly far from being solved. Nevertheless, currently
available technology can be deployed to tackle less ambitious but still useful
translation tasks. In particular, MT can be employed in information-acquisition
tasks, for which a rough translation is adequate, in tasks where a draft trans-

lation can be improved by human post-editing, and in limited-domain tasks in
which fully automatic high-quality translation is achievable. In general, MT
becomes more difficult if the input is somehow corrupted. This is the case, for
instance, when the input is supplied by a speech recognizer.
This thesis will focus on three specific translation tasks of increasing complex-
ity, which will be introduced in Sections 1.1-1.3: query translation, text trans-

lation and speech translation.

1.1 Query Translation

Nowadays, with the enormous amount of multilingual information available on
the World Wide Web, many Natural Language Processing applications, like In-
formation Retrieval, Question Answering, and Text Classification, have began
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1.1. QUERY TRANSLATION

to face the problem of crossing over the language barrier. For instance, Infor-
mation Retrieval might consider searching for documents in languages differ-
ent from that used to formulate the query. Similarly, in Question Answering
one could be interested in finding the right answer to a given question, no mat-
ter about its language. Or, in Text Classification, one could need to cluster or
classify documents of a multilingual collection. Recent literature shows that
by exploiting MT techniques providing just rough translations the performance
loss between monolingual and cross-lingual tasks is small. In this work, we con-
centrated on MT techniques suited to Cross-Language Information Retrieval.

1.1.1 Cross-Language Information Retrieval approaches

Cross-Language Information Retrieval (CLIR) can be approached by decou-
pling translation and retrieval tasks, and using existing MT and IR systems as
“black boxes”. But, as MT systems are far from being perfect, incorrect trans-
lations with meaning different from the original might negatively affect IR per-
formance. As reported in [42], IR effectiveness can be improved when multiple
alternative translations are used, but at the moment few MT systems provide
them.
Moreover, many MT systems tentatively provide grammatically well-formed
translations, which cannot be fully exploited by current IR systems. These are
mainly based on the so-called bag-of-words models and just exploit keywords,
or content words, of the texts they are working on. In fact, functional words,
like articles, prepositions, modal verbs, pronouns are simply disregarded be-
cause they do not discriminate between documents, given that they are almost
homogeneously spread within all texts. Hence, essential requirement of MT is
the preservation of the meaning of the keywords across languages, rather than
the production of well-formed translations.
An integrated approach between MT and IR is thus preferable, which possibly
takes advantage of multiple translations of keywords. Alternative translations

2



CHAPTER 1. INTRODUCTION

can be easily obtained from bilingual dictionaries [31, 2, 64] and parallel cor-
pora [54, 69]. Recent work on CLIR showed that simple statistical models
for dictionary based translation outperform sophisticated MT models (e.g. Sys-
tran). Moreover, experiments reported in [27, 89] also suggest that bilingual
dictionaries have to be complemented by a statistical language model to achieve
good performance.

As full document translation in large corpora is quite costly and difficult, query

translation, i.e. the translation of the query keywords, has been the major focus
of research in the area of CLIR [2, 27, 28, 89]. In this work we follow the same
strategy.

1.1.2 MT issues in Query Translation

In [30], main issues related to query translation have been identified. Whatever
resource is employed in query translation, it has to provide good coverage of the
source and target vocabularies. Names of entities, like people and locations, are
frequently used in queries for news article and their translation is often not triv-
ial; many geographical names have different spelling (Milano, Milan, Mailand)
or even different roots (Deutschland, Germany, Allemagne) in different lan-
guages. Often acronyms of organizations are also different (UN, ONU, UNO).
If CLIR is applied to languages with different alphabets, like Cyrillic, Arabic,
or Chinese, we have to tackle out the problem of different transliterations of
named entities (Jeltsin, Eltsine, Yeltsin, Jelzin).

The sense disambiguation of translation alternatives is a another major issue.
While some translations can be appropriate for a query because they mostly
preserve the original meaning, others should be discarded because they are
completely wrong. Moreover, as term weighting is crucial for IR, acceptable
translations should be weighted and ranked in accordance with their closeness
to the original meaning of the query.

3



1.2. TEXT TRANSLATION

1.2 Text Translation

Undoubtedly, Text Translation1, i.e. the translation of written texts, has been
the main battlefield of MT research since the pioneer attempts [86]. Good
overviews of the history and approaches to MT can be found in [35, 57].

1.2.1 MT issues in Text Translation

Although its long history, MT research has not yet achieved a level of quality to
permit its widespread application. This apparent unsuccess is mainly due im-
portant differences existing between many human languages. Texts can be writ-
ten with characters (Roman, Cyrillic, Arab alphabets) or ideograms (Japanese,
Chinese); words can be composed by one (Vietnamese, Cantonese) or many
morphemes (Eskimo); morphemes can be agglutinated (Turkish) or fused (Rus-
sian); verb, subject and object can be ordered as SVO (English, French), as SOV
(Japaneses, Hindi), as VSO (Irish, Hebrew); constraints are given (English, Ital-
ian) or not (Mandarin) for gender and number of articles, nouns and pronouns;
verbs are declined (Italian) or not (Mandarin) with respect to tense and mood;
compound names are widely (German) or poorly (Italian) used.

Besides grammatical differences, other issues relate nouns and their meaning.
As several words have multiple meanings and usually more translations (“wall”
into “Mauer” or “Wand”), sense disambiguation is necessary. Furthermore, sin-
gle words can be translated into several words (“informatica” into “computer
science”) and viceversa (“per favore” into “please”). Sometimes, lexical gaps
can be so strong that a concept expressed by a single word in a language can
not be translated unless using a long sentence (Japanese “oyakoko” means “we
make do with filial piety”).

Finally, an hypothetical perfect MT system should also consider the text genre;
e.g. it would not be acceptable to translate a novel with scientific terms.

1With a little abuse of terminology, we will use the term MT to refer to Text Translation throughout the thesis.
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CHAPTER 1. INTRODUCTION

All the above problems, and many philosophical issues, prove the intrinsic com-
plexity of the MT task. However, by reducing expectations, MT systems can ef-
fectively be used for translating under controlled conditions, like, for instance,
in limited domains, where word ambiguity is low and text genre is fixed.

1.2.2 Approaches to Machine Translation

Historically, most approaches to MT fall into one of the following three types:
interlingua, transfer, and direct.
The interlingua approach is based on the assumption that the content of a task
oriented text can be well approximated and automatically mapped into a rela-
tively simple artificial canonical language, called interlingua2. Hence, content
based translation from the interlingua to any language can be carried out by de-
veloping a suitable natural language generation modules. Main advantage of the
interlingua approach is the decoupling of the translation into apparently simpler
problems: the analysis of the source input for representing its meaning in the
interlingua, and the synthesis of the output from the interlingua. Moreover, the
same interlingua can be used as a pivot for many languages, reducing the effort
of developing MT systems for other language pairs. The main drawback is the
difficulty to develop an interlingua which is sufficiently complete and consis-
tent, in order to cover all possible expressions in the domain, and which should
be, at the same time, easy to generate and interpret automatically. For this rea-
son, at the moment, the interlingua approach has been applied in very limited
domains. Last but not least is the inevitable loss of information induced by the
interlingua representation.
The transfer approach performs translation at the level of grammatical struc-
tures, by applying contrastive knowledge, i.e. knowledge about differences be-
tween languages. This approach tries to alter the syntactic structure of the input
to conform it to the rules of the target language. In particular, the transfer ap-

2Defining an interlingua means also create an ontology of the task domain.
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1.2. TEXT TRANSLATION

proach involves three phases: analysis, transfer, and generation. The input in
the source language is first syntactically parsed into an abstract internal structure
(usually a parse tree); thereafter, this structure is transferred into a correspond-
ing structure in the target language; finally, the translation is generated. The
lexical transfer is usually performed during the syntactic transfer for functional
words and during the generation step for content words. The level of transfer
can vary from purely syntactic deep structure markers to syntactic-semantic an-
notated trees. Transfer approach involves bilingual resources; hence, a different
MT system should be tailored for each language pair.

On the opposite side of the interlingua strategy is the direct approach. It is
based on the philosophy that MT system should perform as little deep analy-
sis as possible. Words and syntax of the source input has to be analyzed only
the strictly necessary to resolve ambiguities, to identify the appropriate target
expressions, and to find the word order of the output. A direct MT system is
typically composed of several modules, each focusing on a specific problem:
morphological analysis, lexical transfer of content words, processing of func-
tional words, identification and transfer of idioms, phrases, and compounds,
syntactic and morphological processing of the target text, and word reordering.
MT systems differ in the order and use of such modules. It is worth remarking
that a direct MT system is designed for a specific language pair. A feature of the
direct approach is that each problem is solved in one stage, including analysis,
transfer, and generation aspects. Solving problems one at a time may be more
tractable. Direct MT systems tend to be conservative, in the sense they only
reorder words when required by obvious ungrammaticality in the target out-
put. Perhaps the key characteristic of direct models is that they work without
complex structures and representations, as the two previous approaches, which
indeed require a deep knowledge about languages.

6



CHAPTER 1. INTRODUCTION

1.2.3 Rule-based versus empirical methods

The previous classification answers the questions of what representation to use
and what steps to perform to translate. An orthogonal classification relates the
methods used in the development of language processing. We distinguish be-
tween rule-based and empirical methods.
In the rule-based systems, experts specify a set of rules aiming at modeling the
translation process. This approach is very expensive because it requires human
work, to create well-defined rules which should cover all linguistic aspects of a
language, exceptions included.
The empirical, or data-driven, approach instead acquire translation knowledge
automatically from analysis of a large sample translations. The main advantage
of such approach is that an MT system can be built very quickly for new lan-
guage pairs and new domains, whenever a suitable amount of data is available.
However, the amount of data needed to develop a system depends on the com-
plexity of the domain. Empirical methods usually apply to transfer or direct MT
approaches. Statistical MT systems instead exploits translation examples to de-
fine a statistical MT (SMT) model. Most SMT models are based on the source
channel paradigm or Maximum Entropy framework. Example-based systems
provide translation of a new sentence by analyzing previously seen translation
example [76, 13].

1.3 Spoken Language Translation

The translation task becomes more difficult when the input to be processed is
spoken language. In fact, an additional level of complexity is given by the ne-
cessity of correctly recognizing the content of the speech signal. Unfortunately,
Automatic Speech Recognition (ASR) systems are far from being perfect; thus,
the recognition step usually adds noise in the translation process. Moreover,
spoken language is usually not syntactically well-formed and might contain

7
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spontaneous speech phenomena, such as hesitations and repetitions. Transcrip-
tion errors can corrupt either syntax or meaning of the utterance. While the
former might be recovered during translation, the latter is hardly more difficult
to handle. At the moment, SLT systems focus on limited domains, like air travel
queries, appointment scheduling, hotel reservations, etc.

1.3.1 SLT approaches

Spoken Language Translation (SLT) systems feature an ASR module and a MT
module. SLT systems differ in the level of integration between the two mod-
ules and the technology used for developing them. First approaches to SLT task
simply concatenate the two module: the best transcription provided by the ASR
system is fed to an MT system which produces the final translation. This cas-
cade strategy does not add any further difficulty, but does not allow recovering
from speech recognition errors.
More integration can be achieved either by supplying alternative transcription
hypotheses to the MT system, or by developing a system which directly trans-
lates the speech utterance, without transcribing it before. In the former ap-
proach, the MT system usually process a a set of most probable transcriptions
hypotheses provided by the ASR system. Recently, the exploitation of a word

graph of hypotheses generated by the ASR systems has been considered.
Finite State Transducers are also used, because they provide a suitable frame-
work to integrate ASR and MT decoders [17]. Unfortunately, a drawback of
this approach is that it is hardly scalable to large domains.

8



Chapter 2

Scientific goals

This thesis aims at extending the state-of-the-art in three MT tasks namely query

translation, text translation, and spoken language translation. As statistical ap-
proach competes very well, or even ouperforms, rule-based methods if suitable
amount of data are available, and does not require any human expertise for de-
veloping MT systems, we focus on the this framework during our PhD research.
Even if the statistical MT systems can apply to any language pair, in this the-
sis they are used to translate between Italian and English and from Chinese to
English.� Main approaches to Information Retrieval feature the well-known and very

performing Okapi formula. However, applying this method to Cross-Lan-
guage Information Retrieval is not straightforward. Instead, recent ap-
proaches based on statistical model provide a more suitable framework
for including translation into IR. We propose an original statistical model,
which tightly combines a model for translating keywords of the queries
and a language model to score relevance between queries and documents.
Interestingly, the query-translation model exploits co-occurrences of terms
within the target collection and a bilingual dictionary.� Recent work in statistical MT has shown that translation performance can
be boosted by exploiting phrase-based translation models. Solutions have
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been proposed which depart from the popular standard word-based mod-
els. We propose a new statistical translation model that extends in an easy
way the hystorically leading Model 4 proposed by [12]. Moreover, by
looking at the model as a log-linear model, a Minimum Error Training
procedure can be applied to optimize system performance.

Furthermore, we implement a search algorithm based on Dynamic Pro-
gramming, which directly derives from the generative process of the model.
The algorithm, which is sinchronous with the output string, applies both to
word- and phrase-based models.

Literature on Automatic Speech Recognition showed that rescoring mul-
tiple hypotheses improve overall performance. We think that this is true
also for Machine Transaltion. On this way, we modify our search algo-
rithm to output not just the best translation, but a word graph containing
all hypotheses considered during the decoding. The availability of multi-
ple hypotheses would permit to apply a rescoring strategy which exploits
new additional knowledge difficult to embed into the original model.� Spoken Language Translation is a very recent research field; hence, any ef-
fort to develop new methods and models can improve the state-of-the-art.
Use of multiple transcription hypotheses has been shown to be effective in
recovering transcription errors. At the moment, most approaches consider
the ASR system and the MT system as two separate modules, and simply
fed up the MT decoder with a list of the N-best transcriptions. The disad-
vantage of these methods is that we have to run the MT decoder N times.
Our idea is translating all alternatives in one time. We propose a more inte-
grated approach to combine acoustic features and phrase-based translation
model. A statistical translation model is defined, which apply directly to
the word-graph generated by the ASR system, slightly modified for com-
putational reasons. The search algorithm developed for text translation can
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be used for translating the modified word graphs, apart from some minor
changes.

Our main expectation is to significantly reduce computational effort in
terms of both decoding time and memory consumption and, obviously,
achieve comparable performance.

11





Chapter 3

Query Translation

Our first approach to MT focused on the keyword translation, i.e. the translation
of content words of a text. Keyword translation is usually not a research field
per se, but rather it is studied to cross over the language barrier in other NLP
applications, like Information Retrieval, Text Classification, and Question An-
swering. These applications achieve their goal mainly exploiting content words
of documents or queries; when more languages are involved, a translation mod-
ule has to provide an effective way to correctly transfer the meaning of such
words from one language to another.

We only concentrated on Cross-Language Information Retrieval, and, in par-
ticular, on the query translation. In fact, following a popular trend, we apply
keyword translation to queries only, because a full document translation in large
corpus is quite costly.

Information Retrieval (IR) is the task of finding documents, inside a known
collection, which are relevant to a given topic or query. If topics and documents
are written in the same language, e.g. English, we have so called monolingual
IR, otherwise Cross-Language IR (CLIR) occurs. In particular, if only two
languages are involved, e.g. French for queries and English for documents,
IR is called bilingual; if the collection contains documents in more than one
language, e.g. English, French and Italian, IR is instead called multilingual. As
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habit in the IR literature and with no risk of confusion, henceforth, the term
CLIR will be used only to mean bilingual IR.

This Chapter presents the IR system developed at ITC-irst to tackle monolin-
gual and bilingual IR. After a brief overview of main approaches to CLIR, given
in Section 3.1, the monolingual IR system is presented in Section 3.2. The sys-
tem features three different models for matching topics against documents: a
statistical language model, an Okapi model, and a combination of the two ap-
proaches. Section 3.3 presents the statistical query-translation model used for
CLIR. Training data for the translation model consists in a bilingual dictionary
and the target document collection. Section 3.5 introduces the bilingual IR sys-
tem featuring a statistical framework which couples two basic components: a
query translation model, based on hidden Markov models [68], and a retrieval
model which works as in the monolingual case. The two models can be either
put in cascade or tightly coupled. The latter case results in a probability score
computed by integrating over a set of possible translations of the query. Perfor-
mance of the system is discussed in Section 3.7 for two particular tasks: Italian
monolingual retrieval and the Italian-English biolingual retrieval at the Cross-
Language Evaluation Forum (CLEF) from 2000-2004. Section 7.1 concludes
this Chapter with a discussion about interesting issues which emerged from our
research in this area..

3.1 Previous work

For what concerns IR, two main approaches can be identified in the literature.
The former ranks documents by weighting every term in the query according
to its relevance within each document and the whole collection. Okapi [70] is
the name of a retrieval system project that developed a family of such scoring
functions.

Alternatively, matching between query and documents is computed by means
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of probability distributions estimated on the target collection. Different statis-
tical language modeling techniques were proposed [49, 53] to combine relative
frequencies of each document with those of the whole collection.

Recent work on CLIR has shown that simple statistical models for dictionary-
based translation outperform more sophisticated machine translation models
(e.g. Systran). Many research groups proposed statistical translation models
based on available dictionaries [43, 23] or automatically trained from parallel
corpora [54]. A back-off translation model was proposed in [69], which com-
bines evidence from dictionary-based and corpus-based statistics. In dictionary-
based approaches, alternative translations are used for query expansion [34, 72],
however no context is considered for the sake of disambiguation.

Improvement were proposed by considering word co-occurrence statistics within
the target collection. In [27], translations of query terms are selected which
co-occur most often with all other alternatives in the target documents. This
strategy is improved by adding decaying factors which reduce the effect of co-
occurrences as term distance increases, following the intuition that closer terms
are more strongly correlated [28].

Probabilistic CLIR systems have been developed, which use generative models
to estimate the probability that a target document is relevant for a given query.
Systems based on the probabilistic framework mainly differ in the decomposi-
tion of the basic distribution and on the dependency assumptions among query
terms. In particular, [31, 89] assume independence between the query terms,
and do not use Markovian assumptions in the translation process.

Standard statistical machine translation models presented in [12] were applied
to IR by [3].
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q, f , e generic term, term in French, term in English
q, f, e generic query, query in French, query in English
D , d collection of documents, generic document
V , V

�
d � number of different terms in D , and in document d

N, N
�
d � number of term occurrences in D , and in document d

N
�
q � , N

�
d � q � , N

�
q � q � frequency of term q in D , in document d, and in query q

Nq number of documents in D which contain term q
l̄ average length of documents in D

Table 3.1: List of often used symbols.

3.2 Monolingual IR

Formally, monolingual IR can be approached as follows: given a query q �
q1 ��������� qn, rank all documents d in a collection D according to a probability or
a scoring function S 	 q � d 
 , which measures the relevance of d with respect to q.

In the following, three query-document matching criteria are introduced. The
first is based on a statistical language model (LM), the second is derived from
the Okapi framework, and the last is a combination of the first two. Main nota-
tion used in the following is summarized in Table 3.1.

3.2.1 Language model

The relevance of a document d with respect to a query q can be expressed
through a joint probability, which can be decomposed as follows:

Pr 	 q � d 
�� Pr 	 q � d 
 Pr 	 d 
 (3.1)

where Pr 	 q � d 
 represents the likelihood of q given d, and Pr 	 d 
 represents the
a-priori probability of d. By assuming no a-priori knowledge about the doc-
uments and an order-free multinomial model for the likelihood, the following
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probability score can be derived:

Pr 	 q � d 
 ∝
n

∏
i 
 1

Pr 	 qi � d 
 (3.2)

By taking the logarithm, we can define the following scoring function:

lm 	 q � d 
�� ∑
q � q

N 	 q � q 
 log Pr 	 q � d 
 (3.3)

where the sum is over the set of terms in the query q.

The probability Pr 	 q � d 
 that a term q is generated by d can be estimated by
applying statistical language modeling techniques [25]. Previous work [49, 53]
proposed to interpolate relative frequencies of each document with those of the
whole collection, with interpolation weights estimated by maximum likelihood
on the documents. Here, the same interpolation scheme is applied but weights
are estimated according to the smoothing method by [87]. In particular, word
frequencies of a document are smoothed linearly and the amount of probability
assigned to never observed terms is made proportional to the number of different
words contained in the document. Hence, the following probability estimate
results:

Pr 	 q � d 
�� N 	 d � q 

N 	 d 
�� V 	 d 
 � V 	 d 


N 	 d 
�� V 	 d 
 Pr 	 q 
 (3.4)

where Pr 	 q 
 , the word probability over the collection, is estimated by interpo-
lating the smoothed relative frequency with the uniform distribution over the
collection’s vocabulary V :

Pr 	 q 
�� N 	 q 

N � V

� V
N � V

1
V � (3.5)

3.2.2 Okapi model

Okapi [70] is the name of a retrieval system project that developed a family of
scoring functions. According to the Okapi framework, every term in the query

17



3.2. MONOLINGUAL IR

is weighted according to its relevance within a document and within the whole
collection. In our IR system the following function was used:

okapi 	 q � d 
�� ∑
q � q

N 	 q � q 
 Wd 	 q 
 logWD 	 q 
 (3.6)

where:
Wd 	 q 
�� N 	 d � q 
�	 k1 � 1 


k1 	 1 � b 
�� k1bN � d �
l̄ � N 	 d � q 
 (3.7)

weighs the relevance of the term q inside the document d, and:

WD 	 q 
�� N � Nq � 0 � 5
Nq � 0 � 5 (3.8)

is the term inverted document frequency, which weighs the relevance of term q

inside the whole collection D .
Parameter values k1 � 1 � 5 and b � 0 � 4 were empirically estimated [7] on some
development data. It is worth noticing that our scoring function corresponds to
the well known BM25(k1,k2,k3,b) model [70], with the setting k2 � 0, k3 � ∞,
k1 � 1 � 5 and b � 0 � 4.
The Okapi and the language model scoring functions present some analogy. In
particular, Equation (3.6) can be put in a probabilistic form which maintains the
original ranking, thanks to the monotonicity of the exponential function. Hence,
a joint probability distribution can be defined which, disregarding a normaliza-
tion constant factor, is:

Pr 	 q � d 
 ∝
n

∏
i 
 1

WD 	 qi 
 Wd � qi � (3.9)

Henceforth, query-document relevance models will be indicated by the joint
probability Pr 	 q � d 
 , regardless of the used model, unless differently specified.

3.2.3 Combined method

By looking at the Italian monolingual runs of our first participation in CLEF
2000 [7], it emerged that the LM and the Okapi model have quite different be-
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haviors. This suggested that if the two methods rank documents independently,
more information about the relevant documents could be gained by integrating
the scores of the two methods.
In order to compare the rankings of two models, the Spearman’s rank correla-
tion [50] was applied, which confirmed some degree of independence between
the two information retrieval models. Hence, a combination of the two mod-
els [7] was implemented by just taking the sum of scoring functions, namely
lm 	 q � d 
 and okapi 	 q � d 
 . Actually, in order to adjust scale differences, single
scores were re-scaled in the range � 0 � 1 � before summation. Normalization was
computed over union of the 300 top ranking documents of each method. It can
be shown that summation of the normalized scores corresponds to a multiplica-
tion of probabilities, according to the above defined joint probabilities.

3.3 Query translation model

Query translation for CLIR is based on a hidden Markov model (HMM) [68], in
which the observable part is the query f in the source language, e.g. French, and
the hidden part is a corresponding query e in the target language, e.g. English.
The model only assumes that the two queries have the same length. The joint
probability of a pair 	 f � e 
 is computed as follows:

Pr 	 f � f1 ��������� fn � e � e1 ��������� en 
�� n

∏
k 
 1

Pr 	 fk � ek 
 Pr 	 ek � ek � 1 
 (3.10)

Equation (3.10) puts in evidence two different conditional probabilities: the
term translation probabilities p 	 f � e 
 and the target LM probabilities p 	 e � e ��
 .
Probabilities Pr 	 f � e 
 are estimated from a translation dictionary as follows:

Pr 	 f � e 
�� δ 	 f � e 

∑
f � δ 	 f � � e 
 (3.11)

where δ 	 f � e 
 � 1 if the English term e is one of the translations of the French
term f and δ 	 f � e 
�� 0 otherwise.
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Probabilities Pr 	 e � e �!
 are estimated on the target document collection, through
the following bigram LM, that tries to compensate for different word orderings
induced by the source and target languages:

Pr 	 e � e � 
�� Pr 	 e � e � 

∑e � � Pr 	 e � e �"� 
 (3.12)

where Pr 	 e � e � 
 is the probability of e co-occurring with e � , regardless of the
order, within a text window of fixed size. Smoothing of the probability is per-
formed through absolute discounting and interpolation [25] as follows:

Pr 	 e � e � 
�� max
#

C 	 e � e � 
$� β
N � 0 %&� βPr 	 e 
 Pr 	 e � 
 (3.13)

C 	 e � e � 
 is the number of co-occurrences appearing in the corpus, Pr 	 e 
 is esti-
mated according to Equation (3.5), and the absolute discounting term β is equal
to the estimate proposed in [52]:

β � n1

n1 � 2n2
(3.14)

with nk representing the number of term pairs occurring exactly k times in the
corpus.

