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Abstract. We show here how it is possible to build a QFT on the horizon of a Schwarzschild-like
spacetime. That theory, found by restricting bulk quantum fields on the horizon, is equivalent to QFT
on the bulk. That fact is called Holography. Moreover the hidden conformal symmetry (SL(2,R)) found
for the bulk theory becomes manifest on the horizon in terms of some of its diffeomorphisms. Then the
extension of group of the generator of that symmetry to the Virasoro algebra is discussed.

1. Introduction. In the last fifty years much work was done in order to understand the statistical
origin of black-hole entropy. The Holographic principle, proposed for the first time by ’t Hooft
and Susskind [1, 2, 3], is one of the most promising idea to deal with that problem. In few words
the quantum theory responsible for the statistical black hole entropy should be suited on the
event horizon, moreover it has to describe the events that take place in the spacetime. In some
sense as a photograph describe a landscape. Starting from these ideas and using the machinery
of string theory, Maldacena [4] conjectured that the quantum field theory in a, asymptotically
AdS, d + 1 dimensional spacetime (the “bulk”) is in correspondence with a conformal theory
in a d dimensional manifold (the (conformal) “boundary” at spacelike infinity). Notice that
the d dimensional conformal group on the boundary acts as the asymptotic isometry group on
the bulk. Afterwards, Witten [5] showed that that correspondence can be reset in terms of
observables of the two theories. More recently Rehren [6, 7] proved rigorously some holographic
theorems concerning boundary and bulk observables in AdS background, without using string
theory. In the last year we have shown that there is also a bulk-boundary correspondence
for QFT on Schwarzschild-like black holes [8, 9]. Similar ideas, concerning algebraic QFT on
spacetimes with bifurcate Killing horizons and conformal symmetry, were presented by Guido,
Longo, Roberts and Verch [10]. Also Schroer and Wiesbrock [11] have studied the relationship
between horizons and ambient QFT. Moreover, they use the term “hidden symmetry” in a sense
similar as we do here and we done in [12]. Schroer [13] and Schroer and Fassarella [14] by means
of the Lightfront formalism they presented holography for Minkowski spacetime.
In this letter, discarding the technical details and stressing some of their physical implications,
we want to summarize some of our results. The near horizon structure of every Schwarzschild-
like spacetime is similar to the Cartesian product of a two dimensional Rindler spacetime and a
sphere. The holographic properties of this spacetime are already exhibited discarding the sphere.
That’s because in the first part of that letter we deal with two dimensional spacetimes. We
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have shown recently [12] that the quantum field theory in a two-dimensional Rindler spacetime
presents a “hidden” SL(2,R) symmetry. SL(2,R) symmetry is the one dimensional conformal
group. This, suggests that, as in the AdS case, Rindler quantum fields are in holographic relation
with one dimensional conformal fields. But here the situation is a little bit different, in fact,
even if the quantum theory is invariant under SL(2,R)3, the symmetry does not descend from
the isometries of the spacetime, that is because we say that the symmetry is “hidden”. We argue
that these symmetry acquires a geometrical meaning in the holographic-dual conformal theory.
We search for the dual conformal theory on the horizon. In fact on the horizon the metric is
degenerate and SL(2,R) can be seen as a subgroup of the horizon diffeomorphism. Moreover,
compactifiing the horizon, it is possible to extend the symmetry generated by the Lie algebra
sl(2,R) to the whole Virasoro algebra, with a central charge equal to one. In the last section
we consider the four dimensional case, we show that the holographic relation holds also in this
case, even if, at least in general, the extension of the symmetry to the Virasoro algebra does not
take place.
2. SL(2,R) symmetry from energy spectrum: a Hidden and a Manifest case. We start our
discussion with an abstract problem: Consider a quantum Hamiltonian H whose spectrum
goes from zero to infinity, (for simplicity without degeneration). The corresponding Hilbert
space is clearly H := L2(R+, dE). In [12] we have shown that H is irreducible under unitary
representation of SL(2,R). The corresponding generators, enjoying the sl(2,R) commutation
relation, are the selfadjoint extensions of iH, iD and iC, defined below.

H := E , D := −i
(

1

2
+E

d

dE

)

, C := − d

dE
E
d

dE
+

(k − 1
2)2

E
. (1)

k can be fixed arbitrarily in {1/2, 1, 3/2, . . . }. In the Heisenberg representation of (1), the
expectation value of H,D,C are constant of motion. See [8] for details. Notice that, up to now,
only H has a physical meaning as the Hamiltonian, (the generator of time translation) of the
system, whereas the physical (geometrical) meaning of D and C has to be discussed in every
particular case. We say that the found SL(2,R) symmetry is manifest when D and C have
geometrical meaning on the contrary we say that the symmetry is hidden. Notice that, since
the action of SL(2,R) is closed in the one particle Hilbert space H, the SL(2,R) symmetry is
inherited by the Fock space F(H). In the following we shall analyze some particular case.
a)Free particles in Rindler space time. We remind here that every Schwarzschild-like metric
ds2

S
= −A(r)dt2 + A−1(r)dr2 + r2dΩ2, where Ω are the angular coordinates, reduces to the

metric of a two-dimensional Rindler R space time near the bifurcate horizon at r = rh. ds2
R

=
−κ2y2dt2+dy2 with with A′(rh) = 2κ, and κy2 = 2(r−rh), the angular coordinates are dropped
in first approximation. Consider the free Klein-Gordon equation, −∂2

t φ+κ2
(

y∂yy∂y − y2m2
)

φ =
0 for a free scalar field φ The one particle Hilbert space of the free quantum particle arises by
decomposing any real solution ψ of the Klein-Gordon equation in t-stationary modes as follows.

ψ(t, y) =

∫ +∞

0

∑

α

Φ
(α)
E (t, y)ψ̃

(α)
+ (E) dE + c.c. (2)

3The invariance is a dynamical invariance in the sense presented in [15, 8]
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E ∈ [0,+∞) = R
+ is an element of the spectrum of the Rindler Hamiltonian H associated with

∂t evolution. If m = 0 there are two values of α, corresponding to ingoing and outgoing modes,

Φ
(in)/(out)
E whose expression are e−iE(t±ln (κy)/κ)/

√
4πE. On the other hand if m > 0 there is

a unique mode Φ
(α)
E = ΦE whose expression is

√

2E sinh(πE/κ)/
√

2π2κE e−iEt KiE/κ(my).
Notice that in the massive case there is no energy degeneration and the one-particle Hilbert
space H is isomorphic to L2(R+, dE). In the other case (m = 0), twofold degeneracy implies
that H ∼= L2(R+, dE) ⊕ L2(R+, dE). Quantum field operators, acting in the symmetrized Fock
space F(H) and referred to the Rindler vacuum |0〉 – that is |0〉in ⊗ |0〉out if m = 0 – read

φ̂(t, y) =

∫ ∞

0

∑

α

Φ
(α)
E (t, y)aEα + Φ

(α)
E (t, y)a†EαdE. (3)

As usual, the causal propagator ∆ satisfies [φ̂(x), φ̂(x′)] = −i∆(x, x′).
In this cases, in the sense discussed above, there is a hidden SL(2,R) symmetry. Indeed, at
least for the massive case, D and C have no local action on the Rindler wedge R.
b)Free particles in AdS2 space time. We analyze here a free massive particle moving in the
portion of AdS2, delimited by the (non-bifurcate) Killing horizon. This particular chart of AdS2

describe a near horizon approximation of an extremal Reisner-N ordstrum black hole. We write
the AdS2 metric in the form ds2

A
= −x2/` dt2+`/x2dx2, where ` is related with the cosmological

constant. As in the Rindler case, consider the free Klein-Gordon field φ satisfying the motion
equation −`2∂2

t φ +
(

x2/`2 ∂x x
2∂x − x2m2

)

φ = 0. The decomposition in stationary modes of
the real solution of the Klein-Gordon field ψ reads

ψ(t, y) =

∫ +∞

0

∑

α

ΦE(t, x)ψ̃+(E) dE + c.c. (4)

where ΦE(t, x) := Jν(−`2E/x)
√

`2/(2x), and ν :=
√

1/4 +m2`2. As in the Rindler case, there
is a single mode for every value of E in R

+. Moreover the modes ΦE are complete, then the
one-particle Hilbert space HA is isomorphic to L2(R+, dE) too. In the symmetrized Fock space
F(HA), equipped with the vacuum |0〉A, the quantum field operators, read

φ̂(t, x) =

∫ ∞

0
ΦE(t, x)bE + ΦE(t, x)b†EdE. (5)