3.4 Search algorithm

Generation of N-best translations with the proposed model can be efficiently
performed with a simplified version of the tree-trellis based search algorithm
by [74]. Briefly, the algorithm is based on two steps: a Viterbi search [68]
proceeding forward along the source query, and an A ' search algorithm [56]
proceeding backwards.

The Viterbi search algorithm (Table 3.4), computes the optimal translation of
an input query f � f1 ��������� fn. The algorithm uses dynamic programming to
compute, for each position t along f and translation e of ft , the best translation
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up to t and ending in e. This is carried out by finding the optimal continuation
of all (optimal) translations computed at time t � 1 (step 6). At each stage t,
a backward link to the best incoming translation at time t � 1 is set (step 7).
Finally, the optimal complete translation is obtained by following the backward
chain starting from to the best translation at time n. It is easy to see that the
complexity of this algorithm is, in the average case, O 	 nĒ 2 
 , assuming Ē is the
average number of translations for a term.

1. Input f ( f1 �*)*)*)+� fn

2. Initialize for all e , E
�
f1 � Q - 1 � e .�( P - f1 / e . P - e .

3. Initialize for all e , E
�
f1 � B - 1 � e .0( ε

4. For t ( 1 �1)*)*)2� n 3 1
5. for all e , E

�
ft 4 1 �

6. Q - t 5 1 � e .6( P - ft 4 1 / e . maxe 798 E : ft ; Q - t � e <=. P - e / e <".
7. B - t 5 1 � e .6( argmaxe 7 8 E : ft ; Q - t � e < . P - e / e < .
8. Backtrack solution e > :
9. e >n ( argmaxe 8 E : fn ; Q - n � e .
10. e >t ( B - e >t 4 1 . for t ( n 3 1 � n 3 2 �*)*)*)2� 1
Table 3.2: Viterbi search algorithm for query translation.

After a call to the Viterbi search, an A ' search (Table 3.4) is performed backward
along the source query f. At each iteration (step 9) it pops and examines the best
partial theory (translation) from the stack OpenSet. If the translation covers the
whole input query, then it is added to the N-best list (steps 10-12). Otherwise,
all possible one-word expansions of it are computed (step 15). Scores are as-
signed to each expansion by combining the score g, computed by the translation
model from the end to the current position (step 16), and the prediction score
h computed by the Viterbi search which corresponds to the optimal translation
from the start to the current position (step 17). Each theory expansion is then
inserted into OpenSet so that it results ordered according to g ? h (step 18).

The complexity of the A ' search algorithm is determined by the number of
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1. Perform Viterbi algorithm steps 1-7
2. Initialize OpenSet=[],BestList=[], NB=0
3. for all e , E

�
fn �

4. path= - e .
5. h=Q - n � e .
6. g=1
7. insert (path,n,g,h) in OpenSet
8. while OpenSet is not empty and NB @ N
9.

� - en �*)*)*)2� et .A� t � h � g �B( pop OpenSet
10. if t ( 1
11. append - et �*)*)*)2� et . to BestList
12. NB ( NB 5 1
13. else
14. for all e , E

�
ft C 1 �

15. path= - en �*)*)1)1� et � e .
16. g’=g D P - et / e . P - ft C 1 / e .E�
17. h=Q - t 3 1 � e .
18. insert (path,t-1,h,g’) in OpenSet

Table 3.3: Tree-trellis algorithm for the extraction of N-best query translations for CLIR appli-
cation.

iterations times the cost of theory insertions (steps 6 and 16) performed at each
step. As a theory at position i in the stack cannot expand into theories with
a better score, each insertion operation just involves examination of the top N

positions in OpenSet. Hence, at each iteration, the complexity of the insertion
operations is O 	 ĒN 
 . The number of iterations is n to find the best translation
and O 	 n 
 to find the others. Hence, the total complexity of the A ' search is
O 	 n N2 Ē 
 .
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3.5 Bilingual IR

From a statistical perspective, bilingual IR can be formulated as follows. Given
a query f, in the source language, one would like measure the relevance of a
documents d, in the target language, by a joint probability Pr 	 f � d 
 . To fill the
gap of language between query and documents, the hidden variable e is intro-
duced, which represents a term-by-term translation of f in the target language.
Hence, the following decomposition is derived:

Pr 	 f � d 
 � ∑
e

Pr 	 f � e � d 
F ∑
e

Pr 	 f � e 
 Pr 	 d � e 

� ∑

e
Pr 	 f � e 
 Pr 	 e � d 


∑
d � Pr 	 e � d � 
 (3.15)

In deriving Equation (3.15), one makes the reasonable assumption (or approxi-
mation) that the probability of document d given query f and translation e, does
not depend on f. Equation (3.15) contains probabilities Pr 	 e � d 
 and Pr 	 f � e 
 ,
which correspond, respectively, to the query-document and query-translation
models described in the previous Sections.

In principle, the probability Pr 	 f � d 
 results very expensive to compute. In fact,
the main summation in (3.15) is taken over the set of possible translations of f.
As terms of f may typically admit more than one translation, the size of this set
can grow exponentially with the length of f. For instance, the Italian-English
dictionary, used for our experiments, returns on average 1.84 English words for
each Italian entry. Hence, the number of possible translations for a 40 word
long query is in the order of 1010! Finally, the denominator in Equation (3.15)
requires summing over all document in D and should be computed for every
possible translation e.
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The derivation of Equation (3.15) is of course not unique. Other types of sta-
tistical models for CLIR have been derived in the literature [31, 89, 3]. A com-
parative discussion of these models with respect to the one presented here can
be found in [24]. Non statistical models for CLIR, dealing with multiple trans-
lations, are instead discussed in [64, 2].
Now, two algorithms are introduced which approximate, with increasing accu-
racy, the computation of Equation (3.15).

3.5.1 Cascade approach

A method to cope with the complexity of (3.15), is to apply the following max-
imum approximation:

Pr 	 f � d 
 � ∑
e

Pr 	 f � e 
 Pr 	 e � d 

∑
d � Pr 	 e � d � 


F max
e GHI HJ

Pr 	 f � e 
 Pr 	 e � d 

∑
d � Pr 	 e � d � 


K
HLHMF Pr 	 f � e ' 
 Pr 	 e ' � d 


∑
d � Pr 	 e ' � d � 


∝ Pr 	 f � e ' 
 Pr 	 e ' � d 
 (3.16)

where

e ' � argmax
e

Pr 	 f � e 
 (3.17)

This approximation permits to decouple the translation and retrieval phases.
Given a query f, the Viterbi decoding algorithm is applied to compute the most
probable translation e ' , as explained in Section 3.3. Then, the document col-
lection is searched by applying any monolingual IR model, explained in Sec-
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tion 3.2, with the query e ' . Table 3.4 shows the algorithm for the cascade ap-
proach.

1. Input f
2. Compute the best translation of f:

e >�( argmaxe Pr - f � e -
3. Order documents according to P - e >N� d .

Table 3.4: Algorithm of the CLIR cascade approach.

3.5.2 Integrated approach

A more refined algorithm is now presented that relies on two approximations
in order to limit the set of possible translations and documents to be taken into
account in Equation (3.15).

Approximation 1. The first approximation redefines the query-translation prob-
ability by limiting its support set to just the N-best translations of f, indicated
by TN 	 f 
 . Hence,

Pr � 	 f � e 
�� GI J
Pr 	 f � e 

K1 	 f 
 if e O TN 	 f 


0 otherwise
(3.18)

K1 	 f 
 is a normalization term which can be disregarded in Equation (3.15) for
the sake of document ordering, as being constant with respect to the ranking
variable d.

Approximation 2. A second approximation is introduced to reduce the computa-
tional burden of the denominator on Equation (3.15). Hence, the support set of
the query-document model is limited to only documents which contain at least
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1. Input f
2. Compute TN

�
f � with scores P - f � e .

3. For each e , TN
�
f �

4. N ( 0
5. For each d , I

�
e �

6. Compute P - e � d .
7. Update N ( N 5 P - e � d .
8. For each d , I

�
e �

9. Update P - f � d .�( P - f � d .N5 P - e � d .�D P - f � e .EP N
10. Order documents according to P - f � d .
Table 3.5: Algorithm of the CLIR integrated approach.

one term of the query. Given a translation e, let I 	 e 
 indicate the set of docu-
ments containing terms of e. This set is easy to compute when the collection is
accessed through an inverted index [26]. Hence,

Pr � 	 e � d 
�� GI J
Pr 	 e � d 

K2 	 e 
 if d O I 	 e 


0 otherwise
(3.19)

where K2 	 e 
 is a normalization term that occurs both in the numerator and de-
nominator of the fraction in (3.15), and is therefore deleted. Thanks to this
approximation, computation of the denominator in Equation (3.15) can be per-
formed by summing up the scores of just the documents accessed through the
inverted index.
The CLIR algorithm applying the two approximations is shown in Table 3.5.
Briefly, given an input query f, the N-best translations are computed first. Then,
for each translation e, the addenda in Equation (3.15) are computed only for
documents containing at least one term of e. This requires one additional loop
over the documents in order to compute the normalization term. The complexity
of the algorithm can be estimated as follows:� O 	 n Ē 2 � n N2 Ē 
 for step 2 in the average case [24]
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 for steps 3-9 in the average case� O 	 n Ē Ī log 	 n Ē Ī 
�
 for step 10, in the worst case, i.e. N-best translations
use all the available terms,

where n denotes the length of the query, N the number of generated translations,
Ē is the average number of translations of a term, and Ī is the average number
of documents spanned by the inverted file index. The latter number is somehow
controlled by the stop-term removal phase applied during document indexing.
Generally, terms occurring in many documents are not considered significant
for IR and are removed from the index. For instance, in the performed Italian-
English experiments we had Ī F 110 with �D �6� 110 � 282, and Ē=1.84.

Remark. It is worth noticing that the cascade approach is a special case of
the integrated approach, which results by taking N � 1. The cascade method
permits indeed to eliminate the normalization term in Equation (3.15).

3.6 The ITC-irst Cross-Language Information
Retrieval system

The ITC-irst CLIR architecture is depicted in Figure 3.1. A query is first prepro-
cessed as explained in Section 3.6.1, and then one of the two CLIR algorithm
presented in Sections 3.5.1 and 3.5.2 is applied to retrieve the most relevant
documents. Preprocessing is performed also on the document of the target col-
lection. The required data for model training are also shown in the Figure.

3.6.1 Document and query preprocessing

Preprocessing of queries and documents aims at extracting keywords and re-
moving functional terms. Some normalization is also performed to create equiv-
alence classes of terms with the same root; this helps to reduce data sparseness
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Ranked Documents
(target language)

CLIR Algorithm
Query−Document Model
Query−Translation Model

Documents Bilingual
Dictionary

Query
(source language)

Preprocessing Preprocessing

Figure 3.1: The ITC-irst Cross Language Information Retrieval system architecture.

and improve more robustness. A brief description of the modules used to pre-
process Italian and English documents and queries is given in below. Tables 3.6
and 3.7 show, respectively, an original English topic and the its modifications
through various preprocessing steps.

Tokenization Words are isolated from punctuation marks, abbreviations and
acronyms are recognized, possible word splits across lines are corrected,
and accents are distinguished from quotation marks.

Morpho-syntactic analysis Base forms of Italian words are obtained by com-
bining morpho-syntactic analysis and statistical parts-of-speech tagging
[5].

Stemming Word stemming is performed on English texts by using the Porter
algorithm [65].
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<top>

<num> C044 </num>

<EN-title> Indurain Wins Tour </EN-title>

<EN-desc> Reactions to the fourth Tour de France won by Miguel

Indurain. </EN-desc>

<EN-narr> Relevant documents comment on the reactions to the fourth

consecutive victory of Miguel Indurain in the Tour de France. Also

relevant are documents discussing the importance of Indurain in

world cycling after this victory. </EN-narr>

</top>

Table 3.6: English topic 44.

Stop-term removal Non relevant words are filtered out on the basis of their
POS (only for Italian) and their inverted document frequency.

Handling multi-words When translating, phrasal verbs, noun phrases, com-
pounds, have to be recognized and correctly transferred to the target lan-
guage. As dictionaries typically contain many multi-word entries, these
were included in the statistical translation model. Besides including them
into the lexicon probabilities, co-occurrences of multi-words were also col-
lected in the target LM. Multi-words were indeed not considered for the
sake of indexing and retrieval. Hence, after the translation step they were
split into single words.

Handling out-of-dictionary words As the query-translation model relies on a
bilingual dictionary, an high coverage of the source and target languages
is essentail to achieve good retrieval peformance. Dictionary coverage is
artificially augmented by applying proper name recognition on the origi-
nal query and by forcing verbatim translation of proper names (with En-
glish version stemmed) which do not occur in the dictionary. However, for
proper names, guarantee about the correctness of the translation is lost; in
fact, names of people are usually written with the same transliteration both
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a Title Indurain Wins Tour.
Desc. Reactions to the fourth Tour de France won by Miguel Indurain.

b Title indurain win tour .
Desc. reaction to the fourth tour de franc won by miguel indurain .

c indurain win tour reaction fourth tour franc won miguel indurain

d -55.66 vincere tour reazione quarto tour francia
-56.07 vincere tour reazione quarto giro francia
-56.27 vincere tour reazione quarto tournee francia
...

e -55.66 indurain vincere tour reazione quarto tour francia miguel indurain
-56.07 indurain vincere tour reazione quarto giro francia miguel indurain
-56.27 indurain vincere tour reazione quarto tournee francia miguel indurain
...

f indurain vincere tour reazione quarto tour de france vincere miguel indurain

g giro vittoria indurain reazione quarto giro de francia vincere miguel indurain

Table 3.7: Processing of English short topic 44. (a) Title and Descriptive fields of the original
topic; (b) tokenized and stemmed query; (c) query after stop term removal; (d) N-best trans-
lations into Italian with log-probabilities; (e) translated queries after adding proper names; (f)
corresponding human translated query; (g) corresponding translated query by Systran.

in Italian and in English, but names of locations and organizations often
differ. An example is the name Chechnya, which in Italian is Cecenia. Fi-
nally, it is worth mentioning that proper names and numbers are excluded
from the computation of the N-best translations, but are just added to them
afterwards.
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3.6.2 Blind Relevance Feedback

As queries are usually short, only few content words might be exploited for
retrieval making the disambiguation among documents very hard. Blind Rele-

vance Feedback (BRF) is a well known technique for adding other words related
to the original queries that permits to improve retrieval performance. The basic
idea is to perform retrieval in two steps. First, documents matching the original
query q are ranked, then the R top ranked documents are taken and the T most
relevant terms in them are added to the query. Hence, retrieval is repeated with
the augmented query. In this work, new search terms are extracted from the R

top documents according to [38]:

rq log
	 rq � 0 � 5 
�	 N � Nq � R � rq � 0 � 5 
	 Nq � rq � 0 � 5 
�	 R � rq � 0 � 5 
 (3.20)

where rq is the number of documents, among the top R, which contain term q.

In CLIR, BRF is not used to expand the original query but its translations. In
order to save computation time, BRF is performed on the N-best translation as
a whole, as Equation (3.15) suggests. Hence, relevant terms of the top ranking
documents are added to all N-best translations, without modifying their prob-
abilities. Parameter setting of BRF was the same as for Italian monolingual
IR.

3.7 Experiments

This Section reports performance of the presented IR systems on the CLEF
tracks. In particular, monolingual IR experiments were carried out on Italian,
while CLIR was performed from Italian to English and vice versa. Reported
performance is in terms of mean average precision mAvPr (see Appendix B.1).
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3.7.1 CLEF benchmark

CLEF tracks consists of collections of document and sets of topics, in different
languages, and relevance assessments for every pair of document collection and
set of topics (see Brachler and Peters, this volume). Three document collections
of CLEF have been used here:� an English collection (EC) consisting of 110,282 documents, from Los

Angeles Times and issued in 1994;� an Italian collection (IC1) including 58,051 documents, from La Stampa

and issued in 1994 (used in CLEF 2000);� an Italian collection (IC2) including IC1 and other 50,527 documents from
the Swiss News Agency, issued in 1994, for a total of 108,578 documents
(used in CLEF 2001 and CLEF 2002).

Topics consist in three fields (Title, Descriptive, Narrative), as shown in Ta-
ble 3.6. Available topics are 40 for CLEF 2000, 50 for CLEF 2001, and 50
for CLEF 2002, for a total of 140. Table 3.8 reports statistics about document
collections and topics. Notice that topics which do not have relevant documents
in a given collection were removed from the corresponding track.
In the following, topics used for CLEF 2000, CLEF 2001, and CLEF 2002 will
be referred to by Q1, Q2 and Q3, respectively. The language of each collection
is indicated by the prefix of its name (I for Italian, E for English), while that
of the queries depends on the considered track. Experiments were carried out
using both short (TD) and long (TDN) topics.

3.7.2 Additional data

A commercial Italian-English dictionary of about 51K translation pairs is used,
which the query-translation model relies on. On the average, each Italian term
is translated by the dictionary into 1.84 English words, and vice-versa each
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Collection
EC IC1 IC2

Documents 110,282 58,051 108,578
Size 425 MB 193 MB 278 MB

Collection
EC IC1 IC2

topics rel.docs topics rel.docs topics rel.docs
Q1 33 579 34 338
Q2 47 856 47 1246
Q3 49 1072

Table 3.8: Upper table: total numbers of documents and running words for each considered
collection. Lower table: statistics about each pair of topic set and collection: i.e. number of
topics with relevant documents in the collection, and total number of relevant documents in the
collection.

English term has 1.68 Italian translations. The estimated coverage of the dictio-
nary with respect to the query terms is 89.7% for Italian and 90.2% for English,
including numbers which are translated verbatim.

The addition to the dictionary of the proper names found in the queries increased
translation coverage to 94.6% for Italian words and 96.1% for English words.

BRF parameters R and T were estimated just for the Okapi model on some
development data [7]. The best settings resulted R � 5 and T � 15.

3.7.3 Monolingual IR results

Table 3.9 reports performance achieved on each set of Italian topics and their
union as well.

It can be noticed that performance on long topics is significantly better than on
short ones. This is mainly due to the different number of content words which
is available to search documents. Moreover, figures show that query expansion
is very effective. Relative improvements due to BRF are between 8% and 22%
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Topics Coll. Statistical Okapi Combined
Set Type Lang +BRF +BRF +BRF
Q1 TD IT IC1 .3671 .4481 .4215 .4551 .4110 .4556
Q1 TDN IT IC1 .4447 .4941 .4920 .5198 .4722 .5152
Q2 TD IT IC2 .4141 .4662 .4449 .4815 .4379 .4883
Q2 TDN IT IC2 .4372 .4847 .4664 .4939 .4625 .5041
Q3 TD IT IC2 .3862 .4656 .4058 .4703 .4042 .4920
Q3 TDN IT IC2 .4453 .5271 .4432 .5028 .4516 .5304
Q1-2-3 TD IT IC1-2 .3913 .4612 .4240 .4704 .4182 .4811
Q1-2-3 TDN IT IC1-2 .4422 .5031 .4644 .5040 .4609 .5169

Table 3.9: Mean average precision results for monolingual IR, with different sets of Italian
topics, topic types (TD vs. TDN), document collections (IC1, IC2, and both), and three retrieval
models, each either with or without query expansion.

in the case of TD topics and between 5% and 10% for TDN topics. More
precisely, performance improvements on the whole set of topics (Q1-2-3, both
TD and TDN) result significant at level p Q 0 � 986. It is worth noticing that BRF
results more effective with the statistical LM approach than with the Okapi one.

A direct comparison between LM and Okapi shows that the latter performs
slightly better, but differences become smaller after BRF. The last two columns
of Table 3.9 report mAvPr results of the combined scoring model. Respectively,
the columns correspond to the combination of scores taken before and after BRF
on the single models. Figures show that after query expansion, the combined
model, but in one case, improves over the best of the two single methods. Over
the complete set of queries, relative improvements in mean-average precision
over the best performing model are of 2.3% (p Q 0 � 984) for short topics, and
2.6% (p Q 0 � 986) for long topics.
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Topics Coll. 1-best 5-best 10-best
Set Type Lang +BRF +BRF +BRF
Q1 TD IT EC .3287 .3463 .3271 .3366 .3277 .3307
Q1 TDN IT EC .3917 .4096 .3864 .4391 .3863 .4188
Q2 TD IT EC .4593 .5035 .4537 .5196 .4532 .5128
Q2 TDN IT EC .4934 .5132 .4977 .5255 .4737 .5226
Q1-2 TD IT EC .4054 .4387 .4014 .4441 .4014 .4379
Q1-2 TDN IT EC .4514 .4705 .4518 .4899 .4376 .4798

Table 3.10: Mean average precision results of Italian-English CLIR with the combined model.
Experiments consider different sets of topics, topic types, always in Italian, one English target
collection, and different numbers of N-best translations (1,5, and 10). Retrieval performance is
reported either with or without blind relevance feedback.

3.7.4 Bilingual IR results

CLIR experiments were performed from Italian to English and in the opposite
direction. In the CLEF evaluation campaigns, Italian-English tracks used topics
Q1 and Q2, whereas English-Italian tracks used all sets of topics. Results of
these runs are reported for each language direction in Tables 3.10 and 3.11, re-
spectively. In all tracks, the combined method was used for the query-document
model. Results are provided both for short and long topics, for each set of top-
ics, and for their union. It is worth noticing that the Italian target collection
changed between the first and the second CLEF campaign.

By looking at the results corresponding to different numbers of employed trans-
lations, it seems, at least on the average, that using more than one translation
slightly improves performance. However, this conclusion is not confirmed from
a statistical point of view. Only for the Italian-English task (after BRF, TDN
topics), a significant difference in mAvPr between 5-best translations and 1-best
translations was observed at level p Q � 998.

Considerations about query expansion, as stated for monolingual IR, are fully
confirmed by the CLIR experiments.
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Topics Coll. 1-best 5-best 10-best
Set Type Lang +BRF +BRF +BRF
Q1 TD EN IC1 .3125 .3382 .3192 .3339 .3068 .3180
Q1 TDN EN IC1 .3604 .3922 .3748 .4042 .3727 .4135
Q2 TD EN IC2 .3829 .4624 .3828 .4544 .3881 .4691
Q2 TDN EN IC2 .4156 .4851 .4184 .4849 .4235 .4855
Q3 TD EN IC2 .2993 .3444 .3086 .3531 .3161 .3552
Q3 TDN EN IC2 .3646 .4286 .3712 .4410 .3757 .4247
Q1-2-3 TD EN IC1-2 .3330 .3854 .3382 .3847 .3397 .3866
Q1-2-3 TDN EN IC1-2 .3819 .4395 .3892 .4472 .3922 .4438

Table 3.11: Mean average precision results of English-Italian CLIR with the combined model.
Experiments consider different sets of topics, topic types, always in English, different Italian
target collections (IC1, IC2, and both), and numbers of N-best translations (1,5, and 10). Re-
trieval performance is reported either with or without blind relevance feedback.

Further experiments were carried out to evaluate the query-translation model.
In particular, CLIR experiments were performed by using query translations
computed by the Viterbi search algorithm, by a commercial state-of-the-art ma-
chine translation system, and, finally, by a human. In the second case, the online
Babelfish translation service, powered by Systran [32], was used. As Systran
is supposed to work on fluent texts, preprocessing and translation steps were
inverted in this case. As human translations, the topics in the documents’ lan-
guage were used, as provided by CLEF.