Notice that HA is a unitary representation of SL(2,R) as above, but in this case, studying the
isometries of AdS2 is possible to give geometrical meaning at the generators D and C too. The
isometries of AdS2 are generated by the following vector fields basis

h :=
∂

∂t
, d := t

∂

∂t
− x

∂

∂x
, c :=

(

t2 +
`2

x2

)

∂

∂t
− 2tx

∂

∂x
. (6)

They satisfy the commutation relation of the sl(2,R) Lie algebra. There is an isomorphism
between the generators of isometries and the generators of a particular unitary representation of
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SL(2,R) (1). This isomorphism singles out a particular SL(2,R) representation and a particular
value of k > 0 in C: (k − 1/2)2 = 1/4 + m2`2. Notice that in the massless case k = 1. The
SL(2,R) is manifest.
3. Quantum fields on the horizon. a)The future horizon. The hidden SL(2,R) symmetry
on Rindler particle is unsatisfactory, we have to deeper analyze the nature of that symmetry.
To do that we want to show what happens exactly on the horizon, arguing that the hidden
symmetry takes a geometrical meaning on the horizon. Consider the Rindler spacetime R
naturally embedded in a Minkowski spacetime. The (Rindler) light coordinates u = t−log(κy)/κ,
v = t+log(κy)/κ (where u, v ∈ R) that cover the Rindler space R are respectively well defined on
the past P and the future horizon F, (see figure). First of all, we consider the theory restricted
on the future horizon F and we shall show that it is a well defined quantum theory. Take the
wavefunction in (2) and consider the limit on the future horizon u→ +∞. That is equivalent to
restrict the wavefunction on the horizon when it is considered as a wavefunction in Minkowski
spacetime, obtaining

ψ(v) =

∫

e−iEv

√
4πE

eiρm,κ(E)ψ̃+(E) dE + c.c. (7)

eiρm,κ(E) is a pure phase (see [8] for details). In coordinate u ∈ R, the restriction of ψ to P is
similar with the v replaced for u and ρm,κ(E) replaced by −ρm,κ(E). If m = 0 the restrictions
to F and P read respectively

ψ(v) =

∫

e−iEv

√
4πE

ψ̃
(in)
+ (E) dE + c.c. , ψ(u) =

∫

e−iEu

√
4πE

ψ̃
(out)
+ (E) dE + c.c. (8)

Discarding the phase it is possible to consider the following real “field on the future Horizon”:

ϕ(v) =

∫

R+

e−iEv

√
4πE

ϕ̃+(E) dE +

∫

R+

e+iEv

√
4πE

ψ̃+(E) dE (9)

as the basic object in defining a quantum field theory on the future event horizon. The same can
be done for the past event horizon. The one-particle Hilbert space HF is defined as the space
generated by positive frequency parts ψ̃+(E) and turns out to be isomorphic to L2(R+, dE) once
again. The field operator reads, on the symmetrized Fock space F(HF) with vacuum |0〉F,

φ̂F(v) =

∫ ∞

0

e−iEv

√
4πE

aE +
eiEv

√
4πE

a†EdE . (10)

The causal propagator ∆F is defined by imposing [φ̂(v), φ̂(v′)] = −i∆F(v, v′) and it takes the
form (1/4)sign(v − v′). In spite of the absence of any motion equation the essential features
of free quantum field theory are preserved by that definition as proven in [8]. Degeneracy of
the metric on the horizon prevents from smearing field operators by functions due to the ill-
definiteness of the induced volume measure. However, employing the symplectic approach [16],
a well-defined smearing-procedure is that of field operators and exact 1-forms η = df where
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f = f(v) vanishes fast as v 7→ ±∞. The integration of forms does not need any measure. In
other words for a real exact 1-form η as said above

φ̂F(η) =

∫ ∞

0

dE√
4πE

(
∫

R

e−iEvη(v)

)

aE +

(
∫

R

eiEvη(v)

)

a†E (11)

is well defined and diffeomorphism invariant. In a suitable domain the map η(v) 7→ ∆F(η) =
1
4

∫

R
sign(v−v′)η(v′) = ψη(v) defines a one-to-one correspondence between exact one-forms and

horizon wavefunctions of the form (2) and η = 2dψη . Finally, similarly to usual quantum field
theory [16], it holds

[φ̂F(η), φ̂F(η′)] = −i∆F(η, η′) =

∫

F

ψη′dψη − ψηdψη′ .