Given all topic translations, the CLIR algorithm for the 1-best case was applied.
Results for Italian-English and English-Italian IR are reported in Tables 3.12
and 3.13, respectively.

Remarkably, the statistical query-translation method outperforms the Systran
translation system on the union sets of topics. Significant differences between
the two translation methods could only be measured on the English-Italian re-
trieval task. Differences were significant at level p Q 0 � 96 on short topics, and
at level p Q 0 � 76 on long topics.
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Topics Coll. Translation
Set Type Lang Systran 1-best human
Q1 TD IT EC .4007 .3463 .4866
Q1 TDN IT EC .4565 .4096 .5029
Q2 TD IT EC .3900 .5035 .5559
Q2 TDN IT EC .4786 .5132 .5703
Q1-2 TD IT EC .3944 .4387 .5273
Q1-2 TDN IT EC .4695 .4705 .5425

Table 3.12: Mean average precision results of Italian-English CLIR with the combined model
including query expansion. Experiments consider different sets of Italian topics, topic types,
one English collection, and different kinds of translations: computed by Systran, the 1-best
statistical model, and human made.

From both Tables 3.12 and 3.13 it is evident that IR results with 1-best trans-
lations shows more oscillations around the global mAvPr value computed over
the union sets of topics. To investigate this issue, standard deviations of the
average precision were computed over the whole set of topics, for each exper-
imental condition. On the Italian-English track, standard deviations with TD
topics were .314 and .298, respectively, for 1-best and Systran translations. On
TDN topics, standard deviations were exactly the same, .301 for both translation
methods. On the English-Italian track, 1-best translations seem to cause even
less variability than the Systran ones: on TD topics, standard deviations of .323
and .331 were respectively measured, while on TDN topics the corresponding
standard deviations were .316 and .329.

Unfortunately, these measurements confirm the difficulty of finding some sta-
tistically meaningful explanation of the different mAvPr behavior of the tested
systems over the single sets of topics.

A problem in translating topics is that some random noise is introduced in the re-
trieval process. Erroneous translations of content words may indeed severely af-
fect retrieval performance and, in general, the loss in performance is not strictly
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Topics Coll. Translation
Set Type Lang Systran 1-best human
Q1 TD EN IC1 .3378 .3382 .4556
Q1 TDN EN IC1 .3781 .3922 .5152
Q2 TD EN IC2 .3637 .4624 .4883
Q2 TDN EN IC2 .3872 .4851 .5041
Q3 TD EN IC2 .4037 .3444 .4920
Q3 TDN EN IC2 .4412 .4286 .5304
Q1-2-3 TD EN IC1-2 .3720 .3854 .4811
Q1-2-3 TDN EN IC1-2 .4052 .4395 .5196

Table 3.13: Mean average precision results of English-Italian CLIR with the combined model
including query expansion. Experiments consider different sets of English topics, topic types,
different document collections, and different kinds of translations: computed by Systran, the
1-best statistical model, and human made.

related to the number of translation errors.

An indication about the noise introduced by the translation process comes from
the lower standard deviations which can be measures on the retrieval results
with human translations: .287 for TD topics and .279 for TDN topics, in the
Italian-English track, and .300 for TD topics and .289 on TDN topics, in the
English-Italian track. Hence, in general, automatic translation increases uncer-
tainty in mAvPr, which can be quantified in 4%-10% relative increase of stan-
dard deviation.

In our statistical model, the chance of correctly translating a content word, in
a given context, depends on several nested events: the dictionary contains the
word, the right translation is among the ones available for that word, and, finally,
the correct one is selected. In the following, a qualitative analysis of translation
errors is presented.
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3.7.5 Qualitative evaluation

A qualitative analysis of results was carried out to better understand possible
weak points of the statistical query translation method. Differences in average
precision (AvPr) achieved on each single topic were computed. The resulting
plots are shown for both translation directions in Figures 3.2 and 3.3, respec-
tively. More specifically, results refer to the combined model, using short topics
and no BRF.
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Figure 3.2: Differences in average precision corresponding to the same CLIR system using
translations computed either by the statistical model or by a commercial machine translation
system. Topics are in Italian, documents in English.

It results that the two translation approaches achieve similar performance for
most of the topics, in fact, only 10% of them show AvPr differences higher than
0.4. Hence, a more detailed analysis was made on the subset of topics on which
Systran translations performed significantly better. Topics 11, 17, 32, and 83
for Italian-English CLIR and topics 15, 35, and 126 for English-Italian CLIR
were considered.
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Figure 3.3: Differences in average precision corresponding to the same CLIR system using
translations computed either by the statistical model or by a commercial machine translation
system. Topics are in English, documents in Italian.

Poor performance generally resulted from translations errors of content words.
Translation errors were either caused by a wrong analysis at the POS tagging
or word stemming levels, or by coverage failures of the bilingual dictionaries.
For instance, the Italian word preti (priests) was not correctly transformed into
its singular form prete (priest); similarly, the English word wolves was wrongly
stemmed as wolv, instead of wolf. Hence, in both cases the corresponding en-
tries were not found in the bilingual dictionary. Bad retrieval also occurred
because correct translations appeared with a low rank; e.g. the best Italian trans-
lation of fur (pelliccia) appears for the first time in the translation at rank 22.
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Chapter 4

Text Translation

In this Chapter, we present novel statistical models which extend the well known
machine translation (MT) framework developed by [12]. Accordingly, the most
likely translation of a source sentence f can be searched for by ranking strings
e in the target language1 according to the product of the language model proba-
bility Pr 	 e 
 and the translation model probability Pr 	 f � e 
 . While the first factor
is usually computed through an n-gram language model [36], six translation
(or word-alignment) models of increasing complexity have been proposed in
[12, 60], which are conventionally numbered from 1 to 6. The complexity of
the search procedure basically depends on the way words of the source string
can be translated and re-ordered in the target string. Given that even the sim-
plest word-alignment model causes an exact search to be NP-complete [40], ap-
proximation algorithms [18] have been proposed, in particular for the so called
Model 4, which is the model considered in this Chapter. For instance, in [79]
a polynomial search algorithm for Model 4 has been derived from a dynamic

programming (DP) solution of the traveling-salesman problem. Instead, we
propose a different DP-based algorithm which directly derives from the search
criterion.

Besides the success of word-alignment models, several attempts have been pur-

1We follow here the notation of [12], which assumes as source and target languages, French and English,
respectively .
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sued to overcome some of their shortcomings, especially the little use of con-
text within the source string. Recently, several research labs have reported
improvements in translation accuracy by shifting from word- to phrase-based
MT [47, 90, 91, 84, 41, 78]. Best performing approaches rely on a sample of
phrase2 pairs, which is automatically extracted from a word-aligned parallel
corpus. Moreover, ad-hoc statistical models and search algorithms are devel-
oped, which explicitly consider possible segmentations of the source string at
phrase level. Instead, we propose phrase-based translation models which are
tightly related to Model 4. Basically, after augmenting the target language vo-
cabulary with a list of phrases, model parameters are estimated in one of three
possible ways: (i) from an available word-based model, (ii) through statistics
extracted from a sample of phrase pairs, (iii) by combining the two previous
methods. By defining the target language over the augmented vocabulary, the
same search algorithm for Model 4 can be deployed.

The Chapter is organized as follows. Section 4.1 overviews and acknowledges
previous results our work follows along or departs from. Section 4.2 shortly
reviews basic notations and concepts related to the statistical MT framework, in
general, and to the here used word-based model, in particular. Section 4.3 in-
troduces the search problem in a formal way and derives the dynamic program-
ming based MT algorithm implemented in our system. Section 4.4 discusses
the extraction of phrase-pairs from a parallel corpus, and presents extensions
of the statistical MT approach to account for translation into target phrase se-
quences. Section 4.6 reports comparative experiments between different word-
and phrase-based translation settings. Finally, Section 7.2 reports conclusions
and indicates directions of future work.

2Following a widespread as well as disputable habit, we mean here by phrase any finite word sequence, either
in the source or target language, regardless of its linguistic soundness.
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4.1 Previous work

The first search algorithm based on statistical word-alignment models appeared
in a US patent authored by [11]. In particular, an A ' (or stack) decoding al-
gorithm for Model 3 was proposed which incrementally extends partial transla-
tions of the source string, until an optimal full translation is found. To reduce
the search complexity, the number of active hypotheses is limited as well as the
possible word reordering. In particular, active hypotheses of different length
are stored into separate stacks, so that pruning criteria are applied on compara-
ble hypotheses, i.e. of the same length. Improvements on the stack decoding
approach were proposed for Model 2 by [88], through the introduction of lin-
guistically motivated constraints on word reordering. On the other hand, [85]
derived a more efficient stack decoding algorithm by using a simplified transla-
tion model.

In [29] a greedy decoding algorithm for Model 4 was presented which incre-
mentally tries to improve an initial translation guess of the source sentence. At
each step, new solutions are checked by applying a number of local modifica-
tions to the current solution.

The first search algorithm based on dynamic programming is reported by [80],
which considered an augmented version of Model 2. Subsequently, [79] devel-
oped a search algorithm for Model 4, by combining a dynamic programming
solution of the traveling-salesman problem with reordering constraints defined
by a finite state automaton. The dynamic programming approach results similar
to the A ' algorithm with the crucial difference that recombination is applied on
hypotheses sharing similar substructure. In addition, a beam search technique
is applied to limit the set of active hypotheses. The here presented search algo-
rithm goes along the way paved by [79], but relies on a different and simpler, to
our view, decomposition of the optimization criterion.

More recently, there has been a tendency to augment stochastic dependencies
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beyond the limit imposed by the word-based models. In [61], the so-called
alignment template approach is introduced which directly models translation at
the phrase level. The search algorithm, which eventually relies on a preliminar
phrase-segmentation of the input, exploits a collection of translation phrases,
with alignment information, extracted from the corpus.

Several methods to extract translation phrases (or templates) from parallel cor-
pora have been proposed, either based on alignment patterns [61, 47, 41, 84, 78]
or on linguistic structures [90].

Following [61], ad-hoc phrase-bases statistical translation models and decod-
ing algorithms were developed, that exploit statistics at phrase and word lev-
els. Most of these models can be interpreted as attempts to unify memory- and
statistical-based approaches. For instance, in [47], the greedy algorithm in [29]
is modified by exploiting an additional translation guess computed by recog-
nizing and translating phrases of the source string. In [91], a translation model
just based on phrase translation frequencies is discussed and embedded into a
search algorithm that takes into account possible phrase-segmentations and lo-
cal re-orderings. In [41], a similar model is discussed which also embeds a
simple distorsion model to account for phrase reordering. Finally, in [48, 78]
joint probability phrase models are introduced, which assume the target and
source strings are generated progressively and simultaneously.

In contrast to all the above mentioned approaches, our phrase-based transla-
tion models and search algorithm are tightly related and basically extend word
Model 4. In this way, we believe, our models embed the advantages of using
a wider context in translation and, at the same time, preserve the robustness of
the word-based approach in conditions of data sparseness.
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4.2 Statistical Machine Translation

From a statistical point of view MT can be seen as the problem of finding the
sentence in the target language which maximizes a given probability distribu-
tion Pr 	 e � f 
 3. This probability measure should measure how good the target
sentence translates the source string. Formally, the Statistical Machine Trans-
lation (SMT) problem can be stated as follows: given a string f in a source
language F ' , find the string e ' in the target language E ' , which maximizes the
probability distribution Pr 	 e � f 
 :

e ' � arg max
e � E R Pr 	 e � f 
 (4.1)

The definition of the probability measure Pr 	 e � f 
 is the main issue related to
SMT. The measure should be able to model at the best all aspects of the trans-
lation process, adequacy and fluency above all.
An SMT model usually features a lot of parameters, and an efficient training
procedure for their optimization is strongly recommended.
In the statistical framework any string in the target language is a possible trans-
lation of the input sentence. Even limiting the length of the output strings to
twice the length of the input, the number of hypotheses is very huge. Hence,
the search algorithm for finding out the best one should be very efficient; to do
that it should exploit at the best the features of the model.

Historically first attempts to tackle out SMT were based on the so-called source-

channel approach introduced in the AI field by Shannon [73]. This framework
assumes that the string f is obtained as a result of the modifications which the
original string e has undergone. As shown in Figure 4.1 the process of transla-
tion, a string e is first generated by a source described by the model Pr 	 e 
 and
then modified into f through a channel described by a model Pr 	 f � e 
 . Finally,

3The notational convention will be as follow throughout all the thesis. The symbol Pr SETVU is used to denote
general probability distributions with (nearly) no specific assumptions. In contrast, for model-based probability
distributions, the generic symbol p SETVU is used.
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e*Source
Pr(e)

e Channel

Pr(f | e)
f

argmax_e Pr(e | f)

Decoder

Figure 4.1: Translation process in the source-channel approach.

the decoder has to find the best output e ' which best matches to the original e.
Formally, this approach is based on the exact Bayes decomposition:

Pr 	 e � f 
�� Pr 	 e 
 Pr 	 f � e 

Pr 	 f 
 (4.2)

causing the modification of the SMT problem into the following search crite-
rion:

e ' � argmax
e

Pr 	 e 
 Pr 	 f � e 

Pr 	 f 
 (4.3)� argmax

e
Pr 	 e 
 Pr 	 f � e 
 (4.4)

where the denominator Pr 	 f 
 is discarded because of its constancy with respect
to the maximization variable.
The source-channel approach factors out the SMT model Pr 	 e � f 
 into two mod-
els, briefly described in the rest of this Section: the language model Pr 	 e 
 is de-
voted to model the target string features like the fluency; the translation model

Pr 	 f � e 
 is mostly devoted to describe the transfer of the meaning from the input
to the output sentence.
The criterion (4.3) can be shown to be optimal if the true probability distribu-
tions are used. But only poor approximations of them can reasonably obtained,
and a different combination of the language and translation models might yield
better results. Hence, the criterion should modify with the introduction of two
exponential weights λlm and λtm as follows:

e ' � argmax
e

Pr 	 e 
 λlm Pr 	 f � e 
 λtm (4.5)
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A second approach, becoming famous at the end of ’90s, defines directly Pr 	 e �
f 
 by means of a log-linear model. This framework will be presented in the next
Chapter.

4.2.1 Language model

Language modeling in statistical MT is tightly related to the way the search
algorithm works. Besides computing the probability of complete translation
hypotheses e, it is desirable to evaluate language model scores even on partial
translation hypotheses, so that they can be properly ranked. For this purpose,
in the here discussed search algorithms, n-gram language models [36] are de-
ployed. In particular, trigram probabilities are estimated by interpolating non-
linearly smoothed trigram, bigram, and unigram frequencies [25]. Moreover,
n-gram frequency statistics are collected over a large target language corpus,
including the target language sentences used to estimate the translation model.
Given a target string e � el

1, the trigram language model probability is:

Pr 	 e 
�� p 	 l 
 p 	 e � el
1 � l 
�� p 	 l 
 l

∏
i 
 1

p 	 ei � ei � 2 � ei � 1 
 (4.6)

where p 	 l 
 is a probability distribution of the string length l to ensure that Equa-
tion (4.6) defines a probability measure over the set of finite strings of the target
vocabulary E . In particular, we assume a uniform length distribution over a
support set of target strings of length at most L, where L is twice the maximum
allowed length for the input string f. In order to let the LM better predict ini-
tial and final words of a sentence, special boundary symbols are put as first and
last words of the source sentence. These symbols are enforced to be translated
verbatim in the target sentence.
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. 8 W W W W W W W W W X
there 7 W W W W W W W X W W W
over 6 W W W W W W W W W X W
Just 5 W W W W W W X W W W W

. 4 W W W W W X W W W W W
me 3 W W W X W W W W W W W

follow 2 W W W W X W W W W W W
Please 1 W X X W W W W W W W W

NULL 0 W W W W W W W W X W W
0 1 2 3 4 5 6 7 8 9 10

NU
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’
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Figure 4.2: Example of translation pair and alignment, with source in Italian and target in
English. Alignments link each source position either to one target position or to the empty word
(NULL) at position zero. Alignments do not necessarily cover all target positions.

4.2.2 Alignments

Many SMT models rely on the concept of alignment, which is first introduced
by [12]. Given a pair of sentence f � f m

1 � f1 ��������� fm in French and e � el
1 �

e1 ��������� el in English, an alignment between them is “an object indicating for
each word in the French string that word in the English string from which it
arose”. It is useful to add an English empty word e0 �ZY\[$]^] , which represents
the virtual ending point for those words in f not connected to any English words.
In the same way f0 �_Y\[`]a] is defined. As connection between f0 and e0 is
absolutely meaningless, it will never be set.

In a mathematically sound framework, we define an alignment a as a relation
between words in f and e: a � fR e b c�	 f j � ei 
d� j � 0 ��������� m � i � 0 ��������� l e .
Graphically an alignment can be represented by means of a matrix, where the
entry 	 i � j 
 is bulleted if there is a connection between f j and ei, i.e. if f j is
aligned with ei, as shown in Figure 4.2.

In general each French word can be connected to any English word, and vicev-
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ersa; henceforth, the number of possible alignments between f and e is
2 � m f 1 �*� l f 1 � .
Two classes of alignments are usually taken into a account. An alignment be-
tween f and e is called direct if there exists exactly one connection exiting from
real French words, and no connections exit f0; it results that a direct alignment
is a function from f � f m

0 � f0 ��������� fm to e � el
0 � e0 ��������� el with the constraint

that f0 is virtually aligned only to e0. Viceversa an alignment between f and e
is called inverted, if the corresponding alignment between e and f is direct; in
this case the alignment is a function from e to f with the constraint that e0 is
virtually aligned only to f0. The alignment represented in Figure 4.2 is direct.
The number of possible direct and inverted alignments (ml f 1 and lm f 1, respec-
tively) is significantly lower, although even huge.
Smaller subset of alignments can be defined by imposing constraints over the
legal connections between f and e. An alignment satisfying a given set of con-
straints is called compatible with those constraints. In the following we will
assume to have specific constraints, and to consider only the set A 	 f � e 
 of the
compatible alignments.

4.2.3 Translation models

According to [12], given a French (source) string f and an English (target) string
e, the translation probability Pr 	 f � e 
 is expressed by the marginal probability:

Pr 	 f � e 
�� ∑
a � A � f g e � Pr 	 f � a � e 
 (4.7)

where the hidden variable a consists of an alignment from source to target po-
sitions, and Pr 	 f � a � e 
 is a suitable translation model. Besides the definition of
the probability measure a translation model imposes constraints to limit the size
of the set A 	 f � e 
 .
In [12, 60], six translation models of increasing complexity are introduced, re-
ferred to as Model 1 to Model 6. In the next subsection we briefly review Model
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4, because the phrase-based translation mdoel we define is partially related to
it.

4.2.4 Model 4

Given the string e � el
1 � e1 ��������� el , a string f and an alignment a are generated

as follows:

i. a non-negative integer φi, called fertility, is generated for each word ei and
for the null word e0;

ii. for each ei, a list τi, called tablet, of φi source words and a list πi, called
permutation, of φi source positions are generated;

iii. finally, if the generated permutations define a compatible alignment from
f to e then the process succeeds, otherwise it fails.

Fertilities fix the number of source words to be aligned to each target word, and

the total length m of the French string: m � l

∑
i 
 0

φi. Target words (including e0)

with positive fertility are called cepts.

If a phrase ẽi has fertility zero, i.e. φi � 0, it means that ẽi is not associated with
any input word, but is simply introduced to get a more fluent translation.

Model 4 imposes that the alignment between f and e is direct; it results that sets
πi are mutually disjuncted, i.e. πi h π j � /0 for all i i� j, and define a partition
of the string f. Moreover, permutations of Model 4 are constrained to assign
positions in ascending order. Details of other finer contraints can be found in
[12].

Taking into account these constraints, it can be shown that if the process suc-
ceeds in generating a triple 	 φ � φl

0 � τ � τl
0 � π � πl

0 
 4 then there is exactly one
corresponding pair 	 f � a 
 , and vice versa. This property justifies the following

4In the following, we will assume that arrays array e j a j φ j τ j π have length l k 1, if not differently specified.
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definition of Model 4:

Pr 	 f � a � e 
l� p 	 φ � τ � π � e � l 
 (4.8)� p 	 φ0 � m � 
 l

∏
i 
 1

p 	 φi � ei 
 l

∏
i 
 0

p 	 τi � φi � ei 
 1
φ0!

l

∏
i 
 1

p 	 πi � φi � π̄i 
 (4.9)

� p 	 φ0 � τ0 � m � 
 l

∏
i 
 1

p 	 φi � τi � πi � ei � π̄i 
 (4.10)

where l is the length of e, m � � m � φ0 � l

∑
i 
 1

φi, and π̄i is the center 5 of the

most recent cept. It is worth remarking that π0 �m� 1 by default and πi � πi � 1

if φi � 0.
In the right side of Equation (4.9) we can identify three models, namely fertility,
lexicon, and distortion models.
Fertility model represents step (i) of the generative process; fertilities φl

0 of
words el

1 are generated through p 	 φ � e 
 , while the fertility φ0 of e0 is generated
through a Binomial distribution p 	 φ � m � 
 .

p 	 φ � e � l 
 � l

∏
i 
 0

p 	 φi � ei 
�� p 	 φ0 � l

∑
i 
 1

φi 
 l

∏
i 
 1

p 	 φi � ei 
 (4.11)

p 	 φi � ei 
 � p 	 φ0 � m � 

p 	 φi � ei 
 1 n i n l

(4.12)

During step (ii) the lexicon model (4.13) generates tablets for cepts through the
following distribution:

p 	 τ � φ � e � l 
 � l

∏
i 
 0

p 	 τi � φi � ei 
 (4.13)

p 	 τi � φi � ei 
 � φi

∏
k 
 1

p 	 τi g k � ei 
 0 n i n l (4.14)

The distortion model generates permutations πl
1 relying on two probability ta-

bles:
5The center of a cept is defined as the ceiling of the mean position assigned to it.
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4.2. STATISTICAL MACHINE TRANSLATION� p 
 1 	 ∆ 
 , which considers the distance ∆ between the first generated posi-
tion and the center6 of the most recent cept;� p o 1 	 ∆ 
 , which considers the distance ∆ between any two consecutively
assigned positions of the permutation.

Finally, positions for e0 are generated at random over the residual φ0 positions,

with probability
1

φ0!
.

p 	 π � φ � l 
 � l

∏
i 
 0

p 	 πi � φi � π̄i 
�� 1
φ0!

l

∏
i 
 1

p 	 πi � φi � π̄i 
 (4.15)

p 	 πi � φi � π̄i 
 � GHHHI HHHJ
1

φ0!

p 
 1 	 πi g 1 � π̄i 
 φi

∏
k 
 2

p o 1 	 πi g k � πi g k � 1 
 1 n i n l
(4.16)

The here considered distortion model omits some dependencies specified in
[12].

Moreover, it is worth remarking that English words with fertility zero may only
generate an empty tablet and an empty permutation with probability 1, i.e.:

p 	 τi � φi � 0 � ei 
 � 1 if τi � /0
0 otherwise

(4.17)

p 	 πi � φi � 0 � π̄i 
 � 1 if πi � /0
0 otherwise

(4.18)

In order to simplify notation we introduce:

p 	 φ0 � τ0 � l

∑
i 
 1

φi 
 � p 	 φ0 � l

∑
i 
 1

φi 
 p 	 τ0 � φ0 � e0 
 1
φ0!

(4.19)

p 	 φi � τi � πi � ei � π̄i 
 � p 	 φi � ei 
 p 	 τi � φi � ei 
 p 	 πi � φi � π̄i 
 1 n i n l(4.20)
6π̄i is defined as the ceiling of the mean position assigned to the most recent cept before i.

52



CHAPTER 4. TEXT TRANSLATION

which has to be interpreted as the probability of choosing fertility φ, tablet τ and
permutation π for the empty word e0 and ei, respectively. Moreover, we define

p 	 φ � τ � π � e � i 
 � p 	 φ0 � τ0 � m � φ0 
 i

∏
s 
 1

p 	 φi � τi � πi � ei � π̄i 
 (4.21)

representing the probability of a partial solution of length i.
Notice that if we consider the generative process described in Section 4.2.4,
based on the source-channel approach, the previous quantities are not well de-

fined because m � l

∑
i 
 0

φi only after all fertilities are chosen. But from the point

of view of the translation we know the value m at the beginning, because it is
the length of input. Hence, p 	 φ � τ � π � e � i 
 can be used during the search

4.2.5 Training

Parameters γ of the language model pγ 	 e 
 and θ of the translation model pθ 	 f � e 

just introduced are trained through the Maximum Likelihood (ML) criterion. Ifc�	 fs � es 
 : s � 1 ��������� S e is a parallel corpus of S aligned senteces and c et : t �
1 ��������� T e is a monolingual corpus of T sentences, this criterion is expressed as
follows:

γ̂ � argmax
γ

T

∏
t 
 1

pγ 	 et 
 (4.22)

θ̂ � argmax
θ

S

∏
s 
 1

pθ 	 fs � es 
 (4.23)

While optimal language model parameters γ̂ are estimated with a LM software
developed at ITC-irst, the maximization of translation model parameters is per-
formed through the open source toolkit GIZA++ [60]. This software exploits a
suitable parallel corpus of sentence pairs through the Expectation Maximization
(EM) algorithm [21] or some approximations of it.
Use of exponential weights introduced in Section 4.2 can be generalized to con-
sider the three sub-models of the translation model pθ 	 f � e 
 . Thus, instead of
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only one weight λtm, λ f ert , λlex and λdist can be used for weighting the fertility
model p 	 φ � e � l 
 , the lexicon model p 	 τ � φ � e � l 
 , and distortion model p 	 π � φ � l 
 ,
respectively.
Optimization of these weights, which might improve system performance, can
be achieved through a procedure described in next Chapter.
For simplifying notation, weights are not used in the rest of the Chapter.

4.3 Search problem

By exploiting (4.7) for the translation model Pr 	 f � e 
 , the search criterion (4.3)
becomes:

e ' � argmax
e

Pr 	 e 
 Pr 	 f � e 
 (4.24)� argmax
e ∑

a � A � f g e � Pr 	 e 
 Pr 	 f � a � e 
 (4.25)

As the amount of alignments in A 	 f � e 
 can be very huge, the following ap-
proximate criterion is defined:

e ' F argmax
e

max
a � A � f g e � Pr 	 e 
 Pr 	 f � a � e 
 (4.26)

The substitution of the summation with the maximum operation permits the
implementation of an efficient algorithm based on Dynamic Programming (DP)
paradigm.
Now we derive the formulation of a DP-based search algorithm which exploits
model 4 and the previous approximate criterion.
Given the source sentence f � f m

1 , a corresponding translation e ' is searched as
follows:

e ' F argmax
e

Pr 	 e 
 max
a � A � f g e � Pr 	 f � a � e 
 (4.27)� argmax

l g e p 	 e � l 
 max� φ g τ g π �1� A � f g e � p 	 τ � π � φ � e � l 
 (4.28)� argmax
l g e p 	 e � l 
 max

π � P �!p 1 g"q"q"qrgm st� p 	 τ � π � φ � e � l 
 (4.29)
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where the constraint 	 φ � τ � π 
uO A 	 f � e 
 means that fertilities, tablets and per-
mutations must be compatible with word alignments between f and e, i.e. the
corresponding source-alignment pair 	 f � a 
 has to cover all the m source po-
sitions exactly once. In Equation (4.29), a shorter but equivalent notation is
used for this constraint: as τ and φ are univocally determined from π and f,
we just constrain π to define a partition over the set of source positions, i.e.
π O P 	vc 1 ��������� m e\
 .
The score Q ' of the optimal translation e ' can be computed by explicitly search-
ing among optimal solutions of fixed length, i.e.:

Q ' � max
l g e p 	 e � l 
 max

π � P �!p 1 g"q"q"qwgm st� p 	 φ � τ � π � e � l 
�� max
l

Q 'l (4.30)

Further, the optimal score of a solution of length l can be searched among solu-
tions which also fix the last two words and the center of the last cept, i.e.:

Q 'l � max
e � g e max

π̄
max

e:el x 1 
 e � g el 
 e
p 	 e � l 
 max

π � P �!p 1 g"q"q"qrgm st� :π̄l 
 π̄
p 	 φ � τ � π � e � l 
� max

e � g e max
π̄

Ql 	vc 1 ��������� m e � π̄ � e � � e 
 (4.31)

The above criterion permits us to introduces the quantity Qi 	 C � π̄ � e � � e 
 which
indicates the score of an optimal solution of length i, with last target words e � � e,
center of the last cept π̄, and permutations πi

0 defining a partition of the subset
of source positions C . This quantity can be defined recursively with respect to
the length i as follows:

base: i � 0

Q0 	 π0 � π̄0 � ε � ε 
 � p 	 φ � τ � π � e � 0 
�� p 	 φ0 � τ0 � m � φ0 
 (4.32)

step: i y 0

Qi 	 C � π̄ � e � � e 
 � max
ei

1:ei x 1 
 e � g ei 
 e
p 	 e � i 
 max

πi
0 � P � C � :π̄i 
 π̄

p 	 φ � τ � π � e � i 
 (4.33)� max
e � � p 	 e � e �"� � e � 
�z
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max
GHHHHHHHI HHHHHHHJ

max
/0 { πi | C :π̄i 
 π̄

max
π̄ � p 	 φi � τi � πi � e � π̄ � 
Bz

Qi � 1 	 C } πi � π̄ � � e �"� � e � 

p 	 φi � 0 � e 
 Qi � 1 	 C � π̄ � e �"� � e �A


(4.34)

� max
e � � max

/0 | πi | C :π̄i 
 π̄
max

π̄ �
p 	 e � e �"� � e � 
 p 	 φi � τi � πi � e � π̄ � 
�z
Qi � 1 	 C } πi � π̄ � � e �"� � e � 
 (4.35)

Last step is trivially correct by remembering that p 	 φi � τi � πi � e � π̄ � 
�� p 	 φi � 0 �
e 
 if πi � /0, as derived from Equations (4.11, 4.13, 4.15, 4.20).

4.3.1 Analysis of the complexity

Intuitively, the optimal score is computed according to the following rules. In
the first step (i � 0), no target words are generated and all positions in C are
covered by the empty word e0. In the next steps (i y 0), one additional target
word is generated according to the most likely of two possibilities: i) sub-case
φi y 0, additional positions πi are covered up to C , by producing a new center
π̄; ii) sub-case φi � 0, no further positions are covered, hence the center remains
unaltered.
The above formulation presents two features which make the search problem
suitable to the application of DP [18]:� Optimal substructure: i.e. the optimization problem contains within it op-

timal solutions to identical subproblems of smaller size. More specifically,
optimal solutions for length i embed optimal solutions for length i � 1.� Overlapping subproblems: i.e. the number of subproblems to be solved is
“relatively” small so that an algorithm typically revisits the same subprob-
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lems over and over again. In particular, searching an optimal solution of
length l which covers all source positions would require searching among
all target strings of length l, all alignments between source and target posi-
tions (plus the e0). This corresponds to a search space of size 	 l � 1 
 m �E � l .
On the other hand, the number of subproblems Qi 	 C � π̄ � e � � e 
 to be solved
is upper-bounded by the significantly lower number 	 l � 1 
 2m m �E � 2.

Each subproblem Qi 	 C � π̄ � e � � e 
 is solved through the maximization over generic
e O E , /0 b πi b C so that π̄i � π̄, and π̄ � . By assuming a maximum φmax for the
fertilies values this maximization is performed over a set of partial hypotheses
which is smaller than7

�E �^	 φmax � 1 
 m

φmax
	 m � 1 


and for each of those the number of operations is constant.
Hence we can conclude that the complexity of the search algo-

rithm is O 2m m3 φmax
m

φmax
�E � 3 , by constraining the output strings to

be at most two times longer than the input length.

4.3.2 Search algorithm

A search algorithm exploiting dynamic programming is shown in Figure 4.3.
The algorithm works iteratively by expanding, at each step i, a pool (set) of
theories corresponding to partial solutions of length i. This results in a new pool
of theories of length i � 1, which is expanded at step i � 1, and so on. At the
begin, the best solution best-th is initialized with a fake complete solution (line
1-2), and the pool is initialized with theories generating the null word (lines
3-5). These theories cover source positions but do not generate target words.
Theories th are characterized by the following three attributes: the state of the

7We assume that φmax ~ m
2 .

57



4.3. SEARCH PROBLEM

theory state[th], which specifies the coverage set C , the center of the last cept
π̄, and the last two target words e � and e; the score of the theory score � th � ; and
the backpointer bp[th], which refers to the theory th originates from.
At each step i (lines 7-19), the pool of expanded theories (pool � i � 1 � ) is initial-
ized with the empty set (line 8). Hence, theories of the current set (pool � i � ) that
score better than the so-far best found complete solution (best-th) are considered
for completion or expansion (lines 10-11). In fact, given that theory expansion
always decreases the score, such theories are not worth to be expanded. Ev-
ery surviving theory th1 which covers all source positions (ISSOLUTION(th1))
returns true, line 11) is checked against the so far best complete solution
best-th, which is eventually updated (line 12). Otherwise, th1 is expanded by
deriving all possible theories th2 with one additional target word, (outcome of
EXPANDTHEORY(th1), line 13). For each theory th2, recombination over
pool � i � 1 � is performed by checking the existence of other theories having the
same state (line 14-17). As a result, for each state only the best scoring theory
is maintained. After all theories in pool � i � have been expanded, less promising
theories in pool � i � 1 � are pruned (PRUNETHEORIES). In particular, theories
which score below the local optimum by a given threshold are eliminated, as
well as theories out of the top N-best, where N is a given threshold. These crite-
ria are applied, first, to all theories with a fixed coverage set, then to all theories
of the pool. After theory pruning, the step variable i is increased by one. The
iterative procedure stops once there are no more theories to expand, i.e. pool � i �
is empty. In this case, the optimal translation is recovered from best-th through
its back-pointer, which was properly set at its creation time by procedure EX-
PANDTHEORY (line 20).
In order to reduce the possibly huge number of theories to generate, or equiva-
lently sub-problems to solve, two methods are used:� Reordering constraint (procedure EXPANDTHEORY): a smaller number of

theories is generated by applying the so-called IBM constraint each time a
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DP-SEARCH

1 best-th � DUMMYCOMPLETETHEORY
�
m �

2 score - best-th .0� 3 ∞
3 pool - 0 .0� /0
4 for each th , NULLWORDTHEORIES

�
m �

5 do ADDTHEORY
�
pool - 0 .A� th �

6 i � 0
7 while pool - i .��( /0
8 do pool - i 5 1 .0� /0
9 for each th1 , pool - i .

10 do if score[th1] � score[best-th]
11 then if ISSOLUTION

�
th1 �

12 then best-th � th1
13 else for each th2 , EXPANDTHEORY

�
th1 �

14 do if found � FINDTHEORY
�
pool - i 5 1 .�� state - th2 .��

15 then if score[th2] � score[found]
16 then REPLACETHEORY

�
found � th2 �

17 else ADDTHEORY
�
pool - i 5 1 .A� th2 �

18 PRUNETHEORIES
�
pool - i 5 1 .��

19 i � i 5 1
20 BACKTRACKSOLUTION(best-th)

Figure 4.3: DP-based search algorithm.

new source position is covered: only select one of the first 4 empty posi-
tions, from left to right.� Probability cutoff (procedure EXPANDTHEORY): less target word hypothe-
ses are considered for each source word by trimming the translation prob-
abilities p 	 f � e 
 at a given quantile and at a maximum number of entries,
.99 and 15, respectively.

More details about these techniques and their impact on a search algorithm
for Model 4 can be found in [79]. Finally, Figure 4.4 shows how theories are
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Best
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Pool[0]

Direction of Expansion

i=2

Figure 4.4: Expansion, recombination and pruning of theories during the search process.

generated, recombined and pruned during the search process.

4.3.3 Extension to word-graphs

The algorithm described in the previous Section looks for the best translation
only and therefore will also call it 1-best decoder. As will be shown later in
Section 5.3, it can be useful to generate more translation alternatives for each
input sentence. A relatively easy modification of the 1-best decoder allows
to produce a Word Graph (WG) (see Section A) representing all translation hy-
potheses considered during the search. This augmented decoder will be referred
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to as WG decoder; similar work was proposed in [82]. Practically, instead of
storing one backpointer to the best entering theory, we store all incoming theo-
ries by means of a list of backpointers. If we look at Figure 4.4 again, all edges
entering in a theory are saved, included the dotted ones, which are removed by
the 1-best decoder instead.

DP-SEARCH

1 best-th � DUMMYCOMPLETETHEORY(m)
2 score[best-th] �_3 ∞
3 pool[0] � /0
4 for each th , NULLWORDTHEORIES(m)
5 do ADDTHEORY(pool[0],th)
6 i � 0
7 while pool[i] �( /0
8 do pool[i 5 1] � /0
9 for each th1 , pool[i]

10 do if ISSOLUTION(th1)
11 then ADDBACKPOINTERS(best-th,th1)
12 if score[th1] � score[best-th]
13 then REPLACETHEORY(best-th,th1)
14 else for each th2 , EXPANDTHEORY(th1)
15 do if found � FINDTHEORY(pool[i 5 1],state[th2])
16 then ADDBACKPOINTERS(found,th2)
17 if score[th2] � score[found]
18 then REPLACETHEORY(found ,th2)
19 else ADDTHEORY(pool[i 5 1],th2)
20 PRUNETHEORIES

�
pool - i 5 1 .��

21 i � i 5 1
22 WORDGRAPHGENERATION(best-th)

Figure 4.5: DP-based search algorithm for the generation of a word-graph.

The algorithm presented in Section 4.3.2 is modified as shown in Figure 4.5.
First of all, the comparison between the scores of the actual theories and the
best theory (Figure 4.3, line 10) is avoided because we are interested in all
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translation hypotheses, and not only in the best one.

At every recombination step (lines 10-13 and 15-18), we first update the list of
backpointers of the pre-existing theory (best-th and found, respectively) with the
new theory (procedure ADDBACKPOINTERS), and then substitute the winner
hypothesis in pool[i � 1] (procedure REPLACETHEORY).

Moreover, in the final step we do not recover the best translation anymore, but
we generate a WG by backtrackifrom best-th. Pruning is possibleg as well, and
all edges entering in a pruned theory can be removed.

Time for decoding only slighty increases due to backpointers storing; in fact,
loser theories in the recombination steps are not removed, but they are not ex-
panded. Time for searching the best translation is not more time costly, if we
store also the best backpointer.

There is an increasing memory consumption because we store more backpoint-
ers, and because garbaging is less effective. Experiments show that the process
requires about xx% more memory.

4.4 Phrase-based translation

The advantages of the statistical translation approach are advocated by the many
papers on the subject, which followed its first introduction. Of course, there
have been also attempts to overcome some of its shortcomings. In particular,
statistical phrase-based translation models have recently emerged as a mean
to cope with the limited use of context that Model 4 makes in order to guess
word translations (lexicon model) and word positions (distortion model). Phrase
models rely on statistics of phrase pairs, which can be automatically extracted
from a word-aligned parallel corpus [41].

In the following, we briefly describe a known technique to extract phrase pairs,
and then introduce a novel phrase-based translation framework which is tightly
related to Model 4, so that the same search algorithm can be used. The same
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search algorithm presented in Section 4.3.2 can be used because modifications
are given only in the probability distribution and not in the generative process.

4.4.1 Phrase-pair extraction

The here used method exploits so called union alignments between sentence
pairs of the training corpus [41]. Given strings f � f1 ��������� fm and e � e1 ��������� el ,
a direct alignment a (from f to e) and an inverted alignment b (from e to f), the
union alignment is defined as:

c ��c�	 j � i 
 : a j � i � bi � j e (4.36)

It is easy to verify that while a and b are many-to-one alignments, c can be a
many-to-many alignment. Moreover, the union alignment does not necessarily
cover all source and target positions (see the example in Figure 2).

Given a source-target sentence pair 	 f � e 
 and an union alignment c, let J and I

denote two closed intervals within the positions of f and e, respectively. We say
that I and J form a phrase pair under c if and only if c aligns all source positions
J with target positions contained in I, and all target positions I with source
positions contained in J. (See examples in the caption of Figure 2.). From
the point of view of the direct alignment, phrases may include zero-fertility
words, in the target, and words mapped in the null word, in the source. See,
for instance, the phrases in Figure 2 which contain the target words after and
tomorrow and the source word beh.

Given a parallel corpus provided with Viterbi alignments in both directions:

c�	 fs � es � as � bs 
 : s � 1 ��������� S e
we can compute all phrase pairs occurring in it:

P ��c�	 f̃ p � ẽp 
 : p � 1 ��������� P e (4.37)
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please 8 W W W W W X X
tomorrow 7 W W W W W W W

after 6 W W W W W W W
day 5 W W W W X W W
the 4 W W W W W W W
of 3 W W W X W W W

instead 2 W W X W W W W
today 1 W X W W W W W

1 2 3 4 5 6 7
be
h

og
gi

in
ve
ce

di do
po
do
ma
ni

pe
r

fa
vo
re

Figure 4.6: Examples of source phrase, target phrase, and overlapped direct ( � ) and inverted ( � )
alignments. The union alignment corresponds to all points � , � and � . Examples of result-
ing phrase pairs are: (beh#oggi#invece, today#instead), (di, of#the), (di#dopodomani,
of#the #day#after#tomorrow).

Practically, in order to limit the number of phrases, the maximum length of I

and J is limited to some value k. It is worth noticing that the set P also includes
phrase pairs with one single target word.

4.4.2 Phrase-based translation framework

We assume that an augmented target vocabulary Ẽ is obtained from E by in-
cluding all target phrases in P . Hence, the search criterion (4.26) is modified as
follows:

ẽ ' � argmax
ẽ

max
a

Pr 	 f � a � ẽ 
 Pr 	 ẽ 
 (4.38)

where ẽ ranges over all strings of Ẽ .

Next subsection presents the phrase-based LM Pr 	 ẽ 
 , which extends a standard
word-based LM, introduced in Section 4.2.1. Later, three phrase-based transla-

64



CHAPTER 4. TEXT TRANSLATION

tion models Pr 	 f � a � ẽ 
 are introduced, which maintain the same parametric form
of Model 4. Depending on the model, fertility, lexicon, and distortion probabil-
ities are estimated by assuming a sample P of phrases or available parameter
estimates of Model 4, and the augmented target vocabulary Ẽ .

4.4.3 Phrase-based language model

The language model probability of a string of phrases ẽ � ẽ1 ��������� ẽl , where
ẽi � ei g 1# ��� #ei g ki (i � 1 ��������� l), is computed through the following decomposi-
tion:

Pr 	 ẽ 
 � p 	 l 
 p 	 ẽ � l 
� p 	 l 
 l

∏
i 
 1

p 	 ẽi � ẽ1 ������� ẽi � 1 

� p 	 l 
 l

∏
i 
 1

p 	 ki 
 ki

∏
h 
 1

p 	 ei g h � ẽ1 ������� ẽi � 1 � ei g 1 ��������� ei g h � 1 
 (4.39)

The first factor p 	 l 
 is a probability distribution of the length l of a string of
phrases (see Equation (4.6); the first product multiplies the phrase length proba-
bility of each phrase, which are taken uniform within the interval � 1 ��� k � ; the last
product is the word-based language model probability of the whole sequence of
words in ẽ.

By considering a trigram LM and renumbering the phrase sequence
ẽ � e1 g 1 ������� e1 g k1 ��������� el g 1 ������� el g kl � e1 ��������� en, we can rewrite:

Pr 	 ẽ 
 � p 	 l 
 l

∏
i 
 1

p 	 ki 
 n

∏
i 
 1

p 	 ei � ei � 2 � ei � 1 
 (4.40)

where n � l

∑
i 
 1

ki

Notice that the language model (4.39) is deficient, i.e. it assigns positive proba-
bilities even to phrases outside the extended vocabulary.
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4.4.4 Sample-based phrase model

This phrase model exploits a counting probability measure defined on the phrase
sample P . Hence, the relative frequency of a given phrase pair 	 f̃ � ẽ 
 in the sam-
ple P is interpreted as the probability of the phrase-pair, given the training data.
Hence, for any phrase-pair 	 f̃ � ẽ 
 and fertility value φ, we define the following
statistics over P , which are used to compute basic probabilities of the translation
model:

N 	 f̃ � φ � ẽ 
 � P

∑
p 
 1

δ 	 f̃ p � f̃ 
 δ 	 ẽp � ẽ 
 δ 	�� f̃ p ��� φ 

N 	 φ � ẽ 
 � ∑̃

f

N 	 f̃ � φ � ẽ 

N 	 ẽ 
 � ∑

φ
N 	 φ � ẽ 


where δ 	 R 
�� 1 if R is true and 0 otherwise.

Fertility Model. The fertility model is defined as the sample conditional fre-
quency of a fertility value φ given a target phrase ẽ:

p̃S 	 φ � ẽ 
�� N 	 φ � ẽ 

N 	 ẽ 
 (4.41)

Lexicon Model. The lexicon model is defined as the sample conditional proba-
bility of a tablet τ given a fertility value φ and a target phrase ẽ:

p̃S 	 τ � φ � ẽ 
�� N 	 f̃ 	 τ 
 � φ � ẽ 

N 	 φ � ẽ 
 (4.42)

where f̃ 	 τ 
 trivially transforms τ into a phrase. The implicit assumption that
the tablet must correspond to a source phrase, i.e. it must cover consecutive
positions, is made explicit by the following distortion model.
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Distortion Model. The sample-based distortion model assigns the first tablet po-
sition the same probability given by the Model 4 distortion model, but constrains
successive positions to be adjacent. Hence, assuming that π̄ is the center of the
cept preceding π, we have:

p̃S 	 π � φ � π̄ 
�� p 
 1 	 π W g 1 � π̄ 
 φ

∏
k 
 2

δ 	 π W g k � π W g k � 1 � 1 
 (4.43)

Besides limiting possible permutations of a tablet, in accordance with the phrase
extraction method, the sample-based phrase model strongly relies on statistics
extracted from the training corpus. Given the significantly larger number of pa-
rameters, we should expect probability estimates with a lower bias, with respect
to Model 4, but higher variance when data-sparseness increases.

4.4.5 Composition-based phrase model

This model is build-up from an existing word-based translation model and the
augmented vocabulary. Given a target phrase ẽ � e1# ����� #ed , fertility and lex-
icon models are defined, which reduce to those of Model 4 in the case d � 1.
The original distortion model is maintained, assuming that it does not depend
on the target phrase.

Fertility Model. The probability of φ is computed by integrating over all possi-
ble fertilities φ1 ��������� φd of the words in ẽ, such that φ1 � ����� � φd � φ, i.e.:

p̃C 	 φ � ẽ � e1# ����� #ed 
�� GHHHHI HHHHJ

φ

∑
φd 
 0

p 	 φd � ed 
 p̃C 	 φ � φd � e1# ����� #ed � 1 
 if d y 1

p 	 φ � ed 
 otherwise
(4.44)

where p 	 φ � e 
 denotes the Model 4 fertility probability. If φmax is the maxi-
mum fertility associated with single words, the maximum fertility value for ẽ is
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d φmax.

Lexicon Model. Given a fertility value φ and a phrase ẽ, the probability of a
tablet τ for ẽ is computed by integrating over all possible word alignments from
tablet τ to phrase ẽ, i.e.:

p̃C 	 τ � φ � ẽ 
 � d � φ
d

∑
a1 
 1

��� d

∑
aφ 
 1

p 	 τ W g 1 � ea1 
 ��� p 	 τ W g φ � eaφ 
 (4.45)

� φ

∏
k 
 1

1
d

d

∑
i 
 1

p 	 τ W g k � ei 
 (4.46)

where the factor d � φ corresponds to taking a uniform prior distribution over the
alignments, and p 	 τ W g W � e 
 is the Model 4 lexicon probability. The last formula,
which is much faster to compute, results from a property of the sum, already
shown in [12].

It is worth noticing that by inheriting the word-based distortion model, this
phrase model does not meet the requirement of phrases to cover consecutive
source positions. In fact, it will moderately favor true phrase-pairs, since the
distortion model tends to reward permutations with no holes inside. Clearly,
the composition-based model embeds less knowledge about the sample P , i.e.
only the set of target phrases, and permits the same word reordering freedom
as Model 4. Given that lexicon and fertility probabilities rely on parameters
estimated of simpler events, i.e. single word fertilities and translations, the
composition-based model should feature more robustness with respect to data
sparseness, but less precision (higher bias) with respect to the sample-based
model.