The last term define a diffeomorphism-invariant symplectic form on horizon wavefunctions.
Concerning locality, notice that φ̂(η) commute with φ̂(η′) if supports of η and η′ are contained
in disjoint segments.
b) The compactified horizon. As pointed out above on F there is no preferred measure, then we
can consider the compactified case S

1 ∼= F∪{∞}. Everything described above, can be translated
in this case. Parametrize S

1 by θ ∈ [−π..π]. The circle wavefunction are

ρ(θ) =

∞
∑

n=1

e−inθ

√
4πn

ρ̃(n) + c.c. . (12)

The complex combination of the positive frequency part of ρ(θ) form a Hilbert space HS1 iso-
morphic to `2(C). Moreover in [9] we have shown that HS1 turns to be isomorphic to HF. The
isomorphism acts in this way on the wavefunctions: ρ(θ) = ψ(v(θ)), where v(θ) = β tan θ/2,
with β a positive constant. Moreover exists a basis {Zn(E)}4 on L2(R+, dE) that realizes the
isomorphism: ρ̃+(n) = 〈Zn(E), ψ̃+(E)〉 and ψ̃+(E) =

∑∞
n=1 Zn(E)ρ̃+(n). Notice that positive

frequencies on the horizon F correspond to positive frequencies on the circle S
1. In the Fock

space of the circle F(HS1), with respect to the vacuum |0〉S1 , the quantum field operator reads

φ̂S1(θ) :=

∞
∑

n=1

e−inθ

√
4πn

αn +
einθ

√
4πn

α†
n. (13)

The causal propagator is computed trough the relation [φ̂S1(θ), φ̂S1(θ′)] = −i∆S1(θ, θ′) and it
take the simple form: (1/4) sign(θ− θ ′)− (θ− θ′)/π. As before, to get local quantities, and due
to ill-definiteness of the metric, the quantum fields need to be smeared by 1-forms.

φ̂S1(η) :=
∞
∑

n=1

(
∫

S1

e−inθη(θ)

)

αn√
4πn

+
∞
∑

n=1

(
∫

S1

einθη(θ)

)

α†
n√

4πn
,

where η = df .

4The explicit form of Zn(E) involves the Laguerre polynomials, see [12] for details.
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4. The SL(2,R) symmetry becomes manifest on the compactified horizon. Consider a quantum
field theory on (or equivalently on bP ) mapped as explained above on S

1. On Hilbert space
HS1

∼= L2(R+, dE) acts the tree operators H,D,C as defined on the right side in (1). As
discussed above, the operators iH, iC, iD generates a unitary representation {Ug}g∈SL(2,R) of
SL(2,R). We want to discuss here the “geometrical nature” of that representation. Consider
the new basis of SL(2,R:

K :=
1

2

(

βH +
C

β

)

, S :=
1

2

(

βH − C

β

)

, D. (14)

As shown in [9], in the case when k = 1 in (1) the representation Ug has the following geomet-
rical meaning: consider a wavefunction ρ(θ), the state ρ̃ g

+(n) := Ugρ̃+(n), with g ∈ SL(2,R),
corresponds to the wavefunction ρ g(θ). Moreover ρ g(θ), satisfy a geometric transformation:

ρ g(θ) = ρ(d−1
g (θ)). (15)

Where dg is a diffeomorphism of the circle S
1. In particular, the following relation, between the

Lie algebra of the unitary representation of SL(2,R) and the diffeomorphisms group, holds.

iK ↔ ∂θ, iS ↔ sin(θ) ∂θ iD ↔ cos(θ) ∂θ. (16)

The theory on the horizon F. For completeness we analyze the geometrical nature of the SL(2,R)
symmetry on F. On the horizon Hilbert space HF

∼= L2(R+, dE) acts unitarily a representation
{Ug} of g ∈ SL(2,R) generated by (1). In the case of k = 1 the wavefunction ψg(v) associated
with Ugψ̃+ reads:

ψg(v) = ψ

(

av + b

cv + d

)

− ψ

(

b

d

)

, g−1 =

(

a b
c d

)

. (17)

Notice that in the action of SL(2,R) is not exactly geometric due to the term −ψ(b/d). The
added term disappears considering local 1−form dψ instead of wavefunction ψ. In this case:

iH ↔ ∂v, iD ↔ v ∂v. (18)

The action of iC is not exactly geometric due to the term −ψ(b/d). Apart this term it corre-
sponds to corresponds to v2 ∂v.
5. Virasoro algebra. Above we have seen that the unitary SL(2,R) symmetry is manifest on
the circle S