Notice that in order to bound the decoding complexity with this model, for each
target hypothesis ẽ, the search algorithm will only considers tablets τ such that
the pair 	 f 	 τ 
 ,ẽ 
 occurs in P . As a consequece, there will be no difference be-
tween the theories generated with the composition- and sample-based models,
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but the computed scores.

4.4.6 Interpolation-based phrase model

This model tries to exploit the complementarity of the previous two models, by
linearly combining their components. The resulting fertility, lexicon, and dis-
tortion models, as well as the applied interpolation weights, are the following.

p̃I 	 φ � ẽ 
 � λ 	 ẽ 
 p̃S 	 φ � ẽ 
��	 1 � λ 	 ẽ 
�
 p̃C 	 φ � ẽ 
 (4.47)

p̃I 	 τ � φ � ẽ 
 � λ 	 φ � ẽ 
 p̃S 	 τ � φ � ẽ 
��	 1 � λ 	 φ � ẽ 
�
 p̃C 	 τ � φ � ẽ 
 (4.48)

p̃I 	 π � τ � φ � ẽ � π̄ 
 � λ 	 τ � φ � ẽ 
 p̃S 	 π � φ � π̄ 
��	 1 � λ 	 τ � φ � ẽ 
�
 p̃C 	 π � φ � π̄ 
 (4.49)

where

λ 	 ẽ 
�� N 	 ẽ 

N 	 ẽ 
�� D 	 ẽ 
 D 	 ẽ 
�� ∑

φ
δ 	 N 	 φ � ẽ 
ly 0 


λ 	 φ � ẽ 
�� N 	 φ � ẽ 

N 	 φ � ẽ 
�� D 	 φ � ẽ 
 D 	 φ � ẽ 
�� ∑

τ
δ 	 N 	 f̃ 	 τ 
 � φ � ẽ 
�y 0 


λ 	 τ � φ � ẽ 
�� φ x 1
� � 95 if 	 f̃ 	 τ 
 � ẽ 
�O P � φ y 1

0 otherwise

In particular, the model smoothes sample frequencies of the fertility and lex-
icon models by means of the well known method by [87]. Sample frequencies
of the distortion model are instead smoothed according to the a priori probabil-
ity that τ will cover adjacent positions, given that the pair 	 f̃ 	 τ 
 � ẽ 
 is observed
in P . Empirically we set this probability to � 95 for a tablet of two elements, and
let this probability grow as φ x 1

� ? for larger values of the fertility φ.
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preprocessingtext text decoder WG

− LM

− fertility        "
− distortion   "
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postprocessing text

translation
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best
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Figure 4.7: The ITC-irst Statistical Machine Translation system at run time: after preprocessing,
the input sentence is sent to the decoder that, given the model parameters, search for the best
hypothesis. A final postprocessing step provides the actual translation.

We expect the interpolation-based model to trade-off between the less precise
but more stable parameters of the composition-based model and the sharper but
less reliable estimates of the sample-based model.

4.5 The ITC-irst SMT system

The architecture of the Statistical Machine Translation system at run time is
shown in Figure 4.7. The main module is the decoder, which implements the
search algorithm presented in Section 4.3. Given a sentence in the source lan-
guage, it provides as output a WG including alternative translation hypotheses
in the target language, from which the best one or an N-best list can be extracted.

Before and after the decoding phase, two additional steps are performed: first,
the raw input sentence is preprocessed to normalize words and reduce data
sparseness (see section 4.5.1 for details); finally, the best or the N-best hy-
potheses provided by the decoder are postprocessed in order to get the actual
translation (section 4.5.2).
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Figure 4.8: The two-phase architecture of the training system: first, the probability distributions
of the phrase-based translation model are estimated by means of alignments (left side). Lan-
guage model is estimated on a monolingual corpus. Then, the model weights of the submodels
are computed by a minimum error training loop (right side).

Parameters of the statistical model are estimated by a dedicated training system
whose two-phase architecture is shown in Figure 4.8. In the first phase the prob-
ability distributions of the phrase-based translation model are computed start-
ing from a parallel training corpus. After preprocessing, word alignment with
GIZA++ toolkit [59], and phrase extraction distributions of the word- and/or
phrase-based model are estimated. Language model parameter is trained on a
monolingual corpus, even larger than the parallel corpus.

In the second phase model weights can be optimized through a Minimum Er-

71



4.5. THE ITC-IRST SMT SYSTEM

ror Training loop, which minimizes the translation errors made by the decoder
running with a specific parameter set on a development corpus (see Section 5.3).

4.5.1 Preprocessing

Preprocessing of the data aims at normalizing words in order to reduce data
sparseness. The same preprocessing steps are applied to both source and target
sentences, obviously specialized for each language.

tokenization Words are separated from punctuation. Acronyms and abbrevia-
tions are also managed in this step.

number extraction Numbers are transformed into digits.

segmentation In Chinese, as well as in other Asian languages, there is no
space between words. It is therefore necessary to separate the sequence
of ideograms into words because the training and decoding algorithms as-
sume sentences divided into words. The segmentation step for Chinese is
described in [6]. Non-Asian languages like English do not need segmen-
tation.

splitting As decoding complexity is more than linear in the sentence length,
long sentences are tentatively split into shorter portions according to strong
punctuation.

labeling Expressions belonging to a specific group of semantic classes are sub-
stituted with appropriate labels that encode class name and the value rep-
resented by the expression. Currently recognized classes include cardinal
and ordinal numbers, week-day and month names, month days, years and
percentages. This step is performed only for Chinese.

case normalization All the words are put in lowercase.
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punctuation reinforcement Each sentence is enriched by inserting at its be-
ginning the strong punctuation character with which the sentence ends
(namely full stop, question or exclamation mark). This extra information
helps the system to match correctly words and their order with respect to
the sentence type (statement, question or exclamation).

4.5.2 Postprocessing

The best hypothesis found by the decoder in the target language need to be re-
fined before be presented as the final translation. The following postprocessing
steps are then applied:

unsplitting In the processing, long source sentences were split into shorter por-
tions. The unsplitting step recovers the original situation, by merging to-
gether the target sentences being the translation of the portions belonging
to the same source sentence.

phrases decomposition The sequence of words composing a phrase is decom-
posed into the single words.

label value instantiation Labels with abstract values are translated into the tar-
get language according to the label class and value.

number normalization Number in digits are substituted with their string rep-
resentation.

case restoration At this point all the words are in lowercase: this step tries to
restore the uppercase words by means of a Maximum Entropy tagger. In
addition simple syntactical rules are applied (e.g. words following strong
punctuation are put in upper case).
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4.6 Experiments

We present experimental results on two translation tasks: from Chinese to En-
glish and from Italian to English. Both tasks consists of translating written sen-
tences commonly used in tourism domain, which can be found in the so-called
phrase books.

Evaluation regards the comparison of the three phrase-based models and the
word-based model, their performance according with different amount of train-
ing data and different settings of search parameters. BLEU, NIST and MWER 8,
described in Appendix B.2, are used to measure translation quality, while the
average number of hypotheses, Avg#Th, gives an estimate of the computational
effort, because it strictly correlates the decoding time as shown in Appendix B.2.

4.6.1 BTEC corpus

The Basic Travel Expression Corpus (BTEC) is a multi-lingual parallel corpus,
originally created by ATR [77], and now jointly developed within the C-STAR
consortium9. The corpus originates from a large collection of Japanese-English
phrase-books. Starting from the English version, translations were added in
Chinese and Italian10. Figure 4.9) shows an excerpt of BTEC. In general, ac-
cording to the target language one or more translations were produced for each
sentence to solve possible translation ambiguities.

4.6.2 Training and testing data

Two parallel corpora are extracted from BTEC for training purposes. In Ta-
ble 4.1 detailed statistics on the two translation tasks are reported. It is worth

8The MT scoring tool was kindly provided by USC/ISI.
9www.c-star.org

10BTEC also contains, or plans to add, translations in Korean, German, French and Spanish are in progress.
Since 2004, parts of the corpus have been made available to research groups participating in evaluation campaigns
organized by the C-STAR partners.
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Figure 4.9: Sample of the Basic Travel Expression Corpus.

noticing that the Italian-English training data includes translation alternatives.

For testing purposes, we employed two data sets both Chinese-English and
Chinese-English tasks. The first test (Q1) set consists of 3006 sentences aligned
in Chinese, Italian and English. For each test sentence, only one reference is
available. This test set is large enough to compute relatively sharp 95% confi-
dence intervals [93], and also to test if differences in performance between two
systems are statistically significant or not (see Appendix B.2). In this case, we
applied a test of equality of the means of two normal distributions, and consid-
ered a confidence level α=0.05. Moreover, we considered a second test set (Q2)
with only 506 sentences, each having 16 translation alternatives. This test set
was used in the 2003 C-STAR evaluation campaign.

Table 4.2 reports detailed statistics about the two test sets for Chinese, Italian,
and English. Figures related to the target language refer to the gold reference.

In both tasks, source and target texts were preprocessed as described in Sec-
tion 4.5.1.

As described in Section 4.4, estimation of phrase-based models needs the avail-
ability of bidirectional alignments and estimates of Model 4, which were com-
puted with the GIZA++ toolkit [60]. Translation phrase-pairs were extracted
from both training corpora according to the method described in Section 5.1.
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The number of extracted phrase-pairs (see Table 4.1) was 1.5M and 1.1M for
Chinese-English and Italian-English, respectively.

source target phrase
sentences vocabulary words vocabulary words pairs

Chinese-English 159K 15.4K 1120K 13.2K 1141K 1459K
Italian-English 52K 15.7K 451K 10.8K 480K 1074K

Table 4.1: Statistics of the training corpora for the Chinese-English and Italian-English tasks:
number of sentences, number of words, vocabulary size, and number of extracted phrase pairs.

test set source target
sent. words OOV rate words OOV PP

Q1 Chinese-English 3006 27117 3.7% 28782 3.3% 99
Italian-English ” 28332 4.3% ” 4.4% 110

Q2 Chinese-English 506 3765 2.8% 3670 2.1% 84
Italian-English ” 3509 4.1% ” 4.3% 94

Table 4.2: Statistics of the two test sets for the Chinese-English and Italian-English tasks: num-
ber of sentences, number of words and percentage of out-of-vocabulary words in the source
sentences, number of words and perplexity of the gold target reference.

4.6.3 Comparison of translation models

The first experiment measures the performance of the three phrase-based trans-
lation models and Model 4 according to all considered scores. Tables 4.3 and
4.4 report results on the Chinese-English and Italian-English tasks, respectively;
performance in BLEU, NIST, and WER with corresponding confidence intervals,
are given for the test set Q1. For the sake of comparison, the same pruning
parameter setting of the search algorithm was used for all phrase models, while
different pruning settings were applied to Model 4. Different parameter settings
of Model 4 are reflected by increasing average numbers of generated theories
(column Avg#Th).
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BLEU NIST MWER Avg#Th

wM4 15.8 (15.1-16.5) 4.56 (4.47-4.65) 72.1 (70.3-73.8) 93K
“ 16.7 (15.9-17.4) 4.71 (4.63-4.81) 69.9 (68.1-71.6) 144K
“ 17.1 (16.4-17.8) 4.80 (4.71-4.89) 68.8 (67.0-70.4) 181K
“ 17.1 (16.4-17.9) 4.84 (4.75-4.92) 68.3 (66.6-69.9) 204K

pMs 20.5 (19.7-21.3) 5.04 (4.94-5.15) 69.6 (67.6-71.5) 193K
pMc 17.4 (16.6-18.0) 4.70 (4.61-4.78) 72.6 (70.7-74.5) 195K
pMi 19.7 (19.0-20.5) 5.00 (4.90-5.09) 70.0 (68.0-71.8) 222K

Table 4.3: Comparison of different translation models on the test Q1 in the Chinese-English
task.

BLEU NIST MWER Avg#Th

wM4 34.9 (33.8-35.8) 6.94 (6.83-7.04) 46.0 (44.8-47.2) 49K
“ 38.7 (37.6-39.6) 7.39 (7.28-7.50) 42.7 (41.5-43.8) 76K
“ 39.4 (38.4-40.4) 7.49 (7.37-7.59) 42.0 (40.9-43.2) 106K

pMs 44.8 (43.7-45.8) 7.92 (7.80-8.03) 38.4 (37.2-39.7) 93K
pMc 38.5 (37.5-39.4) 7.26 (7.14-7.37) 43.5 (42.3-44.7) 95K
pMi 42.4 (41.4-43.4) 7.68 (7.56-7.79) 40.0 (38.8-41.2) 110K

Table 4.4: Comparison of different translation models on the test Q1 in the Italian-English task.

BLEU and NIST scores indicate that the sample-based (pMs) and the interpolation-
based (pMi) models outperform Model 4 (wM4), in both translation tasks. For
both scores and tasks, differences are statistically significant at level α=0.05.
At more or less comparable computational loads, improvements in BLEU score
range between 13% (I-E BLEU 39.4 vs. 44.8) to 19% (C-E BLEU 17.1 vs 20.5).

The composition-based model is comparable with Model 4; in fact, the ranking
of the two models depends on the task and on the considered scores. Among
the phrase models, the sample-based model (pMs) performs significantly better
(α=0.05) than the composition-based model (pMc), and similarly to the interpo-
lation-based model (pMi).

In the Chinese-English task only, a smaller MWER score is reported in favor of
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BLEU NIST MWER

wM4 30.02 7.10 57.53
“ 31.57 7.25 54.56
“ 32.28 7.31 53.28
“ 32.29 7.28 52.7

pMs 34.43 7.43 56.63
pMc 32.11 7.22 58.48
pMi 33.79 7.48 56.74

Table 4.5: Comparison of different translation models on the test set Q2 in the Chinese-English
task.

BLEU NIST MWER

wM4 45.78 8.45 40.11
“ 48.52 8.58 37.52
“ 48.73 8.54 37.17

pMs 59.37 9.82 32.23
pMc 51.32 9.05 37.14
pMi 57.32 9.63 33.22

Table 4.6: Comparison of different translation models on the test set Q2 in Italian-English task.

Model 4, under pruning parameters generating comparable numbers of theories.

These observation are fully confirmed by results on the test set Q2, reported in
Tables 4.5 and 4.6.

From a qualitative point of view, evident improvements by phrase-based mod-
els are in the lexical choice, local word reordering, and fluency of the out-
put. For instance, in the first example of Table 4.7, the phrase-based model
was able to correctly reorder to common multi-word expression il cancello

d’ imbarco (the boarding gate). In the second example, the phrase-based
model produces a more fluent output by translating the preposition in and the
adjective quell’ jointly with their left and right contexts, respectively.
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Source (Italian) Dove è il cancello d’ imbarco ?

Translation with wM4 Where is the gate before boarding ?

Translation with pMs Where is the#boarding#gate ?

Source (Italian) C’ è un salone di bellezza in quell’ albergo ?

Translation with wM4 Is there a beauty salon in the of that hotel ?

Translation with pMs Is#there a beauty#salon#in that#hotel ?

Table 4.7: Examples of translations produced by word- and phrase-based models.

4.6.4 Incremental training data

In order to investigate the model behavior under different data-sparseness con-
ditions, subsets of the training corpora of increasing size were extracted. BLEU,
NIST and WER scores achieved by all models after training on each sub-corpus
are plotted in Figure 4.10 and 4.11 for the Chinese-English and Italian-English
tasks, respectively. A logarithmic scale is used for the x-axis.

In both translation tasks, the composition-based model performs very close to or
even better than the sample-based model in the worst data-sparseness conditions
(up to 20K and up to 5K training sentences for Chinese-English and Italian-
English, respectively). In the Chinese-English task, the sample-based model
gives NIST scores even worse than Model 4 up to 5K training sentence. BLEU

scores reward a bit more the sample-based phrase model, but in general the
same conclusion can be drawn: among the considered models, this is the most
sensitive to the amount of training data.

Remarkably, the interpolation-based model shows either the best or very close
to the best scores, across all tasks and training conditions. These results seem
to confirm the speculations made in the previous section.

4.6.5 Impact of zero fertility words

Figures 4.12 and 4.13 report BLEU and NIST scores of Model 4 and phrase mod-
els by varying the maximum number of zero-fertility words allowed in the target
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string. This parameter is expressed in terms of a percentage of the length of the
source string. Plots show that decreasing the possibility of insertions up to 5%
improves BLEU performance for all phrase models, in particular for the sample-
based model. NIST scores show lower improvements for phrase models and a
small decrease for Model 4 are observed.
If the insertion of zero-fertility words is completely forbidden, a relative im-
provement of the BLEU score between 6% and 17% is observed for phrase-based
models. On the contrary, Model 4 significantly worsens performance, reducing
the BLEU score by a relative 8%-13%.
A rationale for the better performance yield by phrase models after limiting
or forbidding target word insertions is that target phrases already contain extra
words, as underlined in subsection 5.1. Moreover, an additional positive side-
effect is the significantly lower number of generated theories, and, consequently,
the reduced translation time.
In accordance with these results, subsequent experiments were carried out with
the interpolated phrase-based model, and by inhibiting the insertion of zero-
fertility words.

4.6.6 Length of source phrases

A factor that impacts on memory consumption of the decoding algorithm is the
considered number of phrase pairs, which is strictly related to the size of the
training corpus and the maximum allowed phrase length k. An experiment sim-
ilar to that described in [41] was carried out to verify how translation accuracy
varies with respect to the maximum allowed length of phrases. Results for both
translation tasks by using all the available training data are shown in Tables 4.8
and 4.9.
Optimal or close to optimal performance is achieved with phrase length up to
k � 5. However, a very good trade-off is reached for k � 3, which gives a
slightly worse performance (less that 4% relative), but a significant reduction of
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k # phrases BLEU NIST MWER Avg#Th

1 88K 11.6 (11.0-12.3) 4.24 (4.15-4.33) 69.1 (67.5-70.7) 30K
2 174K 16.0 (15.3-16.7) 4.70 (4.61-4.78) 69.2 (67.5-70.7) 43K
3 335K 16.6 (15.9-17.3) 4.75 (4.67-4.83) 69.1 (67.4-70.7) 43K
4 534K 16.4 (15.8-17.1) 4.73 (4.64-4.81) 69.3 (67.6-70.8) 44K
5 745K 16.5 (15.8-17.2) 4.73 (4.65-4.82) 69.2 (67.6-70.8) 44K
6 951K 16.5 (15.8-17.2) 4.73 (4.64-4.82) 69.2 (67.6-70.8) 44K
7 1132K 16.5 (15.8-17.2) 4.73 (4.65-4.82) 69.2 (67.6-70.8) 44K

Table 4.8: Performance of the interpolation-based phrase model with different maximum phrase
length k on the Chinese-English task.

k # phrases BLEU NIST MWER Avg#Th

1 46K 28.12 (27.26-28.97) 6.61 (6.52-6.70) 49.5 (48.3-50.6) 16K
2 124K 41.68 (40.64-42.66) 7.93 (7.82-8.02) 38.8 (37.7-39.9) 45K
3 256K 45.88 (44.80-46.79) 8.22 (8.11-8.32) 35.9 (34.9-37.0) 55K
4 413K 46.35 (45.26-47.23) 8.24 (8.13-8.35) 35.5 (34.5-36.6) 57K
5 573K 47.03 (45.92-47.93) 8.30 (8.19-8.40) 35.0 (33.9-36.1) 58K
6 721K 47.36 (46.25-48.29) 8.34 (8.22-8.44) 34.8 (33.8-35.9) 58K
7 845K 47.45 (46.33-48.38) 8.34 (8.23-8.45) 34.7 (33.7-35.9) 58K

Table 4.9: Performance of the interpolation-based phrase model with different maximum phrase
length k on the Italian-English task.

the number of phrases to store (46% for C-E, and 49% for I-E). In general, the
introduction of phrases longer than 5 does not seem to pay off, probably due to
the much lower chance of finding a match with the input.

From the computational point of view, the search algorithm reaches a maximum
average number of generated theories around values k � 4 and k � 5, in both
translation tasks.

These experiments were performed with the WG-decoder presented in Sec-
tion 4.3.3. Interestingly, if we use 1-best decoder (see Section 4.3.2, the search
effort slightly reduces and becomes stable for lengths above k � 4. An expla-
nation could be that by exploiting longer phrases, the search algorithm is able
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to find in fewer steps a complete solution which improves the initial dummy
theory (see line 10 in Figure 4.3). It is well known that the efficiency of a
search algorithm increases as long as a good candidate for a complete solution
is available.
Again, phrases longer than 5 do not seem to impact on the search time, probably
because of the little chance of finding long tablets, within the source string,
whose corresponding phrases are in P .
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Figure 4.10: Performance of word- and phrase-based models vs. amount of training data on
the Chinese-English task with respect different evaluation measures. Plots on the left refer to
performance on test set Q2, while those on the right to test set Q2.
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Figure 4.11: Performance of word- and phrase-based models vs. amount of training data on
the Italian-English task with respect different evaluation measures. Plots on the left refer to
performance on test set Q2, while those on the right to test set Q2.
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Figure 4.12: Performance of word- and phrase-based models vs. number of admitted zero-
fertility words on the Chinese-English task.
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Figure 4.13: Performance of word- and phrase-based models vs. number of admitted zero-
fertility words on the Italian-English task.
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Chapter 5

Log-linear models for Statistical Machine
Translation

In Chapter 4, we described the translation process from the point of view of the
historically-leading source-channel framework, but we anticipated some of its
drawbacks. SMT models based on the source-channel approach require an ex-
act factorization of the involved probability distributions, and this often requires
strong independence assumptions. For the same reason, the extension of a base-
line statistical model by including additional dependencies may be very hard.
Moreover, language and translation models should be “weighted” differently in
order to achieve best performance.

These problems can be overcome by considering log-linear models instead,
which can be formally derived within the Maximum Entropy framework [4] as
shown in [39]. Introduced in ASR by Philips laboratories in the late ’90s [9, 10],
first attempts to apply these models to SMT are very recent [63, 58, 60, 92].

Next Section briefly describes a generic log-linear model for SMT and high-
lights its advantages over the source-channel based SMT model. Section 5.2
shows that the source-channel based SMT model is equivalent to a log-linear
model. Finally, in Section 5.3.1 a procedure for training model parameters is
described which is oriented to the minimization of the translation errors.
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5.1 The SMT log-linear model

The description of an SMT model based on the Maximum Entropy frame-
work assumes a generative process which is inverted with respect to that of
the source-channel approach (see Section 4.2.4). Starting from an input string
f � f1 ��������� fm in the source language, a translation hypothesis of length l, ẽ �
ẽ0 ��������� ẽl , is generated incrementally: at each step i � 0 ��������� l a new phrase ẽi is
added and, possibly, some words of f, not yet covered, are mapped to ẽi.

Any triple 	 ẽ � f � a 
 , or its shorthand s, corresponds to a solution of length l ob-
tained through the generative process. For any solution s of length l, we denote
by 	 s � i 
 the portion of s built during steps from 0 to i (i n l).

It is worth remarking that any solution ẽ, partial or complete, can be generated
from f in many different ways, each one corresponding to a specific alignment
a. The set of all these alignments is denoted with A 	 f � ẽ 
 .
5.1.1 Alignment-based log-linear model

Given an input string f, the best translation ẽ ' of f is searched among all output
strings through the following criterion:

ẽ ' � argmax
ẽ

Pr 	 ẽ � f 
 (5.1)� argmax
ẽ ∑

a � A � f g ẽ � Pr 	 ẽ � a � f 
 (5.2)

The summation over the alignments a O A 	 f � ẽ 
 , which is considered as a hidden
variable, introduces the freedom of generating ẽ from f in many different ways.

The framework of Maximum Entropy [4] provides a mean to directly estimate
the posterior probability Pr 	 ẽ � a � f 
 , instead of using the Bayes decomposition
into a language model Pr 	 e 
 and a translation model Pr 	 f � e 
 introduced by
the source-channel framework. This is determined through suitable real valued
feature functions hr 	 ẽ � f � a 
 and real parameters λr, r � 1 ����� M, and takes the
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parametric form:

Pr 	 ẽ � a � f 
�� pλ 	 ẽ � a � f 
 � exp
M

∑
r 
 1

λrhr 	 ẽ � f � a 

∑̃
e � ∑

a � � A � f g ẽ � � exp
M

∑
r 
 1

λrhr 	 ẽ � � f � a � 
 (5.3)

where the denominator is needed for the sake of normalization.

By assuming the following notation:

λ � c λ1 ��������� λM e (5.4)

R 	 ẽ � f � a;λ 
 � M

∑
r 
 1

λrhr 	 ẽ � f � a 
 (5.5)

and by exploiting (5.3), the previous search criterion (5.2) can be rewritten as
follows:

ẽ ' � argmax
ẽ ∑

a � A � f g ẽ � Pr 	 ẽ � a � f 
 (5.6)

� argmax
ẽ ∑

a � A � f g ẽ � exp c R 	 ẽ � f � a;λ 
�e
∑̃
e � ∑

a � � A � f g ẽ � � exp   R 	 ẽ � � f � a � ;λ 
�¡ (5.7)

� argmax
ẽ ∑

a � A � f g ẽ � exp c R 	 ẽ � f � a;λ 
�e (5.8)

because of the constancy of the denominator with respect to the maximization
variable ẽ in (5.7). Thus, the time-consuming renormalization can be avoided
during the search.

For the sake of an efficient computation, the summation over the alignments a
in (5.8) is approximated by the maximum operation, as usual. Finally, thanks to
monotonicity of the exponential function, we end up with the criterion:

ẽ ' � argmax
ẽ

max
a � A � f g ẽ � R 	 ẽ � f � a;λ 
 (5.9)
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5.1.2 The search algorithm for a log-linear model

The search criterion (5.9) can be detailed more precisely if the feature func-
tions hM

1 	 s 
 can be decomposed in accordance with the steps of the generative
process.

Let us assume that the score R 	 s;λ 
¢� R 	 ẽ � f � a;λ 
 and the features hM
1 	 s 
¢�

hM
1 	 ẽ � f � a 
 can be computed in terms of the following partial functions:

hr 	 s; i 
 £ r � 1 ��������� M (5.10)

R 	 s;λ � i 
 � M

∑
r 
 1

λrhr 	 s; i 
 (5.11)

where R 	 s;λ � i 
 represents the cost of the i-th step of the generative process of s,
and hr 	 s; i 
 the contribution of the r-th feature to this cost. It is worth remarking
that the computation of R 	 s;λ � i 
 and hr 	 s; i 
 depends on the partial solution	 s � i 
 . It trivially results that:

hr 	 s 
 � l

∑
i 
 0

hr 	 s; i 
 £ r � 1 ��������� M (5.12)

R 	 s;λ 
 � M

∑
r 
 1

λrhr 	 s 
�� M

∑
r 
 1

λr

l

∑
i 
 0

hr 	 s; i 
��
� l

∑
i 
 0

M

∑
r 
 1

λrhr 	 s; i 
�� l

∑
i 
 0

R 	 s;λ � i 
 (5.13)

Hence, the search criterion (5.8) becomes:

s ' F argmax
s

R 	 s;λ 
 (5.14)

� argmax
l

max
s

l

∑
i 
 0

R 	 s;λ � i 
 (5.15)

and the best English translation ẽ ' is extracted from the best solution s '¤�	 ẽ ' � f � a ' 
 .
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It is important to stress here that each iteration of steps (iv.)-(viii.) of the gener-
ative process adds a new phrase ẽ to the target string; hence, a partial solution s
of length i is always the extension of a partial solution s � of length i � 1.
In general, the cost for extending a partial solution 	 s � � i � 1 
 into another 	 s � i 

depends on some information of them. By using a notation similar to that in-
troduced in Section 4.3.2, we say that the state � s � i � of the partial solution 	 s � i 

consists of all information needed for its expansion. As in general the state � s � i �
contains less information than 	 s � i 
 , it represents an equivalence class, eventu-
ally independent from i. Hence, the score for extending 	 s � � i � 1 
 into 	 s � i 
 is
a function S 	�� s � � � � s �+
 of their states. For this reason, it is useful to define the
set Pred 	�� s �2
 of all predecessors states of � s � . � s � � is a predecessor state of � s � if
s � , or an equivalent partial solution, is extended into s, or an equivalent partial
solution.
It is worth noticing that all partial solutions sharing the same state are recom-
bined during the search algorithm because they are undistinguishable for the
sake of expansion.
By exploiting the concept of state of a solution, the search criterion 5.15 can be
restated as follows:

ẽ ' F argmax
l

max
s

l

∑
i 
 0

R 	 s;λ � i 
 (5.16)

� argmax
l

max¥
s ¦ max

s � � ¥ s ¦ l

∑
i 
 0

R 	 s � ;λ � i 
 (5.17)� argmax
l

max¥
s ¦ T 	�� s � ;λ � l 
 (5.18)

This formulation of the search criterion introduces the quantity T 	�� s � ;λ � i 
 rep-
resenting the score of the best solution of length i and state � s � .
This quantity can be recursively computed in terms of the so-called extension

score S 	�� s �§� � � s �2
 , as follows:

base: i � 0
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T 	�� s � ;λ � 0 
 � max
s � � ¥ s ¦ R 	 s � ;λ � 0 
 (5.19)

step: i y 0

T 	�� s � ;λ � i 
 � max¥
s � ¦¨� Pred � ¥ s ¦©� T 	�� s � � ;λ � i � 1 
�� S 	�� s � � � � s �+
 (5.20)

5.1.3 Discussion on log-linear models

Real parameters λ weighting feature functions generalize those applied in the
search criterion (4.5) to balance the contribution of the language and translation
models.

Other great advantages of log-linear models are their mathematically soundness
and the possibility to use any kind of features, regarded as important for the
sake of translation.

Flexibility is also large because features are not required to be probability mea-
sures, overcoming the requirement of the source-channel based SMT model to
have an exact factorization of the distributions.

If feature functions cannot be decomposed as suggested in Section 5.1.2, and,
hence, cannot be embedded in the decoder, they can be added to the model
after the decoding through a rescoring procedure. This technique consist of
recomputing the global score of a set of alternative hypotheses, stored in a N-
best list or in a WG, and extracting the new best translation.

Finally, it is worth remarking that any SMT model based on the source-channel
framework can always be interpreted as a log-linear model.

The main issue arising from the use of log-linear models is the choice of the fea-
ture functions hM

1 	 ẽ � f � a 
 . Identifying best feature functions, which is an hard
problem in many classification tasks of NLP, is also hard in SMT because fea-
ture functions should have the given form described in Section 5.1.2 to permit
an efficient search.

To overcome this restriction it is possible to perform translation in two steps.
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First simple log-linear model is defined with decomposable feature functions
and a set of translation hypotheses are searched by means of criterion (5.9).
Then, a more complex model with other features is used to re-rank the hypothe-
ses. In this way, additional features are no longer required to be decomposable.

A second issue related to the log-linear models is the estimation of the feature
weights λ, which will be tackled in Section 5.3.

5.2 The source-channel based SMT model as log-linear model

In this Section we show that the SMT model presented in the previous Chapter
can be seen as a log-linear model. First of all, we give a different description
for the generative process of the translation hypotheses. Then we describe the
model itself as a log-linear model. Finally, we prove that the generic search
algorithm of Section 5.1.2 applied to this model is equivalent to the search al-
gorithm presented in Section 4.3.2.

5.2.1 Generative process

Given f � f1 ��������� fm, an input string of m words in the source language, the
generative process of a translation ẽ1 ��������� ẽl consists of the following steps:

i. an index i is set to 0

ii. a fertility φ0 is chosen

iii. a set π0 of φ0 positions of the source string is selected

iv. i is incremented by 1

v. a target phrase ẽi is selected within a dictionary Ẽ

vi. a fertility φi is chosen
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vii. a set πi of φi uncovered1 positions of the source string are selected

viii. steps (iv.)-(viii.) are repeated until all input positions are covered.

An “empty” target phrase ẽ0 corresponding to a virtual ε is introduced for the
sake of simplifying the notation. If l is the number of repetitions of steps (iv.)-
(viii.), the whole process results in a sequence of target phrases ẽ � ẽl

0, fertilities
φ � φl

0, and sets of positions π � πl
0. As in step (viii.) only uncovered positions

can be selected, permutations πl
0 induce a partition of f. Moreover, there is

an unambiguous correspondence between positions and words in f; f 	 πi 
 will
denote the set of φi words identified by πi, and f 	 πi g h 
 the corresponding h-th
word.

Words f 	 πi 
 � i y 0 are those translated by the target phrase ẽi; words f 	 π0 
 are
not translated by any target phrases. If φ0 � 0, no input word remains untrans-
lated.

If we set the constraint of only choosing consecutive positions in step (vii.),
each set f 	 πi 
 � i y 0 of φi source words can be seen as a phrase.

In Section 4.2.4, where the generative process of the source-channel approach
has been described, the set f 	 πi 
 has been named tablet and denoted with τi.
There, words f j are chosen within a dictionary (see Section 4.2.4), and, hence,
they are variables. In the direct approach they are instead fixed. To highlight
this difference, we replace notation of tablet τi with f 	 πi 
 , although they are
strictly related.

Moreover, any total or partial alignment a �ª	 φ � π 
 between f and ẽ can be again
denoted with a pair 	 φ � π 
 .
It is worth remarking that an output sequence ẽ can be generated from f in many
different ways, each one corresponding to a specific (partial) alignment a. On
the other hand, a choice ai

0 � 	 φi
0 � πi

0 
 corresponds to a (partial ) compatible

1A position is not covered, or uncovered, if it is not yet selected in any previous set π j j j ~ i.

94



CHAPTER 5. LOG-LINEAR MODELS FOR SMT

alignment between f and ẽi
0 if πi

0 is a partition of the source positions
i«

t 
 0

πt bc 1 ��������� m e .
5.2.2 The SMT source-channel model as log-linear model

The phrase-based model has been described in Chapter 4 under the source-
channel approach, showing that the maximization function (??) Q 	 s 
¬� Q 	 ẽ � f � a 
¬�
Q 	 ẽ � τ � φ � π 
 in the search criterion consists of the product of the language model
Pr 	 ẽ 
 and the translation model Pr 	 τ � φ � π � ẽ 
 , which is further decomposed in
terms of fertility model, lexicon model, and distortion model. Moreover, we
introduced suitable parameter for the sake of optimization of the whole model.
The logarithm of Q 	 s 
 is the following:

logQ 	 s 
 � logQ 	 ẽ � τ � φ � π 
 (5.21)� λlm logPr 	 ẽ 
� λ f ert logPr 	 φ � ẽ 
� λlex logPr 	 τ � φ � π � ẽ 
� λdist Pr 	 π � φ 
 (5.22)

By associating feature functions with the logarithm of each of the submodels,
and corresponding feature weights as follows:

h1 	 s 
 � logPr 	 ẽ 
 λ1 � λlm (5.23)

h2 	 s 
 � logPr 	 φ � ẽ 
 λ2 � λlex (5.24)

h3 	 s 
 � logPr 	 τ � φ � π � ẽ 
 λ3 � λ f ert (5.25)

h4 	 s 
 � logPr 	 π � φ 
 λ4 � λdist (5.26)

the maximization we obtain the same form 5.5 of the direct approach:

R 	 s;λ 
 � logQ 	 s 
�� 4

∑
r 
 1

λrhr 	 s 
 (5.27)
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5.2.3 The search algorithm of the SMT source-channel model

The search algorithm for the MT model presented in Section 4.3 can be de-
scribed from the point of view of the direct approach. In order to prove that,
we show that feature functions hM

1 	 s 
 of the MT model satisfy Equations 5.10
and 5.12.

h1 	 s 
�� h1 	 ẽ � f � φ � π 
 � logPr 	 ẽ � ẽ1 ��������� ẽl 
� log
l

∏
i 
 1

p 	 ki 
 p 	 ẽi � ẽi � 2 � ẽi � 1 

� l

∑
i 
 1

log p 	 ki 
�� log p 	 ẽi � ẽi � 2 � ẽi � 1 
 (5.28)

h1 	 s;0 
�� h1 	 ẽ � f � φ � π;0 
 � 0 (5.29)

h1 	 s; i 
�� h1 	 ẽ � f � φ � π; i 
 � log p 	 ki 
��
log p 	 ẽi � ẽi � 2 � ẽi � 1 
 £ 1 n i n l (5.30)

h2 	 s 
�� h2 	 ẽ � f � φ � π 
 � logPr 	 φ � ẽ 
� log p 	 φ0 � m � φ0 
 l

∏
i 
 1

p 	 φi � ẽi 
� log p 	 φ0 � m � φ0 
��
l

∑
i 
 1

logPr 	 φi � ẽi 
 (5.31)

h2 	 s;0 
�� h2 	 ẽ � f � φ � π;0 
 � log p 	 φ0 � m � φ0 
 (5.32)

h2 	 s; i 
�� h2 	 ẽ � f � φ � π; i 
 � log p 	 φi � ẽi 
 £ 1 n i n l (5.33)

h3 	 s 
�� h3 	 ẽ � f � φ � π 
 � logPr 	 f � φ � π � ẽ 
� log p 	 f 	 π0 
­� φ0 
 l

∏
i 
 1

p 	 f 	 πi 
­� φi � ẽi 
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CHAPTER 5. LOG-LINEAR MODELS FOR SMT� log p 	 f 	 π0 
®� φ0 
��
l

∑
i 
 1

log p 	 f 	 πi 
®� φi � ẽi 
 (5.34)

h3 	 s;0 
�� h3 	 ẽ � f � φ � π;0 
 � log p 	 f 	 π0 
®� φ0 � ẽ0 
� log
φ0

∏
h 
 1

p 	 f 	 π0 g h 
­� ẽ0 

� φ0

∑
h 
 1

log p 	 f 	 π0 g h 
­� ẽ0 
 (5.35)

h3 	 s; i 
�� h3 	 ẽ � f � φ � π; i 
 � log p 	 f 	 πi 
®� φi � ẽi 
 £ 1 n i n l (5.36)

h4 	 s 
�� h4 	 ẽ � f � φ � π 
 � logPr 	 π � φ 
� logPr 	 π0 � φ0 
 l

∏
i 
 1

Pr 	 πi � φi � πi � 1
0 


� log p ¯ 1
φ0! ° l

∏
i 
 1

p 	 πi � φi � π̄i 

� log p ¯ 1

φ0! ° � l

∑
i 
 1

log p 	 πi � φi � π̄i 
 (5.37)

h4 	 s;0 
�� h4 	 ẽ � f � φ � π;0 
 � log p ¯ 1
φ0! ° �±� log p 	 φ0! 
 (5.38)

h4 	 s; i 
�� h4 	 ẽ � f � φ � π; i 
 � log p 	 πi � φi � π̄i 
 £ 1 n i n l (5.39)

It is worth noticing that h3 	 s; i 
�� h4 	 s; i 
�� 0 if φi � 0.
The previous definition of the features functions h4

1 induces the decomposition
of R 	 s;λ 
 in the form of equations (5.11) and (5.13), and, hence, the search
criterion (5.15) is valid and the corresponding algorithm can be applied.
By looking at equations (5.28-5.39), we can observe that the state of the partial
solution 	 s � i 
²� 	 ẽ � f � φ � π; i 
 is � s � i �³� � ẽ � f � φ � π; i �´� 	 C � π̄i � ẽi � ẽi � 1 
 , where C �«
t 
 0 g"q"q"qµg i πt . In fact, these are the only information needed to compute the score of

an extension of 	 s � i 
 .
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The first step of the generative process produces only partial solutions 	 s � 0 
 of
length 0 with � s � 0 �$� 	 π0 � π̄0 � ε � ε 
 . Hence, only one partial solution of length 0
exists sharing a given state � s �`�m	 π � π̄ � ε � ε 
 . This means that:

T 	�� s � ;λ � 0 
 � T 	�� π � π̄ � ε � ε;λ � 0 �+
� R 	 ẽ � f � φ � π;0 
� 4

∑
r 
 1

λrhr 	 ẽ � f � φ � π;0 
� λ2 log p 	 φ0 � m � φ0 
� λ3 log p 	 f 	 π0 
­� φ0 � ẽ0 
� λ4 log p 	 φ0! 
 (5.40)

In the generic i-th step of the generative process the set Pred 	�� s �+
 of a partial
solution 	 s � i 
­� 	 ẽ � f � φ � π; i 
 of state � s �¶� 	 C � π̄ � ẽi � ẽi � 1 
 contains states � s � �·�	 C } πi � π̄ � � ẽi � 1 � ẽ �"� 
 . The corresponding expansion score is:

S 	�� s � � � � s �2
 � S 	 C � πi � π̄i � ẽi � ẽi � 1 � ẽi � 2 
� 4

∑
r 
 1

λrhr 	 ẽ � f � φ � π; i 
� λ1 	 log p 	 ki 
�� log p 	 ẽi � ẽi � 2 � ẽi � 1 
�
� λ2 log p 	 φi � ẽi 
� λ3 log p 	 f 	 πi 
­� φi � ẽi 
� λ4 log p 	 πi � φi � π̄i 
 (5.41)

Notice that φi is univocally determined by πi.
As the maximization in the equation (5.20) becomes a maximization over generic
ẽ �"� , /0 b πi b C , and π̄ � so that π̄i � π̄, we rewrite:

T 	�� s � ;λ � i 
 � T 	�	 C � π̄ � ẽ � ẽ � 
 ;λ � i 
� max
ẽ � � g /0 | πi | C :π̄i 
 π̄ g π̄ � T 	�	 C } πi � π̄ � � ẽ � � ẽ �"� 
 ;λ � i � 1 


S 	 C � πi � π̄i � ẽ � ẽ � � ẽ �"� 
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ẽ � � g /0 | πi | C :π̄i 
 π̄ g π̄ � T 	�	 C } πi � π̄ � � ẽ � � ẽ �"� 
 ;λ � i � 1 


R 	 ẽ � f � φ � π;λ � i 
 (5.42)

This recursive formulation of the search criterion consisting of equation (5.40)
and (5.42) perfectly corresponds to that described in Section 4.3, a part from the
application of the logarithmic function.

5.3 Optimization of the feature weights

Optimal estimate of the weights can be achieved following two strategies. The
former is the maximum entropy solution corresponding to values λ, which max-
imizes the log-likelihood over a training sample:

λ ' � argmax
λ

∑� ẽ g f g a � log pλ 	 ẽ � a � f 
 (5.43)

Unfortunately, a closed-form solution of this criterion does not exist. An it-
erative procedure converging to the solutions have been proposed by [19] and
improved by [20].
In place of the criterion (5.43), [60] recently proposed to estimate parameters
by directly minimizing the number of translation errors.

5.3.1 Minimum Error Training

We assume that a function ED 	 λ 
 is available, which measures the translation
errors made by running a model defined by parameter values λ on a development
set D. Hence, parameters are searched by:

λ ' � argmin
λ

ED 	 λ 
 (5.44)

Unlike the log-likelihood criterion (5.43), the objective function ED 	t?�
 might
have many local minima. Neverthelss, an approximate algorithm, the simplex

method [66], is used which requires relatively few function evaluations.
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If the whole translation process is time-costly, it is possible to translate once
only, to extract the set of N-best hypotheses, and to compute ED 	 λ 
 over them
after rescoring.
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Chapter 6

Spoken Language Translation

This Chapter reports recent research activity in the field of Spoken Language
Translation. Two SLT systems have been developed, which extend in different
ways the MT system presented in Chapter 4.

The first system exploits a list of N-best transcriptions provided by the ASR
system. Two additional ASR features, namely the acoustic and language mod-
els, are used for re-score the best translation of each input transcription. The
combination of speech recognition and translation models results in a statistical
log-linear model of eight feature functions.

A tighter integration between speech recognition and translation is achieved
by defining an other statistical log-linear model working on a particular word
graph, called confusion network, generated by the ASR system. The search
algorithm for the MT system is properly extended to work with this kind of
input.

The main advantage we expected from the last approach is to save computation
time, without loosing translation quality. In fact, for each speech utterance, the
system based on confusion network performs just one decoding pass, while the
system based on N-best transcription hypotheses need to translate N times.

This Chapter is organized as follows. The next Section gives a brief overview
of the main approaches to SLT. Section 6.2 introduces the Automatic Speech
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Recognition (ASR) task. In Sections 6.4, 6.5 and 6.6 two SLT systems de-
veloped at ITC-irst are presented. In Section 6.8 the comparison of the two
systems is provided on an Italian-English speech translation task in a tourism
domain.

6.1 Previous work

First attempts to tackle the SLT task simply performed speech recognition and
translation sequentially: first the ASR module recognized the spoken text and
then the MT module translated it [83, 75]. In this way, however, recognition
errors cannot be handled by the translation errors.

Experience in speech recognition tells that the use of N-best transcriptions re-
duce the word error rate. Hence, following approaches tried to exploit a set of
transcription alternatives as input for the MT systems. Useful supplementary
information available from speech recognition, like the acoustic and language
models, can improve translation performance if employed properly. For in-
stance, [92] presented a log-linear model, which combines features from ASR
and MT. Independently, we proposed similar model, which instead exploits the
phrase-based translation model of Chapter 4.

A tighter integration of speech recognition and translation was suggested in
[51], which needs some local approximation and works for monotone align-
ments only. Along this way is the work of [71] which presents improvement in
translation quality by using a word lattice as interface between ASR and MT.
Similarly, but independently, we present a second model which exploits an ap-
proximation of the word graph generated by the ASR system.

Stochastic Finite-State Transducers have been also applied in SLT [17]. Trans-
ducers can be easily integrated with the conventional ASR models and allow
the use of simple traditional Viterbi beam-search techniques translate speech
signal. However, this approach has the great disadvantage that it can be applied
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only in very limited domains.

6.2 Automatic Speech Recognition

According to [36], at a very basic form, a speech recognizer is a device that
automatically transcribes speech into text. The recognized words can be the
final results, as for applications such as commands and control, data entry, and
document preparation. They can also serve as the input to further linguistic pro-
cessing in order to achieve speech understanding, spoken information retrieval,
speech translation etc.

Without loss of generality we may assume that the speech signal is represented
by a sequence of symbols o � o1 � o2 ���!����� oT taken from some alphabet O, where
the index corresponds to the time in which the symbol has been generated.

The recognizer should search for a word string f ' satisfying:

f ' � argmax
f

Pr 	 f � o 
 (6.1)

where Pr 	 f � o 
 is the probabilities that the word sequence f were spoken, given
that the evidence o was observed, and f denotes any string of a known vocabu-
lary F .

The well-known Bayes formula of probability theory allows to rewrite the right-
hand side probability of (6.1) as:

Pr 	 f � o 
�� Pr 	 f 
$? Pr 	 o � f 

Pr 	 o 
 (6.2)

where the language model Pr 	 f 
 is the probability that the word sequence f
will be uttered, the acoustic model Pr 	 o � f 
 is the probability of observing the
acoustic evidence o when the speaker says f, and Pr 	 o 
 � ∑

f � Pr 	 f � 
³? Pr 	 o � f � 
 is

the average probability that o will be observed.

Since the variable o is fixed in the maximization in (6.1) the denominator can
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be discarded and 	 6 � 1 
 becomes:

f ' � argmax
f

Pr 	 f 
¬? Pr 	 o � f 
 (6.3)

As Pr 	 o � f 
 is usually the product of many more factors than Pr 	 f 
 , the decision
for a word sequence would be dominated by the acoustic scores and the lan-
guage model would have hardly influence. To balance this very large difference
in the probability values, it is usual to use two exponential weights λac and λlm

for the acoustic model and for the language model, respectively. Thus (6.3) can
be written as follows:

f ' � argmax
f

Pr 	 f 
 λlm ? Pr 	 o � f 
 λac (6.4)

From the point of view of the Maximum Entropy framework (see Chapter 5),
the distribution Pr 	 f � o 
 can be easily redefined as a log-linear model as follows:

hlm 	 f � o 
 � logPr 	 f 
 (6.5)

hac 	 f � o 
 � logPr 	 o � f 
 (6.6)

Pr 	 o � f 
 � exp 	 λlmhlm 	 f � o 
�� λachac 	 f � o 
�

∑
f � exp 	 λlmhlm 	 f � � o 
�� λachac 	 f � � o 
�
 (6.7)

and, hence, the maximization formula becomes

f ' � argmax
f
	 λlmhlm 	 f � o 
�� λachac 	 f � o 
�
 (6.8)

6.2.1 ITC-irst ASR system

The ASR system employed for experiments has been developed at ITC-irst
since 1990s [15].
The speech transcription engine is the core module of the system. It is is based
on a single-step time-synchronous Viterbi decoder [14, 15], where the LM is
mapped into a static network with a shared-tail topology [1]. A beam search

technique [16] avoids an exhaustive search of a huge space by pruning less
promising hypotheses on the basic of a local estimation.
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The acoustic model is based on context-dependent triphones, speaker-independ-
ent, continuous-density Hidden Markov Models (HMM) [68]. Acoustic training
was performed with Baum-Welch reestimation. The language model is based
on trigram statistics smoothed by combining non-linear discounting and inter-
polation with lower-order models [23].