1 ∼= F ∪ {∞} without a measure. But due to the degeneracy of the metric on F and
then on S

1, we expect more symmetry. In fact SL(e,R) is only a little part of a greater group
of symmetry: the group of diffeomorphism preserving orientation Diff+(S1). Consider its Lie
algebra: V ect(S1) of its vector field. A algebraic basis the vector fields is made of the real part
of the following smooth fields:

Ln := ieinθ∂θ. (19)
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The element of this basis, equipped with the usual bracket {·, ·}, satisfy the Virasoro commuta-

tion rules with vanishing central charge:

{Ln,Lm} = (n−m)Ln+m. (20)

Moreover a particular Hermiticity condition is fulfilled, by means of the involution ω : X 7→ −X:

ω(Lm) = L−m.

The tree generator {L−1,L0,L1} satisfy the sl(2,R) commutation relation, moreover they are
a linear combination of the generators of the SL(2,R) on the circle defined above (16)

−iL0 = ∂θ , −L1 − L−1

2
= sin θ ∂θ ,

L1 + L−1

2i
= cos θ ∂θ , (21)

then {L−1,L0,L1} are in relation with the tree particular operators {K,S,D} generating a
unitary representation of SL(2,R) on the Hilbert space HS1 . Now a question arises. Is it
possible to extend the SL(2,R) representation to the whole Diff+(S1) group? Instead of
answering that question, we want to show here that, at least in some particular situations, the
quantum sl(2,R) algebra can be extended to the whole Virasoro algebra. Moreover, a central
charge arises through this extension. In the case when k = 1 in (1), on the Fock space F(HS1),

consider an = i
√
n αn, a−n = −i√n α†

n if n > 0 and a0 = 0 written in terms of the creation
and annihilation operators. {an} satisfy the commutation relation: [an, am] = nδn,−mI and

a†n = a−n. {an} with that commutation relation form the so called oscillator algebra [17]. The
quantum field (13) take the simplest form

φ̂S1(θ) =
1

i
√

4π

∑

n∈Z

e−inθ

n
an. (22)

Define the operator as in [17]

Lm :=
εm
2
a2

m/2 +
∑

n>m/2

a−nan+m, m ∈ Z, (23)

where εm is equal to one if m is even and 0 otherwise. Notice that on the Fock space F(HS1),
since the number of particles is finite, the sum in (23) are finite. Moreover it is possible to show
that they are well defined quantum operators on F(HS1). In the following we analyze some
properties of {Ln}. First of all we notice that they satisfy the Virasoro commutation relation
with central charge c equal to one.

[Ln, Lm] = (n−m)Ln+m + δn+m
n3 − n

12
I.

Then the Hermiticity condition L†
n = L−n holds. The spectrum of L0 is discrete and positive

definite
σ(L0) =

{

a2
0/2 +N, N ∈ N

}

.
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Notice that, if a0 = 0, only the action of {L−1, L0, L1} is closed in the one particle Hilbert space
HS1 . By means of a difficult proof, it is possible to show that the action of {Ln} on the fields
φ̂S1(θ) correspond to the action of {Ln} on the point θ of the circle S1.
6. Holography. Above we have shown that there are some particular unitary relations between
some different quantum theories. In particular these unitary relations were used to show the
existence of SL(2,R) “symmetry” also in some cases were it was not expected as for example
on the Rindler free fields. We want to show here that there is a deeper relation between the
Rindler R free fields and the fields defined on the line thought as the future Rindler horizon F.

(f )

(f )|F

u v

Rindler Wedge

f

past infinity

future infinity

constant y
constant t

bifurcated horizon
smearing regions

S

P

F

R

For simplicity we shall discuss here only the case of Rindler free massive fields. As mentioned
above there is a unitary map UF : F(HR) → F(HF) between the Rindler Fock F(HR) space and
the horizon Fock space F(HF). UF maps the Rindler vacuum horizon vacuum UF|0〉 = |0〉F and
U−1

F
φ̂F(η)UF = φ̂(f) for any smooth compactly supported function f used to smear the bulk

field, η = 2d(∆(f)�F). (See figure.)
We want to show here the main idea of the above proposition. Details on the construction of are
presented in [8]. The unitary action UF has the following geometrical meaning: Consider a local
function f used to smear the Rindler field φ̂R, then ψf = ∆(f) is the associated wavefunction.
Taking its restriction on the horizon we obtain an horizon wavefunction as in (7) whose positive
frequency part reads eiρm,κ(E)ψ̃f+(E). Then define a horizon wavefunction ϕf as in (9) with
ϕ̃+ replaced by ψ̃f+. The map ψf 7→ ϕf corresponds to the unitary operator UF�H from H to
HF. Imposing UF|0〉 = |0〉F, by taking tensor products of UF�H, this map extends to a unitary
map UF : F(H) → F(HF). Finally, by direct inspection one finds that, if η = 2dϕf , one also has

U−1
F
φ̂F(η)UF = φ̂(f).