Output formats

As any other ASR system, the ITC-irst system outputs the 1-best transcrip-

tion, which maximizes the probability score Pr 	 f � o 
 . Moreover, all transcription
hypotheses generated and not pruned during the decoding are stored in a word-

graph.

As mentioned in Section 1.3, an SLT system could benefit from the availability
of more transcription alternatives. Unfortunately, the word-graph produced can
be very large and not weasy to manage. Hence, further modules have been
developed at ITC-irst, which approximate the word graphs in two ways:� a list of the N-best transcriptions [81];� a confusion network (CN) [46]; in particular, a CN is a word-graph itself

but it is much more compact and contains more paths than the word-graph
generated by the ASR system.

6.3 Spoken Language Translation

From a statistical point of view, SLT can be considered as an extension of SMT.
In particular we are interested in finding the best translation of an utterance
rather than of a text. Again, we use a probability measure to express the close-
ness of possible output strings to the input utterance. Formally, the SLT prob-
lem can be stated as follows: given the acoustic observation o in the source
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language, find the string ẽ ' in the target language, which maximizes the proba-
bility Pr 	 ẽ � o 


ẽ ' � argmax
ẽ

Pr 	 ẽ � o 
 (6.9)

If o is the vector representing the acoustic observation of the input utterance,
we define F 	 o 
 as the set of all transcription hypotheses provided by the avail-
able ASR decoder. In the case of the ITC-irst ASR system, F 	 o 
 consists of a
word graph, as stated in the previous Section. The SLT search criterion can be
rewritten as follows:

ẽ ' � argmax
ẽ ∑

f � F � o � Pr 	 ẽ � f � o 
 (6.10)

where f is an hidden variable representing any speech transcription hypothesis.
This gives us the freedom of generating the best speech translation by consid-
ering the contribution of all transcription hypotheses. By comparing the search
criterion in (6.10) for SLT with that of SMT (4.1), we notice a further level of
complexity, consisting in the summation over F 	 o 
 . A complete search over all
transcription hypotheses f in F 	 o 
 is often hard to realize because:� the size of the set F 	 o 
 is usually huge;� the word graph produced by the ASR system is not easy to manage for the

sake of extracting alternative speech transcriptions.

In order to efficiently overcome these problems, two strategies are followed.
The first approach, discussed in Section 6.4, consists of approximating the
search algorithm by reducing the set of transcription hypotheses considered.
The second approach exploits a confusion network, described in Section 6.5, as
an approximation of the word-graph.
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6.4 N-best approach

To cope with the huge size of F 	 o 
 , only a subset of all speech transcriptions
is considered in the search criterion. A reasonable choice is to take the set of N

most probable hypotheses with respect to the ASR model Pr 	 f � o 
 . In this case,
F 	 o 
 is substituted by a subset FN 	 o 
®� c f1 ��������� fN e . By taking a maximum
approximation over FN 	 o 
 , we get the search criterion:

ẽ ' F argmax
ẽ

N

∑
n 
 1

Pr 	 ẽ � fn � o 
 (6.11)F argmax
ẽ

max
n 
 1 g"q"q"g N Pr 	 ẽ � fn � o 
 (6.12)� arg max

n 
 1 g"q"q"g N max
ẽ

Pr 	 ẽ � fn � o 
 (6.13)

Under the reasonable assumption that ẽ is stochastically independent from the
acoustic observation o, we can decompose Pr 	 ẽ � f � o 
 in the following way:

Pr 	 ẽ � f � o 
�� Pr 	 f � o 
 Pr 	 ẽ � f 
 (6.14)

and compute ẽ ' as follows:

ẽ ' F arg max
n 
 1 g"q"q"g N max

ẽ
Pr 	 fn � o 
 Pr 	 ẽ � fn 
 (6.15)� arg max

n 
 1 g"q"q"g N Pr 	 fn � o 
 max
ẽ

Pr 	 ẽ � fn 
 (6.16)

In the above equation we can point out N problems of text translation (rightmost
maximization), and one recombination problem of N results (leftmost maxi-
mization). Hence, the approximate search criterion (6.13) can be restated as
follows:

ẽ 'n � argmax
ẽ

Pr 	 ẽ � fn 
 n � 1 ��������� N (6.17)

ẽ ' F arg max
n 
 1 g"q"q"gN Pr 	 fn � o 
 Pr 	 ẽ 'n � fn 
 (6.18)
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In plain words: first the best translation ẽ 'n of each transcription hypothesis fn is
searched, then, the best translation ẽ ' is selected among c ẽ '1 ��������� ẽ 'N e according
to its score weighte by the recognition probability Pr 	 fn � o 
 .
This cascade algorithm works whatever ASR and MT systems are available,
which provide scores for the best recognition and translation hypotheses, ASR-
score and MTscore, respectively:

ẽ 'n � argmax
ẽ ¸a¹�º^»�¼¾½`¿ 	 ẽ; fn 
 n � 1 ��������� N (6.19)

ẽ ' F arg max
n 
 1 g"q"q"gN À`Á¾Â º^»�¼\½$¿ 	 fn;o 
 ¸a¹³º�»^¼\½`¿ 	 ẽ 'n; fn 
 (6.20)

6.4.1 The N-best based SLT log-linear model

The search criterion (6.13) can be detailed through the introduction of the hid-
den alignment variable a, and by taking an additional maximum approximation:

ẽ ' F arg max
n 
 1 g"q"q"gN max

ẽ ∑
a � A � fn g ẽ � Pr 	 ẽ � fn � a � o 
 (6.21)F arg max

n 
 1 g"q"q"gN max
ẽ

max
a � A � fn g ẽ � Pr 	 ẽ � fn � a � o 
 (6.22)

The resulting SLT model Pr 	 ẽ � f � a � o 
 can be expressed as a log-linear model of
six features, hr 	 ẽ � f � a � o 
 , r � 1 ��������� 6. The first 4 features functions are trivial
extensions of those defining the MT model Pr 	 ẽ � a � f 
 , introduced in Section 5.2:

hr 	 ẽ � f � a � o 
 � hr 	 ẽ � f � a 
 r � 1 ��������� 4 (6.23)

as they do depend on the acoustic observation o.
Two additional features functions are defined as the logarithm of the source lan-
guage model Pr 	 f 
 and of the acoustic model Pr 	 o � f 
 introduced in Section 6.2:

h5 	 ẽ � f � a � o 
 � h5 	 f � o 
�� logPr 	 f 
 (6.24)

h6 	 ẽ � f � a � o 
 � h6 	 f � o 
�� logPr 	 o � f 
 (6.25)
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which are independent from ẽ and a.
Hence, the SLT model Pr 	 ẽ � f � a � o 
 is expressed as follows:

Pr 	 ẽ � f � a � o 
 � exp   ∑6
r 
 1 λrhr 	 ẽ � f � a � o 
6¡

∑ẽ �wg f � a � exp   ∑6
r 
 1 λrhr 	 ẽ � f � a � o 
6¡ (6.26)

∝ exp
6

∑
r 
 1

λrhr 	 ẽ � f � a � o 
 (6.27)

� exp
4

∑
r 
 1

λrhr 	 ẽ � f � a 
 exp
6

∑
r 
 5

λrhr 	 f � o 
 (6.28)

The last equation higlights the separate contributions given by the SMT model
Pr 	 ẽ � a � f 
 and the ASR model Pr 	 f � o 
 .
Hence, the search criterion (6.13) for the N-best approach can be rewritten as:

	 ẽ 'n � a 'n 
 � argmax
ẽ

max
a � A � fn g ẽ � 4

∑
r 
 1

λrhr 	 ẽ � a � fn � o 
 £ 1 n n n N (6.29)

ẽ ' � arg max
n 
 1 g"q"q"g N 6

∑
r 
 5

λrhr 	 fn � o 
�� 4

∑
r 
 1

λrhr 	 ẽ 'n � a 'n � fn � o 
 (6.30)

where ẽ 'n and a 'n are the best translation and alignment for fn. Notice that the
best score R 'n, corresponding to ẽ 'n, can be plugged directly into (6.30), causing
a 'n to be useless.
The definition of the N-best SLT model in terms of features of both the MT and
ASR systems is useful because it allows the global optimization of parameters
λ.

6.4.2 Analysys of the complexity

The algorithm solving the search criterion for the N-best decoder is reported in
Figure 6.1. After extraction of the N-best transcription hypotheses from a WG
(line 1), each hypothesis is translated and scored (line 5). At each step, the best
translation (best) and its score (bestsc) are possibly updated (lines 6-8).
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NBEST-SLT

1 FN
�
o �Ã� NBESTEXTRACTION

�
o �

2 best � 1
3 bestsc �_3 ∞
4 for n ( 1 Ä N
5 do sc = COMPUTEMTSCORE

�
fn � + COMPUTEASRSCORE

�
fn �

6 if sc � bestsc
7 then bestsc=sc
8 best=n
9 GETSOLUTION(best)

Figure 6.1: Search algorithm for the N-best based SLT system.

As the algorithm translates the N transcription hypotheses, its complexity is
trivially O 	 N g 	 mmax � �E �"
�
 , where mmax is the maximum string length within
FN , and g 	 m � �E �µ
 is the complexity of the algorithm for text translation (see
Section 4.3.1). The complexity of NBESTEXTRACTION procedure is not taken
into account; details about it can be found in [67] and papers referred in it.

6.5 Confusion Network

A Confusion Network (CN) is a word graph, called sausage [46], with the pe-
culiarity that each path from the start to the end node has to go through all
nodes. It can be represented as a set of words w and probabilities p placed into
m columns of different depths.
The following notation G 	vc 1 ��������� m e � d � w � p 
 means that the CN has m columns
and that the j-th column has depth d j, for j � 1 ��������� m. The shorter nota-
tion G 	vc 1 ��������� m e � w � p 
 is used if the column depths are known. Moreover,
G 	 C � d � w � p 
 , or G 	 C � w � p 
 , consists of the sub-CN built up by taking only
columns with indexes in C bÅc 1 ��������� m e .
Each position 	 j � k 
 of the CN is associated with a word w j g k and a probability
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era0 Æ 997 cancello0 Æ 995 ε0 Æ 999 di0 Æ 615 imbarco0 Æ 999 ...
è0 Æ 002 vacanza0 Æ 004 la0 Æ 001 di0 Æ 376 bar0 Æ 001

ε0 Æ 001 ε0 Æ 002 l’0 Æ 002

...
ε0 Æ 001

Figure 6.2: Matrix representation of a confusion network generated from an Italian input utter-
ance. Words and posterior probabilities are shown. The manual transcription of this utterance
is “dove è il cancello d’ imbarco”.

value p j g k, whose meaning is explained below. We always assume that words
are inside the CN, i.e. k n d j.

Figure 6.2 shows the matrix representation of an Italian input utterance ex-
tracted from the test set. The corresponding word graph is depicted in Fig-
ure A.2 in Appendix A.

A string f � f1 ��������� fm is a realization of G 	vc 1 ��������� m e � d � w � p 
 if for all j �
1 ��������� m : f j � w j g k j for some k j OÇc 1 ��������� d j e . Viceversa, any choice k1 ��������� km

so that k j OÈc 1 ��������� d j e for j � 1 ��������� m defines the realization f � w1 g k1 ��������� wm g km.
In the graph representation of a CN a string f is a path from the start to the end
node. In the following, F 	 G 
 will indicate the set of all realizations of G .

A CN G 	Éc 1 ��������� m e � d � w � p 
 is generated from a word graph produced by an
ASR system starting from acoustic observation o. Hence, the value p j g k as-
sociated with the word w j g k corresponds to the posterior probability p j g k �
Pr 	 w j g k � f � o � j 
 of having f at “position j given o. It is worth noticing that
Pr 	 f � o � j 
 defines a probability measure over all words of the j-th column of

the CN; formally,
d j

∑
k 
 1

p j g k � 1 for j � 1 ��������� m. A realization f � f1 ��������� fm of

G 	 w � p � c 1 �������Ê� m e\
 is associated with the probability Pr 	 f � o 
 of having f given
o, which can be factorized in terms of Pr 	 f � o � j 
 as follows:

Pr 	 f � o 
�� m

∏
j 
 1

Pr 	 f j � o � j 
 (6.31)
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Notice that this decomposition assumes stochastic independence between the
posterior probabilities of the single words.

The generation of the confusion network from the word graph can produce some
special words, ε, which correspond to empty words. For the sake of simplicity,
we assume that ε-words are completely undistiguishable from the other normal
words, unless differently specified.

6.6 Confusion Network approach

Given a Confusion Network G , the best translation ẽ ' is searched through the
criterion:

ẽ ' � argmax
ẽ

Pr 	 ẽ � G 
 (6.32)� argmax
ẽ ∑

a � A � G g ẽ � Pr 	 ẽ � a � G 
 (6.33)

where the search of maximum is performed over all compatible aligments
A 	 G � ẽ 
 between G and ẽ. Later we will show that this criterion is equivalent to
(6.10).

The substitution of the summation with the maximum operation introduces the
usual approximation:

ẽ ' F argmax
ẽ

max
a � A � G g ẽ � Pr 	 ẽ � a � G 
 (6.34)

The CN-based SLT model Pr 	 ẽ � a � G 
 , presented in subsection 6.6.3, is a straight-
forward extension of the the log-linear SMT model.

6.6.1 The generative process from a Confusion Network

The generative process of an output string ẽ from an input string f described in
Section 5.2.3 can be extended to exploit an input consisting of a CN.
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As stated before, a word of a CN is identified with two indexes, one for the
column and one for the position in the column. Hence, besides π � πl

0, new
sets ψ � ψl

0 are introduced, where ψi g h represents the position of the word in
the column πi g h. As the constraints ψi g h OËc 1 ��������� dπi Ì h e for all i � 0 ��������� l and for
all h � 0 ��������� φi g h have to be satisfied, ψ are dependent from π. The generative
process described in Sectio 5.2.1 becomes:

i. an index i is set to 0

ii. a fertility φ0 is chosen

iii. a set π0 of φ0 columns are selected

iv. a set ψ0 of φ0 non negative integers are chosen

v. i is incremented by 1

vi. a target phrase ẽi is selected within a dictionary Ẽ

vii. a fertility φi is chosen

viii. a set πi of φi uncovered1 columns are selected

ix. a set ψi of φi non negative integers are chosen

x. steps (v.)-(x.) are repeated until all columns of the CN are covered.

This new generative process induces an augmented alignment a � al
0 ��	 φ � π � ψ 


between the CN G 	vc 1 ��������� m e � d � w � p 
 and the output string ẽ. Each align-
ment identifies a specific realization f � f1 ��������� fm of G so that for j � 1 ��������� m
f j � wπi Ì h gψi Ì h £ i � h; in the following, we will denote f � w 	 a 
�� w 	 φ � π � ψ 
 the
realization aligned with ẽ through a.

1A column is uncovered if it is not yet selected in any previous set π j j j ~ i.

113
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After i steps of the generative process, a partial alignment ai
0 � 	 φi

0 � πi
0 � ψi

0 
 is
induced between the subCN G 	 C � w � p 
 , and ẽi

0, where C � «
t 
 0 g"q"q"qµg i πt , or equiv-

alently between the partial realization w 	 a; i 
�� w 	 φ � π � ψ; i 
 and ẽi
0. Moreover,

w 	 φi � πi � ψi 
 will denote the set of words aligned with ẽi, and w 	 φi � πi g h � ψi g h 
��
wπi Ì h g ψi Ì h the corresponding h-th word. As done in the case of a single input string
(see Section ??) the triple 	 ẽ � G � a 
 will be often substituted with the fivetuple	 ẽ � G � φ � π � ψ 
 , and, more generally, 	 ẽ � G � a; i 
 with 	 ẽ � G � φ � π � ψ; i 
 . The short-
hands 	 s 
 and 	 s � i 
 will identify a complete solution of length l and a partial
solution of length i, respectively.
A 	 G � ẽ 
 will denote the set of all compatible alignments between G and ẽ. It
is trivial to prove that A 	 G � ẽ 
­� «

f � F � G � A 	 f � ẽ 
 , which states the equivalence

between the search criterions (6.10) and (6.33).

6.6.2 Handling ε words

An important issue arises from the presence of ε-words in the CN G (see Sec-
tion 6.5). Whereas they do not affect the generative process, they have to be
handled very carefully in the definition of the feature functions, because they
are not words actually.
Let us assume that 	 ẽ � G � φ � π � ψ 
 is obtained during the generative process. The
realization w 	 φ � π � ψ 
 of length m can consist of less real words because it even-
tually might contain some ε-words. For this reason fertilities φ and permuta-
tions π and ψ might be modified. The related feature functions should take into
account the difference between real and ε-words.
In order to give a correct definition of the SLT model, a further notation is
introduced:

φ̂i � φi � φi

∑
h 
 1

δ 	 wπi Ì h gψi Ì h � ε 
 (6.35)

π̂i � πi }²c πi g h O πi : wπi Ì h g ψi Ì h � ε e (6.36)
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ψ̂i � ψi }²c ψi g h O ψi : wπi Ì h gψi Ì h � ε e (6.37)

m̂ � l

∑
i 
 0

φ̂i (6.38)

Namely, quantities φ̂i, π̂i, ψ̂i, and m̂ correspond to φi, πi, ψi, and m respectively,
after the removal of the ε words. The original realization w 	 φ � π � ψ 
 of length m

becomes the modified realization w 	 φ̂ � π̂ � ψ̂ 
 of length m̂.

6.6.3 The CN based SLT log-linear model

The CN based SLT model Pr 	 ẽ � a � G 
 introduced in the search criterion (6.34)
is defined as an extension of the SMT log-linear model presented in Chapter 5.
As features functions for SMT are trained over a set of phrase pairs, which do
not cope with ε-words, they have to be slightly changed.

Three feature functions exploit the modified quantities 	 φ̂ � π̂ � ψ̂ 
 as follows:

h1 	 s 
�� h1 	 ẽ � G � φ � π � ψ 
 � logPr 	 ẽ 
 (6.39)

h2 	 s 
�� h2 	 ẽ � G � φ � π � ψ 
 � logPr 	 φ̂ � ẽ 
 (6.40)

h3 	 s 
�� h3 	 ẽ � G � φ � π � ψ 
 � logPr 	 w 	 φ̂ � π̂ � ψ̂ 
­� φ̂ � π̂ � ψ̂ � ẽ 
 (6.41)

The fourth feature function of the SMT model is related to the reordering of
source phrases and is defined in terms of the distance between the first word
of a source and the center of the previous one. In the case of the confusion
networks, the real distance after the removal of ε-words) should be taken into
account. As in general this distance is set only when the hypothesis is com-
pleted, an expected value is considered during the decoding. More formally
we define the expected distance between the source phrases w 	 φi � 1 � πi � 1 � ψi � 1 

and w 	 φi � πi � ψi 
 aligned with two consecutive target phrases ẽi � 1 and ẽi as the
expected distance between the first column covered by a real word π̂i g 1 and the
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previous centroid ˆ̄πi.

expdist 	 πi g 1 � π̄i 
 � π̂i Ì 1
∑

t 
 ˆ̄πi

	 1 � pε 	 t 
�
�� pε 	 π̂i g 1 
 (6.42)

where pε 	 t 
 is the probability of the ε-word in the t-th column of the CN if it
exists, or equals to 0 otherwise. Last term of (6.42) is introduced because in
position π̂i g 1 a real word is surely covered. Notice that the indexes of the sum
are inverted if π̂i g 1 Í ˆ̄πi. The lowest level sample-based distortion model (see
Equation 4.16) becomes:

p 	 πi � φ � π̄ 
 � p 
 1 	 expdist 	 πi g 1 � π̄ 
�
 φ

∏
k 
 2

δ 	 πi g k � πi g k � 1 � 1 
 (6.43)

Assuming this modification the fourth feature does not change:

h4 	 s 
�� h4 	 ẽ � G � φ � π � ψ 
 � logPr 	 π � φ 
 (6.44)

The fifth feature would model the real length of a realization of the CN through
the following distribution:

h5 	 s 
 � h5 	 ẽ � G � φ � π � ψ 
� log
l

∏
i 
 0

φi

∏
h 
 1

pε 	 πi g h 
 if wπi Ì h g ψi Ì h � ε
1 � pε 	 πi g h 
 otherwise

� l

∑
i 
 0

log
φi

∏
h 
 1

pε 	 πi g h 
 if wπi Ì h g ψi Ì h � ε
1 � pε 	 πi g h 
 otherwise

(6.45)

The last feature function consists of the posterior probability of a realization
of the confusion network given the acoustic observation o. In other words, it
measures how probable the string f � w 	 φ � π � ψ 
 is within G . By using the
decomposition of Pr 	 f � G 
 given in (6.5), and by remembering that each word
of f corresponds to any word w 	 φi � πi g h � ψi g h 
�
 �tÎ 0 n i n l � 1 n h n di, we obtain:

h6 	 s 
 � h6 	 ẽ � G � φ � π � ψ 
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®� o 
� log
l

∏
i 
 0

Pr 	 w 	 φi � πi � ψi 
­� o � πi 

� log

l

∏
i 
 0

φi

∏
h 
 1

Pr 	 w 	 φi � πi g h � ψi g h 
­� o � πi g h 

� log

l

∏
i 
 0

φi

∏
h 
 1

pπi Ì h g ψi Ì h
� l

∑
i 
 0

log
φi

∏
h 
 1

pπi Ì h g ψi Ì h (6.46)

It is worth noticing that Pr 	 w 	 φ � π � ψ 
­� o 
 , and hence h6 	 s 
 only depend on φ, π
and ψ.

The contribution of each of the six features to the first step of the generative
process is expressed by the following partial functions:

h1 	 s;0 
 � 0 (6.47)

h2 	 s;0 
 � log p 	 φ̂0 � m � φ̂0 
 (6.48)

h3 	 s;0 
 � log p 	 w 	 φ̂i � π̂i � ψ̂i 
­� ε 
 (6.49)

h4 	 s;0 
 � � logφ0! (6.50)

h5 	 s;0 
 � log
φ0

∏
h 
 1

pε 	 π0 g h 
 if wπ0 Ì h g ψ0 Ì h � ε
1 � pε 	 π0 g h 
 otherwise

(6.51)

h6 	 s;0 
 � log
φ0

∏
h 
 1

pπ0 Ì h gψ0 Ì h (6.52)

and the contribution to the i-th step by:

h1 	 s; i 
 � log p 	 ki 
�� log p 	 ẽi � ẽi � 2 � ẽi � 1 
 (6.53)

h2 	 s; i 
 � log p 	 φ̂i � ẽi 
 (6.54)

h3 	 s; i 
 � log p 	 w 	 φ̂i � π̂i � ψ̂i 
®� φ̂i � ẽi 
 (6.55)

h4 	 s; i 
 � log p 	 πi � φi � π̄i � 1 
 (6.56)
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h5 	 s; i 
 � log
φi

∏
h 
 1

pε 	 πi g h 
 if wπi Ì h gψi Ì h � ε
1 � pε 	 πi g h 
 otherwise

(6.57)

h6 	 s; i 
 � log
φi

∏
h 
 1

pπi Ì h gψi Ì h (6.58)

The decomposition of the six features functions induces the definition of the
following quantities:

R 	 s;λ 
�� R 	 ẽ � G � φ � π � ψ;λ 
 � l

∑
i 
 0

R 	 s;λ � i 
 (6.59)

R 	 s;λ � i 
�� R 	 ẽ � G � φ � π � ψ;λ � i 
 � 6

∑
r 
 1

λrhr 	 s; i 
 (6.60)

Hence, the complete SLT model Pr 	 ẽ � a � G 
 is expressed as follows:

Pr 	 ẽ � a � G 
 � Pr 	 ẽ � φ � π � ψ � G 
 (6.61)� expR 	 ẽ � G � φ � π � ψ;λ 

∑̃
e � ∑� φ � g π � g ψ � �1� A � G g ẽ � � expR 	 ẽ � � G � φ � � π � � ψ � ;λ 
 (6.62)

∝ expR 	 ẽ � G � φ � π � ψ;λ 
�� expR 	 s;λ 
 (6.63)

and the search criterion (6.34) becomes:

s ' F argmax
s

R 	 s;λ 
 (6.64)

which directly provides also the best translation ẽ ' .
6.6.4 Search Problem

By looking at formulas (6.47-6.58), we point out that the state of the partial
solution 	 s � i 
 � 	 ẽ � G � φ � π � ψ; i 
 is � s; i �´� 	 C � π̄i � ẽi � ẽi � 1 
 , where C � «

t 
 0 g"q"q"qµg i πt .

Notice that the state of a partial solution is defined exactly in the same way as
in the SMT model, because the extension score at step i depends on ψi, but not
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on the previous ones. In particular, this means that two partial solutions can be
recombined even if they exploit different realizations of the CN.

The first step of the generative process produces only partial solutions 	 s � 0 
 of
length 0 with state 	 π0 � π̄0 � ε � ε 
 . Hence, all partial solutions of length 0 sharing
a given � s �`�Ï	 π0 � π̄0 � ε � ε 
 have a variable ψ0. This means that:

T0 	�� s � ;0 
 � T0 	 π0 � π̄0 � ε � ε;0 
� max
ψ0

R 	 ẽ � G � φ � π � ψ;λ � 0 
 (6.65)

In the generic i-th step of the generative process the set Pred 	�� s �+
 of a partial
solution 	 s � i 
 � 	 ẽ � G � φ � π; i 
 of state � s �³� 	 C � π̄ � ẽi � ẽi � 1 
 contains states � s � �³�	 C } πi � π̄ � � ẽi � 1 � ẽ �"� 
 . The corresponding expansion score is:

S 	�� s � � � � s �2
�� S 	 C � πi � π̄i � ẽi � ẽi � 1 � ẽi � 2 
�� max
ψi

R 	 ẽ � G � φ � π � ψ;λ � i 
 (6.66)

Notice that φi is univocally determined by πi.

The maximization in equation (5.42) maximization over generic ẽi � 2, /0 b πi b
C , ψi, and π̄i � 1:

T 	�	 C � π̄i � ẽi � ẽi � 1 
 ;λ � i 
 � max
ẽi x 2 g /0 | πi | C gψi g π̄i x 1

T 	�	 C } πi � π̄i � 1 � ẽi � 1 � ẽi � 2 
 ;λ � i � 1 

R 	 ẽ � G � φ � π � ψ;λ � i 
 (6.67)

Besides the reordering constraint and the probability cutoff, introduced in Sec-
tion 4.3.2, a third method can be applied to limit the number of theories to
generate, which limits the depths of the columns of the input CN G .� Confusion Network cutoff: less input words are considered in the source

CN by removing terms w j g k with posterior probabilities p j g k are below a
given threshold. Eventually, a whole column is removed if it contains no
words or only the ε-word.
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Figure 6.3: The ITC-irst Spoken Language Translation System

6.6.5 Analysys of the complexity

We have just shown that the search algorithm for the CN-based SLT model
differs from that for the SMT model only in the way quantities T and S are
computed. In fact, the maximum operations in equations (6.65) and (6.67) are
performed over one more variable, ψ0 and ψi, respectively. Henceforth, the
complexity for the computation of the single subproblem increases at most of a
factor dφmax

max , where dmax is the largest depth of the CN. As the number of sub-
problems is equivalent due to the identity of the state definition, the complexity

of the algorithm is O 2m m3 φmax dφmax
max

m

φmax
�E � 3 .

6.7 The ITC-irst SLT system

Figure 6.3 illustrates the speech translation system currently developed at ITC-
irst [6], which can be virtually divided into two parts. In the left-hand side,
beginning from the speech signal of the utterance, the ASR system (see Sec-
tion 6.2.1) produces a word graph that contains alternative recognition hypothe-
ses. By using the word graph, we can extract an N-best list, eventually only
the best transcription, and pass it to the N-best MT decoder (see Section 6.4).
Otherwise, a confusion network can also be built from the word graph with a
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CHAPTER 6. SPOKEN LANGUAGE TRANSLATION

dominant property that it has a more compact representation and a lower word
error rate than the former. In this case the CN-based MT decoder presented in
Section 6.6 is used. Similarly, in the right-hand side, output of machine transla-
tion is again a word graph, a compact representing of the translation hypotheses
in the target language. Clearly, if we are just interested in the translation result,
the best translation hypothesis can be extracted directly from the word graph.
Additionally, the possibility of having word graphs and N-best list outputs al-
lows to optimize parameters of the MT and ASR systems or rescore translation
hypotheses with deeper and more extensive knowledge sources. Preprocessing
and postprocessing, even if not reported in Figure 6.3, are performed as in the
text MT system (see Section 4.5).

6.8 Experiments

In this Section the N-best-based and CN-based approaches presented in the pre-
vious Sections are compared. As a reference we also translate the manual tran-
scription, which is the upper bound for the SLT task.
Experiments regard both the translation quality measured with BLEU, NIST and
WER, and the efficiency evaluated in terms of the average number of hypotheses,
Avg#Th, generated during the decoding (see Appendix B.2).

6.8.1 Training and Testing Data

Evaluation of the N-best-based and CN-based SLT systems were performed
over the same benchmark described in Section 4.6.2. Table 6.1 summaries
statistics of test data sets available for the ASR system.
The language model of the ASR system has been trained over the Italian part of
BTEC, and has a perplexity of 60 and 44 over the test sets Q1 and Q2, respec-
tively. The acoustic model has been trained over a 130h corpus of broadcast
news. Model weights of the ASR system are optimized over a development
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#sent. W / V / #spk speech WER OOV PP

Q1 3006 23512 2768 17 (8f+9m) 3h:25m 21.9 4.3% 60
Q2 506 2985 940 10 (5f+5m) 29m 23.1 3.4% 44

Table 6.1: Audio statistics of the two test sets, Q1 and Q2. Number of sentences, running
words, dictionary size, number of speakers, audio length, word error rate of the 1-best list,
out-of-vocabulary rate, and language mdoel perplexity are reported.

set of 500 speech utterances through the Minimum Error Training method de-
scribed in Section 5.3.1. After the weight estimation, the ASR system achieves
a WER of 21.9% and 23.1% over the Q1 and Q2, respectively.

It is worth remarking that speech transcriptions and corresponding translations
are produced without punctuation and caseing information; hence, training data
for MT are preprocessed accordingly.

6.8.2 Relationship between recognition and translation quality

First of all we were interested in finding if recognition and translation quality are
correlated. As the ASR system is not perfect, the best transcription provided by
the ASR system, i.e. that with the highest score, does not achieve, necessarily,
the best recognition accuracy, i.e. the lowest WER. An oracle can extract the
transcription which minimizes WER from a set of alternatives. Obviously, the
larger this set, the better quality of the oracle transcriptions.

Oracle transcriptions were extracted from sets of increasing sizes, which achieved
lower WER, and translated. In particular, oracles were extracted from N-best lists
of different depth and confusion networks with different pruning. Figure 6.4
shows the almost linear correlation between recognition errors (WER) and trans-
lation quality (BLEU) that were observed.
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Figure 6.4: Correlation between recognition accuracy and translation quality. Oracle transcrip-
tions of increasing accuracy are translated and evaluated with BLEU score.

6.8.3 Comparison of the SLT systems

The comparison of the two systems, namely the N-best and the CN decoders,
was performed from the point of view of translation quality and decoding ef-
ficiency. Both systems were set with uniform model weights, and produced
word graphs including all translation hypotheses generated during the decoding.
Then, best translations were extracted after rescoring with optimal weights.

The N-best MT system was applied to the 1-best, 15-best, 10-best, 20-best,
50-best and 100-best ASR transcriptions. Moreover, this system was also
used to translate the human transcriptions of the test sets. The CN-based MT
system instead translated from confusion networks which were pruned accord-
ing to the criterion presented in Section 6.6.4. On the average, each confusion
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BLEU NIST MWER Avg#Th Avg#Tr

human 53.0 (51.9-54.2) 9.70 (9.58-9.83) 32.71 (31.48-33.91) 41K 1180
1-best 39.9 (38.7-41.0) 8.03 (7.91-8.18) 46.0 (44.4-47.5) 38K 1215
5-best 40.9 (39.8-42.1) 8.18 (8.05-8.31) 44.5 (43.0-46.0) 218K 5929
10-best 41.0 (39.9-42.3) 8.20 (8.07-8.33) 44.3 (42.8-45.7) 445K 11610
20-best 41.2 (40.1-42.4) 8.21 (8.08-8.35) 44.2 (42.7-45.7) 900K 22547
50-best 41.2 (40.1-42.4) 8.22 (8.09-8.35) 44.1 (42.6-45.6) 2255K 56690
100-best 41.3 (40.2-42.5) 8.22 (8.09-8.36) 44.1 (42.6-45.5) 4501K 113991

CN 40.1 (39.0-41.2) 8.01 (7.88-8.14) 45.8 (44.2-47.2) 319K 4350

Table 6.2: Comparison of the SLT systems on the test Q1.

BLEU NIST MWER

human 64.9 10.6 28.9
1-best 54.3 9.24 37.6
5-best 56.5 9.55 35.6
10-best 56.7 9.58 35.5
20-best 57.0 9.59 35.4
50-best 57.0 9.59 35.3
100-best 56.8 9.59 35.6

CN 56.08 8.754 37.91

Table 6.3: Comparison of the SLT systems on the test Q2.

network contains 54K transcription hypotheses.

Performance on test sets Q1 and Q2 are reported in Table 6.2 and 6.3. Moreover,
the average number of hypotheses computed during the decoding (Avg#Th) and
the average number of different translation alternatives (Avg#Tr) stored in the
word-graphs are given for Q1.
First of all, we observe that, by moving from human to automatic transcriptions,
translation quality decreases by about 25% in terms of BLEU score (from 53.0 to
39.9 on Q1).
By looking at performance of the N-best SLT system, we notice that the major
improvement with respect to the 1-best is obtained by simply consider 5 alter-
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natives, and differences become slightly significant above N � 10. Increasing
the number of transcription hypotheses does not improve performance, but only
affects the computation effort.
As concerns the CN-based system, we observe that it performs similarly to the
1-best system. By looking at the computation level, the CN decoder competes
with the 5-best and 10-best systems, but performance are lower, although not
significantly.
We believe that the not very promising result of the CN-based system is due to
the method of generating the confusion network itself. Main advantage of the
CN-based system consists in its decoding algorithm which permits to consider
during the search a much larger number of transcription hypotheses (54K) than
the N-best-based system. But as shown in the matrix representation depicted
in Figure 6.2, posterior probabilities of words are very sharp. This means that
almost all probability mass of the CN is concentrated in very few hypotheses,
among the 54K alternatives. Hence, any translation of the remaining hypotheses
achieves a global probability very close to 0, due to feature h6 (see Section 6.6).

6.8.4 Potential quality of the SLT approaches.

The potential quality of the two SLT approaches can be measured by applying
the previous oracle strategy to the produced translation alternatives. Hence, we
picked translations with the lowest WER from a set of M-best alternatives.
Figure 6.5 plots the WER achieved by the considered SLT systems with increas-
ing M. Notice that real performance of a system is obtained when M � 1, while,
on the opposite, a full oracle approach is given if M has the largest value.
The curve corresponding to CN-based system decreases faster than the curve of
the N-best systems when M is larger than 10. This means that the CN-based
system finds a larger number of “good” translations among a smaller number of
alternatives.
Interestingly, the CN-based system achieves the same performance (WER 31.00)
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Figure 6.5: Correlation between recognition accuracy and translation quality. Oracle transcrip-
tions of increasing accuracy are translated and evaluated with BLEU score.

of the 1-best system within a significant lower number of translation hypothe-
ses (M � 100 vs M � 1000). Morever, at the same level M � 1000 and M �
10000, the CN-based system outperforms the 1-best system of about 8% and
10% respectively.
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Chapter 7

Conclusions

This dissertation has presented original work in three area of Machine Transla-
tion: Cross-Language Retrieval, Text Translation, and Spoken Language Trans-
lation. In particular, new statistical models and innovative search algorithm
have been proposed. Main results of my work are now briefly summarized.

7.1 Cross-Language Information Retrieval

The following results emerged from my research on Cross-Language Informa-
tion Retrieval and participation in several CLEF evaluation campaigns.� The statistical LM approach well compares with the Okapi model, and re-

sults very competitive on long topics or after query expansion. Moreover,
consistent improvement in performance over both methods was achieved
by combining the Okapi and LM scores after some normalization.� Comparing CLIR models results quite difficult. As a matter of fact, re-
trieval performance seems very sensitive to translation quality, which how-
ever depends on the coverage of the available dictionaries and on the gen-
eration of correct word stems and base-forms. Retrieval performance mea-
sured by using our translation model and a commercial translation system
showed, over a set of 140 queries, many large fluctuations. In fact, such
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high variability did not permit to rank the approaches in a statistically sig-
nificant way, at least on the available sets of queries. From our point of
view, this also means that, for the sake of IR, our statistical translation
model, which is quite simple to implement, did not perform worse than a
state-of-the-art commercial translation engine, which was developed over
several decades.� Qualitative analysis of results suggests that improvements in CLIR should
be pursued in two main directions: by developing better statistical CLIR
models (see below), and by augmenting coverage of bilingual dictionar-
ies. On the other hand, recent experiments showed that text preprocessing
based on morpho-syntactic analysis is not superior than basic word stem-
ming. This widens the applicability of the proposed CLIR approach to
other language pairs for which bilingual dictionaries are available. Further
experiments [8] were carried out on a cross-language spoken document
retrieval track, with spoken documents in English and topics in French,
German, Italian, and Spanish. Promising results were achieved by only
using publicly available dictionaries and stemming algorithms.� Finally, it is well known that blind relevance feedback is determinant step
which boosts retrieval performance, especially for short queries. However,
up to now, not enough effort has been devoted to embed BRF into a statis-
tically sound framework. Besides this theoretical issue, it would be useful
investigate how BRF could be specifically devised for CLIR, for instance,
to improve quality of translations.

7.2 Text Translation

Initial efforts were devoted to develop a statistical MT system from scratch. In
particular, two issues related to a popular word-based statistical MT model by
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[12] were addressed: the derivation of an efficient decoding algorithm, and the
extension of the model to include stochastic dependencies beyond single words.

� An original dynamic programming formulation of the decoding problem
was derived proposed for the so-called Model 4, which directly derives
from the search optimization criterion. Moreover, an approximate decod-
ing algorithm was implemented which applies theory pruning and word-
reordering constraints in order to keep decoding time under control.

� Following a recent trend in MT to exploit statistics at level of phrases,
three extensions of Model 4 have been discussed, which model phrase-
level probabilities, respectively, (i) by integrating word-based probabili-
ties, (ii) through empirical measures on a sample of phrases, (iii) by com-
bining the two previous methods. Remarkably, all the resulting models
do not require to modify the decoding algorithm for Model 4. Practically,
they just require augmenting the target dictionary and the original param-
eters of Model 4. Given a parallel corpus for training, a sample of phrases
is simply extracted by exploiting bi-directional alignments computed with
word-based translation models [60].

� Extensive translation experiments on a tourism domain, with translation
directions Chinese-English and Italian-English, showed that the presented
phrase-based models are superior to Model 4. In particular, most robust-
ness against data sparseness is shown by the model combining word-based
and sample-based statistics. Moreover, the trade-off between memory and
time consumption vs. performance was analyzed with respect to the max-
imum allowed phrase length. Our conclusion that phrases of up-to three
words provide a reasonable trade-off agrees with the outcome of [41].

129



7.3. SPOKEN LANGUAGE TRANSLATION

7.3 Spoken Language Translation

As concerns the Spoken Language Translation task, we have proposed a new
statistical model for integrating ASR and MT systems.� We extend the statistical model for text translation to embed acoustic evi-

dence. Two systems have been developed: the first exploits a list of N-best
transcription hypotheses produced by the ASR system, while the second
is based on a particular word graph, a confusion network, which approx-
imates the word graph generated by the ASR system. In both cases, a
log-linear model is defined, which combines a set of real-valued features.

Moreover, the search algorithm implemented for the confusion network
system is obtained by properly extending th phrase-based decoder.� N-best-based systems (with N Q 10) significantly ouperform the 1-best de-
coder, but the decoding time, which is almost linear in N, becomes critical.

Instead, the CN-based system has the main advantage of translating a large
set of hypotheses very fast. As concerns translation quality we found that,
the CN-based system does not perform significantly worse than the N-best
systems, apart from the case N � 100 which, however, requires a much
larger computational effort.� We think that performance of the CN-based system are strongly affected
by a characteristic of the confusion networks, we worked with. Even if
they contain a lot of transcription alternatives, almost all probability mass
is concentrated in very few of them. Practically, all remaining hypothe-
ses are pruned during the decoding process. We expect that smoothing
the confusion network probabilities could significantly improve translation
quality without impacting over decoding time.
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Appendix A

Word Graphs

A word graph (WG) is a directed, acyclic, weighted, labeled graph with distinct
start and end nodes. It is a quadruple G �_	 V � E � I � F 
 where V �±c v1 �����!��� vN e is
a set of nodes, E �ªc e1 ���!����� eM e is a set of edges, and I � F O V are the start and
end nodes. By the default, I � v1 and F � vN . An edge e � 	 vi � v j 
 connects
the starting node vi O V to the ending node v j O V , and is labelled with features
related to the application.

For instance, edge labels of the word-graphs produced by the ITC-irst ASR
system consists of a recognized word hypothesis, its starting and ending time,
and the acoustic and language model scores. Instead, the ITC-irst SMT decoder
produces word-graphs, whose edges are labelled with the target phrases, the
alignments, besides the scores.

A.1 Word Graph decoding

WG decoding is the process of finding the best sentence and the N � best sen-
tences through the WG. Moreover, an approximation of the WG can be obtained
which is more compact and suitable to feed the SLT system described in Sec-
tion 6.6. More details can be found in [67].
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A.1.1 1-best Word Graph decoding

Finding the best sentence in the word graph is equivalent to the shortest path
problem in graph theory [18]. Dynamic programming permits to solve this
problem in a very efficient way.

A.1.2 N-best decoding

The problem of finding the N � shortest paths of a weighted directed graph is a
well-studied problem in computer science [22]. In MT and in ASR the problem
is slightly different, because it is often desirable to determine not just the N-best
word sequences, but the N-best distinct word sequences. An efficient algorithm
proposed in [81] was implemented, which perform an exact search without any
approximation.

A.1.3 Confusion Network

A WG generated by an ASR system can be compacted into a so-called confusion

network (CN) by means of an algorithm proposed by [46]. A CN, which is a
acyclic directed word-graph, is linear in the sense that every path from the start
to the end node has to pass through all nodes and, consequently, all paths have
the same length. It is worth noticing that a CN contains more transcription
hypotheses than the original WG.
Figures A.1, A.2, and A.3 show the word graph generated from the ITC-irst
ASR system, the corresponding confusion network, and a list of N-best tran-
scription hypotheses.

A.2 Word Graph evaluation methods

The quality of a WG is usually related to its size and the graph word error rate

(GWER). The word graph density (WGD), defined as the total number of edges di-
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vided by the number of words of the reference, is a widely used criterion for
measuring the size. The GWER is computed by determining which path within
the WG minimizes the WER with respect to the reference sentence (see Ap-
pendix B.2). Practically, computation of GWER also supplies this best sentence
hypothesis, which corresponds to the oracle response.
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Figure A.1: Example of the word graph generated from the ITC-irst ASR system.
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APPENDIX A. WORD GRAPHS

1

2

era è eps

3

cancello vacanza eps

4

eps la

5

l’ all’ eps di d’

6

imbarco bar eps

7

eps −

8

eps è e o con va di d’ uh che otto

9

eps ha

10

eps a al ho la ad l’ anch’

11

eps i un b a t e

12

eps f

13

eps ci

14

eps è e o a i ho ha

Figure A.2: Example of a confusion netword extracted from the word graph.
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A.2. WORD GRAPH EVALUATION METHODS

1 era cancello di imbarco

2 era cancello d’ imbarco

3 era cancello di imbarco

... ...
8 è vacanza l’ imbarco

9 era cancello di imbarco o

... ...
14 era cancello di imbarco la

15 era cancello di imbarco i

16 è vacanza la di bar con

... ...
human dove è il cancello d’ imbarco

gold reference where is the boarding gate

Figure A.3: N-best transcriptions extracted from a word graph.
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Appendix B

Evaluation Measures

B.1 Information Retrieval

Performance of an Information Retrieval (IR) system is usually measured in
terms of mean average precision mAvPr.
Given the document ranking provided against a given query q, let r1 n ����� n rk

be the ranks of the retrieved relevant documents. The AvPr for q is defined as
the average of the precision values achieved at all recall points, i.e.:

AvPr � 100 z 1
k

k

∑
i 
 1

i
ri

(B.1)

The mAvPr of a set of queries corresponds to the mean of the corresponding
query AvPr values.
An other widely used evaluation score is the F1-measure combining two orthog-
onal metrics, namely the recall, i.e. the ratio between the relevant documents
returned by the system and the total number of relevant documents in the col-
lection, and the precision, i.e. the ratio between the relevant document returned
and the total number of document returned, as follows: ÐÒÑÓ� 2 Ô precision Ô recall

precision f recall .
Performance difference between two IR system is considered statistically sig-
nificant if the paired sign test [37] succeeds. In particular, the test is applied
to paired average precision measures of single queries, by testing for a median
difference of zero.
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B.2. MACHINE TRANSLATION

B.2 Machine Translation

Translation quality is evaluated by means of three well established automatic
measures:� Word Error Rate (WER) is the edit (or Levenshtein) distance [45], which

computes the minimum number of substitution, insertion and deletion op-
erations that have to be performed to convert the hypothesis into the refer-
ence sentence, divided by the length of the latter. If the test set consists of
more sentences the global edit distance and the global reference length are
taken into account, and successively divided. This performance criterion
is widely used in ASR. Hence, ideally, the lower the score the better the
translation.� Multi-reference WER (MWER) is an extension of the WER in the case more
references exist for each test sentence. For each hypothesis the edit dis-
tance to the most similar reference sentence is computed [55].� BLEU score [62] corresponds to the geometric average of the precision mea-
sures of the n-grams, with n from 1 to 4, of the system output against the
n-grams in all the references. As recall is not considered, a penalty for
too short sentences is added. Unlike WER, BLEU score measures translation
accuracy; hence, larger the values better the quality.� NIST score [33] is a variant of BLEU, which computes the arithmetic aver-
age of the precisions of n-grams, with n from 1 to 5, and gives a higher
penalty to very short sentences. The worst NIST score is zero while the
best one is a positive number depending on the length of the test set.

As reported in [44, 62], all above measures correlate quite well with human
judgments, especially if they are applied to compare different versions of the
same system.
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APPENDIX B. EVALUATION MEASURES

Automatic scores are really useful if they permits to decide whether difference
between performances of two systems is significant. This can be achieved ei-
ther by using large, but expensive, test suites or by applying an appropriate tool,
the so-called bootstrapping method [93], developed in statistical testing theory.
This method provides a confidence interval for a specific metric. Given the con-
fidence intervals of two systems, a test of equality of the means of two normal
distributions is applied, and a confidence level α=0.05 is considered.
A fair evaluation of MT decoder should take into account time and memory
consumption, too. Since the ITC-irst system features a parallel decoding on a
cluster of PCs, the elapsed time for translation could not be used as it signifi-
cantly varies according with the workload and power of the engaged CPUs. A
more stable measure has been adopted, namely the average number of trans-
lation hypotheses (Avg#Th) generated during the search algorithm. Figure B.1
shows the almost perfect correlation between the Avg#Th and the decoding time,
which includes time for generating, scoring, recombining and pruning theories,
for many runs under controlled conditions.
Memory consumption takes into account storage for model parameters and gen-
erated theories; the former is strictly related to the number of translation pairs
contained in the bilingual dictionary, the latter is proportional to the number of
generated theories.
Henceforth, when a time-memory based comparison is required, the average
number of generated theories (Avg#Th) and the size of the used bilingual dic-
tionary are used.
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