As a consequence, one has the holographic relation: the invariance of vacuum expectation values,

F〈0|φ̂F(η1) · · · φ̂F(ηn)|0〉F = 〈0|φ̂(f1) · · · φ̂(fn)|0〉 . (24)
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There is an analogous relation between the Rindler free fields and quantum operators defined on
the past Horizon P. The massless case is a little more difficult because one has to decompose the
bulk fields in the ingoing and outgoing modes. Then the ingoing modes can be mapped, with
a similar procedure, on the future horizon F whereas the outgoing are in holographic relation
with a quantum field theory defined on the past horizon P. Before ending this section we want
to remind here that the unitary holographic relation presented above is a particular case of the
holographic relation existing between the abstract bulk observable algebra AR and the horizon
observable algebra AF. Such that φR(f) is mapped onto φF(η), where η = 2d(∆(f) �F). The
key point is that the algebraic holography preserve the causal propagator:

−i∆(f, g) = −i∆F(ηf , ηg).

Details on that can be found in [8, 9]. This analysis suggests that similar holographic rela-
tions seems to hold also for theories on more complex spacetime as for example Schwarzschild
spacetime.
7. Four dimensional case. We want to extend the result suited above, concerning Rindler
holography, to the four dimensional case. For this purpose we do not discard the angular
coordinates Θ, φ in the near horizon approximation of a Schwarzschild-like spacetime as discussed
in section 2. The metric reads:

ds2 = −κ2y2dt2 + dy2 + r2hdΩ
2.

Every field takes an angular part described by the usual spherical harmonics Y l
m(Θ, φ). QFT

in the bulk involves the one-particle Hilbert space ⊕∞
l=0(Hl ⊗ C

2l+1) with Hl
∼= L2(R+, dE)

if l > 0, C
2l+1 being the space at fixed total angular momentum l and H0

∼= L2(R+, dE) in
the massive case but H0

∼= L2(R+, dE) ⊕ L2(R+, dE) in the massless case. For wavefunctions
with components in a fixed space C

2l+1 ⊗ L2(R+, dE) Klein-Gordon equation reduces to the
two-dimensional one with a positive contribution to the mass depending on l. Quantum field
theory can also be constructed on the compactified future horizon F ∼= (R ∪ {∞}) × S

2. The
quantum fields on F take the following form:

φ̂F(θ) :=
∑

n≥1,l,l≤m≤l

Y l
m(Θ, φ)

e−inθ

√
4πn

αnlm + Y
l
m(Θ, φ)

einθ

√
4πn

α†
nlm. (25)

The appropriate causal propagator reads

∆F(x, x′) =

(

1

4
sign(θ − θ′) − (θ − θ′)

π

)

δ(Θ − Θ′)δ(φ− φ′)
√

g S2(Θ, φ) .

Also in this case the holographic relation between the bulk and the horizon fields holds. We
notice eventually that there is a difference concerning the extension of the SL(2,R) symmetry
to the Virasoro algebra. The Virasoro generators can be defines as follows:

Llm
n :=

εn
2
a2

n/2lm +
∑

k>n/2

a(−k)lma(k+n)lm, n ∈ Z, (26)
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where anlm := i
√
nαnlm if n > 0 and anlm := −i

√
−nα†

(−n)lm if n < 0 and a0lm := 0. Notice

that fixing (l,m) one gets a Virasoro algebra acting on the subspace Hl. The Virasoro algebra
acting on Hl ⊗ C

2l+1 is

L(l)
n :=

∑

−l≤m≤l

Llm
n , (27)

notice that {Ll
n} forms a reducible Virasoro algebra on F(Hl ⊗ C

2l+1) whose central charge is
cl := 2l + 1. To define the Virasoro generators on the whole Fock space F(HF) we have to
perform an infinite sum

Ln :=
∑

l

L(l)
n (28)

the corresponding central charge c =
∑

l cl becomes infinite and then the Virasoro algebra is
not well defined.
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